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Chapter 1

Introduction

Meanders are combinatorial objects with a topological flavour, encapsulat-

ing properties of the interplay between planarity and connectedness. They

correspond to the systems formed by the intersections of two curves in the

plane, with equivalence up to homeomorphism within the plane. They arise

in other guises in polymer physics, algebraic geometry, and the study of

planar algebras, especially the Temperley-Lieb algebra. For applications of

meanders, the reader is referred to [1, 4, 12]. Associated with each meander,

is a crossing number. The focus of this essay is the problem of enumerating

inequivalent closed meanders with respect to their crossing numbers.

The problem of enumerating meanders has a long history, with interest

dating back at least to work by Poincaré on differential geometry, though

the modern study appears to have been inspired by Arnol′d in [1]. Also

considered, will be the related problem of enumerating semi-meanders. Em-

phasis will be placed on exact results, but asymptotic approximations will

also be described.

This essay presents several constructions that can be used to express

meandric numbers in terms of other combinatorial objects. The resulting

expressions are elegant, but computationally intractable to date. That ex-

pressions for meandric numbers can be derived through such diverse con-

structions, illustrates a sublte interrelation between seemingly unrelated ar-

eas of mathematics.
1



1.1 Definitions

We begin by defining the objects of study. Three varieties of meanders will

be of particular interest in this essay, the most natural to describe being

the open meander, which we introduce informally through a geographical

analogy before defining it formally.

Informally, an open meander may be represented as the configuration

formed by a river and a road. The river approaches the road from the

northwest, meanders around under an east-west road, and then continues

off to the east. Both the river and the road can be considered to be infinite.

See Figure 1.1. It is from this geographical context that the name meander

is derived. The imagery of this description encapsulates several of the key

features of meanders that need to be formalized.

PSfrag replacements

(a)

(b)

(c)

(d)

(e)

Figure 1.1: An open meander represented as a river and a road.

A meander consists of two distinguished simple planar curves; in the

case of the geographical analogy these are the river and the road. The

two curves cross a finite number of times and these crossings account for

all of the intersections between the curves. We are interested in meanders

only up to equivalence under homeomorphism within the plane and impose

an orientation on the river to prevent unwanted equivalences arising from

rotating a configuration to swap the ends of the river or road. Combining

these features, we can now define an open meander.

Definition 1.1.1 (Open Meander). An open meander is a configuration

consisting of an oriented simple curve and a line in the plane, that cross
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a finite number of times and intersect only transversally. Two open mean-

ders are equivalent if there is a homeomorphism of the plane that maps one

meander to the other.

A natural parameter of an open meander is its order. Given a meandric

configuration, the order of the meander is the number of crossings between

the two curves. Figure 1.2 gives three examples of open meanders and indi-

cates their orders.PSfrag replacements

(a)

(b)

(c)

(d)

(e)

n = 7 n = 7 n = 8

Figure 1.2: Examples of open meanders and their orders, denoted by n.

It is worth noting that in the definition of an open meander, the line and

curve play symmetric roles. Since a line and a simple curve are homeomor-

phic, and we are only interested in defining meanders up to homeomorphism,

their roles can be reversed by imposing an orientation on the line instead

of the curve. A homeomorphism of the plane can then be used to convert

this configuration to the familiar form. In light of this equivalence between

the curves, it will often be convenient to orient the line instead of the curve

when defining other varieties of meanders.
PSfrag replacements

(a) (b) (c) (d)(e)

Figure 1.3: The duality between the line and curve in an open meander

This duality is illustrated in Figure 1.3. Beginning with an open mean-

der we orient the line (a). The curve is straightened by applying a homeo-
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morphism of the plane (b-d). Straightening the curve, curves the line. By

ignoring the final orientation on the line, we are left with a new open mean-

der (d). By our choice in orientations, applying the transformation a second

time has the result of rotating the configuration by a half turn in the plane.

The process can be made self inverse by reflecting the final configuration

across the line.

For the purpose of enumeration a more convenient class of objects of

study is the class of closed meanders, and it is customary to refer to these

simply as meanders.

Definition 1.1.2 (Closed Meander). A closed meander is a planar con-

figuration consisting of a simple closed curve and an oriented line, that cross

finitely many times and intersect only transversally. Two meanders are

equivalent if there exists a homeomorphism of the plane that maps one to

the other.

PSfrag replacements

(a)

(b)

(c)

(d)

(e)

n = 2 n = 3n = 4

Figure 1.4: Examples of closed meanders, and their orders, denoted by n.

The order of a closed meander is defined as the number of pairs of inter-

sections between the closed curve and the line. Since the two curves intersect

an even number of times, the order of a closed meander is an integer. Ex-

amples of closed meanders are provided in Figure 1.4.

A third variety of meanders is obtained by replacing the line in the

definition of a close meander, with a ray. If we think of the ray as a river

with a source, and think of the curve as a road, this corresponds to a road

that wraps around the source of the river.

Definition 1.1.3 (Semi-meander). A semi-meander is a planar configu-

ration consisting of a simple closed curve and a ray, that cross finitely many

4



times and intersect only transversally. Two semi-meanders are equivalent if

there exists a homeomorphism of the plane that maps one to the other.

As with open meanders, the number of intersections between the two

curves of a semi-meandric configuration may be odd, and the order of a

semi-meandric configuration is the number of intersections between the two

curves. In addition to order, semi-meanders have a second natural parameter

of enumerative importance. The winding number of a semi-meander is the

minimum, over all equivalent configurations, of the number of times the

closed curve crosses the extension of the ray to a line. Examples of semi-

meanders are provided in Figure 1.5. Notice that the middle two examples

are equivalent as semi-meanders.

PSfrag replacements

(a)

(b)

(c)

(d)

(e)

n = 5, w = 3 n = 4, w = 0 n = 4, w = 0 n = 5, w = 1

Figure 1.5: Examples of semi-meanders, their orders, n, and their winding numbers, w.

The apparent inconsistency in the of definition of the order of a closed

meander and the order of a semi-meander is justified in Section 2.2.1, where

both classes are viewed in terms of arch configurations, which we now intro-

duce.

Definition 1.1.4 (Arch Configuration). An arch configuration is a pla-

nar configuration consisting of pairwise non-intersecting semicircular arches

lying on the same side of an oriented line, arranged such that the feet of the

arches are equally spaced along the line.

The order of an arch configuration is the number of arches it contains.

An arch configuration consisting of concentric arcs is called a rainbow con-

figuration. Such configurations are used in representing semi-meanders.

Figure 1.6 illustrates some examples of arch configurations. The final exam-

ple is the rainbow configuration of order 5.

5
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(a)

(b)

(c)

(d)

(e)

Figure 1.6: Examples of arch configurations of order 5.

Arch configurations play an essential role in the enumerative theory of

meanders. They are used to obtain the canonical representatives of both me-

anders and semi-meanders that are used in subsequent constructions. They

also have a natural link to the Temperley-Lieb algebra, which is discussed

in Chapter 5.

The principal enumerative problem associated with meanders is to de-

termine the number of inequivalent meandric configurations of various forms

with respect to order. We introduce notation to represent these numbers for

the varieties of meanders already introduced. The numbers of inequivalent

open, closed, and semi-meanders of order n are denoted by mn, Mn, and

Mn, respectively, and are called the n-th open meandric number, (closed)

meandric number, and semi-meandric number, respectively. We let Cn de-

note the number of arch configurations of order n.

PSfrag replacements

(a)

(b)

(c)

(d)

(e)

Figure 1.7: The eight inequivalent meandric configurations of order three.

As an example, Figure 1.7 gives all of the non-equivalent meandric con-

figurations of order three, the lines each being understood to be oriented

from left to right. So M3 = 8. The first few meandric numbers are listed in

Table A.1.
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1.2 Enumerative Strategies

To date, there is not a complete solution to the meander problem. Several

constructions can be used to rephrase it in different forms, but none of these

approaches has yet succeeded in making the problem more tractable.

Chapter 2 presents some elementary approaches to the problem of enu-

merating meanders. Open meanders are related to closed meanders. Mean-

ders and semi-meanders are then discussed in terms of arch configurations.

This leads to a definition of meandric and semi-meandric systems, and in

turn yields weak upper and lower bounds for the number of meanders of a

given order. Several automorphisms on the class of meanders are described

and used to derive congruences satisfied by the meandric numbers. The

chapter concludes with a description of an algorithm for exhaustive enumer-

ation of meanders and semi-meanders.

Each of the remaining chapters deals with a more advanced approach

to the problem, outlining the construction and mathematical tools involved,

and summarizing the conclusions that can be drawn from the approach.

Chapter 3 deals with representing meanders as permutations and then

develops some properties of the symmetric group in order to express me-

andric and semi-meandric numbers in terms of characters of the symmetric

group. These expressions provide an effective method for describing mean-

ders in purely combinatorial terms, and a bridge to the theory of symmetric

functions.

Chapter 4 presents an expression for meandric numbers in terms of ma-

trix integrals. A meandric configuration is generalized to a map with mul-

tiple roads, multiple rivers, and arbitrary genus. Counting these modified

objects with respect to number of rivers, roads, and genus is then phrased as

a problem of colouring maps. This map colouring problem is then expressed

as a matrix integral. Results about meanders can be obtained by taking

appropriate limits. To date, there are no known techniques for evaluating

the resulting integrals, but the construction rephrases the meander problem

in analytic terms.

7



Chapter 5 introduces the Temperley-Lieb algebra. The meander problem

is reduced to one of evaluating the Gram matrix of a symmetric bilinear form

on the algebra with respect to a particular basis. The chapter develops some

properties of the Temperley-Lieb algebra and relates them to the evaluation

of this form. This construction potentially opens the meander problem to

the tools of linear algebra.

Chapter 6 considers approaches to the meander problem that involve

taking cross-sections of meanders. Each intersection between the curves is

treated as a letter in a combinatorial word. This interpretation presents

the meander problem in terms of the theory of formal languages and leads

to a description of the technique that, to date, has been most effective at

exhaustively enumerating meanders.

8



Chapter 2

Elementary Approaches

2.1 Relating Open and Closed Meanders

We first justify the exclusion of open meanders from subsequent discussion

by noting their relationship to closed meanders, which are more easily ana-

lyzed, in a large part because of their representability by arch configurations.

PSfrag replacements

(a)

(b)

(c)

(d)

(e)

Figure 2.1: Closed meanders and odd order open meanders

Figure 2.1 illustrates the bijective correspondence between closed mean-

ders and open meanders of odd order. A unique closed meander can be

obtained from every open meander of odd order by adding an intersection

between the curves at the right of the configuration. The two free ends of

the curve are stretched around the rest of the configuration and made to

meet at this point. The process is easily reversed by breaking the closed

curve of a closed meander at its rightmost crossing with the line to obtain

9



two free ends which are extended to infinity. This construction establishes

the relation:

Mn = m2n−1.

It is also possible to relate the number of open meanders of an even order

to closed meanders. An open meander of order 2n can be completed to a

closed meander of order n by joining the two ends of the curve at infinity and

orienting the line appropriately, as illustrated in Figure 2.2. This operation

is not bijective since in the reverse operation the closed curve can be broken

along any segment incident to the infinite face in the upper half-plane. Each

choice generates a different open meander.
PSfrag replacements

(a)

(b)

(c)

(d)

(e)

Figure 2.2: Closed meanders and even order open meanders

We thus have the relation that the number of open meanders of order

2n is the sum, over all closed meanders of order n, of the number of pieces

of the closed curve in the upper half-plane that are incident to the infinite

face.

2.2 Using Arch Configurations

Arch configurations provide a convenient medium for obtaining a canonical

representation of closed meanders. In a closed meander, the line partitions

the closed curve into two pieces, an upper piece and a lower piece, corre-

sponding to the two sides of the line when the configuration is drawn with

the line oriented from left to right. The pieces, each taken together with

the line, are referred to as the upper and lower configurations of the me-

ander. Each of these is homeomorphic to a unique arch configuration, the

existence of which requires a topological argument beyond the scope of this

10



essay. These are the canonical representations of the upper and lower con-

figurations. The canonical representation of a closed meander is the unique

meandric configuration that is homeomorphic to the original meander and

in which both the upper and lower configurations are in canonical form.PSfrag replacements

(a) (b) (c) (d)(e)

Figure 2.3: The canonical form of a closed meander.

Figure 2.3 illustrates this representation. A closed meander (a) is split

into an upper configuration and a lower configuration given in (b). An arch

configuration is constructed homeomorphic to each piece to obtain in (c) a

canonical representation of the upper and lower configurations. Given two

arch configurations of the same order, we can superpose them by drawing

one on each side of the line and identifying their base points. Superposing

the canonical representations produces the canonical representation of the

original meander in (d).

To find the canonical representation of a closed meander of order n,

consider the following construction. Homeomorphically deform the config-

uration to make the points of intersection between the curve and the line

equally spaced along the line, while keeping the line fixed. Deleting the in-

tersection points between the curve and the line partitions the closed curve

into 2n connected components, n on each side of the line. Replace each

of these components by a semicircular arch on the same side of the line,

with the same points of intersection with the line. The upper and lower

configurations of the resulting configuration are easily seen to both be arch

configurations of order n. Showing that the final configuration is homeomor-

phic to the initial configuration requires repeated invocations of the Jordan

Curve Theorem.

The construction provides an injective function from classes of closed

meanders of order n to ordered pairs of arch configurations of order n, cor-

11



responding to the upper and lower arch configurations. We notice that not

every such pair of arch configurations is the image of a closed meander: in

particular, taking the same configuration for the upper configurations and

the lower configurations yields n closed curves instead of a single closed

curve. This motivates the following generalization of meanders.

Definition 2.2.1. A meandric system is the superposition of an ordered pair

of arch configurations of the same order, with the first configuration as the

upper configuration, and the second configuration as the lower configuration.

The order of a meandric system is the order its underlying arch configu-

rations. To work with meandric systems, we use M
(k)
n to denote the number

of k component meandric systems of order n. This is a natural generaliza-

tion of meandric numbers, in the sense that Mn =M
(1)
n . Values of M

(k)
n for

small n and k are listed in Table A.4.

A sequence of polynomials is used to summarize the meandric system

numbers. The n-th meandric polynomial,

mn(q) =
n
∑

k=1

M (k)
n qk, (2.1)

is the ordinary generating series of meandric systems of order n with re-

spect to number of components. Given the polynomial mn(q), Mn can be

recovered as the coefficient of q.

2.2.1 Embedding Semi-Meanders in Closed Meanders

Arch configurations can also be used to provide a canonical representa-

tion of semi-meanders. Consider the following construction illustrated in

Figure 2.4.

Beginning with a semi-meander (a), create a second ray with the same

origin as the first. The new ray can be created arbitrarily close to the

original ray, such that it is distinct from the original ray but the semi-

meandric configuration consisting of the closed curve and the original ray

12
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(a) (b) (c) (d)(e)

Figure 2.4: Semi-meanders specialize closed meanders

is equivalent to the configuration consisting of the closed curve and the

new ray (b). By homeomorphically deforming the plane, the two rays can

be separated further and aligned such that they are oriented in opposite

directions (c). Interpreting this pair of rays as a line oriented in the same

direction as the original ray, we have constructed a meandric configuration

(d).

In this presentation, the configurations swept out between the two rays

is seen to be a rainbow configuration. Moreover, beginning with a closed

meander with a rainbow configuration for its lower arch configuration, it is

possible to reverse the transformation to obtain a semi-meander by inter-

preting the line as a pair of rays originating from the center of the rainbow

configuration and deleting one of the rays. This provides a natural embed-

ding of semi-meanders in meanders and establishes the following proposition.

Proposition 2.2.2. Meandric numbers and semi-meandric numbers satisfy

the relation

Mn ≤Mn. (2.2)

By representing meanders as pairs of arch configurations, we obtain a

natural representation for semi-meanders in terms of arch configurations.

Semi-meanders can be viewed as the specialization of meanders to those with

the rainbow configuration as their lower arch configuration. In addition, the

closed curve of a semi-meander of order n intersects the ray n times and

intersects the pair of rays 2n times, so the closed meander obtained by this

correspondence is also of order n. It is this relationship that motivated a

definition of order that at first appears to be an inconsistent between the

two classes.
13



This representation also preserves winding number as an identifiable pa-

rameter. When a semi-meander is presented as a closed meander with the

rainbow configuration as its lower configuration, the winding number can be

recovered as the number of arches passing over the midpoint of the upper

arch configuration.

Parallel to the definition of a meandric system, we define a semi-meandric

system as the superposition of an arbitrary upper arch configuration with a

lower rainbow configuration.

2.2.2 Embedding Closed Meanders in Semi-Meanders

Closed meanders also have a natural embedding in semi-meanders, though

in this embedding, the order is not preserved. A semi-meander of order 2n

with winding number zero can be drawn so the ray can be extended to a

line without intersecting the closed curve. A closed meander of order n is

obtained by orienting the line consistently with the ray.PSfrag replacements

(a)

(b)

(c)

(d)

(e)

Figure 2.5: Closed meanders specialize semi-meanders

Figure 2.5 illustrates this interpretation: a semi-meander of order 8 with

winding number zero (left) is drawn such that the ray can be extended to

a line without intersecting the closed curve and the resulting configuration

is interpreted as a closed meander of order 4 (right) by replacing the ray by

the oriented line containing it.

In a similar manner, a closed meander can be interpreted as a semi-

meander with winding number zero by picking any point on the line that

precedes all intersections, and using it as the origin of the ray of a semi-

meandric configuration using the same closed curve. In terms of diagram-

matic representations, the construction is trivial, amounting to replacing

14



the tail of an arrow, marking the direction of a line, by a dot, indicating the

origin of a ray.

Using this interpretation, we can interpret closed meanders as a special-

ization of semi-meanders. Closed meanders are those semi-meanders with a

winding number of zero. The following proposition is an immediate conse-

quence.

Proposition 2.2.3. Meandric numbers and semi-meandric numbers satisfy

the relation

Mn ≤M2n. (2.3)

2.2.3 Bounding Meandric Numbers

We can obtain both an upper bound and a lower bound for meandric num-

bers in terms of arch configurations.

Lemma 2.2.4. The numbers Mn and Cn satisfy the relation

Cn ≤Mn ≤ C 2
n .

Proof. Meandric systems of order n are in bijective correspondence with

ordered pairs of arch configurations of order n, of which there are C 2
n . So

the inequality

Mn ≤ C 2
n

is a consequence of meanders being a subset of meandric systems of the same

order.

To establish the lower bound, and complete the proof, we show that every

arch configuration occurs as the upper configuration of some meander. We

begin with the observation that every arch configuration contains an arch

such that no arch lies between its feet. Call such an arch a minimal arch.

We employ a construction that uses one meander to generate several

closed meanders of the next higher order. Consider two arch configurations

such that the second is derived from the first by erasing a minimal arch
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and redrawing the resulting configuration so the feet of the arches are again

equally spaced. Figure 2.6 illustrates this derivation: beginning with (a), (b)

is obtained by deleting the minimal arch indicated with an arrow, redrawing

(b) as (c) completes the derivation.PSfrag replacements
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Figure 2.6: Minimal arch deletion

Starting with a meander of order n−1 with the derived arch configuration

as its upper configuration, we can construct a meander of order n with the

first arch configuration as its upper configuration. Figure 2.7 illustrates this

construction. Beginning with an arbitrary closed meander with the derived

arch configuration as its upper configuration (a), we obtain an equivalent

meander, with the arches repositioned to accommodate in situ the missing

arch (b), and locate the region of the lower configuration incident with the

feet of the missing arch (c).
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Figure 2.7: Deforming a meander to accomodate a missing arch

A meander of order n with the first arch configuration as its upper con-

figuration is obtained by picking any lower arch incident to this region and

stretching it to cross the line and replace the deleted arch. In general the

choice is not unique. Figure 2.8 uses an arrow to indicate the two lower

arches that can be selected, and illustrates the result of the construction in

each case.
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Figure 2.8: Stretching an arch across the line

This construction can be used to produce a closed meander with any

specified arch configurations as its upper configuration. To do this, construct

a sequence of arch configurations beginning with the specified configuration

and ending with the configuration consisting of a single arch, such that

each configuration is obtained from its immediate predecessor by deleting

a minimal arch. Figure 2.9 illustrates such a sequence beginning with the

arch configuration from the previous example.

PSfrag replacements

(a)

(b)

(c)

(d)

(e)

Figure 2.9: A sequence minimal arch deletions

The configuration with a single upper arch is uniquely completed by the

configuration with a single lower arch. Beginning with this meander use the

preceding construction to produce a meander for each arch configuration in

the sequence. Such a sequence is illustrated in Figure 2.10 with an arrow

indicating the arch that is stretched at each step.

Since this construction can be applied beginning with any arch config-

uration to obtain a meander with the specified configuration as its upper

configuration, we conclude that, every arch configuration is the upper con-
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Figure 2.10: A sequence of meanders

figuration of at least one meander. This establishes the lower bound

Cn ≤Mn.

Arch configurations are easily shown to be in bijective correspondence

with several other classes of combinatorial objects of known cardinality.

For completeness we provide a direct derivation of the arch configuration

numbers.

Lemma 2.2.5. The number of arch configurations of order n, Cn is
1

n+1

(

2n
n

)

,

the n-th Catalan number.

Proof. We consider the null configuration (with no arches) to be an arch

configuration. Let A denote the class of arch configurations, and B denote

the class of arch configurations with a single arch incident with the infinite

face. An arbitrary arch configuration can be decomposed as a finite sequence

of arch configurations of class B. The decomposition is reversible since a

sequence of arch configurations of class B can be concatenated to produce

an arch configuration of general type. This establishes the bijection:

A ∼−→
∞
˙⋃

i=0

Bi

which preserves the number of arches. Thus if A(x) and B(x) ∈ Q[[x]], the

ring of formal power series over Q, are the ordinary generating series for A
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and B, respectively, then

A(x) =
∞
∑

i=0

B(x)i =
1

1−B(x)
.

But an arch configuration of general type can be obtained from one of class

B by deleting the arch incident with the infinite face. Since the process

is reversible, given an arch configuration of general type we can obtain a

unique arch configuration of class B by adding an arch spanning the entire

configuration, we have the additional relation,

B(x) = xA(x),

and conclude that A(x) satisfies the equation

A(x) =
1

1− xA(x)
,

or equivalently

A(x)− 1 = xA(x)2.

Letting D(x) = A(x)− 1, we have

D(x) = x(1 +D(x))2,

and by Lagrange’s Implicit Function Theorem [8, Thm. 1.2.4],

D(x) =
∑

n≥1

xn

n
[λn−1](1 + λ)2n

=
∑

n≥1

1

n

(

2n

n− 1

)

xn

=
∑

n≥1

1

n+ 1

(

2n

n

)

xn
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is the unique solution to this equation in Q[[x]]. From this we see that

A(x) =
∑

n≥0

1

n+ 1

(

2n

n

)

xn,

and so

Cn = [xn]A(x) =
1

n+ 1

(

2n

n

)

,

as required.

We have an immediate corollary.

Corollary 2.2.6. The number of meandric systems of order n is
(

1
n+1

(

2n
n

)

)2
.

We also have a rough picture of the general behaviour of the meandric

numbers. From Stirling’s approximation, the asymptotic behaviour of Cn is

known to be Cn ∼ C 4n

n3/2 for a constant C. It is thus reasonable to assume

that the asymptotic behaviour of Mn is

Mn ∼ C
Rn

nα
(2.4)

for some constants C, R, and α. Indeed, it is shown in [11] that there exists

a constant AM such that for all A with 0 < A < AM , An < Mn ≤ (AM )n.

From (2.2) and (2.3), we can bound the semi-meandric numbers byMn ≤
Mn ≤ M2n and can conclude that they also exhibit exponential growth. It

is conjectured that

Mn ∼ C
R

n

nα
(2.4′)

for some constants C, R, and α. For reasons stemming from interpreta-

tions of meanders and semi-meanders in statistical mechanics, it is further

conjectured, in [5], that R = R
2
.
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2.3 Filtering Meanders From Meandric

Systems

By considering a meandric system as a pair of arch configurations of the

same order we have determined that the number of such systems is C 2
n .

We now give an expression, as described in [11], for the generating series for

meandric systems with respect to twice their order,

B(x) =
∑

n≥0

C 2
n x2n.

Proposition 2.3.1. The generating series B(x) has the expression,

B(x) =
1

4x2

(

−1 + 1

2π

∫ 2π

0

√

1− 8x cosφ+ 16x2 dφ

)

. (2.5)

Proof. We work in C((x)), the field of formal Laurent series over C, and

make use of a result due to Parseval, see for example [11].

Lemma (Parseval 1805). If f(x) =
∑

n≥0 anx
n is analytic in a neighbour-

hood of zero in C, then F (x) =
∑

n≥0(anx
n)2 is analytic in a neighbourhood

of zero and representable as

F (x) = Resλ=0
f(λx)f(λ−1x)

λ
.

By considering the natural embedding of Q[[x]] in C((x)), we can view

A(x), the generating series for arch configurations as the function,

A(x) =
∑

n≥0

Cnx
n =

∑

n≥0

1

n+ 1

(

2n

n

)

xn =
1−

√
1− 4x

2x
.

which is analytic on the disc D = {x ∈ C : |x| < 1
4}. So, by the lemma, with
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A and B taking the roles of f and F , respectively,

B(x) = Resλ=0
A(λx)A(λ−1x)

λ

= Resλ=0
1

λ

1−
√
1− 4λx

2λx

1−
√
1− 4λ−1x

2λ−1x

=
1

4x2
Resλ=0

1

λ
(1−

√
1− 4λx)(1−

√

1− 4λ−1x)

=
1

4x2

[

Resλ=0
1

λ
(1−

√
1− 4λx)− Resλ=0

1

λ
(
√

1− 4λ−1x)

+Resλ=0
1

λ
(
√

1− 4λx− 4λ−1x+ 16x2)

]

=
1

4x2

(

−1 + 1

2π

∫ 2π

0

√

1− 8x cosφ+ 16x2 dφ

)

.

The first two residues are seen to be 0 and 1, respectively, while the final

residue is obtained by integrating around the perimeter of the unit circle

with λ replaced by cosφ+ i sinφ.

Given the relative ease with which we obtain a solution to the problem of

enumerating systems of meanders, and that a system of meanders is a multi-

component meander, one might hope to be able to exploit this knowledge to

obtain an exact solution to the number of single component, or connected

meanders. Indeed, under the appropriate combinatorial conditions, there is

a simple relation between the generating series for connected objects and the

generating series for the set of objects constructed from a finite collection of

connected objects. We consider two classes of objects for which the number

of connected objects can be obtained from the number of general objects,

and show that meandric systems do not fall into either of these classes.

For the first class of objects, a general object is obtained from connected

objects by Cartesian product, and can be decomposed into a sequence of

connected objects. For this class, the ordinary generating series for general

objects G(x) and the ordinary generating series for connected objects C(x)

satisfy the relation

G(x) =
1

1− C(x)
. (2.6)
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Meanders and meandric systems are not in this class of objects. Any

sequence of meanders can be concatenated along the line to form a meandric

system, but not every meandric system takes this form. Two closed curves

may be nested as in Figure 2.11 (a), intertwined as in Figure 2.11 (b), or

both as in Figure 2.11 (c), for example.
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Figure 2.11: Meandric systems that are not formed by concatenation

For the second class of objects, a general object is obtained from con-

nected objects by ~-product [8, Def. 3.2.9], and can be decomposed into a

collection of connected objects on disjoint sets of labels. In this case, G(x),

the exponential generating series for the general objects, and C(x), the ex-

ponential generating series for the connected objects, satisfy the relation

G(x) = exp(C(x)). (2.7)

Considering the base points as the labelled objects, every component of a

meandric system is a closed meander on a subset of the labels: the meandric

system Figure 2.12 (a) is the superposition of the meander Figure 2.12 (b) on

the second and forth pairs of intersections, with the meander Figure 2.12 (c)

on the first and third pairs of intersections, for example. Meandric systems

do not, however, fall into this second class of objects.

The superposition of two copies of the meander in Figure 2.13 (a) using

the same partition as in Figure 2.12 (a) produces a configuration, Figure 2.13

(b), that is not a meandric system; the upper configuration is not planar.

The allowable configurations for one component are dependent on the form

of the other components, and this violates the conditions under which (2.7)

holds.

23



PSfrag replacements

(a) (b) (c)

(d)

(e)

Figure 2.12: A meandric system is a collection of meanders
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Figure 2.13: A collection of meanders that is not a meandric system

There does not appear to be an elementary combinatorial description

of the operation of constructing a meandric system from meanders. As a

result, there is no known way to obtain the meandric numbers for meandric

system numbers. In particular, the generating series for meanders cannot

be related to the generating series for meandric systems by either (2.6) or

(2.7).

2.4 Automorphisms of Meanders

Automorphisms on the class of meanders can be used constructively in al-

gorithms for constructing meanders of a given order. They can also be used

to simplify an exhaustive enumeration of meanders by eliminating redun-

dancy. Given an automorphism on the class of meanders, it is possible to

encode the entire class by a list that includes only a single element of each

orbit under the action of the automorphism. If the automorphism is easily

computable, then analysis on the entire class can be carried out by iterating

through the list of orbit representatives and expanding each orbit in turn.

For certain automorphisms, it is possible to derive congruences satisfied by

the meandric numbers by considering the size of orbits under the action of

the automorphism.
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Two classes of automorphisms are particularly useful: those defined by

rigid transformations of the plane, and those defined by cyclic shifts of the

intersection points. These are now considered in greater detail.

2.4.1 Rigid Transformations

The most obvious class of automorphisms consists of rigid transformations

of the plane. In particular, the closed curve of a meander can be reflected in

(l) or along the line (↔), or reflected through a point (© = l ◦↔ =↔◦ l)
i.e. rotated through 180◦, to produce a new meander of the same order.

These three transformations are illustrated in Figure 2.14 (b), (c), and (d),

respectively, for the meander given in Figure 2.14 (a).PSfrag replacements
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Figure 2.14: Rigid automorphisms of meanders

The automorphism l has an especially convenient realization in terms of

arch configurations, since its action corresponds to interchanging the upper

and lower configurations. We establish some properties of this automor-

phism.

Proposition 2.4.1. The meander of order one is the only closed meander

that is invariant under the action of l.

Proof. For a meander to be invariant under the action of l, every arch in its

upper configuration has a counterpart in the lower configuration that sits
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on the same base points. The superposition of any arch from the upper con-

figuration with its counterpart from the lower configuration forms a closed

curve. Since the meander has only a single closed curve, it must consist of

just this single pair of arches.

Corollary 2.4.2. For n ≥ 2, the meandric numbers satisfy the congruence

Mn ≡ 0 (mod 2).

Proof. Since l has order two, every orbit, except the one consisting of the

meander of order one, is of order two. So a list, consisting of one repre-

sentative of each orbit, contains exactly half of the meanders of every order

greater than one. This establishes the congruence.

To construct a list of orbits under the action of l, we need only have

a convenient means for identifying a canonical representative of each orbit.

This can be accomplished, for example, by taking as representatives those

closed meanders for which the leftmost arch in the upper configuration is

longer than the leftmost arch in the lower configuration. Figure 2.15 gives a

complete list of representatives of the meanders of order 3 under this choice.

Contrast this to the list of meanders of order 3 given in Figure 1.7.
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Figure 2.15: Representative meanders of order 3

The other two automorphisms do not act as conveniently. In particular,

they have fixed points. The first two meanders in Figure 2.16 are fixed by

↔, while the third is fixed by ©. As a result, limiting the list to one repre-

sentative of each orbit under either of these automorphisms does not reduce

the size of the list by a full factor of two, and analyzing these automorphisms

does not produce any new congruences.
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Figure 2.16: Fixed points of rigid automorphisms of the plane

The additional space savings afforded by considering only a single rep-

resentative of each orbit under the action of the group consisting of these

three automorphisms together with the identity, can still be significant in

carrying out an exhaustive enumeration. These orbits form an identifiable

class of objects in their own right and correspond to a class of meanders

where the oriented line is replaced by an unoriented line in the definition,

and equivalence is taken up to homeomorphism with the plane considered

as a subset of three-dimensional Euclidean space.

2.4.2 Cyclic Shifts

A second useful class of automorphisms is the cyclic shift of the base points

along with a canonical adjustment to the meander. A left cyclic shift is

performed by breaking the closed curve at its leftmost intersection with the

line and rejoining the free ends to form the rightmost intersection. The

inverse of this operation, the right cyclic shift, clearly exists, so the cyclic

shift is an automorphism. Figure 2.17 illustrates the stages of a left cyclic

shift applied to the leftmost diagram.
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Figure 2.17: A cyclic shift

Applying 2n shifts to a closed meander of order n restores the meander to

its original configuration, so the order of every orbit divides 2n. A complete

orbit under the action of the shift operation is shown in Figure 2.18. As

with rigid transformations, not every meander is in an orbit of maximum
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Figure 2.18: A complete orbit under the action of cyclic shift

order, although the meander of order one is again the only meander that is

fixed by the automorphism.

Proposition 2.4.3. For every order greater than one, there is a single orbit

of order two and no orbit of order one under the action of cyclic shift.

Proof. Consider a meanderM of order n. If the base points ofM are labelled

{1, 2, . . . , 2n} according to the orientation of the line, then the upper arch

configuration ofM has at least one minimal arch. Without loss of generality,

its base points are i− 1 and i.

Let Ω(M) denote the image of M under the action of a right cyclic shift.

So Ω(M) has an upper arch with base points i and i+1. Thus, if M is fixed

by Ω, then i− 1 ≡ i+ 1 (mod 2n) and so n = 1.

Similarly, if M is fixed by Ω2 then its upper and lower configurations

must be fixed by the induced action of Ω2. But the only arch configurations

fixed by Ω2 are the configuration consisting entirely of minimal arches and

the configuration obtained by applying a cyclic shift to it. The orbit of
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Figure 2.19: The orbit of order two under the action of cyclic shift
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order two consists of the two meanders with one of these configurations as

an upper configuration and the other as a lower configuration. It is given in

Figure 2.19.

Corollary 2.4.4. For p an odd prime,

Mpk ≡ 2 (mod 2p).

Proof. We consider the orbits of meanders of order pk under the action of

cyclic shift. Every orbit has order dividing 2pk, so p divides the order of

every orbit, other that the one of length 2. Thus

Mpk ≡ 2 (mod p).

Combining this with Corollary 2.4.2, we conclude that,

Mpk ≡ 2 (mod 2p).

As with rigid transformations, the orbits under the action of cyclic shift

have a natural interpretation as a class of objects in their own right. Since

only the cyclic order of the intersections between the curve and the line is

relevant in identifying an orbit, an orbit can be represented by replacing the

line in the definition of a meander with an oriented closed curve. Figure 2.20

illustrates this encoding. This class of objects should be considered as em-

bedded on a sphere, since a cyclic shift would otherwise involve passing a

segment of the outer curve through the point at infinity.
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Figure 2.20: Representing an orbit under cyclic shift
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By replacing the oriented line by a second closed curve, and replacing

the plane by a sphere, we obtain a parallel to open meanders, in that the two

curves are equivalent in the definition. In fact, the orbit of a closed meander

under cyclic shift corresponds to the configuration obtained by taking the

one point compactification of the open meander of odd order found under

the equivalence in Section 2.1.

2.5 Enumeration by Tree Traversal

Since, to date, there is no efficient way to compute meandric or semi-

meandric numbers exactly, one approach for obtaining asymptotic results

has been to use the conjectured asymptotic form Mn ∼ C Rn

nα and experi-

mentally determine values for the constants C, R, and α. This approach

requires the knowledge of a large number of terms. The most effective way

to obtain these numbers has been to list all the meanders of the required

form and count them.

One method for enumerating a class of objects is to construct a forest,

such that the vertices at depth n are exactly the objects of order n. We

consider only the case where there is a single object of order one, and the

forest is a tree. In order to construct such a tree, we need only have a method

for identifying incidence. This can be accomplished by defining a function

mapping objects of order n > 1 to objects of order n− 1. By means of such

a function, a tree can be formed by taking the unique object of order one

as the root, and defining the children of a given object to be its preimages

under the function.

If the preimages are easily computable, then it is possible to enumerate

all objects of a given order by using standard tree traversing algorithms.

This traversal can be done with an amount of memory polynomial in the

desired order, and in time proportional to the number of objects of that

order.
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2.5.1 A Tree of Semi-Meanders

To construct such a function for the class of semi-meanders, we consider

semi-meanders as closed meanders with a lower rainbow configuration. In

this presentation, define the image of a semi-meander to be the semi-meander

obtained by breaking the outer arch of the lower configuration, contracting

the two free ends across the line, and rejoining them to create a new arch

in the upper configuration. This is illustrated in Figure 2.21.
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Figure 2.21: A function on semi-meanders

This function satisfies the condition of having an easily computable

preimage. A semi-meander has one preimage for each arch of the upper

configuration that is incident with the infinite face. For a given arch, the

corresponding preimage is obtained by breaking the arch, stretching the two

free ends, one around each end of the configuration, and rejoining them to

create a new outer arch in the lower configuration. Since every semi-meander

of order ≥ 2 has at least 2 upper arches incident to the infinite face, we have

the immediate consequence that, for n ≥ 2,

Mn ≤ 2Mn+1.

Figure 2.22 illustrates the tree of semi-meanders obtained using this

function. Notice that the left half of this tree is the mirror image of the right

half. Mirroring a semi-meander in this presentation corresponds to mirror-

ing a semi-meander in the standard presentation across the line. Using this

tree, it is thus possible, by mirroring every semi-meander, to enumerate all

semi-meanders while traversing only the branch corresponding one of the

semi-meanders of order 3.
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Figure 2.22: The tree of semi-meanders of order ≤ 5

This method can be extended to enumerate all systems of semi-meanders.

In this case, each semi-meandric system has, as its children, all of its preim-

ages under the function and the system obtained by adding a circle sur-

rounding the original system.

2.5.2 A Tree of Meanders

A similar construction can be used to generate all closed meanders. To define

the incidence function, we use the observation that every closed meander has

at least one minimal arch in its upper configuration.

To find the image of a closed meander, apply cyclic shifts, if necessary,

until a minimal arch appears as the leftmost arch of the upper configuration.

For all four meanders in Figure 2.23, the rightmost meander is obtained by

this step. The image of the original meander is obtained by pushing this

minimal arch across the line. Figure 2.24 illustrates this final step.

As with semi-meanders, the preimage is easily computed. A meander

has one primary child per arch of the lower configuration incident with the

infinite face. For a given arch, the corresponding child is found by pulling the

arch across the line to the left of the existing configuration. The remaining
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Figure 2.23: Shifting a meander to obtain a minimal arch
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Figure 2.24: The image of a meander

children are found by applying reverse cyclic shifts to the primary children

until the upper configuration has a single arch incident with the infinite

face, a subsequent shift would result in a different minimal arch. Since every

meander has at least one child, we conclude that the sequence of meandric

numbers is monotonically increasing.
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Chapter 3

The Symmetric Group

Meanders have a natural representation as permutations. This chapter uses

this representation to present a combinatorial construction for meanders.

The meandric and semi-meandric numbers can then be expressed in terms

of characters of the symmetric group. Throughout this chapter, elements of

Sn are respresented by their disjoint cycles representation.

3.1 Representing Meanders As Permutations

Given a closed meander of order n, we represent it such that the line is

horizontal and oriented from left to right, the closed curve is oriented such

that at the first intersection between the curves it is directed from bottom

to top. The intersections between the two curves have a natural labelling by

the integers {1, 2, . . . , 2n}, defined by their ordering along the line. These

labels also have a cyclic order defined by their order along the closed curve.

This cyclic order, when interpreted as a a full cycle in S2n, is referred to

as a meandric permutation. There is a one-to-one correspondence between

meanders and meandric permutations. Figure 3.1 shows the meandric per-

mutation (1 10 9 4 3 2 5 8 7 6).

Interest in meandric permutations predates modern interest in the enu-

merative theory of meanders. They were discussed for instance by Rosen-
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Figure 3.1: The meandric permutation (1 10 9 4 3 2 5 8 7 6)

stiehl in [12] as planar permutations. These permutations occur in the anal-

ysis of geographical data, and have the property that they can be sorted in

linear time [12] . Enumerative information about meanders can be used to

bound the performance of algorithms dealing with this sorting.

It is an immediate consequence of the definition, that every meandric

permutation is in the conjugacy class C(2n) of S2n, where n is the order

of the corresponding closed meander. A natural question is how to deter-

mine whether a given permutation in S2n of cycle type (2n) is a meandric

permutation. We have the following necessary condition.

Proposition 3.1.1. If π ∈ S2n is a meandric permutation, then π2 is a

permutation of cycle type [n2], where one cycle is on the odd symbols and

the other is on the even symbols.

Proof. We consider the upper and lower arch configurations of the meander

corresponding to π. Every arch spans an integral number of smaller arches,

each of which has an even number of base points. Thus every arch has one

foot on an even symbol and the other on an odd symbol.

Following the closed curve involves steps that alternate between upper

and lower arches, so as a consequence, every meandric permutations alter-

nates between even and odd symbols. The result follows.

This condition does not characterize meandric permutations. Consider

the permutation (1 4 3 6 5 2), with square (1 3 5)(2 4 6) which is not a
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meandric permutation. Attempting to draw the meander corresponding to

(1 4 3 6 5 2), one finds that the closed curve must be self intersecting in the

upper half plane.

The difficulty in identifying meandric permutations is a consequence of

the fact that planarity is a property of the upper and lower configurations

rather than the meander as a whole. It is possible to recover the upper and

lower configurations from a meandric permutation, as will be described later

in this chapter, but there is no apparent way to do so algebraically.

3.1.1 Automorphisms of Meandric Permutations

The automorphisms described in Section 2.4 all have natural interpretations

in terms of meandric permutations.

Reflecting a meander in the line reverses the orientation of the closed

curve. The corresponding meandric permutation is thus obtained by read-

ing the meandric permutation of the original meander in the reverse order.

This is simply the inverse of the permutation obtained from the original

meander. We conclude that the inverse of a meandric permutation is a

meandric permutation.

To interpret reflection along the line and cyclic shifts in terms of permu-

tations, we introduce two permutations,

τ = τn = (1 2n)(2 2n−1) · · · (n n+1) and

σ = σn = (1 2 . . . 2n),
(3.1)

corresponding respectively to the actions of reflection along the line and

right cyclic shift on the labels.

Reflection along the line reverses the order of the labels and reverses the

orientation of the closed curve. Similarly, a cyclic shift, shifts the labels and

reverses the orientation of the curve. So, for π a meandric permutation,

the images of π under reflection along the line and right cyclic shift are,

respectively, τ−1π−1τ and σ−1π−1σ. Since rotation of the closed curve is the
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composition of reflection across and along the line, the image of a rotation

is τ−1πτ . The following proposition is a consequence of reflection and cyclic

shift being automorphisms.

Proposition 3.1.2. If π ∈ S2n is a meandric permutation, then so are

π−1, τ−1πτ , and σ−1πσ; the class of meandric permutations is closed under

inverse, conjugation by σ, and conjugation by τ .

That the automorphisms from Section 2.4 are easily accessible in this

encoding, is a testament to how natural the encoding is. It also suggests that

the encoding is unlikely to make any additional structure more accessible.

3.2 Arch Configurations as Permutations

There is a second natural encoding of meanders in terms of the symmet-

ric group. In order to deal with planarity, we use this alternate encoding.

Instead of directly encoding meanders as permutations, we encode each me-

ander as an ordered pair of arch configurations. Each arch configuration is

then represented as a permutation. Using this encoding, it is possible to

describe compactly which pairs of permutations correspond to meanders.

The permutation representation of arch configurations is a natural par-

allel to the representation of meanders as permutations. Each arch is a

transposition on its endpoints, and the entire configuration is the product

of these disjoint transpositions. An arch configuration of order n is the

product of n disjoint transpositions in S2n. As with meanders, the base

points of the arches are labelled according to the orientation of the line.

Figure 3.2 gives the arch configuration corresponding to the permutation

(1 10)(2 3)(4 9)(5 8)(6 7).

There are two steps in identifying which pairs of permutations in the

conjugacy class C(2n) of S2n correspond to closed meanders. We must first

identify which elements of C(2n) correspond to arch configurations. Then,

given two such elements, we must determine whether the meandric system

obtained by interpreting one as an upper arch configuration and the other
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Figure 3.2: The arch configuration (1 10)(2 3)(4 9)(5 8)(6 7)

as a lower arch configuration is connected. These steps can be carried out

algebraically. We deal with each step in turn.

3.2.1 Elements of C(2n) That Are Arch Configurations

Identifying arch configurations among elements of C(2n) is accomplished by

interpreting them permutations as graphs, a class of objects for which pla-

narity is more easily described. A graph corresponding to µ ∈ C(2n) is

constructed on 2n vertices labelled {1, 2, . . . , 2n} by creating an edge be-

tween every pair of vertices adjacent in the cyclic order (1 2 . . . 2n), and

adding an edge between every pair of vertices whose labels are in the same

transposition of µ.

Such a graph is seen to have 3n edges, n corresponding to transpositions,

and 2n corresponding to consecutive pairs of vertices. For the permutation

to be an arch configuration, its graph must be planar. Since the graph is

planar and has 2n vertices it has n+2 faces, by Euler’s theorem. Figure 3.3

shows the graph of the arch configuration from Figure 3.2 together with its

face boundaries.

We consider the cycles that bound the faces of the graph of an arch con-

figuration. A single face, corresponding to the lower half-plane, is bounded

entirely by edges defined by the cyclic order of the labels, while the bound-

ary cycles of the remaining n+ 1 faces are seen to alternate between edges

defined by transpositions and edges defined by the cyclic order of the base
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Figure 3.3: The graph of µ = (1 10)(2 3)(4 9)(5 8)(6 7) with its face boundaries

points. These are the cycles of σµ. Continuing the above example, σµ =

(1 3 9)(2)(4 8)(5 7)(6)(10) which consists of 6 cycles.

Letting κ(π) denote the number of cycles in the disjoint cycle represen-

tation of the permutations π, we have the following characterization of the

permutations that correspond to arch configurations.

Lemma 3.2.1. The permutations in S2n that correspond to arch configu-

rations form the set

{µ ∈ C(2n) : κ(σµ) = n+ 1}.

Proof. If µ ∈ C(2n) corresponds to an arch configuration, then by the above

observation σµ consists of n+1 cycles. Conversely, if µ does not correspond

to an arch configuration, then at least two arches cross and σµ consists of

at most n cycles.

As expected, this class of permutations is closed under conjugation by

τ and σ, operations that correspond respectively to reflection along the

line and cyclic shift of the base points. We also note, that for σµ to be a

permutation with n+1 cycles on 2n elements, at least two cycles have length

1. These cycles correspond to the minimal arches of the arch configuration.

3.2.2 Completing the Characterization

Pairs of arch configurations of order n that form meandric systems with a

single connected component can also be characterized algebraically. There
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is a single closed curve if and only if it is possible to walk through all the

labels using a closed path alternating between arches from the upper config-

uration and arches from the lower configuration. Such a walk is a meandric

permutation, so by taking it two steps at a time, by Proposition 3.1.1, we

obtain two cycles of length n. We obtain the following characterization of

which meandric systems are meanders.

Lemma 3.2.2. If (µ1, µ2) is an ordered pair of transposition representations

of arch configurations of order n, then the meandric system for which µ1

represents the upper configuration and µ2 represents the lower configuration

is a meander if and only if µ1µ2 ∈ C(n2).

Proof. The cycles of µ1µ2 correspond to walks through the labels taken

two steps at a time along paths that alternate between arches described

by transpositions of µ1 and arches described by transpositions of µ2. So if

(µ1, µ2) corresponds to a meander, then by the above observation each cycle

of this type is of length n, and µ1µ2 ∈ C(n2).

Conversely, if µ1 and µ2 are both transposition representations of arch

configurations of order n, then every transposition of each contains an odd

label and an even label. So if µ1µ2 ∈ C(n2), then each cycle consists only of

labels with the same parity. A walk through all the labels can thus be formed

by interleaving the two cycles and so (µ1, µ2) corresponds to a meander.

Noting that (µ1, µ2) represents a meander only if µ1µ2 is the square of

the corresponding meandric permutation, we can see how to extract the

upper and lower configurations from a meandric permutation. Consecutive

pairs of symbols in the meandric permutation define the arches of the upper

and lower configurations. The upper arch configuration is read by taking

pairs of symbols starting with 1, while the lower configuration is read by

taking symbols starting at either of the labels adjacent to 1.

Example 3.2.3. For the meandric permutation π = (1 10 9 4 3 2 5 8 7 6) of

order 5, the upper configuration is µ1 = (1 10)(9 4)(3 2)(5 8)(7 6), while the
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lower configuration is µ2 = (10 9)(4 3)(2 5)(8 7)(6 1). Verifying the proper-

ties, σµ1 = (1 3 9)(2)(4 8)(5 7)(6)(10) and σµ2 = (1 5)(2 4)(3)(6 8 10)(7)(8).

So κ(σµ1) = κ(σµ2) = 6, and π2 = µ1µ2 = (1 9 3 5 7)(2 8 6 10 4) ∈ C(n2).

We can now complete our combinatorial characterization of meanders

with the following immediate consequence of Lemma 3.2.1 and Lemma 3.2.2.

Corollary 3.2.4. The class of meanders of order n is in bijective corre-

spondence with the set

{(µ1, µ2) ∈ C(2n) × C(2n) : κ(σµ1) = κ(σµ2) = n+ 1, µ1µ2 ∈ C(n2)}.

Taking semi-meanders as the restriction of meanders to those with the

rainbow configuration as a lower configuration, and noting that the rainbow

configuration has the permutation representation τ , we obtain Corollary 3.2.5

as a specialization of Corollary 3.2.4 and achieve an algebraic characteriza-

tion of semi-meanders.

Corollary 3.2.5. The class of semi-meanders of order n is in bijective

correspondence with the set

{µ ∈ C(2n) : κ(σµ) = n+ 1, µτ ∈ C(n2)}.

The bijections described in Corollary 3.2.4 and Corollary 3.2.5 give us

combinatorial expressions for meandric and semi-meandric numbers. Letting

C(n+1)denote the set of all conjugacy classes of S2n with n + 1 cycles, we

obtain the expressions:

Mn =
∑

λ1,λ2∈C(n+1)

∑

µ1,µ2∈C(2n)

δ[σµ1],λ1
δ[σµ2],λ2

δ[µ1µ2],(n2) (3.2)

Mn =
∑

λ∈C(n+1)

∑

µ∈C(2n)

δ[σµ],λδ[µτ ],(n2), (3.3)

where δa,b is one if a and b are the same conjugacy class and zero otherwise.

In this form, it looks as though it might be possible to determine the mean-

dric numbers by working entirely within the center of the symmetric group,
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since, as a function of σ, the expression for Mn is constant on the conjugacy

class (2n). The same is not possible for the semi-meandric numbers, since

the expression for Mn involves specific elements of two conjugacy classes.

3.3 Expression in Terms of Characters

For the remainder of the chapter, we will assume a familiarity with char-

acter theory. The reader is referred to [2] for a treatment of this subject.

Characters of the symmetric group are class functions, and can be used to

obtain an alternative expression for (3.2) and (3.3) that avoids the use of

the δ-function.

The construction of characters involves representation theory and is of

little interest to the present discussion. For our purposes, it suffices to note

that the irreducible characters of a finite group G are functions χ(i) : G→ C.

They are class functions, that is they are constant on conjugacy classes of G,

and are naturally indexed by the conjugacy classes of the group. In addition,

for g in G and χ a character, χ(g) = χ(g−1).

We introduce some notation for a finite group G with k conjugacy classes

C1, C2, . . . , Ck of sizes h(i) = |Ci|, i = 1, 2, . . . , k. We let χ(i) be the irreducible

character indexed by conjugacy class Ci and let χ
(i)
j denote the evaluation

of χ(i) at any g ∈ Cj . The irreducible characters (properly characters of

irreducible representations) satisfy two orthogonality relations:

(1)
1

|G|

k
∑

i=1

h(i) χ
(p)
i χ

(q)
i = δp,q for 1 ≤ p, q ≤ k

(2)
k
∑

i=1

χ(i)
p χ

(i)
q =

|G|
h(p)

· δp,q for 1 ≤ p, q ≤ k.

We use the second orthogonality relation for the group G = S2n to

obtain an expression for meandric numbers and semi-meandric numbers in

terms of characters of irreducible representations of the symmetric group.
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Theorem 3.3.1. If χ(1), χ(2), . . . , χ(k) are the characters of the irreducible

representations of the group S2n, and σ and τ are as in (3.1), then

Mn =
∑

λ1,λ2∈C(n+1)

|(2n)|2 · |λ1| · |λ2| · |(n2)|
((2n)!)5

∑

µ1,µ2∈S2n

k
∑

f,g,h,i,j=1

χ(f)(µ1)χ
(f)(2n)χ(g)(µ2)χ

(g)(2n)χ(h)(σµ1)χ
(h)(λ1)

× χ(i)(σµ2)χ
(i)(λ2)χ

(j)(µ1µ2)χ
(j)(n2)

Mn =
∑

λ∈C(n+1)

|(2n)| · |λ| · |(n2)|
((2n)!)3

∑

µ∈S2n

k
∑

h,i,j=1

χ(h)(µ)χ(h)(2n)χ(i)(σµ)χ(i)(λ)χ(j)(µτ)χ(j)(n2)

Proof. For S2n the conjugacy classes and characters are naturally indexed

by partitions of 2n. For v ` n, the size of the conjugacy class (1v12v2 · · · )
with vi cycles of length i for each i is

|(1v12v2 · · · )| = (2n)!
∏

i i
vivi!

.

In addition, for every g in S2n, g and g−1 are in the same conjugacy class.

Thus for any character χ,

χ(g) = χ(g−1) = χ(g)

so χ is real valued and in the case of S2n we have the relation

δ[λ],[µ] =
|[λ]|
(2n)!

k
∑

i=1

χ(i)(λ)χ(i)(µ) (3.4)

Replacing the sum over C(2n) by a sum over S2n and substituting (3.4) into

(3.2) and (3.3) we obtain the desired expression.

Theorem 3.3.1 provides an explicit way to compute meandric and semi-

meandric numbers but is of little practical use. To determine, for instance,

that there is a unique semi-meander of order 2 would involve summing over
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6000 terms, since for S4 there are two conjugacy classes with 3 cycles, 24

elements, and 5 conjugacy classes.

In fact the expression in terms of characters is a direct translation of the

algebraic characterization and does not immediately provide any additional

insight into the structure of the problem. It preserves the parts of the com-

binatorial construction of semi-meanders as identifiable pieces. Considering

the expression for Mn, for example, we begin with a sum over all permuta-

tions in S2n. Summing over h restricts the sum to products of n disjoint

transpositions, while summing over i further restricts the sum to include

only those elements of C(2n) that correspond to arch configurations. Taking

the final sum over j leaves only semi-meandric systems that are connected.

The utility of the expression comes from the fact that it provides a bridge

from combinatorics to representation theory. It may be possible to expand

the characters in terms of symmetric functions, or even find an alternate

expansion for the δ-function, although, to date, no significant advances have

been made in this direction.
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Chapter 4

The Matrix Model

The method of matrix integrals can be used to transform the meander prob-

lem into an analytic question. By selecting an appropriate Gaussian measure

on the space of Hermitian matrices, the average value of a matrix expression

can be discretised so that the non-vanishing terms correspond to a class of

decorated ribbon graphs from which meanders can be isolated. The con-

struction used is from [11].

4.1 Meanders as Ribbon Graphs

We begin with an informal definition of a ribbon graph.

Definition 4.1.1. A ribbon graph is an object obtained from a graph, by

embedding it in a locally orientable surface, thickening the edges into ribbons,

and deleting the faces. The embedding imposes a cyclic ordering of the edges

around each vertex.

A ribbon graph preserves the face boundaries of its embedding. Con-

sequently, the original graph and embedding can be recovered by stitching

an open disc along each face boundary, and contracting each ribbon into an

edge.
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By considering the one-point compactification of the plane, a meander

has a natural interpretation as a graph embedded in the sphere: the ver-

tices are intersections between the curves, and the edges are derived from

segments of the two curves, with an additional edge joining the extreme

vertices along the line. These edges are decorated with two colours, to dis-

tinguish those associated with the closed curve from those associated with

the line. The encoding is made reversible by rooting the graph. The first

vertex along the line is the root vertex, and the edge joining this vertex to the

second vertex along the line is the root edge. We produce a decorated ribbon

graph by thickening the edges, and preserving their colouring. Figure 4.1

illustrates this encoding. For the purpose of enumeration, we define a
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Figure 4.1: Encoding a closed meander as a ribbon graph

class of ribbon graphs that generalizes the ribbon graphs that correspond to

meanders.

Definition 4.1.2. The class R is the class of oriented 4-regular ribbon

graphs on labelled vertices, with edges divided into two classes, such that

around every vertex the edges alternate between the two classes. For each

vertex, one of the edges of the second class is designated as up.

The graph induced on a ribbon graph of class R by taking only the

edges of one class is 2-regular. Thus the two classes of edges induce two

collections of disjoint cycles. We have the following lemma for identifying

meanders within the class R.

Lemma 4.1.3. Meanders of order n are in 4n to (2n)! · 22n correspondence

with graphs in R on 2n vertices that are genus zero and have exactly two

cycles induced by the partitioning of the edges, one of each class.
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Proof. Beginning with a ribbon graph we obtain an unlabelled graph by

discarding the labels and orientations on the vertices. This results in a

(2n)! · 22n to one correspondence. A meander is obtained from such an

unlabelled graph by designating a root vertex and picking one of the edges

of the second class incident to it as the root edge. Picking the root vertex

and edge accounts for the additional factor of 2n · 2 = 4n.

Guided by Lemma 4.1.3, we will use Rm to denote the elements of R
with m vertices, and consider the generating series

Z(s, q,N) =
1

N2

∑

m≥1

(−1)m
m!

sm

Nm

∑

G∈Rm

Np(G)qr(G), (4.1)

where p(G), and r(G) denote, respectively, the number of faces of G, and the

number of cycles induced by the edge colouring, in G. By further decorating

the elements of R, assigning each face a label from the set {1, 2, . . . , N}, and
assigning each of the cycles induced by the partitioning of the edges a label

from the set {1, 2, . . . , q}, we obtain the term N p(G)qr(G) as the number of

distinct decorations of the map G.

Associated with each vertex are the labels of the four faces with which

it is incident, labelled i1, i2, i3, and i4 in cyclic order, and two labels on the

edges, k for the edges of the first class, l for the edges of the second class.

Figure 4.2 gives such a labelled neighbourhood.
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Figure 4.2: The neighbourhood of a vertex

We assign to each half-edge a variable carrying its labelling information,

and assign to each vertex the product of these variables. In clockwise order
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starting with the upper branch, the branches of Figure 4.2 are assigned the

variables h
(k)
i1i2

, g
(l)
i2i3

, h
(k)
i3i4

, and g
(l)
i4i1

, and the vertex is assigned the monomial

h
(k)
i1i2

g
(l)
i2i3

h
(k)
i3i4

g
(l)
i4i1

,

where the h’s and g’s are triply indexed variables.

Proposition 4.1.4. If, for 1 ≤ k ≤ q, we let Hk denote the N × N ma-

trix
(

h
(k)
ij

)

and Gk denote the N × N matrix
(

g
(k)
ij

)

, then the monomials

associated with all possible vertex neighbourhoods are enumerated by

tr

q
∑

k,l=1

(HkGl)
2.

Proof. The sum of the monomials associated with all possible labellings is

q
∑

k,l=1

N
∑

i1,i2,i3,i4=1

h
(k)
i1i2

g
(l)
i2i3

h
(k)
i3i4

g
(l)
i4i1

= tr

q
∑

k,l=1

HkGlHkGl

Our strategy is to enumerate all possible decorated ribbon graphs of

class R on m vertices by picking out all the graphs with a given m-tuple of

vertex neighbourhoods, for all possiblem-tuples. Given a collection of vertex

neighbourhoods, we can describe a ribbon graph by specifying a coupling

(a complete matching) of the branches of the vertex neighbourhoods into

the 2m pairs of branches that are connected to form edges. Such a coupling

must be consistent with the labelling, and not introduce any twists into the

ribbons, as depicted in Figure 4.3.

Thus, to enumerate all valid maps for a given m-tuple of vertex neigh-

bourhoods, we need to determine the number of consistent branch couplings

for thatm-tuple. In terms of the monomials, a coupling is consistent if every

variable h
(k)
ij is paired with h

(k)
ji and every variable g

(k)
ij is paired with g

(k)
ji .

To deal with these pairings, we use some results from probability theory

about Gaussian measures.
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Figure 4.3: A coupling

4.2 Gaussian Measures

If B is a positive definite matrix giving a quadratic form on Rn, then the

measure

dµ(x) = (2π)−n/2(detB)1/2 exp
(

−1
2x

TBx
)

dx,

is theGaussian measure on Rn associated withB, where x is an n component

column vector, and dx is the Lebesgue measure on Rn. The measure dµ is

a probability measure, that is, the measure of the entire space is 1. For a

function f we use the notation

〈f〉 =
∫

Rn
f(x)dµ(x)

to denote the average value of f with respect to the measure dµ. We note

that, since dµ(x) = dµ(−x) for all x in Rn, the average value of any odd

degree monomial with respect to this measure is zero. The average value of

a degree two monomial is given by the following lemma.

Lemma 4.2.1. If x1, x2, . . . , xn are the coordinate functions on Rn, with

respect to the measure dµ associated with the matrix B, then

〈xixj〉 = aij ,

for all 1 ≤ i, j ≤ n, where A = (aij) = B−1.
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A second lemma allows us to calculate the average value of an arbitrary

monomial.

Lemma 4.2.2 (Wick’s Formula). If f1, f2, . . . , f2m are linear functions

of x, not necessarily distinct, then

〈f1f2 · · · f2m〉 =
∑

〈fp1fq1〉 〈fp2fq2〉 · · · 〈fpmfqm〉 ,

where the sum is taken over the (2m − 1)!! couplings of {1, 2, . . . , 2m} into
pairs {pi, qi}. Such a partition is referred to as a Wick coupling.

By the linearity of the integral operator, 〈·〉 is a linear operator, so these

lemmas are sufficient for evaluating the average value of any polynomial.

We now consider a specific Gaussian measure on the space HN of N ×N
Hermitian matrices. Matrices in this space can be coordinatized by N 2 real

numbers: for the matrix H = (hij), we use the coordinates xij = Rehij for

i ≤ j, and yij = Imhij for i < j. In these coordinates, HN is isomorphic to

RN2
. Note that for H ∈ HN ,

trH2 =

N
∑

i,j=1

hijhji =

N
∑

i,j=1

hijhij =

N
∑

i=1

x2
ii + 2

∑

i<j

(x2
ij + y2

ij)

is a positive definite quadratic form on HN . With respect to the coordi-

nates xij and yij , the matrix for the quadratic form is diagonal, with N 1’s

corresponding to the coordinates xii, and N
2 −N 2’s corresponding to the

coordinates xij and yij with i 6= j. It thus has determinant 2N
2−N . We can

construct the associated Gaussian measure dµ(H) on HN as

dµ(H) = (2π)−N2/22(N2−N)/2 exp
(

−1
2 trH

2
)

dv(H),

where

dv(H) =

N
∏

i=1

dxii
∏

1≤i<j≤N

dxijdyij

is the usual Lebesgue measure on the space. We view the matrix entries hij

as linear functions of the coordinates xij and yij , and obtain the following.
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Lemma 4.2.3. With respect to the measure dµ associated with the quadratic

form trH2,

〈hijhkl〉 = δi,lδj,k.

Proof. The inverse of the matrix of the quadratic form is diagonal with N

1’s and N2 −N 1
2 ’s. So by Lemma 4.2.1 we have,

〈hiihii〉 =
〈

x2
ii

〉

= 1

〈hjihij〉 = 〈hijhji〉 =
〈

hijhij
〉

=
〈

x2
ij + y2

ij

〉

= 1
2 + 1

2 = 1 when i < j.

In the remaining cases, when (i, j) 6= (l, k), we get no contribution from

diagonal terms and the average is zero.

To enumerate decorated elements ofR we extend the measure onHN to a

measure on the space (HN )2q of 2q-tuples (H1,H2, . . . ,Hq,G1,G2, . . . ,Gq)

of N ×N Hermitian matrices. As a corollary to Lemma 4.2.3 we have the

following.

Corollary 4.2.4. In the space (HN )2q where Hk =
(

h
(k)
ij

)

and Gk =
(

g
(k)
ij

)

for 1 ≤ k ≤ q, the following relations hold with respect to the Gaussian

measure described above:

〈

h
(k1)
i1j1

h
(k2)
i2j2

〉

= δk1,k2δi1,j2δi2,j1 ,
〈

g
(k1)
i1j1

g
(k2)
i2j2

〉

= δk1,k2δi1,j2δi2,j1 , and
〈

h
(k1)
i1j1

g
(k2)
i2j2

〉

= 0.

Interpreting the variables as labels on branches of vertex neighbour-

hoods, as in Section 4.1, we conclude that for branches labelled a and b,

〈ab〉 =
{

1 if the branches can be paired consistently

0 if the branches cannot be paired.

Armed with Wick’s Formula, we can give a combinatorial interpretation to

51



the expression
〈

(

tr

q
∑

k,l=1

HkGlHkGl

)m
〉

.

By the linearity of 〈·〉, this expression is a sum over all Wick couplings of

the variables involved in all possible m-tuples of vertex neighbourhoods.

By the above observation, a coupling contributes 1 to the sum if it can be

interpreted as a decorated element of R and 0 otherwise. We conclude that

〈

(

tr

q
∑

k,l=1

HkGlHkGl

)m
〉

=
∑

G∈Rm

Np(G)qr(G). (4.2)

By substituting this expression into (4.1), we obtain the expression

Z(s, q,N) =
1

N2

∑

m≥0

(−1)m
m!

sm

Nm

〈

(

tr

q
∑

k,l=1

HkGlHkGl

)m
〉

=
1

N2

〈

exp

(

− s

N
tr

q
∑

k,l=1

HkGlHkGl

)

〉

=
1

N2

∫

(HN )2q
exp

(

− s

N
tr

q
∑

k,l=1

HkGlHkGl

) q
∏

k,l=1

dµ(Hk)dµ(Gl).

(4.3)

Notice, that in this expression, N and q are not indeterminates. The expres-

sion holds only positive integers N and q. Using the expression to evaluate

Z(s, q,N) at different values of q or N requires evaluating different integrals,

but,

Pm(q,N) =
∑

G∈Rm

Np(G)qr(G) (4.4)

is a polynomial of bounded degree in q and N , and can, in principle, be

determined by interpolation.
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4.3 Recovering Meanders

Expression (4.3) describes a generating series forR with respect to number of

vertices, faces, and induced cycles. A generating series for elements ofR with

exactly two induced cycles can be obtained from Z(s, q,N) by considering

the coefficient of q2,

Y (s,N) = [q2]Z(s, q,N).

In Y (s,N) a graph G with m vertices and p faces is weighted by a factor of

(−1)msm/(m! ·Nm+2−p).

We further specialize to planar graphs by considering the Euler charac-

teristic of the graphs under consideration. Since a 4-regular graph on m ver-

tices has 2m edges, such a graph has Euler characteristicm−2m+p = p−m.

Now a graph of genus g has Euler characteristic 2− 2g, so m+ 2− p = 2g.

Thus we obtain

Y0(s) = lim
N→∞

Y (s,N)

as the generating series for genus zero elements of R with exactly two in-

duced cycles. In Y0(s) a graph G with m vertices is weighted by a factor of
1
m!(−1)msm. This yields the main theorem for the chapter.

Theorem 4.3.1. The meandric numbers can be obtained from Y0(s) by the

relation
22n

4n
Mn = [s2n]Y0(s).

Proof. This is an immediate consequence of the preceding observations and

Lemma 4.1.3.

Corollary 4.3.2. Where Mn(s) is the ordinary generating series for mean-

ders with respect to their order

2sY ′0(s) =M(4s2).

The construction discussed in this chapter does not provide a final so-

lution to the meander problem. In particular, a complete solution would
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require a method to evaluate the integral in (4.3), a task for which little

progress has been made to date. Several techniques exist for evaluating

matrix integrals, but none of them are directly applicable in this case.

In general, matrix integrals are evaluated by a change of coordinates,

effectively diagonalizing the matrices involved and working over Rn. The

difficulty in this case comes from the fact that the matrices Hk and Gl are

not simultaneously diagonalizable. Unlike the expression trH4, which is

used in enumerating 4-regular maps with no added structure, the expres-

sion trHkGlHkGl is not invariant under unitary transformations on Hk.

The obvious change of coordinates H → (U,Λ), where U is unitary, Λ is

diagonal, and H = UΛU−1, is not applicable.

4.4 Another Matrix Model

The integral from (4.3) is not unique in its utility in enumerating meanders.

It is possible that some similar integral may carry the same enumerative

information but be more susceptible to evaluation.

In particular, it is worth mentioning the matrix integral used by Di Fran-

cesco, Golinelli, and Guitter, in [5] and [7]. They consider a different Gaus-

sian measure, one normalized such that 〈hijhkl〉 = 1
N δi,lδj,k, and consider an

expression with an extra parameter: instead of working over (HN )2q, they

define an integral over (HN )q1+q2 , separately controlling the number of H

and G matrices.

The result is an expression that records separately the number of cycles

of each class. A restriction to connected graphs is obtained by taking a

logarithm. Interpreting the resulting expression as a polynomial in q2, and

taking the limit as q2 approaches zero, further restricts the expression to

graphs with only a single induced cycle of the second class. The genus zero

case is recovered as before. This approach has the advantage that it has the

potential to be used for determining the number of meandric systems with

respect to both order and number of components, since the number of cycles

of the second class is recorded.
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To date, the integral obtained by Di Francesco et al. has been no more

susceptible to existing evaluation techniques than the integral from (4.3),

but, in [7], Di Francesco et al. note that it is suggestive of a two-dimensional

conformal field theory, and using this similarity, and universality principles

from statistical mechanics, they conjecture the exact values

α =

√
29

12

(√
29 +

√
5
)

and α = 1 +

√
11

24

(√
29 +

√
5
)

in the asymptotic approximations toMn andMn (2.4) and (2.4′). Numerical

estimates of α and α, obtained by Jensen and Guttmann in [10] through the

method of differential approximants, disagree with the conjectured values.
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Chapter 5

The Temperley-Lieb Algebra

In this chapter, we shift attention to meandric systems (recall Definition 2.2.1).

Upper and lower arch configurations are encoded as strand diagrams, which

are in turn interpreted as elements of the Temperley-Lieb algebra. Under

this encoding, the number of components of a meandric system can be re-

covered by evaluating a bilinear form on its upper and lower configurations.

Choosing an appropriate basis for the algebra, allows us to write the mean-

dric polynomials in terms of the Gram matrix of this bilinear form.

5.1 Strand Diagrams

Before defining the Temperley-Lieb algebra, we introduce strand diagrams,

which can be used to pictorially represent the algebra. Strand diagrams

provide a combinatorial presentation of the algebra and a vehicle for linking

the algebra to the meander problem.

Definition 5.1.1. A strand diagram of order n, is a configuration of n

pairwise non-intersecting curves, called strands, in an open disc, that con-

nect 2n endpoints on the boundary of the disc. These points are labelled

cyclically by {1, 2, . . . , 2n}. Two strand diagrams are equivalent if there is

a homeomorphism from one to the other that respects the labelling of the

endpoints.

56



We represent strand diagrams by rectangles, with the labels {1, 2, . . . , n}
running down the left side of the rectangle, and the labels {n+1, n+2, . . . , 2n}
running up the right side. Figure 5.3 gives a strand diagram of order 6.
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Figure 5.1: A strand diagram of order 6

The connection between strand diagrams and meandric systems comes

from the following lemma, which is illustrated in Figure 5.2.

Lemma 5.1.2. There is a natural bijection between arch configurations of

order n and strand diagrams of order n.
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Figure 5.2: A bijection between strand diagrams and arch configurations

Proof. The arches of an arch configuration of order n are pairwise non-

intersecting, and connect 2n points on the boundary of the upper half-plane.

To obtain a strand diagram from an arch configuration, it is sufficient to label

the basepoints according to the orientation of the line. The labelling of the

basepoints makes the inverse unique.

5.2 The Temperley-Lieb Algebra

We now define the Temperley-Lieb algebra and develop some of its proper-

ties. The reader is referred to [3] for a more complete treatment.
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Definition 5.2.1. The Temperley-Lieb algebra of order n in the indeter-

minate q, denoted TLn(q), is a free additive algebra over C(q) with multi-

plicative generators 1, e1, e2, . . . , en−1 subject to the relations:

e
2
i = q ei for i = 1, 2, . . . , n− 1 (R1)

eiej = ejei if |i− j| > 1 (R2)

eiei±1ei = ei for i = 1, 2, . . . , n− 1 (R3)

where 1 is the multiplicative identity.

Pictorially, the generators of TLn(q) are represented as the strand di-

agrams given in Figure 5.3. In this representation, multiplication is by
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Figure 5.3: The multiplicative generators of TLn(q)

concatenation. To construct the product ef from strand diagrams e and f:

1. identify the right edge of e with the left edge of f,

2. for 1 ≤ i ≤ n identify the endpoint labelled i in f with the endpoint

labelled n− i+ 1 in e,

3. delete every closed loop introduced by concatenation, accounting for

each loop by replacing it with a multiplicative factor of q.

Figure 5.4 shows the relations (R1), (R2), and (R3) under this representa-

tion. Each relation equates a pair of homeomorphic strand diagrams, so

products in TLn(q) respect the concatenation product of strand diagrams.

Proposition 5.2.2. Using the pictorial representation, strand diagrams of

order n form a basis for TLn(q) as a C(q)-vector space, and TLn(q) has

dimension Cn. We call this basis B1.
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Figure 5.4: A pictorial representation of (R1), (R2), and (R3)

Proof. Using the pictorial representation, every monomial in generators of

TLn(q) can be represented as a strand diagram of order n, and two mono-

mials that are equivalent under (R1), (R2), and (R3) are represented by

equivalent strand diagrams. Thus, to verify that strand diagrams form a

basis for TLn(q), we need only show that every strand diagram can be fac-

tored into a product of the multiplicative generators. The dimension of the

algebra is then a consequence of Lemma 5.1.2.

We describe a construction for factoring an arbitrary strand diagram of

order n into a product of multiplicative generators of TLn(q). Appealing

to Lemma 5.1.2, we begin by representing the strand diagram as an arch

configuration of order n. The arch configuration is then further encoded as

a path diagram, a graph in R2 on the vertices vi = (i, hi) for 0 ≤ i ≤ 2n,

where hi is the number of arches passing over the midpoint between the i-th

and (i+ 1)-st basepoints and, by convention, h0 = h2n = 0.

Example 5.2.3. The strand diagram from Figure 5.3 is represented as the

arch configuration Figure 5.5 (a). Encoding this as a path diagram produces

Figure 5.5 (b).

The value hn is the number of strands passing from left to right in the
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Figure 5.5: Encoding an arch configuration as a path diagram

original strand diagram and determines the (two-sided) ideal it principally

generates. We introduce the notation that

I
k
n = e1e3 · · · en−k−1 (5.1)

is the canonical generator for the ideal in TLn(q) containing all strand dia-

grams with at most k strands passing from left to right.

We decompose the path diagram into a base path, the path representation

of Ihn
n , and a collection of boxes that, when stacked on the base path, give

the contour of the path diagram. The boxes are labelled according to their

positions: a box is labelled by ei if it is either to the left of the midpoint and

centered over x-coordinate i, or to the right of the midpoint and centered

over x-coordinate 2n−i.

Example 5.2.4. Decomposing Figure 5.5 (b) produces Figure 5.6, with the

base path indicated by a thickened line.
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Figure 5.6: Decomposing a path diagram

60



A factorization of the strand diagram can be read directly from this box

decomposition. The strand diagram is recovered by left multiplying Ik
n by

the labels of the boxes to the left of the midpoint, read in order of increasing

height, and right multiplying the result by the labels of the boxes to the right

of the midpoint, read in order of increasing height. Since the labels of two

boxes at the same height commute, boxes at the same height can be read in

any order.

This completes the proof.

The construction provided does not always produce the most compact

factorization of a strand diagram, but has the benefit of emphasizing the

role played by the ideals principally generated by Ik
n.

Example 5.2.5. Working from Figure 5.6, we have the base path I2
6 = e1e3

and obtain the factorization S = e5(e2e4)(e1e3)(e2e4)(e3e5)e4, with commut-

ing generators grouped by parentheses. This is illustrated in Figure 5.7 (a).

The term corresponding to the base path is indicated by a thickened line.

This factorization can be simplified by applying (R2) and (R3) to obtain
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S = e5e2e4e3e5e4, as given in Figure 5.7 (b).

We now have an encoding of arch configurations of order n as elements

of TLn(q). By representing meandric systems as ordered pairs of arch con-
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figurations, we naturally extend this encoding to meandric systems: the

element (e, f) ∈ TLn(q) × TLn(q) encodes the meandric system with upper

arch configuration encoded as e, and lower arch configuration encoded as f.

To determine the number of components of a meandric system so encoded,

we introduce a trace on the algebra.

We think of
(

TL1(q),TL2(q), . . .
)

as a sequence of nested algebras. The

algebra TLn(q) is embedded in TLn+1(q) by the map

ϕ : TLn(q)→ TLn+1(q)

ei 7→ ei,

extended as a homomorphism. In terms of strand diagrams, the map adds an

additional strand at the bottom of the diagram, and relabels the endpoints

appropriately.

Definition 5.2.6. A family of functions trk : TLk(q) → C(q) for k ≥ 1 is

called a Markov trace if it satisfies:

trk is a linear functional, (T1)

trk(ef) = trk(fe) for all e, f ∈ TLk(q), and (T2)

trk+1(eek) = trk(e) if e ∈ 〈1, e1, . . . , ek−1〉. (T3)

A function trk satisfying (T1) and (T2) is called a trace.

Notice that trk+1(eekf) = trk+1(feek) = trk(fe) = trk(ef) so we could

replace (T3) in the definition by

trk+1(eekf) = trk(ef) if e, f ∈ 〈1, e1, . . . , ek−1〉 for k ≥ 1. (T3′)

A proof that there is a unique Markov trace on TLk(q), up to a multi-

plicative factor, is given in [3, Appendix A]. As a consequence, a Markov

trace is completely determined by any non-zero evaluation. To give a com-

binatorial interpretation to this trace, we introduce the closure of a strand

diagram.
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Definition 5.2.7. The closure of a strand diagram S, of order n, is obtained

from S by placing the diagram on a cylinder, and identifying the endpoint i

with the endpoint n−i+1 for each i in the range 1 ≤ i ≤ n. Pictorially, this

is represented by connecting the endpoints around the outside of the disc, in

a planar fashion. Figure 5.8 gives a strand diagram and its closure.
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Figure 5.8: A strand diagram and its closure

The closure of a strand diagram consists of a collection of loops. We use

#loop(S) to denote the number of loops in the closure of S.

Proposition 5.2.8. The family of functions trk defined on strand diagrams

by

trk(S) = q#loop(S), (5.2)

and extended linearly to TLk(q) is the Markov trace such that tr1(1) = q.
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Figure 5.9: trk satisfies (T3)

Proof. Since trk is linear, we need only verify (T1), (T2), and (T3) for

monomials. Condition (T1) is satisfied by definition. Condition (T2) is true

since the closure of ef and the closure of fe are obtained by identifying the

same pairs of endpoints in e and f; every loop is either deleted and counted
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by a factor of q by (R1), or counted as a factor of q by #loop(·). Condition
(T3) is illustrated in Figure 5.9; the portion of the curve indicated by a

thickened line can be contracted without altering the number of loops.

The Markov property of trk provides a way to recursively evaluate the

function. Consider the following examples.

Example 5.2.9. We calculate the number of components in the closure of

S = e5e2e4e3e5e4.

q#loop(S) = tr6(e5e2e4e3e5e4) = tr6(e2e4e3e5e4e5) = tr6(e2e4e3e5)

= tr5(e2e4e3) = tr4(e2e3) = tr3(e2) = tr2(1) = q2

We conclude that the closure of S consists of 2 loops, in agreement with

Figure 5.8.

Example 5.2.10. By using (R3) to introduce additional generators, we can

recursively evaluate trk+1 in terms of trk even when ek does not occur as a

factor. Consider tr4(e1) = tr4(e1e2e1) = tr4(e1e2e3e2e1) = tr3(e1e2e2e1), for

example.

Example 5.2.11. From the combinatorial interpretation of trk, we can eas-

ily verify that trk(1) = qk. This can also be verified inductively, using (T3)

to introduce a multiplicative generator that can be expanded.

trk(1) = trk+1(ek) = trk(ekek−1ek) = q trk(ek−1ek)

= q trk(ek−1) = q trk−1(1)

Proposition 5.2.12. Semi-meandric numbers can be expressed in terms of

the trace function and the basis B1 through the expression

Mn = [q]
∑

f∈B1

trn f. (5.3)

Proof. By Lemma 5.1.2, we take the sum to be over all arch configurations

of order n. An arch configuration a with corresponding strand diagram S
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contributes the term trn(S) = q#loop(S). Since the closure of S and the

semi-meandric system with a as an upper configuration are obtained by

connecting the same endpoints, the number of components in the semi-

meandric system with a as an upper configuration is #loop(S). Thus an

arch configuration contributes the term q precisely if the corresponding semi-

meandric system is connected.

In order to make a similar statement relating the meandric numbers to

the trace function, we define the transpose f
t of f ∈ TLn(q).

Definition 5.2.13. The transpose function t : TLn(q)→ TLn(q) is defined

on the multiplicative basis by

ei
t = ei

and extended to the whole algebra through

(ef)t = f
t
e
t and (λe + γf)t = λe

t + γft

for all e, f in TLn(q) and all λ, γ in C(q).

In terms of strand diagrams, the action of ·t is to reflect the diagram in

the vertical axis and to swap the labels i and 2n−i+1 for each i in the range

1 ≤ i ≤ n. Figure 5.10 gives a strand diagram (a) and its transpose (b).
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Figure 5.10: A strand diagram (a), and its transpose (b)

Using t we can define a symmetric bilinear form

〈·, ·〉n : TLn(q)× TLn(q)→ C(q) (5.4)

(e, f) 7→ trn(ef
t) (5.5)
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with the property that if e and f are the representation of arch configurations

a and b, then 〈e, f〉 = qc(a,b), where c(a, b) is the number of components in

the meandric system with a as its upper configuration and b as its lower

configuration.

This last claim is verified by noting that the closure of ef
t is obtained

by identifying the endpoint i in e with the endpoint i in f for every i in the

range 1 ≤ i ≤ 2n. This is precisely the identification involved in creating

the meandric system with a as its upper configuration and b as its lower

configuration. So the number of components in (a, b) is #loop(ef
t), and we

obtain the expression,

mn(q) =
n
∑

k=1

M (k)
n qk =

∑

e,f∈B1

〈e, f〉n, (5.6)

for the n-th meandric polynomial, since, by Lemma 5.1.2, the sum can be

taken to be over all meandric systems of order n. We summarize the form

〈·, ·〉n with its Gram matrix, Mn(q), a Cn × Cn matrix such that

(

Mn(q)
)

ij
= 〈ai, aj〉n,

where B1 is the ordered basis (a1, a2, . . . , aCn), and obtain the following

theorem.

Theorem 5.2.14. The meandric polynomials can be expressed by

mn(q) =

Cn
∑

i,j=1

(

Mn(q)
)

ij
= tr(Mn(q) · Jn) = un

tMn(q)un, and (5.7)

mn(q
2) = tr

(

Mn(q)
2
)

, (5.8)

where un is the Cn dimensional column vector of 1’s and Jn is the Cn ×Cn

matrix of 1’s.

Proof. The expression (5.7) is obtained by rewriting (5.6) in terms ofMn(q).

SinceMn(q) is symmetric, and every entry is a monic monomial, every term
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in tr (Mn(q)Jn) appears squared in tr
(

Mn(q)
2
)

, so (5.8) follows from (5.7).

Since Mn can be recovered from these expressions through

Mn = [q]mn(q) =
[

q2
]

mn(q
2),

we have reduced the meander problem to the problem of determining the

Gram matrix of 〈·, ·〉n on TLn(q) with respect to the basis B1. As with the

techniques discussed in previous chapters this is a computationally difficult

task.

Example 5.2.15. With respect to the basis B1 = {e1, e2e1, e1e2, e2, 1}, the
Gram matrix of 〈·, ·〉3 is

M3(q) =

















q3 q2 q2 q q2

q2 q3 q q2 q

q2 q q3 q2 q

q q2 q2 q3 q2

q2 q q q2 q3

















.

Using this matrix, we see that m3(q) = tr(M3(q)J3) = 8q+ 12q2 + 5q3, and

recover M3 = [q]m3(q) = 8.

Despite the apparent computational difficulty, this approach is promis-

ing. The Gram matrix is richly structured and opens the meander problem

to the tools of linear algebra. In [6], Di Francesco, et al. construct a second

basis B2 for TLn(q) with respect to which the Gram matrix is diagonal, and

order the elements of B1 and B2 such that the change of coordinate matrix

from B1 to B2 is triangular. In principle, the meander problem has been

reduced to expressing B2 in terms of B1, but in practice, only the diagonal

entries of the change of coordinate matrix have been determined. This is

sufficient to calculate the determinant of Mn(q) but does not provide a final

solution to the problem.
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Figure 5.11: A second encoding of arch configurations

Other formulations of the meander problem in terms of the Temperley-

Lieb algebra are possible. In particular, Di Francesco suggests in [4], that

arch configurations of order n be encoded as monomials in the left ideal

(e1e3 · · · e2n−1) of TL2n(q). Under this encoding, an arch configuration of

order n is encoded by the strands connecting the labels 1, 2, . . . , 2n, as in

Figure 5.11. This encoding allows a uniform recursive construction, through

box-addition, of the basis elements corresponding to arch configurations, and

has the property that if a and b are encoded as e and f, then #loop(ef
t) =

n+c(a, b), with the extra n loops coming from the short arches on the labels

2n+1, 2n+2, . . . , 4n.
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Chapter 6

Combinatorial Words

Arch configurations have a natural encoding as words in the Dyck language.

This chapter describes the extension of this encoding to an encoding of

meandric systems as words, and, more generally, deals with enumerative

techniques that are based on sequentially considering the intersection points

of a meandric system.

6.1 The Encoding

We begin by describing Dyck language. For typographical reasons, when it

is inconvenient to use parentheses, we use x and y to denote left and right

parentheses. The Dyck language is the language of balanced parentheses on

the alphabet {x, y}, and can be generated by the production rules:

s→ ε

s→ xsys,
(6.1)

where ε is the empty word. The following proposition links the Dyck lan-

guage to arch configurations.

Proposition 6.1.1. Arch configurations of order n are in bijective corre-

spondence with Dyck words of length 2n.
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Proof. To construct an arch configuration of order n from a Dyck word of

length 2n, label 2n basepoints sequentially with the letters of the word, and

connect each x to its matching y with an arch. The construction is reversed

by reading the basepoints sequentially; the first basepoint on an arch is read

as x, while the second basepoint on an arch is read as y.

The bijection from the preceding proof provides an encoding for arch

configurations as words over a two-letter alphabet. This encoding is illus-

trated in Figure 6.1.
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Figure 6.1: An arch configuration as a Dyck word.

By separately encoding the upper and lower configurations of meandric

systems as words in the Dyck language, and using the rule,

(

(
→ O

)

)
→ C

(

)
→ U

)

(
→ D,

we obtain an encoding of meandric systems as words on the four-letter al-

phabet {C,D,O,U}. The language L of meandric systems consists of all

words that encode meandric systems under this encoding. A language, of

meanders, L′ is obtained as the restriction of L to those words that encode

meanders.

Having an interpretation of meanders as words, suggests that we con-

sider a sequential decomposition, one that reads meanders from left to right.

The i-th cross section of a meander is obtained by slicing the canonical rep-

resentation vertically between bridge i and bridge i+1, and recording the

position of the line and connectivity of the end points, as determined by the

left side of the diagram. The meander ‘OODUUDUUDCDC’ is given in
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Figure 6.2; dotted lines mark the cross sections. Some of its cross sections

are given in Figure 6.3.
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Figure 6.2: The meander ‘OODUUDUUDCDC’
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By considering consecutive cross sections, we gain a geometric interpre-

tation for each of the letters in a meandric word. Starting with an empty

cross section, the i-th letter specifies the transition that must be applied to

the (i−1)-st cross section to obtain the i-th cross section: an O opens a new

strand around the line, a C closes the strand closest to the line, a U moves

the end of a strand up, and a D moves the end of a strand down. These
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transitions are shown in Figure 6.4. Notice that not every transition can be

applied to every cross section: the transition U , for example, can be applied

only to a cross section with at least one strand below the line.
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In [9], Jensen describes an algorithm, based on cross sections, for com-

puting meandric numbers. His algorithm inductively determines all possible

i-th cross sections of meanders and how many sequences of transitions lead

to each. The number Mn is the number of sequences of transitions that lead

to the empty cross section after 2n transitions. When computing only a fixed

Mn, the algorithm is optimized to discard cross sections that cannot lead

to valid meanders with the remaining number of transitions. In particular,

a cross section with more than 2n−i strands either above or below the line

cannot be the i-th cross section of a meander of order n. Slight modifications

can be used to enumerate semi-meanders or meandric systems.

In his analysis, Jensen cites experimental evidence suggesting that the

computational complexity of determining the first n meandric numbers us-

ing this algorithm grows asymptotically as ≈ 2.5n, and that memory use

is proportional. In contrast, the tree enumeration approach described in

Section 2.5 uses an amount of memory that is polynomial in n, but has time

requirements that are proportional to the largest meandric number being

calculated, that is ≈ 12.26n. In practice, Jensen’s algorithm is the most

effective method known for computing meandric numbers exactly.
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6.2 Irreducible Meandric Systems

Lando and Zvonkin, in [11], successfully use the encoding of meandric sys-

tems as words to analyze a class of objects lying strictly between meanders

and meandric systems. They call this class irreducible meandric systems. It

is defined as follows.

Definition 6.2.1. A meandric system represented by the word W is said to

be irreducible, if no subword of W represents a meandric system. If W rep-

resents an irreducible meandric system, then W is said to be an irreducible

word.

Lando and Zvonkin prove that a meandric system has a unique decompo-

sition into a collection of irreducible meandric systems. In fact the language

of meandric systems can be described by the production rules:

s→ ε

s→ OsCs

s→ OsUsDsCs

...

s→ α1sα2s · · ·α2ns

...

(6.2)

where α1α2 · · ·α2n denotes a generic irreducible word, and there is one pro-

duction rule for every irreducible word. By showing that every meandric

system has a unique derivation using these rules, they are able to show that

the ordinary generating series for meandric systems with respect to order,

B(x), and the ordinary generating series for irreducible meandric systems

with respect to order, N(x), satisfy the functional equation

B(x) = N(xB2(x)). (6.3)

Using analytic techniques, Lando and Zvonkin combine (6.3) and (2.5)
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to conclude that the radius of convergence of N is

(

4− π

π

)2

.

This leads to their main result, that meandric numbers satisfy the inequality,

Mn <

(

π

4− π

)2n

, (6.4)

for all sufficiently large n values of n.

6.3 Production Rules For Meanders

We do not yet have a collection of production rules for the language L′

of meanders that can be used in the manner of (6.1) or (6.2) to produce

enumerative results. The substitution rules (the first of which are illustrated

in Figure 6.5),

OUC → U ODC → D

OUUC → UCOU ODDC → DCOD

OUUUC → UUCDOUU ODDDC → DDCUODD (6.5)

...
...

OU i+2C → U i+1CDiOU i+1 ODi+2C → Di+1CU iODi+1

...
...

can be applied reversibly to any meandric system without altering the num-

ber of components. Together with the additional substitution rules,

UD → ε DU → ε, (6.6)

they form a complete set of substitutions, in the sense that a sequence of

substitutions can be used to reduce the word representation of any meander
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to the word OC. This reduction can be made unambiguous by requiring

that each reduction be carried out at the rightmost possible point.
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Figure 6.5: Substitution rules for meandric words

In theory, it should be possible to define a set of production rules for

producing every meander from the initial string OC. Unfortunately, from

the perspective of searching for enumerative utility, only the rules (6.5) can

be reversed in a context free fashion. If AB is a word representing a meander,

the substitution AB → AUDB can be made only if the cross section defined

by the prefix A has a strand below the line, and the substitution AB →
ADUB can be made only if the cross section defined by the prefix A has a

strand above the line. The string OUUDDC does not even correspond to

a meandric system, despite the fact that it can be produced from OC by

twice applying the substitution ε→ UD.
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Appendix A

Tables of Numbers

For convenience of reference, we reproduce some tables of known values of

Mn, mn, Mn, and M
(k)
n . Tables A.1, A.2 and A.3 are reproduced from [10]

with the entry for m43 corrected to agree with M22 and [13]. Table A.4 is

reproduced from [5].

n Mn n Mn n Mn

1 1 9 933458 17 59923200729046
2 2 10 8152860 18 608188709574124
3 8 11 73424650 19 6234277838531806
4 42 12 678390116 20 64477712119584604
5 262 13 6405031050 21 672265814872772972
6 1828 14 61606881612 22 7060941974458061392
7 13820 15 602188541928 23 74661728661167809752
8 110954 16 5969806669034 24 794337831754564188184

Table A.1: The first 24 meandric numbers.
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n mn n mn n mn

1 1 16 252939 31 5969806669034
2 1 17 933458 32 15012865733351
3 2 18 2172830 33 59923200729046
4 3 19 8152860 34 151622652413194
5 8 20 19304190 35 608188709574124
6 14 21 73424650 36 1547365078534578
7 42 22 176343390 37 6234277838531806
8 81 23 678390116 38 15939972379349178
9 262 24 1649008456 39 64477712119584604

10 538 25 6405031050 40 165597452660771610
11 1828 26 15730575554 41 672265814872772972
12 3926 27 61606881612 42 1733609081727968492
13 13820 28 152663683494 43 7060941974458061392
14 30694 29 602188541928
15 110954 30 1503962954930

Table A.2: The first 43 open meandric numbers.

n Mn n Mn n Mn

1 1 16 1053874 31 42126805350798
2 1 17 3328188 32 137494070309894
3 2 18 10274466 33 455792943581400
4 4 19 32786630 34 1493892615824866
5 10 20 102511418 35 4967158911871358
6 24 21 329903058 36 16341143303881194
7 66 22 1042277722 37 54480174340453578
8 174 23 3377919260 38 179830726231355326
9 504 24 10765024432 39 600994488311709056

10 1406 25 35095839848 40 1989761816656666392
11 4210 26 112670468128 41 6664356253639465480
12 12198 27 369192702554 42 22124273546267785420
13 37378 28 1192724674590 43 74248957195109578520
14 111278 29 3925446804750 44 247100408917982623532
15 346846 30 12750985286162 45 830776205506531894760

Table A.3: The first 45 semi-meandric numbers.
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k\n 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 8 42 262 1828 13820 110954 933458 8152860 73424650 678390116
2 2 12 84 640 5236 45164 406012 3772008 35994184 351173328 3490681428
3 5 56 580 5894 60312 624240 6540510 69323910 742518832 8028001566
4 14 240 3344 42840 529104 6413784 76980880 919032664 10941339452
5 42 990 17472 271240 3935238 54787208 742366152 9871243896
6 132 4004 85904 1569984 26200468 412348728 6230748192
7 429 16016 405552 8536890 161172704 2830421952
8 1430 63648 1860480 44346456 934582000
9 4862 251940 8356656 222516030

10 16796 994840 36936988
11 58786 3922512
12 208012

Table A.4: Meandric system number M
(k)
n for small n and k.
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