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Abstract 

Systematic reviews are currently favored methods of evaluating research in order to reach 
conclusions regarding medical practice. The need for such reviews is necessitated by the fact 
that no research is perfect and experts are prone to bias. By combining many studies that fulfill 
specific criteria, one hopes that the strengths can be multiplied and thus reliable conclusions 
attained. Potential flaws in this process include the assumptions that underlie the research 
under examination. If the assumptions, or axioms, upon which the research studies are based, 
are untenable either scientifically or logically, then the results must be highly suspect re-
gardless of the otherwise high quality of the studies or the systematic reviews. We outline 
recent criticisms of animal-based research, namely that animal models are failing to predict 
human responses. It is this failure that is purportedly being corrected via systematic reviews. 
We then examine the assumption that animal models can predict human outcomes to per-
turbations such as disease or drugs, even under the best of circumstances. We examine the 
use of animal models in light of empirical evidence comparing human outcomes to those from 
animal models, complexity theory, and evolutionary biology. We conclude that even if le-
gitimate criticisms of animal models were addressed, through standardization of protocols 
and systematic reviews, the animal model would still fail as a predictive modality for human 
response to drugs and disease. Therefore, systematic reviews and meta-analyses of ani-
mal-based research are poor tools for attempting to reach conclusions regarding human in-
terventions. 
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Introduction 
Review articles in the scientific literature can be 

classified as a general review article, a systematic re-
view (SR), or meta-analysis (MA). The purpose of a 
review article is to provide readers with a summary of 
published research in a particular field. Reviews usu-
ally focus on areas of progress over the recent past, for 
example five years. A general review article attempts 
to summarize all the relevant, published literature 
and provide some analysis of the controversial areas 

of the field or topic. In addition, it may suggest some 
novel ways to advance the field further [1]. Such re-
view articles provide a concise analysis of a large 
body of literature and hence are important for readers 
from a variety of fields. Articles in PubMed, for ex-
ample, can be searched based on whether they are 
classified as review articles. 

In contrast, SRs seek to be more rigorous and 
comprehensive in addition to providing an opinion 
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about outcomes or practice. For example, in medical 
science, SRs are used in hopes of ascertaining whether 
treatment A is superior to treatment B. Why is such an 
analysis necessary? Unfortunately, few research pro-
tocols are perfect so there may be controversy sur-
rounding treatment options even after numerous 
studies. Therefore, combining studies and analyzing 
them may be useful. However, there is another reason 
explained by Greenhalgh: “Experts, who have been 
steeped in a subject for years and know what the 
answer ‘ought’ to be, are less able to produce an ob-
jective review of the literature in their subject than 
non-experts. This would be of little consequence if 
experts' opinions could be relied on to be congruent 
with the results of independent systematic reviews, 
but they cannot” [2]. One of the premises upon which 
the practice of SRs is based, is the inability of in-
formed scientists to evaluate, without bias, the con-
troversies in their own field. This is a reflection of 
human nature and is unlikely to change anytime in 
the near future [3]. A SR requires clearly stated objec-
tives and rigorous criteria for what studies can and 
cannot be included, should be reproducible, include 
all relevant studies, seek to detect bias, and attempt to 
make determinations [4, 5]. SRs are acknowledged as 
being an integral component of evidence based medi-
cine, where the goal is to analyze the evidence gained 
from the best scientific studies that qualify for con-
sideration in order to make a determination regarding 
clinical intervention. The SR is thus “the conscien-
tious, explicit, judicious use of current best evidence 
in making decisions about the care of individual pa-
tients” [6]. 

The term meta-analysis was coined in 1980 by 
Smith, Glass and Miller and involves a statistical 
analysis of the topic of a SR. A MA can be thought of 
as a quantitative SR [7]. Greenhalgh stated: “A me-
ta-analysis is a mathematical synthesis of the results 
of two or more primary studies that addressed the 
same hypothesis in the same way” [2].  

While the purpose of any scientific literature re-
view is to summarize and evaluate relevant articles in 
a scholarly and rigorous manner, the review must also 
consider relevant research in other disciplines of sci-
ence—consilience—as well as the scientific underpin-
nings of the topic under consideration. For example, 
any SR of research articles regarding acupuncture 
should take place in light of the fact that no mecha-
nisms have been discovered that would allow scien-
tists to expect success from using acupuncture in or-
der to alleviate objective pathology [8, 9]. In contrast, 
the Germ Theory of Disease supports a SR of the effi-
cacy of antibacterial use for preventing complications 
from, or shortening the course of, ear infections in 

children. An example of this concept comes from on-
cological surgeon David Gorski who criticized the 
National Center for Complementary and Alternative 
Medicine (NCCAM) for spending resources to study: 
“treatment modalities that are inherently unscientific, 
being as they are based on prescientific or demon-
strably incorrect understandings of human physiolo-
gy and disease” [10]. An example of knowledge from 
other fields of science affecting how a SR might be 
conducted can be found in homeopathy. Knowledge 
from chemistry and physics vis-à-vis how to apply 
Avogadro’s number when calculating dilutions, 
should inform scientists seeking to evaluate homeop-
athy by conducting a SR [11]. 

Finally, the fact that conclusions drawn from SRs 
and MAs have been shown to be wrong should also 
be considered when evaluating a treatment or other 
practice being evaluated by a SR or MA. For example, 
a meta-analysis by the Cochrane Group reported that 
albumin increased deaths in critically ill patients [12]. 
However, a large randomized study in Australia later 
revealed no such effects [13]. In summary, SRs and 
MAs are a valuable tool in assessing what is currently 
known regarding a subject but, like any tool, can fail. 

Systematic reviews and standardization 
of animal model protocols 

Because nonhuman animal models (hereafter 
referred to as animal models or animals) have on 
multiple occasions been unsuccessful in predicting 
human response to drugs and disease (we will ad-
dress this claim in depth), many have called for SRs in 
order to improve the models [14-24]. An example of 
this predicament would be the animal models used to 
determine which drugs to develop in an attempt to 
diminish neurological damage from ischemia events 
of the central nervous system (CNS) [17, 25-30]. By 
analyzing animal-based research with SRs, flaws in 
the methodology would also become apparent thus 
leading to eventual standardization of such studies. 
This would ostensibly also lead to better predictive 
values for humans (see table 1 for calculating such 
values). Bracken supports this, stating: 

One reason why animal experiments often do 
not translate into replications in human trials or 
into cancer chemoprevention is that many ani-
mal experiments are poorly designed, con-
ducted and analyzed. Another possible contri-
bution to failure to replicate the results of ani-
mal research in humans is that reviews and 
summaries of evidence from animal research 
are methodologically inadequate [18]. 
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Table 1. Binary classification and formulas for calculating 
predictive values of modalities such as animal-based re-
search. 

  Gold Standard 
  GS+ GS- 
Test T+ TP FP 

T- FN TN 
 
Sensitivity = TP/(TP+FN) 
Specificity = TN/(FP+TN) 
Positive Predictive Value = TP/(TP+FP) 
Negative Predictive Value = TN/(FN+TN)  
 
T- = Test negative  
T+ = Test positive 
FP = False positive 
TP = True positive 
FN = False negative 
TN = True negative 
GS- = Gold standard negative 
GS+ = Gold standard positive  

 
 
Further evidence that SRs are expected to trans-

form the predictive value of animal-based research 
comes in the form of the 1st International Symposium 
and Workshop on Systematic Reviews in Laboratory 
Animal Science that was held at the Radboud Uni-
versity Nijmegen Medical Centre on February 9-10, 
2012. The workshop celebrated “5 years of the 3R [the 
3R here refers to Reduce, Refine, and Replace animals 
used in research] Research Centre (3RRC) and stimu-
lating an international discussion and collaboration 
between animal and clinical researchers on Systematic 
Reviews (SRs) of animal studies”[31]. Malcolm Mac-
leod, the keynote speaker, discussed, “The trans-
forming potential of the systematic evaluation of la-
boratory research.” The brochure for the conference 
stated: 

. . . the use of SRs for the optimisation of animal 
testing is still rare which can lead to waste in 
funding and harm to patients and research 
volunteers. The 3RRC encourages the use of SRs 
in animal studies as they improve scientific 
quality, lead to implementation of the 3Rs prin-
ciples, improve translational research and help 
in determining the value of animal studies to 
human health [31]. 
There are several claims here for the value of 

SRs. While we do not dispute the value of SRs to im-
prove the quality of research and perhaps increase 
acceptance of the 3Rs, we strongly contest the notion 
that SRs will allow scientists to develop animal mod-
els that are predictive modalities for human responses 

to drugs and disease. Claims such as those above by 
Bracken and the organizers of the Symposium (and 
more we will cite below) regarding the benefit of us-
ing animal models in translational research however, 
directly assumes predictive ability. We will discuss 
this further when describing table 2. 

There are methodological problems in current 
animal-based research. Pound et al. [32] highlighted 
some of the potential flaws when using animal mod-
els, including: 
• Variations in drug dosing schedules and regi-

mens that are of uncertain relevance to the hu-
man condition. 

• Variability in the way animals are selected for 
study, methods of randomization, choice of 
comparison therapy (none, placebo, vehicle), and 
reporting of loss to follow up. 

• Small experimental groups with inadequate 
power, simplistic statistical analysis that does 
not account for potential confounding, and fail-
ure to follow intention to treat principles. 

• Nuances in laboratory technique that may in-
fluence results may be neither recognized nor 
reported, e.g. methods for blinding investigators. 

• Selection of a variety of outcome measures, 
which may be disease surrogates or precursors 
and which are of uncertain relevance to the hu-
man clinical condition. 

• Length of follow up before determination of 
disease outcome varies and may not correspond 
to disease latency in humans [32].  
Hooijmans et al [14] have called for a gold 

standard for research involving animals that includes 
stating the specifics regarding housing, species, ran-
domization, cage size and bedding among other pa-
rameters. Other checklists and suggestions aimed 
toward improving standardizations have also been 
published [21, 33-38]. Note that even here however, 
Hooijmans et al link standardization to prediction of 
human response stating: “In addition, an improved 
experimental design contributes to a better translation 
to the clinic and increases patient safety” [14]. Many 
reviews and opinions have echoed the above reasons 
for translational failure or predictive failure and have 
suggested ways to improve the likelihood of suc-
cessfully predicting human responses to drugs and 
disease. The ARRIVE (Animals in Research: Reporting 
In Vivo Experiments) Guidelines for Reporting Ani-
mal Research [39] consist of a 20 item checklist con-
taining:  

the minimum information that all scientific 
publications reporting research using animals 
should include, such as the number and specific 
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characteristics of animals used (including spe-
cies, strain, sex, and genetic background); de-
tails of housing and husbandry; and the ex-
perimental, statistical, and analytical methods 
(including details of methods used to reduce 
bias such as randomization and blinding) [39].  
Another example of such an effort is the 

CAMARADES group (the Collaborative Approach to 
Meta-Analysis and Review of Animal Data in Ex-
perimental Studies). For example, the CAMARADES 
group identified significant sources of bias in a sam-
ple of almost 5,000 animal studies. These shortcom-
ings included a frequent lack of blinding, randomiza-
tion, and sample size calculation, in addition to over-
statement of treatment efficacy due to unpublished 
studies. 

While some scientists are more modest in their 
claims for the value of SRs and the standardization of 
protocols, clearly there are high hopes for what SRs 
can accomplish regarding the predictive value of 
animal models. We will now examine, in more depth, 
the reasons for the above concerns regarding the pre-
dictive value of animal models. 

Prediction in science 
The use of animals in science and research can be 

categorized per table 2 [40]. While all uses of sentient 
animals are cause for ethical concern [41-43], the use 
of animal models to predict human response to drugs 
and disease appears to be the main focus of the scien-
tific community when attempting to justify animal 
use to society [44-52] [[53] p3]. This is consistent with 
Giles, writing in Nature, who stated: 

In the contentious world of animal research, one 
question surfaces time and again: how useful 
are animal experiments as a way to prepare for 
trials of medical treatments in humans? The is-
sue is crucial, as public opinion is behind animal 
research only if it helps develop better drugs. 
Consequently, scientists defending animal ex-
periments insist they are essential for safe clin-
ical trials, whereas animal-rights activists ve-
hemently maintain that they are useless [54]. 
 
Statements from advocates for animal-based re-

search acknowledge the importance society places on 
animal models being able to predict human response 
to drugs and disease. For example, Cheng stated: 
“Animal tests are necessary for some research, such as 
testing drugs for toxicity. It would be, in my opinion, 
improper to release drugs for human use without 
animal testing” [55]. Heywood likewise stated: “An-
imal studies fall into two main categories: predictive 

evaluations of new compounds and their incorpora-
tion into schemes designed to help lessen or clarify a 
recognised hazard” [56]. Vassar agrees, stating: 
“Chronic dosing in mice and monkeys is necessary to 
show the efficacy and safety of the antibody before it’s 
taken into humans” [51]. The Council for Internation-
al Organizations of Medical Sciences implies predic-
tion when they state: “clinical testing must be pre-
ceded by adequate laboratory or animal experimenta-
tion to demonstrate a reasonable probability of suc-
cess without undue risk” [45]. Rudczynski wrote: “the 
basic research model used by Yale University and its 
peer institutions is scientifically valid and predictive of 
human disease” [57]. (Emphasis added.) Such state-
ments could be easily multiplied. The animal-based 
research community clearly stresses the importance 
and validity of using animals to predict human re-
sponse to drugs and disease. 

 

Table 2. Nine categories of animal use in science and 
research. 

1. Animals are used as predictive models of humans for research 
into such diseases as cancer and AIDS. 
2. Animals are used as predictive models of humans for testing 
drugs or other chemicals. 
3. Animals are used as “spare parts”, such as when a person re-
ceives an aortic valve from a pig. 
4. Animals are used as bioreactors or factories, such as for the pro-
duction of insulin or monoclonal antibodies, or to maintain the 
supply of a virus. 
5. Animals and animal tissues are used to study basic physiological 
principles. 
6. Animals are used in education to educate and train medical stu-
dents and to teach basic principles of anatomy in high school biol-
ogy classes. 
7. Animals are used as a modality for ideas or as a heuristic device, 
which is a component of basic science research. 
8. Animals are used in research designed to benefit other animals of 
the same species or breed. 
9. Animals are used in research in order to gain knowledge for 
knowledge sake. 

 
 
The above claims are, however, in direct opposi-

tion to those advocating for SRs in order to improve 
the predictive ability of animal-based research. Before 
we survey the literature for empirical confirmation 
and present views of other scientists that strongly 
disagree with the above, we need to first define the 
term predict and refresh the reader’s memory of how it 
is used in science. 

Predict can be used in essentially two ways when 
discussing science. First, scientists develop hypothe-
ses, which generate predictions that can then be test-
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ed. Several confirmations of the hypothesis, by pre-
dictions that are found to be true, strengthen the hy-
pothesis while one failed prediction may neccesitate 
revising the hypothesis or even destroy it altogether. 
This is standard science based on the hypotheti-
co-deductive method and we have no issues with us-
ing the term predict in this manner. Animal use in-
volving categories 5, 7, and 9 in table 2 would employ 
this use of predict. 

The second manner predict is used is when dis-
cussing the predictive value of a modality or practice. 
Such is the case with categories 1 and 2 in table 2. An 
example outside of biomedical science would be 
when Italian geologists were asked whether a series of 
small quakes in the area meant that residents should 
evacuate their houses because a major earthquake was 
likely forthcoming. The geologists stated that a major 
earthquake was unlikely and this was consistent with 
current knowledge of earthquakes. Nevertheless, the 
Italian legal system convicted the scientists on charges 
that essentially said they were negligent in failing to 
warn the residents to evacuate [58]. This was a cause 
for concern in the scientific community as an analysis 
revealed that small quakes forecast a major quake 
only 2% of the time [59, 60]. Clearly, a practice or 
modality that correctly calculates the answer only 2% 
of the time does not qualify as predictive. Exactly what 
percentage is necessary to qualify will vary with the 
field of study. Finding a method that will result in the 
correct answer 51% in the field of gambling, in black-
jack for example, would be very productive and 
probably qualify as meeting the criteria for being a 
predictive practice. Using instruments to fly an air-
craft on the other hand, requires that the instruments 
correctly communicate the exact location of the air-
craft 100% of the time. While medical science does not 
require predictive values of 100%, it does require very 
high values. Tests that correlate with reality even 70% 
of the time are not very useful.  

Just as important as what the word predict means 
in terms of predictive value and how PPV and NPV 
are calculated, is what does not constitute predictive 
value. For example, a single example of correlation 
does not qualify a model as predictive or indicate a 
high PPV or NPV. A modality or practice must be 
evaluated based on its history of correlating with re-
ality. Cherry-picking examples is not allowed. More-
over, one must be very precise when defining what is 
being evaluated for predictive value. If one wishes to 
evaluate animal models in general then all the wrong 
answers by all species must be included in the calcu-
lation as well as all the correct answers. If one is cal-
culating PPV for a specific animal model, say using 
beagles in hepatotoxicity testing, then all correct and 

incorrect answers for beagles should be included but 
not outcomes from different species or even different 
breeds. 

With that background we can now evaluate the 
claims of animal models being, or not being, predic-
tive for human response to drugs and disease. 

Animals as predictive models 
Empirical evidence 

The assumption that animal models are predic-
tive of human outcome is foundational for much of 
their use in biomedical research and for justifying 
animal-based research in general. Whether this as-
sumption is true is a separate issue from that of 
methodology and study design although methodol-
ogy may influence predictive value. The prevailing 
view within the animal model community among 
those calling for standardization and SRs, per above, 
is that animal models would perform better, meaning 
they would have a higher PPV and NPV for humans, 
if researchers adhered to strict criteria with respect to 
study design and methodology [61]. It is important to 
note that the potential validity of the animal model per 
se for predicting human response to drugs and disease 
is not questioned, at least in most of the literature that 
addresses SRs and standardization. We acknowledge 
that animals can successfully be used in categories 3-9 
in table 2 and that SRs could positively impact on such 
use and that some calling for SRs and standardization 
advocate for such on this basis. However, it appears 
that the main emphasis among those calling for SRs 
and standardization is to improve predictive value. 
Therefore we consider it appropriate to explore 
whether a proper understanding of evolutionary bi-
ology and complexity science allows for the use of one 
species to predict responses to drugs and diseases for 
another, even under ideal circumstances [40, 41, 
62-66]. SRs require the practice under study to be 
scientifically tenable. If the practice per se is not viable, 
then SRs will be of little value. We will now present 
the empirical evidence and later seek to place it within 
the context of complexity science and evolutionary 
biology. 

Empirical evidence regarding the predictive 
value of animal models comes in the form of research 
amenable to quantification via table 1 and examples of 
multiple failures over many years in the same subject. 
Examples of the latter would include the search for a 
vaccine against HIV and neuroprotective drugs. Ap-
proximately 100 vaccines have been shown effective 
against an HIV-like virus in animal models, however, 
none have prevented HIV in humans [67, 68]. Even if 
an HIV vaccine came from animal-based research 
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tomorrow, the animal model per se would not be pre-
dictive for humans as the PPV would be somewhere 
in the 0.01 area. Likewise, up to one-thousand drugs 
have been shown effective for neuroprotection in 
animal models but none have been effective for hu-
mans [23-25, 29, 38, 61, 69-71]. The predictive value is 
again minimal even if a successful drug is currently in 
development. The animal model has failed as a mo-
dality for predicting neuroprotection. Along the same 
lines, of twenty two drugs tested on animals and 
shown to be therapeutic in spinal cord injury, none 
were effective in humans [72]. As we are attempting 
to prove that animal models are not predictive such 
examples are important. Relatively few failures can 
disqualify a practice from being of predictive value 
while proving the opposite requires a large number of 
successes.  

The success of the animal model in basic research 
can also be questioned based on the fact that, accord-
ing to one report, only 0.004% of basic research papers 
in leading journals led to a new class of drugs [41, 73] 
and the fact that the success rate for target identifica-
tion is similarly dismal [74-78]. For example, in part 
because the targets derived from animal models are 
not predictive for humans, the percentage of new 
drugs in development, after initial evaluation, that 
ultimately make it to market is somewhere in the area 
of 0.0002% [79, 80]. We acknowledge that the goals of 
basic research differ from the goals of applied re-
search where predictive values are most often evalu-
ated. However, because of funding challenges, re-
search that would have historically been considered 
basic is now being promoted as applied and hence 
should be judged accordingly [41].  

The empirical evidence from research outcomes 
quantifiable by the calculations in table 1 also sup-
ports our position that animal models cannot cur-
rently predict human response. Consider the follow-
ing. In 1962, Litchfield [81] studied rats, dogs, and 
humans in order to evaluate responses to six drugs. 
The rat model demonstrated a PPV of 0.49 while the 
dog model demonstrated a PPV of 0.55. A PPV 
around 0.5 is not sufficient to qualify a modality as 
predictive in medical science. It is what one would 
expect from tossing a coin. Medical science demands 
values of 0.8 or higher if the modality is to be used for 
anything that will intersect with patient care. (Drug 
development is a clear example of a product or mo-
dality intersecting with patient care.) A similar study 

reported in 1990, examined six drugs in animal mod-
els, the side effects of which were already known from 
human data. The study found that at least one species 
demonstrated 22 side effects, but the models incor-
rectly identified 48 side effects that did not occur in 
humans, while missing 20 side effects that did occur 
in humans. This translates to a PPV of 0.31 [[82] p73]. 
A similar study - reported in 1990 - examined drugs 
abandoned during clinical trials secondary to toxicity. 
In 16 out of 24 cases, the toxicity had no correlation in 
animal models [[83] 49-56]. A 1994 study revealed that 
only six of 114 drug toxicities had animal correlates 
[[84] p57-67]. While the data do not allow the calcula-
tions in table 1 to be made, obviously these numbers 
fall far short of qualifying as a predictive medical 
modality or test. Likewise, figure 1 illustrates the 
random nature of bioavailability correlation among 
species. These examples could be easily multiplied 
(for example, see [85] [ [86] p67-74] [38, 87-93]). 
Moreover, in 1995, Lin compared pharmacologically 
important parameters in different species and pointed 
out that many examples of animal models predicting 
human response were in fact retrospective and hence 
not predictive at all [94]. 

We acknowledge that the empirical evidence 
could be interpreted in two ways. First, the animal 
model per se is simply not predictive of human re-
sponse to drugs and disease. (For more on the failure 
of animal models of human disease to correlate with 
humans, see [62, 64-66, 96-100].) Second, perhaps the 
proposed SRs and standardization will allow for cor-
rection of methodological problems that have resulted 
in animal models failing to be of predictive value. 
Perhaps the problem is confined to methodology. In 
light of this dichotomy, the following questions must 
be addressed: Is there an all-encompassing explana-
tion for the failure of animal models to be of predic-
tive value regardless of methodology? Is there a the-
ory or law in science that explains the empirical evi-
dence we presented? We propose that the fact that all 
animals are examples of evolved complex systems con-
stitutes a scientific theory explaining why animal 
models fail to be predictive modalities for human 
response to drugs and disease. In addition, this theory 
requires us to question whether an animal model will 
ever be a predictive modality for humans at the level 
of organization where disease and drug response oc-
curs, regardless of methodological improvements. 
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Figure 1. Comparison of oral bioavailability among three species. Data from reference [95]. 

 

Evolved complex systems 
Science as a discipline can arguably be dated to 

Newton and Descartes, both of whom accepted a 
mechanistic, deterministic universe amenable to 
study by reductionism [101, 102]. Because the systems 
under examination at that time were simple systems 
that were no more than the sum of their parts, exhib-
ited predictable behavior with few interactions and 
feedback loops, and hence could be intuitively un-
derstood, linear cause and effect relationships were 
the order of the day. Because of the nature of the 
universe, such systems are amenable to laws while 
complex systems are usually described using statis-
tics. Hence biological complex systems are more likely 
to be described by theories than laws [103-105]. 
Moreover, outcomes are usually described as involv-
ing a causal chain as opposed to a linear cause and 
effect relationship [105]. 

Ecosystems, climate, financial markets, and the 
US power grids are examples of complex systems, 
while humans and animals are examples of evolved 
complex systems. Reductionism has been of value in 
the study of complex systems but because of the na-
ture of complex systems, reductionism alone is inad-
equate to fully describe the system [106-108]. Van 
Regenmortel states:  

The reductionist method of dissecting biological 
systems into their constituent parts has been 
effective in explaining the chemical basis of 
numerous living processes. However, many bi-
ologists now realize that this approach has 
reached its limit. Biological systems are ex-
tremely complex and have emergent properties 

that cannot be explained, or even predicted, by 
studying their individual parts. The reductionist 
approach—although successful in the early 
days of molecular biology— underestimates this 
complexity and therefore has an increasingly 
detrimental influence on many areas of bio-
medical research, including drug discovery and 
vaccine development [109]. 
Complex systems have very specific characteris-

tics that influence the ability of one complex system to 
predict the response of another [102, 106, 107, 
109-127].  

1. Complex systems are more than the sum of 
their parts, thus reductionism will yield an incomplete 
analysis of a complex system. As animal modeling is 
based in large part on reductionism [65, 105, 109, 120, 
125, 128-132], this portends problems.  

2. Complex systems exhibit emergence, meaning 
that new properties of a complex system arise from 
the interactions of the parts. These new properties 
cannot be determined even in light of full knowledge 
of the component parts, thus compromising reduc-
tionism even further.  

3. Complex systems are resistant to changes and 
exhibit redundancy in their components. This again 
complicates extrapolation between complex systems.  

4. Complex systems exhibit self-organization. 
5. Complex systems demonstrate responses to 

perturbations that are nonlinear. 
6. Complex systems are very dependent upon 

initial conditions (for example, genetic make-up). For 
example, strains of mice have been noted to respond 
very differently to gene deletion [133, 134] and groups 
of humans, such as sexes [135-140] and ethnic groups 
[141-149], respond differently to drugs and disease. 
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Monozygotic twins have also been discovered to re-
spond differently to perturbations because of small 
differences in genetic make-up [150-154]. 

7. Complex systems are composed of many 
components, which can be grouped into modules that 
interact with each other. 

8. Complex systems have hierarchal levels of 
organization (different levels can even respond oppo-
sitely to the same perturbation). 

9. Complex systems have feedback loops. 
10. Complex systems interact with their envi-

ronment—are dynamic.  
11. Complex systems are nonsimulable [155-158]. 
Koch describes the problems of studying com-

plex systems: 
Such systems [like the human brain] are char-
acterized by large numbers of highly heteroge-
neous components, be they genes, proteins, or 
cells. These components interact causally in 
myriad ways across a very large spectrum of 
space-time, from nanometers to meters and 
from microseconds to years. A complete under-
standing of these systems demands that a large 
fraction of these interactions be experimentally 
or computationally probed. This is very diffi-
cult. . . . fields as diverse as neuroscience and 
cancer biology have proven resistant to facile 
predictions about imminent practical applica-
tions. Improved technologies for observing and 
probing biological systems has only led to dis-
coveries of further levels of complexity that 
need to be dealt with. This process has not yet 
run its course. We are far away from under-
standing cell biology, genomes, or brains, and 
turning this understanding into practical 
knowledge [159].  
In summary, complex systems are very different 

from the simple systems described so well by New-
tonian physics and which are routinely studied by 
reductionism. Complex systems are best described by 
partial differential equations and many of the values 
of the variables are unknown. Hence predicting in-
tra-complex system response is difficult and predict-
ing inter-complex system response is essentially im-
possible at higher levels of organization. 

The fact that the complex systems under study 
have evolved is also significant (see figure 2). While all 
of the characteristics of a complex system influence 
inter-system extrapolation, we will illustrate the im-
portance of evolution on just one characteris-
tic—initial conditions. Changes in initial conditions 
can produce very different outcomes to the same 
perturbation. Evolution has used numerous mecha-

nisms to match species to niche and all of these 
mechanisms affect initial conditions. Even among 
humans, very small differences in genetic makeup can 
result in dramatically different outcomes to perturba-
tions such as drugs and disease. For example, copy 
number variants (CNVs) in monozygotic twins can 
influence outcomes [150]. CNVs have also been 
shown to influence viral load in HIV patients [160]. 
Single nucleotide polymorphisms (SNPs) among 
family members and/or other humans [161-163], 
pleiotropy [164], alternative splicing [165], the fact 
that different genes and molecules can accomplish the 
same purpose, and that the same gene can be used for 
different purposes [166] all influence response to 
drugs and disease. Changes in initial conditions such 
as the presence of different alleles, SNPs, CNVs and 
so forth negate the similarities between complex sys-
tems in terms of predicting response to perturbations 
that occur at higher levels of organization such as 
where drug and disease response occurs. 

The reality is even more complicated however, 
as gene regulation and expression account for the 
major changes in evolution [167, 168]. Theoretically, 
by varying the regulation and expression of the same 
genes, a new species could evolve with the same 
structural genes of its ancestor. Gene expression var-
ies greatly in humans [169-172] and in animals 
[173-176]. Somel et al. studied gene expression in the 
brains of humans, chimpanzees, and macaques and 
discovered accelerated evolution of gene expression 
in the human prefrontal cortex [177] thus casting 
doubt on the ability to extrapolate inter-species re-
search for that area. Puente et al discovered at least 
twenty genes implicated in human cancers that differ 
significantly from chimpanzees [178]. In addition, 
chimpanzees are essentially immune to HIV, hepatitis 
B, and common malaria and they respond differently 
to other human pathogens [179-182]. According to 
Caldwell, “It has been obvious for some time that 
there is generally no evolutionary basis behind the 
particular-metabolizing ability of a particular species. 
Indeed, among rodents and primates, zoologically 
closely related species exhibit markedly different 
patterns of metabolism” [183]. Festing stated: “There 
is substantial genetic variation in the response of la-
boratory rats to xenobiotics, and this variation has 
important implications for toxicologic research and 
screening.” Festing goes on to describe a study that 
reported on “rat” articles published in the journal 
Toxicology and Applied Pharmacology from 1979 to 1999. 
In a majority of the articles, the authors did not spec-
ify which rat strain was being used [184]. The above 
has profound consequences for using animal models 
to predict human response to drugs and disease. 
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Figure 2. Evolution acts on complex systems. 

 
It is important to note here that many of the sci-

entists quoted above do not take the position that 
animal models will never be predictive modalities. 
While we do not want to speculate as to their reasons, 
we must point out that the fact that animals and hu-
mans are evolved complex systems that are differ-
ently complex and this leads us to our conclusion that 
animal models will fail as predictive modalities. The 
fact, and implications, of models as differently complex 
is not addressed by most animal modelers quoted 
above and we suspect this may, in part, explain their 
position. 

This brings us to the logical conclusion of our 
animals as evolved complex systems argument. It is also 
perhaps our best reason against expecting animal 
models to ever be capable of predicting human re-
sponse to drugs and disease: the concept of personal-
ized medicine. Personalized medicine is perhaps best 
illustrated by Allen Roses, then-worldwide 
vice-president of genetics at GlaxoSmithKline (GSK), 
who stated: “The vast majority of drugs - more than 
90% - only work in 30 or 50% of the people” [185]. 
Most drugs have an efficacy rate of 50% or lower. 
Physicians have long recognized intra-species varia-
tion in response to drugs and disease [186, 187]. It is 
now understood that the variations in response are 
caused by variations in the genome (see tables 3 and 
4) including epigenetic changes. For example, because 

of differences in genes, like SNPs, some children are 
not protected by a vaccine [162, 163]. King states: 
“between 5 and 20 per cent of people vaccinated 
against hepatitis B, and between 2 and 10 per cent of 
those vaccinated against measles, will not be pro-
tected if they ever encounter these viruses” [163]. In 
the future, such children may be able to receive a 
personalized vaccine. Personalized medicine will re-
sult in medical practice resembling the outline in fig-
ure 3 whereas today medical practice is more often 
“one size fits all.” The fact there is such variation 
among humans and that this variation causes so much 
concern [188-197] should cast doubts on the ability of 
another species to predict human response to drugs 
and disease [63, 65].  

Also illustrative of the problems of extrapolation 
between complex systems, and in line with the basis 
for personalized medicine, is the fact that the sexes 
respond differently to drugs and diseases [135-140, 
198], as do ethnic groups [141-149]. Moreover, 
monozygotic twins respond differently to drugs and 
disease [74, 199-204]. If monozygotic twins respond 
differently to perturbations such as drugs and disease, 
then expecting even genetically modified animals to 
be of predictive value seems naïve. Indeed genetically 
modified animals have failed to be of predictive value 
[74, 199-204]. (For more on personalized medicine see 
[63, 205, 206].) 
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Table 3. The most significant genetic predictors of drug response [208]. 

 
 
 

Table 4. Allele frequencies of variant CYP2D6 alleles (%) in different ethnic populations [209]. 

Allele variants  Enzyme function  Caucasian  Asian  Black-  
African  

Ethiopian, 
Saudi-Arabian 

*1xN, *2xN gene duplication:  
increased enzyme 
activity 

1-5 0-2 2 10-29 

*4  splicing defect:  
inactive enzyme 

12-21 1 2 1-4 

*5  deletion: no enzyme 2-7 6 4 1-3 
*10  instable enzyme 1-2 41-51 6 3-9 
*17  reduced affinity to  

substrate 
0 0 20-35 3-9 

*41 low protein expression,  
impaired function 

8.4 2.6   
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Figure 3. Most diseases are heterogeneous and the use of molecular diagnostics can divide them into biological subgroups each with their 
targets and drugs [207]. 

 

Consensus on prediction 
Our position, and apparently the position of 

scientists calling for standardization of animal proto-
cols and SRs, that animal models do not currently 
qualify as predictive modalities for human response 
to drugs and disease is supported by experts in vari-
ous fields of science. For example, Alan Oliff, 
then-executive director for cancer research at Merck 
Research Laboratories stated: “The fundamental 
problem in drug discovery for cancer is that the model 
systems are not predictive at all” [210]. An editorial in 
Nature Reviews Drug Discovery states: “Clearly, one 
part of the problem [of drug research] is poorly pre-
dictive animal models . . .” [211]. Ellis and Fidler echo 
this staing: “Preclinical models, unfortunately, seldom 
reflect the disease state within humans” [212]. Hor-
robin addressed the use of animal models stating: 
“Does the use of animal models of disease take us any 
closer to understanding human disease? With rare 
exceptions, the answer to this question is likely to be 

negative” [98]. Fliri pointed out that: “Currently, no 
method exists for forecasting broad biological activity 
profiles of medicinal agents even within narrow 
boundaries of structurally similar molecules” [213]. 
Speaking of toxicity trials for new drugs in humans, 
an unnamed clinician was quoted in Science as stating: 
“If you were to look in [a big company’s] files for 
testing small-molecule drugs you’d find hundreds of 
deaths” [214]. Frances Collins, director of NIH, has 
also spoken out on the poor predictive value of animal 
models [215, 216]. 

Neuzil et al state: “Animal testing is not ideal 
either, as the predictive value of such tests is limited 
owing to metabolic differences between humans and 
animals, and many ethical issues are raised by the 
testing” [217]. Cook et al state: 

Over many years now there has been a poor 
correlation between preclinical therapeutic 
findings and the eventual efficacy of these [an-
ti-cancer] compounds in clinical trials [218, 219]. 
. . . The development of antineoplastics is a large 
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investment by the private and public sectors, 
however, the limited availability of predictive 
preclinical systems obscures our ability to select 
the therapeutics that might succeed or fail dur-
ing clinical investigation. [220] 
Seidle [221] reported on the conclusions of a 

conference of experts in toxicology from pharmaceu-
tical companies, contract research companies and 
others. The consensus was that: “the information ob-
tained from conventional acute toxicity studies is of 
little or no value in the pharmaceutical development 
process” [222]. This statement was “subsequently 
considered and endorsed by regulators and scientists 
from the EU, US and Japan at a workshop in No-
vember 2006 [222].” A survey at the conference [223] 
revealed that:  
• 100% of respondents found data from acute tox-

icity studies of little or no use and only used the 
information in dose setting for other studies in 
exceptional circumstances. 

• 100% of respondents agreed that they would not 
carry out acute toxicity testing if it were not a 
regulatory requirement. 

• 100% of respondents agreed that acute toxicity 
studies were not used to identify target organs. 

• 100% of respondents never use acute toxicity 
data to help set the starting dose in man. 

• 81% of respondents thought the data obtained 
from acute toxicity studies was of no use to reg-
ulators or clinicians. [221] 
Sharp and Langer summarized the current situ-

ation: “The next challenge for biomedical research 
will be to solve problems of highly complex and inte-
grated biological systems within the human body. 
Predictive models of these systems in either normal or 
disease states are beyond the capability of current 
knowledge and technology” [224]. 

We note that the above scientists have not, to the 
best of our knowledge, agreed with us that animal 
models are incapable of being predictive modalities. 
We again attribute this to the fact that the discussion 
regarding evolved complex systems is relatively new. 
We also again note that SRs and standardization may 
contribute to the use of animals in categories 3-9 of 
table 2. We do not deny that animals can be success-
fully used for such endeavors in science and research 
and recognize the value of SRs in improving such 
uses. However, we have presented a case against ex-
pecting animal models to ever be predictive modali-
ties for human response to drugs and disease regard-
less of improvement in methodology. Even if meth-
odological issues were to prove the problem in some 
of the studies that reveal PPVs of ~0.5, the lack of 

studies revealing any animal model to be predictive 
modality (for example in teratogenicity, carcinogenic-
ity, hepatotoxicity, efficacy for a class of drugs, 
mechanisms of a class of diseases) is consistent with 
our theory.  

Summary 
Animal models have historically been unable to 

predict human response to drugs and disease and 
animal-based research has historically displayed 
methodological problems that make SRs difficult. One 
proposed solution that would address both problems 
is standardization of protocols thus permitting SRs of 
animal models, which would in turn improve the 
models thus possibly allowing accurate predictions, 
via high PPV and NPVs, for human response to drugs 
and disease. We have argued that even if the meth-
odology for animal models could be standardized and 
subject to SRs, animal models would still fail to be 
predictive modalities for human response to drugs 
and disease because of considerations from complex-
ity theory and evolutionary biology. Put succinctly, 
humans and animals are complex systems with dif-
ferent evolutionary trajectories. 

We also reject the notion that a combination of 
the results of several studies in a SR or meta-analysis 
may produce information relevant for judging the 
safety and efficacy of drugs that is not directly visible 
in the individual animal studies (such as significant 
side effects or overall efficacy). The problem is that 
animal models are not predictive modalities, not that 
animal models fail to reveal side effects. Many side 
effects from drugs in development are already ob-
served in animal models but there is no predictive 
value for humans.  

As we discussed, SRs are only useful if there is 
scientific validity to the assumptions or axioms un-
derlying the research. There is no reason to conduct 
SRs of homeopathy nor does complexity theory and 
evolutionary biology offer any reason to expect SRs of 
animal models to be productive. Regardless of how 
the problem is approached, animal and humans will 
always be differently complex. Personalized medicine 
puts this in perspective.  

One reason SRs are necessary is that experts are 
unreliable for evaluating controversies in their own 
field. We would extend that concept to include the 
fact that human nature is also problematic when 
questioning assumptions is required. Tradition, the 
status quo, “We always do it that way,” resistance to 
change both individually and in the form of institu-
tional inertia, all combine to challenge those who ask 
epistemological questions. Financial interests also 
complicate the situation. Add to all of this the fact that 
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the axioms underlying such practices are not usually 
discussed among scientists (being I the realm of phi-
losophy of science) and the result is that challenging 
the axioms upon which these practices are based be-
comes almost impossible. Nevertheless it is vital to do 
so in order for science in general, and medical science 
in particular, to advance. 
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