Robotic Technologies for Automated High-throughput Plant Phenotyping

Lie Tang, PhD Associate Professor Agricultural Automation and Robotics Laboratory Department of Agricultural and Biosystems Engineering Iowa State University Email: <u>lietang@iastate.edu</u> Tel: 515-294-9778

Agenda

- I. Machine Vision Systems
 - Automated Plant Population and Interplant Spacing Sensing
 - Plant 3D Reconstruction and Characterization under Indoor and Outdoor Conditions
- 2. Mobile Robotic Platforms

I. Machine Vision Systems

- I) 2D Color Video and Sequential Images
- 2) Stereo 3D Imaging
- 3) Time-of-Flight (ToF) of Light 3D Imaging

Manual population and spacing data collection

Labor intensive, time consuming, error-prone

Seed germination and survival, yield trials

http://www.firstseedtests.com/data3/images/3stand_counting_crew.jpg

http://www.agweb.com/the-knirks/

IOWA STATE UNIVERSITY

http://farmlandforecast.colvin-co.com

Corn plant identification - some of the challenges

- Intertwined Leaves

- a weed interference, damaged plants

- Double plants, plants in the background

I) 2D color video and sequential imaging

Challenges in lighting conditions, real-time processing

MAST

JNIVERSI

WA STAT

JNIVERSIT

Real-time mosaicking - a "long" panorama image of a crop row

Examples of real-time crop row reconstruction

Color image processing for stem center identification

Original

Color Transformation

Bayes classification

K-Mean clustering

Robust crop row center-line fitting - excluding small weed plants

Plant Identification and Spacing Measurement

Squenced Frame Window: Sequenced-Frame Length=27

IOWA STATE UNIVERSITY

Software Interface

Conclusions on 2D imaging

- Plus:
 - Reliable mosaicking and identification for corn plants between V2 and V3 (partly V4).
 - Allow error checking and manual recording.
- Delta:
 - Cannot deal with larger plants.
 - Rely on good color sensor and ideal lighting.
 - Cannot work under direct sunlight.

2) Stereo Vision system

γίνα κτάτ

UNIVERSIT

Real-time Stereo-On-a-Chip

Graphical User Interface

Color 🗹

Debug Information

SYS VEISION 1. 11 DES DIgital Stereo mienace	Function Stereo 👻 Get 3D
Auto Exposure	
Can not process on camera	
MMX presence: 7	Conf: 7 曽 Disparity: 16 曽
1 devices found:	
VIDERE_DESIGN MDS-STH #0055050400083260	Unique: 🔢 묽 Window: 12 묽
Device/Device 1: #VIDERE_DESIGN MDS-STH	
#0055050400083260	
Can get color image	
Can process on chip	
max_x_offset <= 0	
Open device 0	
[User] Proc mode none	Initial Start Stop
[User] Proc mode disparity	

Color

A Complicated Example

Method Overview

Skeletonization and leaf & intersection code lists

Result of identified stem centers

Robotic Phenotyping – Sorghum Biomass Traits

Genetic architecture of sorghum biomass yield-associated traits identified using high-throughput, fieldbased phenotyping technologies

PI: Patrick Schnable Co-PIs: Maria Salas Fernandez, Lie Tang Sponsors: USDA, DOE

Back-View

Stereo camera

Stereoscopic sensing

Robot platform

DWA STAT

JNIVERSIT

Robotic platform - PhenoBot

Video on scouting short plants

Video on scouting tall plants

IOWA STATE UNIVERSITY

3D point-cloud

3D point-cloud with higher image resolution

IOWA STATE UNIVERSITY

Need a clean segmentation at the first place.

Conclusions on stereo imaging

- Plus:
 - Utilization of depth information enables segmenting of individual plants.
 - High resolution and low-cost sensors are available.
- Delta:
 - The depth data generated by stereo head is often noisy and inaccurate.
 - Direct sunlight and variable lighting still impose challenges.
 - High computational cost for more sophisticated algorithms.

UNIVERSIT

WVA STA

JNIVERSIT

Data Processing

+

Stem matching & image mosaicking

Inter-plant Spacing Sensing

Inter-plant distance measurement

 $S_{d_1} = 6.32$

 $S_{d_2} = 10.87$

 $S_{d_3} = 4070.37$

 $S_{d_1} = 6.32$ $d_1 = 20.09$ cm

IOWA STATE UNIVERSITY

 $S_{d_2} = 10.87$ $d_2 = 20.38$ cm

 $S_{d_3} = 4070.37$ $d_3 = 26.41 \text{ cm}$

Manually measured distance was 20.21 cm.

Cotton plant stem detection

amplitude image

"vesselness" filtered

Cotton plant stem detection

Software Demo

Good news: a new stand analyzer has been developed

- Analyzes crop stands in real-time (> 5 mph) and under any lighting conditions.
- Works for corn plants from V2 V9 (~7-8" and above). Potential to measure and count other crops.
- 3) Measures population, interplant spacing, and estimate stem diameter simultaneously.
- 4) Measure multiple rows (2 8) simultaneously.
- 5) GPS-ready for individual crop stand georeferencing and mapping.
- 6) High corn plant stand counting accuracy (>97%) has achieved in preliminary field test.

Indoor phenotyping using ToF 3D imaging

Objective: 3D vision algorithm for the phenometrics related to plant structure and growth such as the number of leaves, leaf length, leaf locations, plant volume, and plant height

3D holographic reconstruction

-Low image resolution necessitates multiple views

3D holographic reconstruction and characterization

Color image of corn plant

Amplitude image from PMD Nano camera

Distance image from PMD Nano camera

Calibration between 2D and 3D camera

• The Rotation matrix and translation between 2D and 3D camera:

 $R_{3D22D} = R_{L22D}R_{3D2L}$

 $t_{3D22D} = R_{L22D} t_{3D2L} + t_{L22D}$

 $Q_{2D} = R_{3D22D} Q_{3D} + t_{3D22D}$

JNIVERSI

Acquiring multiple views

3D Registration

The relationship between 2D camera and target array is achieved

 $Q_{2D} = R_{2D}Q_w + t_{2D}$

STATE

VERSI

• Convert different 3D point cloud data view to consistent world coordinate system defined by the target array:

$$Q_w = R_{2D}^{-1}(R_{3D22D}Q_{3D} + t_{3D22D} - t_{2D})$$

Physical parameter measurements

- Leaf skeleton estimation
 - Singular Value Decomposition (SVD) regression method

 $\tilde{y} = x \sin(\varphi) + y \cos(\varphi)$

$$z = a\tilde{y}^4 + b\tilde{y}^3 + c\tilde{y}^2 + d\tilde{y} + e$$

- Leaf length
- Leaf width
- Leaf area
- Leaf collar height

Results and Discussion

3D reconstruction result of plant 1

Stem and leaf recognition result

Robotic sampling and plant treatment - sensor and hand coordination

2. Mobile Robotic Platforms - AgRover – A Field Scouting Robotic Vehicle

- Self-leveling on slopes
- Adjustable clearance
- 4-Wheel-Drive
- 4-Wheel-Steering
- Manual wireless
 - Operation
- GPS-based autoguidance

AgRover Prototype

AgRover-2 Scouting Robot

Thank You!

0