
Motivation
From Walks to q-Series

Asymptotic Analysis
Outlook

Area-perimeter generating functions of lattice
walks: q-series and their asymptotics

(A lattice model of vesicles attached to a skewed surface)

Thomas Prellberg

School of Mathematical Sciences
Queen Mary, University of London

July 1, 2009

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation
From Walks to q-Series

Asymptotic Analysis
Outlook

Topic Outline

1 Motivation
Vesicle Generating Function
Singularity Diagram
Scaling Function

2 From Lattice Walks to Basic Hypergeometric Series
q-Deformed Algebraic Equations
q-Difference Equations
Basic Hypergeometric Series

3 Asymptotic Analysis
Contour Integral Representation
Saddle Point Analysis
Uniform Asymptotics

4 Outlook

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation
From Walks to q-Series

Asymptotic Analysis
Outlook

Vesicle Generating Function
Singularity Diagram
Scaling Function

Outline

1 Motivation
Vesicle Generating Function
Singularity Diagram
Scaling Function

2 From Lattice Walks to Basic Hypergeometric Series
q-Deformed Algebraic Equations
q-Difference Equations
Basic Hypergeometric Series

3 Asymptotic Analysis
Contour Integral Representation
Saddle Point Analysis
Uniform Asymptotics

4 Outlook

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation
From Walks to q-Series

Asymptotic Analysis
Outlook

Vesicle Generating Function
Singularity Diagram
Scaling Function

Vesicle Generating Function

3-dim vesicle (bubble) with surface and volume

2-dim lattice model: polygons on the square lattice

cm,n number of polygons with area m and perimeter 2n

G (x , q) =
∑
n,m

cm,nx
nqm generating function

Wanted:

an explicit formula for G (x , q)

singularity structure, e.g. qc(x)
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Singularity Diagram

Folklore: universal behaviour near a “critical point”

qc(x)

critical
pointq

0

1

q

0 xt 1 x

scaling function f with crossover exponent φ:

G sing (x , q) ∼ (1− q)−γt f
(
[1− q]−φ[xt − x ]

)
as q → 1 and x → xt with z = [1− q]−φ[xt − x ] fixed
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Scaling Function

Surprisingly often f (z) = −Ai′(z)/Ai(z)

Square lattice vesicle generating function

Enumeration of cm,n, numerical analysis of moments (Richard,
Guttmann, Jensen)

Directed models with q-algebraic equations

Heuristic scaling Ansatz (Richard)

Staircase polygons (skew-Ferrer diagrams)

Rigorous derivation (Prellberg)

Brownian excursion (BE) in half-plane

Probabilistic analysis (Louchard)
Langevin equation (Kearney and Majumdar)

Area statistics of outer boundary of random loops

Monte-Carlo simulation (Richard)

q-Analogue of the Painlevé II equation (Witte)
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Example 1: Dyck Paths

2n = 14 steps enclosing an area of size m = 9

G (t, q) =
∑
m,n

cm,nt
nqm

t counts pairs of up/down steps, q counts enclosed area
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Example 1: Dyck Paths

A functional equation

G (t, q) = 1 + tG (qt, q)G (t, q)

C (t) = G (t, 1) satisfies C (t) = 1 + tC (t)2

C (t) =
1−
√

1− 4t

2t
=
∞∑

n=0

tn

n + 1

(
2n

n

)
Generating function of Catalan numbers
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Example 2: A Pair of Directed Walks

Two directed walks not allowed to cross

G (x , y , q) =
∑

m,nx ,ny

cm,nx ,ny x
nx yny qm

x and y count pairs of east and north steps, q counts enclosed area
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Example 2: A Pair of Directed Walks

A functional equation

G (x , y , q) = 1 + yG (qx , y , q) + xG (x , y , q) + yG (qx , y , q)xG (x , y , q)

G (t, t, 1) = 1 + tC (t) Catalan generating function

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation
From Walks to q-Series

Asymptotic Analysis
Outlook

q-Deformed Algebraic Equations
q-Difference Equations
Basic Hypergeometric Series

Example 2: A Pair of Directed Walks

A functional equation

G (x , y , q) = 1 + yG (qx , y , q) + xG (x , y , q) + yG (qx , y , q)xG (x , y , q)

G (t, t, 1) = 1 + tC (t) Catalan generating function

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation
From Walks to q-Series

Asymptotic Analysis
Outlook

q-Deformed Algebraic Equations
q-Difference Equations
Basic Hypergeometric Series

Example 3: Partially Directed Walks Above y = x

A functional equation

G (x , y , q) = 1 + yG (qx , y , q)xG (x , y , q) + y(G (qx , y , q)− 1)y

G (x , y , 1) = C
(

xy
1−y2

)
Catalan generating function
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Summary of the Examples

Different q-deformations of Catalan-type generating functions:

Dyck paths
G (t) = 1 + tG (t)G (qt)

Pair of directed walks

G (x) = (1 + xG (x))(1 + yG (qx))

Partially directed walks above the diagonal

G (x) = 1 + xyG (x)G (qx) + y2(G (qx)− 1)
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Example 1: Solving G (t) = 1 + tG (t)G (qt)

An aside:

G (t) admits a nice continued fraction expansion

G (t) =
1

1−
t

1−
qt

1−
q2t

1− . . .

Connections with orthogonal polynomials, combinatorics of weighted
lattice paths, ...

However, useless for finer asymptotic analysis of q → 1.
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Example 1: Solving G (t) = 1 + tG (t)G (qt)

Better:

Linearise the functional equation using

G (t) =
H(qt)

H(t)

Obtain a linear q-difference equation

H(qt) = H(t) + tH(q2t)

Explicit solution

H(t) =
∞∑

n=0

qn2−n(−t)n

(q; q)n
= 0φ1(−; 0; q,−t)

[0φ1(−; 0; q,−qt) a q-Airy function (Ismail)]
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Example 2: Solving G (x) = (1 + xG (x))(1 + yG (qx))

Better:

Linearise the functional equation using

G (x) =
1

x

(
H(qx)

H(x)
− 1

)
Obtain a linear q-difference equation

q(H(qx)− H(x)) = qxH(qx) + y(H(q2x)− H(qx))

Explicit solution

H(t) =
∞∑

n=0

q(n
2)(−x)n

(y ; q)n(q; q)n
= 1φ1(0; y ; q, x)
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Example 3: G (x) = 1 + xyG (x)G (qx) + y 2(G (qx)− 1)

Better:

Linearise the functional equation using

G (x) =
y

x

(
H(qx)

H(x)
− 1

)
Obtain a linear q-difference equation

q(H(qx)− H(x)) = qx(1/y − y)H(qx) + y2(H(q2x)− H(qx))

Explicit solution

H(t) =
∞∑

n=0

(−x(1− y2)/y)n

(y2; q)n(q; q)n
= 2φ1(0, 0; y2; q,−x(1− y2)/y)
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Summary:

Different q-deformations of Catalan-type generating functions:

Dyck paths

G (t, q) =
0φ1(−; 0; q,−qt)

0φ1(−; 0; q,−t)

Pair of directed walks

G (x , y , q) =
1

x

(
1φ1(0; y ; q, qx)

1φ1(0; y ; q, x)
− 1

)
Partially directed walks above the diagonal

G (x , y , q) =
y

x

(
2φ1(0, 0; y2; q, qx(y − 1/y))

2φ1(0, 0; y2; q, x(y − 1/y))
− 1

)
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A Puzzle

The full generating function is a quotient of q-series, e.g.

G (t, q) =

∞∑
n=0

qn2

(−t)n

(q; q)n

∞∑
n=0

qn2−n(−t)n

(q; q)n

However, for q = 1 we have a simple algebraic generating function

G (t, 1) =
1−
√

1− 4t

2t

How can one understand the limit q → 1?
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A Standard Trick For Evaluating Alternating Series

Write an alternating series as a contour integral

∞∑
n=0

(−x)ncn =
1

2πi

∮
C

x sc(s)
π

sin(πs)
ds

C runs counterclockwise around the zeros of sin(πs)

For example,

exp(−x) =
∞∑

n=0

(−x)n

n!
=

1

2πi

∫ −c+i∞

−c−i∞
x sΓ(−s)ds

where c > 0 (here, we have used Γ(s)Γ(1− s) = π/ sin(πs))

Find suitable q-version for this trick
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Write an alternating series as a contour integral

∞∑
n=0

(−x)ncn =
1

2πi

∮
C

x sc(s)
π

sin(πs)
ds

C runs counterclockwise around the zeros of sin(πs)

For example,

exp(−x) =
∞∑

n=0

(−x)n

n!
=

1

2πi

∫ −c+i∞

−c−i∞
x sΓ(−s)ds

where c > 0 (here, we have used Γ(s)Γ(1− s) = π/ sin(πs))

Find suitable q-version for this trick
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Contour Integral Representation

Use that

Res [(z ; q)−1
∞ ; z = q−n] = − (−1)nq(n

2)

(q; q)n(q; q)∞
n = 0, 1, 2, . . .

to prove that

Lemma

For complex t with | arg(x)| < π, non-negative integer n, and 0 < q < 1
we have for 0 < ρ < 1

∞∑
n=0

qn2−n(−t)n

(q; q)n
=

(q; q)∞
2πi

∫ ρ+i∞

ρ−i∞

z
1
2 logq z−logq t

(z ; q)∞

√
z dz
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Some Asymptotics

Approximate log(z ; q)∞ ∼ 1
log q Li2(z) + 1

2 log(1− z) to get

Lemma

For 0 < t < 1 and with ε = − log q

∞∑
n=0

qn2−n(−t)n

(q; q)n
=

(q; q)∞
2πi

∫ ρ+i∞

ρ−i∞
e

1
ε [− 1

2 (log z)2+log(z) log(t)+Li2(z)]
√

z

1− z
dz [1 + O(ε)]

where t < ρ < 1

We find a Laplace-type integral, where the saddles are given by

0 =
d

dz

[
−1

2
(log z)2 + log(z) log(t) + Li2(z)

]
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Saddle Point Analysis

The asymptotics of ∫
C

e
1
ε g(z)f (z)dz

is dominated by the saddles with g ′(z) = 0.

For g(z) = − 1
2 (log z)2 + log(z) log(t) + Li2(z) we find two saddles

given by the zeros of

z(1− z) = t ⇒ z =
1

2
± 1

2

√
1− 4t

As t approaches tt = 1/4, the saddles coalesce

Standard procedure: reparametrise locally by a cubic and compute a
uniform asymptotic expansion (involving Airy functions)...
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Saddle Point Summary:

Saddle Point coalescence occurs in all three cases:

Dyck paths, 0φ1(−; 0; q,−t):

g(z) = −1

2
(log z)2 + log(z) log(t) + Li2(z) ⇒ (z − 1)z + t = 0

Pair of directed walks, 1φ1(0; y ; q, x):

g(z) = −Li2(y/z)+log(z) log(x)+Li2(z) ⇒ (z−1)(z−y)+zx = 0

Part. directed walks above the diagonal, 2φ1(0, 0; y2; q, x(y − 1/y)):

g(z) = . . . ⇒ (z − 1)(z − y2) + z2x(1/y − y) = 0
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Uniform Asymptotics

Theorem

Let 0 < t < 1 and ε = − log q. Then, as ε→ 0+,

G (t, q) ∼ 1

2

(
1−
√

1− 4t

[
− Ai′(αε−2/3)

α1/2ε−1/3Ai(αε−2/3)

])
where α = α(t) is an explicitly given function of t. In particular,

α(t) ∼ 1− 4t as t → 1/4

Some remarks:

Uniform convergence to G (t, 1) = 1
2

(
1−
√

1− 4t
)

Scaling function f (z) = −Ai′(z)/Ai(z)

Stronger than scaling limit which keeps z = (1− 4t)ε−2/3 fixed

The result is completely analogous for the other examples.
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So far:

simple q-algebraic equation

simple q-series solution

contour integral

saddle-point analysis

A useful generalisation would be

general asymptotics for mφn

More ambitiously

get the asymptotics directly from the functional equation
(without solving it first!)

The End
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