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Motivation Vesicle Generating Function

Vesicle Generating Function

@ 3-dim vesicle (bubble) with surface and volume
@ 2-dim lattice model: polygons on the square lattice

N

Cm,n Number of polygons with area m and perimeter 2n
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Motivation Function

Vesicle Generating Function

@ 3-dim vesicle (bubble) with surface and volume
@ 2-dim lattice model: polygons on the square lattice

N

Cm,n Number of polygons with area m and perimeter 2n

G(x,q) = Z Cm,nx"q™ generating function
Wanted: mm
@ an explicit formula for G(x, q)
e singularity structure, e.g. gc(x)
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Motivation v erating Function

Singularity Diagram
ca

Singularity Diagram

Folklore: universal behaviour near a “critical point”

q
critical
1- point
QC(X)
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Motivation Function

Singularity Diagram

Folklore: universal behaviour near a “critical point”

q

critical
1- point

gc(x)

0 | |

0 Xt 1 X
@ scaling function f with crossover exponent ¢:
G (x,q) ~ (1 —q)F ([1 — q]~“[xc — x])

as ¢ — 1 and x — x; with z = [L — q]~?[x, — ] fixed
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Motivation Function

Scaling Function

Surprisingly often  f(z) = —Ai'(z)/Ai(z) J
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Scaling Function
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@ Square lattice vesicle generating function

o Enumeration of ¢p,,, numerical analysis of moments (Richard,
Guttmann, Jensen)

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation Function

Scaling Function

Scaling Function

Surprisingly often  f(z) = —Ai'(z)/Ai(z) J

@ Square lattice vesicle generating function

o Enumeration of ¢p,,, numerical analysis of moments (Richard,
Guttmann, Jensen)

@ Directed models with g-algebraic equations
o Heuristic scaling Ansatz (Richard)

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation ting Function

Scaling Function

Scaling Function

Surprisingly often  f(z) = —Ai'(z)/Ai(z) J

@ Square lattice vesicle generating function

o Enumeration of ¢p,,, numerical analysis of moments (Richard,
Guttmann, Jensen)

@ Directed models with g-algebraic equations
o Heuristic scaling Ansatz (Richard)

@ Staircase polygons (skew-Ferrer diagrams)
e Rigorous derivation (Prellberg)

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation

Scaling Function

Surprisingly often  f(z) = —Ai'(z)/Ai(z) J

@ Square lattice vesicle generating function

o Enumeration of ¢p,,, numerical analysis of moments (Richard,
Guttmann, Jensen)

@ Directed models with g-algebraic equations
o Heuristic scaling Ansatz (Richard)

@ Staircase polygons (skew-Ferrer diagrams)
e Rigorous derivation (Prellberg)

@ Brownian excursion (BE) in half-plane
o Probabilistic analysis (Louchard)

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation

Scaling Function

Surprisingly often  f(z) = —Ai'(z)/Ai(z) J

@ Square lattice vesicle generating function

o Enumeration of ¢p,,, numerical analysis of moments (Richard,
Guttmann, Jensen)

@ Directed models with g-algebraic equations
o Heuristic scaling Ansatz (Richard)

@ Staircase polygons (skew-Ferrer diagrams)
e Rigorous derivation (Prellberg)

@ Brownian excursion (BE) in half-plane

o Probabilistic analysis (Louchard)
o Langevin equation (Kearney and Majumdar)

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Motivation

Scaling Function

Surprisingly often  f(z) = —Ai'(z)/Ai(z) J
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Motivation

Scaling Function

Surprisingly often  f(z) = —Ai'(z)/Ai(z) J

@ Square lattice vesicle generating function

o Enumeration of ¢p,,, numerical analysis of moments (Richard,
Guttmann, Jensen)

Directed models with g-algebraic equations
o Heuristic scaling Ansatz (Richard)
@ Staircase polygons (skew-Ferrer diagrams)
e Rigorous derivation (Prellberg)
@ Brownian excursion (BE) in half-plane

o Probabilistic analysis (Louchard)
o Langevin equation (Kearney and Majumdar)

@ Area statistics of outer boundary of random loops
e Monte-Carlo simulation (Richard)

@ g-Analogue of the Painlevé Il equation (Witte)



From Walks to g-Series

Outline

© From Lattice Walks to Basic Hypergeometric Series
@ g-Deformed Algebraic Equations
o g-Difference Equations
@ Basic Hypergeometric Series

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



From Walks to g-Series

Example 1: Dyck Paths

2n = 14 steps enclosing an area of size m =9
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From Walks to g-Series e [Fepeiiioie

Example 1: Dyck Paths

2n = 14 steps enclosing an area of size m =9

G(t,q) = Z Cm,nt"q"
m,n

t counts pairs of up/down steps, g counts enclosed area
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From Walks to g-Series g-Deformed Algebraic Equations

Example 1: Dyck Paths

@ A functional equation

AA@
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From Walks to g-Series

Example 1: Dyck Paths

@ A functional equation

o C(t) = G(t,1) satisfies C(t) = 1+ tC(t)?

Generating function of Catalan numbers
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From Walks to g-Series g-Deformed Algebraic Equations

Basic

Example 2: A Pair of Directed Walks

Two directed walks not allowed to cross
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From Walks to g-Series g-Deformed Algebraic Equations

Basic

Example 2: A Pair of Directed Walks

Two directed walks not allowed to cross

G(x,y,q): Z Cm,nx,nyxnxynqu

m,ny,ny,

x and y count pairs of east and north steps, g counts enclosed area
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From Walks to g-Series

Example 2: A Pair of Directed Walks

@ A functional equation

G(x,y,9) = 1+yG(gx,y,q) +xG(x,y,q) + yG(ax, y, q)xG(x,y, q)
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From Walks to g-Series

Example 2: A Pair of Directed Walks

@ A functional equation

G(x,y,9) = 1+yG(gx,y,q) +xG(x,y,q) + yG(ax, y, q)xG(x,y, q)

e G(t,t,1) =1+ tC(t) Catalan generating function
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From Walks to g-Series 5
q
B.

Example 3: Partially Directed Walks Above y = x

@ A functional equation

G(x,y,q9) =1+ yG(ax,y,q)xG(x,y,q) + y(G(gx,y,q) — 1)y
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From Walks to g-Series 5
q
B.

Example 3: Partially Directed Walks Above y = x

@ A functional equation

G(x,y,q9) =1+ yG(ax,y,q)xG(x,y,q) + y(G(gx,y,q) — 1)y

o G(x,y,1)=C (lfyﬁ) Catalan generating function
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From Walks to g-Series ) LIS [ SCUEIG

Summary of the Examples

Different g-deformations of Catalan-type generating functions:

@ Dyck paths
G(t) =1+ tG(t)G(qt)

o Pair of directed walks
G(x) = (14 xG(x))(1 + yG(gx))
o Partially directed walks above the diagonal

G(x) = 1+ xyG(x)G(gx) + y*(G(gx) — 1)
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Equations

t)G(qt)

An aside:
@ G(t) admits a nice continued fraction expansion

qt
gt
1—...

e Connections with orthogonal polynomials, combinatorics of weighted
lattice paths, ...
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From Walks to g-Series

An aside:
@ G(t) admits a nice continued fraction expansion

1

qt
gt
1—...

e Connections with orthogonal polynomials, combinatorics of weighted
lattice paths, ...

@ However, useless for finer asymptotic analysis of g — 1.
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From Walks to g-Series

Example 1: Solving G(t) = 1+ tG(t)G(qt)

Better:
@ Linearise the functional equation using
H(qt)
G =
(1) H(D)
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From Walks to g-Series 3
Basic Hy

Example 1: Solving G(t) = 1+ tG(t)G(qt)

Better:
@ Linearise the functional equation using
H(qt)
G =
(1) H(D)

@ Obtain a linear g-difference equation

H(qt) = H(t) + tH(g"t)
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From Walks to g-Series

Example 1: Solving G(t) =1+ tG(t)G(qt)

Better:
@ Linearise the functional equation using
H(qt)
G =
(1) H(D)

@ Obtain a linear g-difference equation
H(qt) = H(t) + tH(g"t)
@ Explicit solution

Z a” (q q = 0¢1(—0;q, —t)

n=0
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From Walks to g-Series

Example 1: Solving G(t) =1+ tG(t)G(qt)

Better:
@ Linearise the functional equation using
H(qt)
G =
(1) H(D)

@ Obtain a linear g-difference equation
H(qt) = H(t) + tH(g"t)
@ Explicit solution

Z a” (q q = 0¢1(—0;q, —t)

n=0

[0#1(—;0; g, —qt) a g-Airy function (Ismail)]



From Walks to g-Series

Example 2: Solving G(x) = (1‘—|—.XG(X))(1 + yG(gx))

Better:

@ Linearise the functional equation using

o= (5 )

@ Obtain a linear g-difference equation

q(H(ax) — H(x)) = axH(qx) + y(H(¢*x) — H(gx))

o Explicit solution

o0 (g)(—x)”
_y T 0yiaux
H(t) - — (y, q)n(q. q)n 1¢1(0ly1 q, )
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From Walks to g-Series

Example 3: G(x) =1 + xyG(x)G(gx) + y*(G(gx) — 1)

Better:

@ Linearise the functional equation using

- (45

@ Obtain a linear g-difference equation

q(H(ax) — H(x)) = ax(1/y — y)H(gx) + y*(H(q’x) — H(gx))

@ Explicit solution

( x(L=y*)/y)" 2 g —x(1 — v2
t)—; qq)n =201(0,0;y% ¢, —x(1 - y*)/y) J
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From Walks to g-Series

Summary:

Different g-deformations of Catalan-type generating functions:

@ Dyck paths
#1(—;0; g, —qt)
G(t,q) = S A LA
(t.9) 0¢1(—:0; q, —t)

@ Pair of directed walks

Glx,y.q) = - <1¢1(0;y; 9.9x) _ 1>

x \ 101(0;y: g, x)

o Partially directed walks above the diagonal

y <2¢1(0,0;y2; q,9x(y —1/y)) 1)
x \ 201(0,0;y% q,x(y — 1/y))

G(x,y,q) =
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Outline

e Asymptotic Analysis
@ Contour Integral Representation
@ Saddle Point Analysis
@ Uniform Asymptotics
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>sentation

Asymptotic Analysis

A Puzzle
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entation

Asymptotic Analysis

A Puzzle

@ The full generating function is a quotient of g-series, e.g.

G(t,q) = =°

@ However, for ¢ = 1 we have a simple algebraic generating function

1—+/1—4t

G(t,1) = T
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Asymptotic Analysis

A Puzzle

@ The full generating function is a quotient of g-series, e.g.

f:q

(q, q
2

iqn—n( t"

n=0 9

G(t,q) =

@ However, for ¢ = 1 we have a simple algebraic generating function

1—+/1—4t

G(t,1) = T

How can one understand the limit ¢ — 17 J
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Contour Integral Representation
. N S, Analy
Asymptotic Analysis o

A Standard Trick For Evaluating Alternating Series

@ Write an alternating series as a contour integral

Z(—x)"cn ! xsc(s)Lds

—~ 2w Je sin(ms)

C runs counterclockwise around the zeros of sin(7s)
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Asymptotic Analysis

A Standard Trick For Evaluating Alternating Series

@ Write an alternating series as a contour integral

Z(—x)"cn ! x°c(s) T ds

—~ 2w Je sin(ms)

C runs counterclockwise around the zeros of sin(7s)

@ For example,

o (—X)" 1 —c+ioco

— — —_ S _
exp(—x) Z m ol x°T(—s)ds
n=0
where ¢ >0 (here, we have used I'(s)[(1 — s) = 7/ sin(ws))
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Asymptotic Analysis

A Standard Trick For Evaluating Alternating Series

@ Write an alternating series as a contour integral

Z(—x)"cn ! x°c(s) T ds

—~ 2w Je sin(ms)

C runs counterclockwise around the zeros of sin(7s)

@ For example,

o (—X)" 1 —c+ioco

— — —_ S _
exp(—x) = > o el M(—s)ds
n=0
where ¢ >0 (here, we have used I'(s)[(1 — s) = 7/ sin(ws))
Find suitable g-version for this trick J
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ntegral Representation

Asymptotic Analysis

Contour Integral Representation

Use that

Res[(z;9)xtiz=¢q "] = T Cire?) n=0,1,2,...

9: 9)n(a: 9) o
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ntegral Representation

Asymptotic Analysis

Contour Integral Representation

Use that

Res[(z;9)xtiz=¢q "] = T Cire?) n=0,1,2,...

9: 9)n(a: 9) o

to prove that

For complex t with | arg(x)| < m, non-negative integer n, and 0 < g < 1
we have for 0 < p < 1

%) q"z_"(—t)" (q; q)oo /p+ioo Z%Iongflogqt\/}dz
p

< (q:9)n 21 Jpieo  (Z9)s0

n=
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Contour Integr esentation
. . Saddle Point Al
Asymptotic Analysis Uniform Asymp

Some Asymptotics

Approximate log(z; q)co ~ Lip(z) +

oea + 2 log(1 — z) to get

ForO0 < t<1 and with e =

—logq

co n—n n
i

—~  (q q)n

(4: 9)oo / 1% [ bllog 2 Hog() log(t) 1 Lis(2)] |2 dz[1+ 0(e)]
210 Jp_ico 1-z

where t < p <1

Thomas Prellberg

INI Workshop on Discrete Systems and Special Functions



Contour Integ resentation
Saddle Point
Uniform Asyn

Asymptotic Analysis

Some Asymptotics

Approximate log(z; ¢)oo ~ I0qu12( z) + 1 log(1 — z) to get

Lemma

For0 <t <1 and withe = —logq

co n—n n
Zq

—~  (q q)n

(q; q)oo / e%[—%(logzﬁ—}-log(z) |0g(t)+Lig(z)] Zz dz [1 + O(E)]
210 Jp_ico V1i-=z

where t < p <1

We find a Laplace-type integral, where the saddles are given by

0= % [—;(Iog z)? + log(z) log(t) + Liz(z)}
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Asymptotic Analysis

Saddle Point Analysis

@ The asymptotics of
/e%g(z)f(z)dz
c

is dominated by the saddles with g’(z) = 0.
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Contour Ir
Saddle

Asymptotic Analysis Unifor

Saddle Point Analysis

@ The asymptotics of
/e%g(z)f(z)dz
c

is dominated by the saddles with g’(z) = 0.
o For g(z) = —3%(log z)? + log(z) log(t) + Li>(z) we find two saddles
given by the zeros of

1
zZ(l-z)=t = Z:E:N:f 1—4t
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Contour Ir
Saddle

Asymptotic Analysis Unifor

Saddle Point Analysis

@ The asymptotics of
/e%g(z)f(z)dz
c

is dominated by the saddles with g’(z) = 0.

o For g(z) = —3%(log z)? + log(z) log(t) + Li>(z) we find two saddles
given by the zeros of

1 1
l-2z)=t = ==+ V14t
z(1-2) z=5%5
As t approaches t; = 1/4, the saddles coalesce J
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Contour Ir
Saddle

Asymptotic Analysis Unifor

Saddle Point Analysis

@ The asymptotics of
/e%g(z)f(z)dz
c

is dominated by the saddles with g’(z) = 0.

o For g(z) = —3%(log z)? + log(z) log(t) + Li>(z) we find two saddles
given by the zeros of

1 1
l-2z)=t = ==+ V14t
z(1-2) z=5%5
As t approaches t; = 1/4, the saddles coalesce J

Standard procedure: reparametrise locally by a cubic and compute a
uniform asymptotic expansion (involving Airy functions)...
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Contour Ir
Saddle

Asymptotic Analysis Unifor

Saddle Point Summary:

Saddle Point coalescence occurs in all three cases:
@ Dyck paths, ¢¢1(—;0; g, —t):

g(z) = —%(Iog 7)? 4 log(z) log(t) + Liz(z) = (z—1)z+t=0
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Asymptotic Analysis

Saddle Point Summary:

Saddle Point coalescence occurs in all three cases:
@ Dyck paths, ¢¢1(—;0; g, —t):

g(z) = —%(Iog 7)? 4 log(z) log(t) + Liz(z) = (z—1)z+t=0

@ Pair of directed walks, 1¢1(0; y; g, x):

g(z) = —Lia(y/z)+log(2) log(x)+Lix(z) = (z-1)(z—y)+2x=0
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Asymptotic Analysis

Saddle Point Summary:

Saddle Point coalescence occurs in all three cases:
@ Dyck paths, ¢¢1(—;0; g, —t):

g(z) = —%(Iog 7)? 4 log(z) log(t) + Liz(z) = (z—1)z+t=0

@ Pair of directed walks, 1¢1(0; y; g, x):

g(z) = —Lia(y/z)+log(2) log(x)+Lix(z) = (z-1)(z—y)+2x=0

@ Part. directed walks above the diagonal, »¢1(0,0; y?; q,x(y — 1/y)):

gz)=... = (z-Dz-y)+2x1/y—y)=0
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Asymptotic Analysis

Uniform Asymptotics

LetO0< t<1ande=—logq. Then, asc — 0T,

1 — Ai'(ae™2/3)
G(t,q) ~ 2 (1 —V1-—4at [_ 01/25—1/3Ai(a5_2/3)}>

where o = «(t) is an explicitly given function of t. In particular,

a(t) ~1—4t ast — 1/4
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Asymptotic Analysis

Uniform Asymptotics

LetO0< t<1ande=—logq. Then, asc — 0T,

1 — Ai'(ae™2/3)
G(t,q) ~ 2 (1 —V1-—4at [_ 01/25—1/3Ai(a5_2/3)}>

where o = «(t) is an explicitly given function of t. In particular,

a(t) ~1—4t ast — 1/4

Some remarks:
e Uniform convergence to G(t,1) = 3 (1 — /1 — 4¢)
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Asymptotic Analysis

Uniform Asymptotics

LetO0< t<1ande=—logq. Then, asc — 0T,

1 — Ai'(ae™2/3)
G(t,q) ~ 2 (1 —V1-—4at [_ 01/25—1/3Ai(a5_2/3)}>

where o = «(t) is an explicitly given function of t. In particular,

a(t) ~1—4t ast — 1/4

Some remarks:
e Uniform convergence to G(t,1) = 3 (1 — /1 — 4¢)
e Scaling function f(z) = —Ai'(z)/Ai(z)
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Asymptotic Analysis

Uniform Asymptotics

LetO0< t<1ande=—logq. Then, asc — 0T,

1 — Ai'(ae™2/3)
G(t,q) ~ 2 (1 —V1-—4at [_ 01/25—1/3Ai(a5_2/3)}>

where o = «(t) is an explicitly given function of t. In particular,

a(t) ~1—4t ast — 1/4

Some remarks:
e Uniform convergence to G(t,1) = 3 (1 — /1 — 4¢)
e Scaling function f(z) = —Ai'(z)/Ai(z)
o Stronger than scaling limit which keeps z = (1 — 4t)e~2/3 fixed
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Asymptotic Analysis

Uniform Asymptotics

LetO0< t<1ande=—logq. Then, asc — 0T,

1 — Ai'(ae™2/3)
G(t,q) ~ 2 (1 —V1-—4at [_ 01/25—1/3Ai(a5_2/3)}>

where o = «(t) is an explicitly given function of t. In particular,

a(t) ~1—4t ast — 1/4

Some remarks:
e Uniform convergence to G(t,1) = 3 (1 — /1 — 4¢)
e Scaling function f(z) = —Ai'(z)/Ai(z)
o Stronger than scaling limit which keeps z = (1 — 4t)e~2/3 fixed

The result is completely analogous for the other examples.
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Outline

e Outlook
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Outlook

Outlook

So far:
@ simple g-algebraic equation
@ simple g-series solution
@ contour integral

@ saddle-point analysis

Thomas Prellberg INI Workshop on Discrete Systems and Special Functions



Outlook

Outlook

So far:
@ simple g-algebraic equation
@ simple g-series solution
@ contour integral
@ saddle-point analysis
A useful generalisation would be

@ general asymptotics for ¢,
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Outlook

Outlook

So far:
@ simple g-algebraic equation
@ simple g-series solution
@ contour integral
@ saddle-point analysis
A useful generalisation would be
@ general asymptotics for ¢,
More ambitiously

@ get the asymptotics directly from the functional equation
(without solving it first!)
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Outlook

Outlook

So far:
@ simple g-algebraic equation
@ simple g-series solution
@ contour integral
@ saddle-point analysis
A useful generalisation would be
@ general asymptotics for ¢,
More ambitiously

@ get the asymptotics directly from the functional equation
(without solving it first!)

The End ]
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