COMPLETE SEQUENCES OF POLYNOMIAL VALUES

By R. L. GrRanam

Introduction. Let f(z) be a polynomial with real coefficients. In 1947,
R. Sprague [7] established the result that if f(xr) = 2", n an arbitrary positive
integer, then every sufficiently large integer can be expressed in the form

¢)] > af(k)

k=1

where ¢, is 0 or 1 and all but a finite number of the ¢ are 0. More recently
K. F. Roth and G. Szekeres [5] have shown (using ingenious analytic techniques)
that if f(x) is assumed to map integers into integers, then the following condi-
tions are necessary and sufficient in order for every sufficiently large integer
to be written as (1):

(a) f(z) has a positive leading coefficient.
(b) For any prime p there exists an integer m such that p does not divide f(m).

It is the object of this paper to determine, in an elementary manner, all
polynomials f(zx) with real coefficients for which every sufficiently large integer
can be expressed as (1) (¢f. Theorem 4).

Preliminary results. Yet § = (s;, 85, - - -) be a sequence of real numbers.

Definition 1. P(S) is defined to be the set of all sums of the form D o, es;
where ¢, is 0 or 1 and all but a finite number of ¢ are 0.

Definition 2. 8 is said to be complete if all sufficiently large integers belong
to P(S).

Definition 3. 8 is said to be nearly complete if for all integers k, P(S) contains
k consecutive positive integers.

Definition 4. S is said to be a Z-sequence if there exist integers k and h such
that

m—~1
Shem <k + D S44n, m=0,1,2,---.
n=0
(where a sum of the form ... is 0 for b < a).

The following lemma, is one of the main tools used in this paper:

Lemma 1. Let 8 = (sy, 82, ---) be a Z-sequence and let T = (¢, , 4, , )
be nearly complete. Then the sequence U = (s, , 4, , 85,2, -+ ) 15 complete.
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Proof. Since S is a Z-sequence then there exist k and & such that

m—1

(2) 8h+m<k+ Zsh+n; m=0,1,2,"

n=0

Also, since T is nearly complete, there exists an integer ¢ such that all the
integers

c+j, 1<j<k,
belong to P(T). But (2) implies that
c+tk>c+s
ct+k+ 20+ s

m—1
¢+ k4 D Sn> 0+ Siim

n=0
3
Thus, since all the integers
0+j+sh+m1 ISjSk, mZO
belong to P(U), as well as all the integers
o+j, 1<j<k,

then by (3), all integers exceeding ¢ belong to P(U).
Hence U is complete and the lemma is proved.

LemMA 2. Let S = (s;, 8, - ) be a sequence of real numbers such that for
all suffictently large n we have s,., < 2s,. Then S is a Z-sequence.

Proof. By hypothesis there exists an A such that
n>h=8,. < 2s,.
Therefore, for any m > 0 we have
Shem < 28imo1 = Sarmo1 T Shrmor

< Spem-1 T 2hom—2 T+
m~1

< Z Shin T 81

n=0
and consequently S is a =-sequence.
LemMa 3. Let 8 = (s, , 82, ---) be a sequence of iniegers such that for any

prime P, there extst infinitely many 8; in S such that p does not divide s; . Then
for any positive integer m, P(S) contains a complete restdue system modulo m.

Proof. Let m be an arbitrary positive integer. If m = 1, then the lemma
is immediate. Assume that m > 1. Then m can be written as
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a1 _as

m = gi'gy -+ ¢

where the ¢, are distinet primes and a, > 0 for 1 < k < n. For each ¢, choose
m* terms of 8, say #,(j), such that

g divides £,(j) for 1 < j < m, 1<k<mn,

and such that all nm* of the integers f,(j) are distinetly indexed terms of S
(by hypothesis, such a choice can be made). For each k, at least m® of the
t(j) are congruent modulo g, to the same integer, say.d, , where 1 < d, < ¢, .
Denote the smallest m® of these £,(j) by #(j) for 1 < § < m’, 1 <k < n. Now,
for each k form the m® sums

m(k)

WG = 240G —-m+9, 1<j<m’, 1<k<n,

=1

where m(k) = m/q*. Note that

@G = digt* -+ TG -0 ¢ (mod gn)
for1 < j < m’ Finally, let

ui = W@, 1<j<m,
k=1
Thus we have (u; ,m) = 1. Now at least m of the u; are congruent modulo m.
Denote the smallest m of these by w/, 1 < j < m. Therefore, as r assumes the
values 1, 2, -+ , m, then the integers > ., ! run through a complete residue
system modulo m. Since each of these integers belongs to P(S) then the lemma
is proved.

DEeriniTION 5. Let 8 = (s, , 85, -+ ) be a sequence of real numbers. A(S) is
defined to be the set of all sums of the form Z,‘f_l 048, where 8, 18 —1, 0 or 1 and all
but a finite number of the &8, are 0.

Lemma 4. Let 8 = (s, , 82, ---) be a sequence of real numbers. Suppose
there exists an integer m such that for all n, we have m & A((sn , 8psy , ***)). Then

for all k, P(S) contains an arithmetic progression of k integers with common
difference m.

Proof. The proof will proceed by induction on k. The lemma is true for
k = 1. Suppose the lemma is true for k = r > 1, i.e., there exists an integer
¢ such that all the integers

o+ jm, 1<j<Lr,

belong to P(S). Since each of these integers ¢ + jm is the sum of only finitely
many terms of S then there is an h such that none of the terms s, for 7 > his
used in representing any of the integers

c+gm, 1<j<r.
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But by hypothesis m € A((S44+1, Sa+2, ***)). Thus, there exist distinct integers
R AP S AN NPT 3
all exceeding h such that
m= (8, + - +s8,)— 6+ +8).

Let
w=8,+ - +s,.
Then all the integers )
¢ + jm -+ w, 1<j<r,
and

e+rm+ (s;, + -+ +s4,)
belong to P(S). But
c+rm+ (s, + - +s;,) =cF+rm+wt+m
=c¢+ ¢+ )m+ w.

Thus, P(S) contains an arithmetic progression of r 4 1 integers with common
difference m. This completes the induction step and the proof of the lemma.
We need a final lemma before proceeding to the main theorems.

LemMmA 5. Let S = (81,82, »+-)and T = (4, ,t,, ++-) be sequences of real
numbers and suppose there exists a positive integer m such that:

(1) For all n, P(8S) contains an arithmetic progression of n integers with common
difference m.
(2) P(T) contains a complete residue system modulo m.

Then the sequence U = (s8;,t,, 83, &2, - *+) s nearly complete.

Proof. By hypothesis, P(T) contains a complete residue system modulo
m, 58y
kl <k2< e <km.

Let r be an arbitrary positive integer and suppose that » is chosen greater
than r + k. . By hypothesis, there is an integer ¢ such that all the integers
[ + jm, 1 S ] S n,

belong to P(S). Now, note that if we let

ni=[u]+1, 1<ji<m,
m

(where [ ] is the greatest infeger function), then
1 S n; < km

and
ot k. <ec+nm+k <ct+tm-+k,.
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Since no two of the ¢ + n;m + k; are congruent modulo m, then the set of
integers {¢ + n;m + k; : 1 < j < m} isexactly theset {c + k&, +7:1 <j<m}.
Since p < r — 1 implies that

n;+p<n,-+7'ﬁkm+r<’n,

then in the expression ¢ + n;m + k; , we canreplacen; by n; + pfor1<p <r —1
and conclude that all the integers

6+ k,+pm+j, for 1<j< m, 1<p<Lr—1,
belong to P(U). Therefore, all the integers
¢+ k,+ 7, 13 L rm,
belong to P(U). Since r was arbitrary, then U is nearly complete and the

lerama is proved.

The main theorems. Let f(x) be a polynomial with real coefficients and
let S(f) denote the sequence (f(1), f(2), f(3), --+). In this section we shall
characterize those f for which S(f) is complete. We first consider those f(z)
which map integers into integers.

TaEOREM 1. Let
f(x)=anxn+"'+alx+a0; an¢0

be a polynomial which maps integers into integers. (Thus all the ay are rational
numbers.) Then 8(f) is complete if and only if:

(1) a, > 0.
(2) For any prime p, there exists an integer m such that p does not divide f(m).

Proof. The necessity of Conditions (1) and (2) is immediate. We proceed with
sufficiency. Let g(z) be any polynomial which maps integers into integers.
Define A, (mapping polynomials into polynomials) by:

Afg@) = g(dz + 2) — g(42),

Ag(@) = A(Aia(g@), 2= k< n.

Note that
A(f@)) = A(fldz + 2) — f(4))
A(fdz + 2) — A(f4)
f(16z 4+ 10) — f(16z + 8) — f(16x + 2) 4 f(16x), - - - ete.
Thus, for all positive integers m,
Af(m)) e A(S(), 1<k<n.

It follows from the definition of A, that for 1 < &k < n, A,(f(x)) is a polynomial

Il
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of degree n — k which maps integers into integers and which has a positive
leading coefficient. For,

A(f@)) = f(4z + 2) — f(4x)
= (e + 2" + aa(z + 2" + 1) — (0d2)" + any(d2)" + .- )
= Waz” +n-2" "z + o0 + 40 2" )
- o + 4"y 2™ - )
= 12",z + terms of lower degree

(which certainly maps integers into integers and has a positive leading co-
efficient) and

Af(2) = A(Aa(f(2))), 2<k<n

Therefore A,(f(z)) is a polynomial of degree 0 which maps integers into integers
and has a positive leading coefficient, ie., A.(f(z)) is just a positive integer
which we shall denote by m. Note that m is independent of z. Now, by hypo-
thesis, for any prime p, there exists an k such that » does not divide f(m). But

fw) = {(h + k dp) (mod p)

where d is the product of all the denominators of the «; and % is an arbitrary
integer. For,

&b + b dp) = ek’ + dap(Eh'™ + --)
= aihi (mod p)
since da; is an integer. Thus there are infinitely many integers ¢ such that
p does not divide f(f). Hence, by Lemma 3, P(S(f)) contains a complete residue
system modulo m. Of course, we need only a finite number of terms of S(f)
to obtain the complete residue system, so that there exists some integer r such

that if we denote the sequence (f(1), f(2),---, f(r)) by 8, then P(S) contains a
complete residue system modulo m. Let T denote the sequence

(@), fler + 2), f@r + 4), ---).

Since m = A,(f(x)) uses only terms of S(f) of the form f(2) and is independent
of z, then by Lemma 4, for all k, P(T) contains an arithmetic progression
of k integers with common difference m. Thus, by Lemma 5, the sequence

U=(1),12), -, 10), 1@, f@r + 2), f2r + 4), --)
is nearly complete. But th_e sequence
W = (J@r+ 1), f2r+3),f2r +5), )
has

i f@r 2k 4 1) _

W or f 2k —1) 1



COMPLETE SEQUENCES OF POLYNOMIAL VALUES 281

so that for all sufficiently large & we have
f@r+2k4 1) < 2f@r + 2k — 1).

Hence, by Lemma 2, W is a Z-sequence. Therefore, by applying Lemma 1,
we see that the sequence formed by combining U and W, namely

S = (1), 12, 13), - -,

is complete. This proves the theorem. i

We now consider polynomials f(z) which have rational coefficients but are
not restricted to map integers into integers. It is well known (cf. [1]) that
any polynomial f(z) of degree n which has rational coefficients can be uniquely
expressed in the form

fx) = a0 + al[xJ + -+ an[xJ

1 n

where the o, are rational, «, > 0 and (2) denotes the expression
x(x-l)..;“(x—k-l-l)’ 0<k<n.

TrEOREM 2. Let
_ B &(x) &(-’v)
f(x) P + o \1 + + n
where the p, and q. are integers such that
D, =1, P 0 and ¢ 0, 0<k<n.
Then S(f) is complete if and only if:

p &5
¢ py

2 ged (@o,pr, - ,p) = 1.

Proof. Suppose S(f) is complete. Condition (1) is immediate. To. show
Condition (2), suppose that

ged. (po,p1, - ,p) =a> 1.
Let ¢ = Lem. (g0, ¢y, -+, g.). Then

ha) = .4

has integer coefficients. Now we must have (g, a) = 1. Forif (g,a) = ¢ > 1,
then there exists a prime p such that p | ¢. Thus p | ¢ and p | . Hence, there
exists an ¢ such that p | ¢; . Since p | a then p | p, . Therefore p | (p; , q.),
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which is impossible, since (p; , g;) = 1. Thus, we must have (¢, a) = 1. Con-
sequently every term in S(f) is of the form ak/q for some integer k. Hence,
every integer in P(S(f)) is a multiple of a > 1, which is a contradiction to the
hypothesis that S(f) is complete. This establishes the necessity of (1) and 2).

We now show that (1) and (2) are sufficient. Suppose Conditions (1) and

(2) hold. Then ¢ = lem. (g0, ¢1, *+- , ) is the smallest positive integer
such that gp;/g¢; is an integer for 0 < j < n. Now we must have
d = g.cd. (m, ,g&) =1.
Qo q"

For, suppose d > 1 and let d’ be a prime factor of d. Then
@ |2 0<j<n
qi
Thus, for each j, either

dl

L o @ | p; -

But g.ed. (0o, D1, -+, P.) = 1 by hypothesis. Thus for some 7 we must

have d’ | g/q: . Therefore d’ | g and consequently ¢’ = g/d’ is a positive integer

less than q which has the property that ¢'p;/g; is an integer for 0 < j < n.

This is impossible since ¢ is the smallest positive integer which has this property.

Hence, if we let r; denote ¢p,/q; for 0 < j < n, then we have g.c.d. (r,, 7, ,
-, r) = 1. Now let

k@) = gi@) = ro + rl(f) +ooe r,.(;).
Suppose there exists a prime ¢ such that ¢ divides h(m) for all m. Then
t divides A(0) = r,,

t divides k(1) =7, + r,,
t divides A(2) = r, + 2r, + 15,

¢t divides h(n) =r, + <7;')r1 + (Z)rz 4o+ (71‘),.”_l +r.

Thus, ¢ divides g.e.d. (ro , r, , -+- , r,) = 1, which is impossible. Therefore,
for any prime ¢, there is an m such that ¢ does not divide A(m). Hence, by
Theorem 1, S(k) = (h(1), h(2), ---) is complete and consequently P(S(%))
contains all sufficiently large multiples of g. Since

1
= Z.h(z),
f=) p (@) ‘
then the sequence S(f) = (f(1), f(2), - - +) is complete. This proves the theorem.
Finally, if not all the coefficients of f(x) are rational, then we have
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TeEEOREM 3. Let
f@ =eax"+ - +taxzta, o #0,
and suppose that at least one a, 1s irrational. Then S(f) is not complete.

Proof. Let A denote the vector space over the rational numbers generated
by the set {1, ¢y, @, ---, @,}. Since not all the , are rational, we have

2<dmd <n+2.

The set {1} is linearly independent over the rational numbers so that we can
extend {1} to a basis {8,, 8., ---, 8} of A where 8, = 1and2 <t <n+ 2
(cf. [3]). Thus, we have

a=2rk D8, O0<k<n,

t=1

where the r(k, 7) are rational. Therefore,

@ @) = S adt = 3 Xk, 0Bt

k=0 k=0 §m=1

I

n

= i: B: > r(k, 9)z*

i=]1 k=0

,-Z', B:g:(x)

where

n

gi@) = X rlk, 92", 1<i<t.

k=0

Now, suppose r is a rational number which belongs to P(S(f)). Then there
exists a set {x,, -+, .} of distinet positive integers such that

r= 3 f@).

i=1
Thus, we have by (4),

m ¢

r= Z Z B:g:(x;)

i=l =1

= ZIS- Zm: ().

i=1 i=1

Since the B, are linearly independent over the rationals, we have
f =:.§; glczay

0= g(), 2<i<t
i=1

By hypothesis, there must be at least one h, 2 < & < t, such that g,(z) is not
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identically zero. Hence, for each rational r ¢ P(S(f)), there exists a set
{z,, -+, 2.} of distinet positive integers such that

(5) : 0= ’Zl gn(x;).

But this implies that there can be only finitely many rational numbers in P(S(f)).
For suppose that there are infinitely many finite sets of distinct positive integers
{z, --+ z,} such that > ™, f(z;) is rational. Suppose further that the leading
coefficient of g,(x) is positive. (A similar argument can be applied if it is
negative.) Then there are only finitely many positive integers ¥, say 41, *** , ¥u,
for which gi(y) < 0. Also, there exists an N so that x > N implies that

(6) 0@ > — 2 0y)-
Since we have assumed that there are inﬁnitély many sets {x, , --- , z,} for
which Y7, f(z;) is rational, then one of these sets, say {z], --- , ...} must
contain an integer z; > N. Thus by (5) and (6),

0= E gn(x})

i=1

(D) + 5 ga(ed)

i=1
id

> ga@l) + 2 o) > 0,

i=1

which is impossible. Thus, there can only be finitely many rational numbers
in P(S(f)) and consequently S(f) cannot be complete. This proves the theorem.
We can combine Theorems 2 and 3 to obtain the main result of the paper:

THEOREM 4. Let f(x) be a polynomial with real coefficients expressed in the form

@) = ao + al(’l‘) + o a(z) . om0,
Then the sequence

S(f) = (f(l)y f(2)y . ')
18 complete if and only f:
(1) aw = pu/qs for some integers p, and q. with (e , @) = 1 and q, = 0 for
0k
2) « > 0.
3) ged. (Po, D1, " ,pn) = 1.

Concluding remarks. It follows at once that the sequence of polynomial
values (f(1), f(2), f(3), ---) is complete if and only if for any » the sequence
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(f(n), f(n + 1), f(n + 2), ---) is complete. It might be noted that even for
the simplest polynomials f, the exact determination of the largest integer
A(f) which does not belong to P(S(f)) is not easy. While an upper bound
for A(f) can be obtained from the proofs of the preceding theorems, it is too
crude to be of much use. It is known that:

x(i——;f—f) = 33 .[4],
Az = 128 61,

Mz®) = 12758 {21,
A=") > 2400000 [2],

2
Naz —a+1) = 20 =L
where ¢ is an arbitrary positive integer.
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