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Abstract. In this paper, we provide an asymptotic for the number of row-Fishburn matri-
ces of size n which settles a conjecture by Vit Jeĺınek. Additionally, using q-series construc-
tions we provide new identities for the generating functions for the number of such matrices,
one of which was conjectured by Peter Bala.

1. Introduction and Statement of Results

A Fishburn matrix is an upper-triangular matrix with non-negative integer entries such
that every row and column contains at least one non-zero entry. The size of the matrix is
the sum of the entries. For example, there are five Fishburn matrices of size three, namely

(3) ,

(
1 1

1

)
,

(
2 0

1

)
,

(
1 0

2

)
,

⎛
⎝ 1 0 0

1 0
1

⎞
⎠ .

Fishburn matrices are in bijection with many combinatorial objects, including interval orders
defined by Fishburn [13] and Stoimenow matchings [21]. These correspondences and others
are discussed in Section 2. Let gn be the number of Fishburn matrices of size n. Zagier
established the following asymptotic for gn.

Theorem 1.1 (Zagier [24]). As n → ∞

gn ∼
(
6

π

)n

n!
√
n

(
C0 +

C1

n
+

C2

n2
+ · · ·

)
,

where C0 =
12

√
3

π5/2 e
π2/12 = 2.70433249006 . . . and the Cj are effectively computable.

A Fishburn matrix is called primitive if its entries are all 0 or 1. There are only two
primitive Fishburn matrices of size 3. Let pn be the number of primitive Fishburn matrices
of size n.

Theorem 1.2 (Jeĺınek, Drmota [15]). As n → ∞
lim
n→∞

pn
gn

= e−
π2

6 = 0.193025289139 . . . .

The following table contains the first few values of pn and gn, where we set p0 = g0 = 1.

n 0 1 2 3 4 5 6 7 8 9 10
pn 1 1 1 2 5 16 61 271 1372 7795 49093
gn 1 1 2 5 15 53 217 1014 5335 31240 201608

Date: January 27, 2014.
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A row-Fishburn matrix is an upper-triangular matrix with non-negative integer entries
such that every row contains at least one non-zero entry. As before the size of the row-
Fishburn matrix is the sum of the entries and such a matrix is primitive if it contains only 0s
and 1s. Let rn be the number of primitive row-Fishburn matrices and fn the total number of
row-Fishburn matrices. The following table contains the first few values of rn and fn, where
we set r0 = 0, f0 = 1.

n 0 1 2 3 4 5 6 7 8 9 10
rn 0 1 2 7 33 197 1419 11966 115575 1257718 15223822
fn 1 1 3 12 61 380 2815 24213 237348 2612681 31915787

Jeĺınek [15] established generating function identities for these sequences. Using a numer-
ical technique of Zagier [24] to compute an asymptotic expansion for these sequences, he
gave the following conjecture [15, Conjecture 5.3].

Conjecture (Jeĺınek [15]). As n → ∞

fn = n!

(
12

π2

)n (
β +O

(
1

n

))

with β := 6
√
2

π2 eπ
2/24 = 1.29706861206 . . . and

lim
n→∞

rn
fn

= e−
π2

12 = 0.439346434081 . . . .

We note that Jeĺınek stated his conjecture in terms of primitive self-dual interval orders
of reduced size, resulting in the different value for β (see Cor. 4.2 in [15]).

In this paper we prove this conjecture.

Theorem 1.3. The conjecture of Jeĺınek is true.

Zagier proved Theorem 1.1 by establishing a relationship between the generating function
for gn and the “half derivative” of the Dedekind eta-function. Moreover, he showed that
this function is a so-called quantum modular form [25]. Theorem 1.3 is proved by exploiting
the connection between the generating function for fn and a different quantum modular
form, which is associated to a Maass wave form attached to a Hecke character. To prove
the conjecture, we use the properties of the L-function and a certain twist of the L-function
associated with this Hecke character. This is in contrast to Zagier’s result which requires
only the L-function associated to a Dirichlet character.

Besides the conjecture above, Jeĺınek made another conjecture concerning the asymptotics
of the number of self-dual interval orders [15, Conjecture 5.4]. Since there is no clear rela-
tionship between its generating series and any modular object, it seems that the technique
in this paper may not be the right tool to attack that conjecture.
In addition to the asymptotic above, we give some new expressions for the generating

function for the number of row-Fishburn matrices and Fishburn matrices. It is easy to see
that

∞∑
n=0

rnx
n =

∞∑
n=0

n∏
j=0

((1 + x)j+1 − 1).
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Zagier [24] showed that
∞∑
n=0

gnx
n =

∞∑
n=0

n∏
j=1

(1− (1− x)j).

Theorem 1.4. In the notation above,
∞∑
n=0

fnx
n =

∞∑
n=0

(1− x)n+1

n∏
i=1

(
1− (1− x)2i

)

=
∞∑
n=0

n∏
i=1

(
1− (1− x)2i−1

)

=
1

2

∞∑
n=0

n∏
i=1

1

1 + (1− x)i
.

Additionally,
∞∑
n=0

pnx
n =

∞∑
n=0

(1 + x)n+1

n∏
i=1

(
1− (1 + x)i

)2
∞∑
n=0

gnx
n =

∞∑
n=0

1

(1− x)n+1

n∏
i=1

(
1− 1

(1− x)i

)2

.

Remark. The above identities should be understood as formal power series.

Remark. The second equality of this theorem proves an open conjecture by Bala in OEIS
(see [15]).

Remark. After the research for this paper was completed, the authors were informed of
independent results by Andrews and Jeĺınek [3], where the authors found related identities
as power series expressions. The first two identities of Theorem 1.4 are included as special
cases of their results.

Section 2 contains information about Fishburn matrices and bijections with other com-
binatorial objects. It also describes the generating functions for the sequences given above
and their quantum modular form properties. Section 3 contains the proof of Theorem 1.3
and Section 4 contains the proof of Theorem 1.4. Section 5 contains some open problems.
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2. Background and History

2.1. Combinatorial objects. Fishburn matrices are in bijection with many other combi-
natorial objects, including interval orders and (2+ 2)-free posets. A strict partial order ≺
is a binary relation that is irreflexive (a ≺ a is always false), transitive (if a ≺ b and b ≺ c,
then a ≺ c), and asymmetric (if a ≺ b, then b ≺ a is not satisfied). A set with a strict partial
order is called a partially ordered set, or a poset. A poset P with a strict order relation ≺ is
a (2+ 2)-free poset if it does not have an induced subposet isomorphic to the disjoint union
of two chains of length two. Equivalently, the poset is (2+ 2)-free if for each x ∈ P we may
associate a real closed interval [�x, rx] in such a way that x ≺ y if and only if rx < �y. This
is known as an interval representation and explains the terminology “interval order”. In
the standard representation where �x and rx are chosen to be the smallest possible positive
integers, the interval orders of size 3 are

{[1, 1], [1, 1], [1, 1]]}, {[1, 1], [1, 2], [2, 2]}, {[1, 1], [1, 1], [2, 2]}, {[1, 1], [2, 2], [2, 2]},
{[1, 1], [2, 2], [3, 3]}.

The dual of a poset P is the poset P with the same elements as P and an order relation ≺
defined by x≺y if and only if y ≺ x. A poset is self-dual if it is isomorphic to its dual. A self-
dual Fishburn matrix is a Fishburn matrix equal to itself after reflection over the diagonal
from the bottom left to the top right. Self-dual Fishburn matrices are in correspondence
with self-dual (2+2)-free posets.

Jeĺınek [15] studied self-dual interval orders enumerated by reduced size. The reduced size
of a self-dual Fishburn matrix is sum of all of the diagonal elements, all of the south-east
cells, and those entries in the last column. The south-east cells of a k × k matrix are those
cells (i, j) such that i+j > k+1. Moreover, he proved a bijection between self-dual Fishburn
matrices of reduced size n and row-Fishburn matrices of size n.
Besides the relationship to interval orders, Fishburn matrices are in bijection with ascent

sequences. This was established by Bousquet-Mélou, Claesson, Dukes, and Kitaev [5]. A
sequence of non-negative integers (x1, x2, · · · , xn) is an ascent sequence if for each i

0 ≤ xi ≤ 1 + asc(x1, x2, · · · , xi−1),

where asc(X) is the number of ascents (or increases) in the sequence X. The five ascent
sequences of length three are

(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (0, 1, 2).

A matching of the set [2n] = {1, 2, · · · , 2n} is a partition of [2n] into subsets of size exactly
two. Each of the subsets is called an arc. There are 15 matchings of [6]. A matching is a
Stoimenow matching [21] if it has no pair of arcs {a, b} and {c, d} with a < b and c < d
satisfying one of

(1) a = c+ 1 and b < d,
(2) a < c and b = d+ 1.

In other words, a Stoimenow matching has no pair of arcs such that one is nested inside
the other and the openers (smaller number in the arc) or closers (larger numbers in the arc)
differ by one. There are five Stoimenow matchings of [6] (see Figure 1).



ROW-FISHBURN MATRICES 5

Figure 1. The five Stoimenow matchings of [6].

Stoimenow [21] defined such matchings in the language of linearized chord diagrams
(LCDs), they are a fixed-point free involution τ on the set [2n]. The diagram is called
regular if [i, i+1] ⊂ [τ(i+1), τ(i)] whenever τ(i+1) < τ(i). These are easily shown to be in
bijection with the Stoimenow matchings. Claesson, Dukes, and Kitaev established a direct
relationship between ascent sequences and Stoimenow matchings [9].
An important problem in knot theory is to determine the number V (n) of linearly inde-

pendent Vassiliev invariants of degree n. This is well known to be equivalent to counting
the number of LCDs modulo a certain four term relation. The number of matchings on [2n],
and thus the number of LCDs on [2n], is equal to

(2n)!

2nn!
∼ 2nn!√

πn
,

giving an upper bound for V (n). The asymptotic follows from Stirling’s approximation
n! ∼ (n/e)n

√
2πn. The upper bound was improved by Chmutov and Duzhin [8] to (n− 1)!.

2.2. Generating functions. Zagier provided a generating function for the numbers gn of
Stoimenow matchings on [2n] and used it to prove Theorem 1.1, thus improving the above
mentioned bound further. To be more precise, he showed that the generating function for
the number of Stoimenow matchings of size n satisfies

∞∑
n=0

gnx
n = F (1− x),

where F (q) is Kontsevich’s “strange function”

F (q) :=
∞∑
n=0

(q)n,

where for n ∈ N ∪ {0} ∪ {∞}

(a; q)n = (a)n :=

{
1 n = 0,∏n−1

j=0 (1− aqj) n ∈ N ∪ {∞}.
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Zagier [24] proved that this function satisfies the “identity”

F (q) = −1

2

∞∑
n=1

n

(
12

n

)
q

n2−1
24 =: η∗(q),

where
(
12
•
)
is the Kronecker symbol satisfying

(
12
n

)
= 1 if n ≡ ±1 (mod 12),

(
12
n

)
= −1 if

n ≡ ±5 (mod 12), and
(
12
n

)
= 0 otherwise. The two sides of this identity do not make sense

simultaneously. Indeed, the right side converges in the unit disk |q| < 1, but nowhere on the
unit circle. The identity means that F (q) at roots of unity agrees with the radial limit of
the right hand side. That is,

F (ζ) = lim
t→0

η∗(ζe−t).

As Zagier pointed out in Section 6 of [24], the right hand side of the identity is essentially
the “half-derivative” Dedekind’s eta-function, (q := e2πiz)

η(z) := q
1
24

∞∏
n=1

(1− qn) =
∞∑
n=1

(
12

n

)
q

n2

24 ,

which is a weight 1/2 holomorphic modular form. Moreover, Zagier showed that this function
satisfies a “pseudo-modularity” property. With φ(x) := eπix/12F (e2πix), the function φ : Q →
C satisfies

φ(x) + (ix)−
3
2φ

(
−1

x

)
= g(x),

where g : R → C is a C∞ function everywhere except at x = 0. This is one of the first
examples of what Zagier has called a “quantum modular form” [25], which are functions on
Q whose “obstruction to modularity” is nice.
Results of Khamis [16] or Dukes, Kitaev, Remmel, and Steingŕımsson [12] give the following

generating function for the number of primitive Fishburn matrices
∞∑
n=0

pnx
n =

∞∑
n=0

n∏
i=1

(
1− 1

(1− x)i

)
= F

(
1

1− x

)
.

The relationship to F (q) and the asymptotics for gn yield the asymptotic for pn (Theorem
1.2).
Jeĺınek [15] proved the following generating function identities for the number of row-

Fishburn matrices and the number of primitive row-Fishburn matrices.

J(1 + x) =
∞∑
n=0

rnx
n =

∞∑
n=0

n∏
i=0

(
(1 + x)i+1 − 1

)
,

J

(
1

1− x

)
=

∞∑
n=0

fnx
n =

∞∑
n=0

n∏
i=0

(
1

(1− x)i+1
− 1

)
,(2.1)

where the function J(q) is analogous to F (q) and defined by

(2.2) J(q) :=
∞∑
n=0

(−1)n(q)n.
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At every root of unity, the function J(q) exists and satisfies

2J(q) =2 + 2
∞∑
n=1

(q − 1)(q2 − 1) · · · (qn − 1)

=2 +
∞∑
n=0

(qn+1 − 1)(qn − 1) · · · (q − 1) +
∞∑
n=1

(qn − 1) · · · (q − 1)(2.3)

=1 + q +
∞∑
n=1

qn+1(q − 1)(q2 − 1) · · · (qn − 1) = σ(q),

where

σ(q) :=
∞∑
n=0

q
n(n+1)

2

(−q)n
= 1 + q +

∞∑
n=1

qn+1(−1)n(q)n.

Moreover, equation (2.3) also holds to infinite order at every root of unity, in particular at
q = 1. That means we have the following Taylor series expansion

(2.4)
1

2
σ(1 + x) =

∞∑
n=0

rnx
n.

Surprisingly, it is known that the function σ(q) is also a quantum modular form [25]. The
series σ(q) appears in Ramanujan’s lost notebooks [1] and was studied by Andrews, Dyson,
and Hickerson [2] and further studied by Cohen [10]. Andrews, Dyson, and Hickerson showed
that the coefficients of σ(q) are related to the arithmetic of Q(

√
6), in particular leading to

an explicit formula for those coefficients. For further examples of q-series associated to the
arithmetic of real quadratic fields, we refer the reader to [4, 6, 11, 19].

2.3. Quantum modularity and Maass forms. To describe the quantum modular form
property define a second q-series, also studied in [2, 10],

σ∗(q) :=− 2
∞∑
n=0

qn+1
(
q2; q2

)
n
.(2.5)

Cohen showed that at every root of unity

(2.6) −σ∗ (q−1
)
= σ(q).

Moreover, Zagier [25] describes how this identity holds to infinite order as an asymptotic
expansion around any root of unity. Cohen also showed there the Fourier coefficients of
σ(q) and σ∗(q) come from an even Hecke character χ1 of Q(

√
6) with order 2 and conductor

4(3 +
√
6) (See Theorem 1.1 in [10]). It gives rise to a Maass cusp form u(z) with Fourier

expansion

(2.7) u(z) = y
1
2

∑
n∈Z
n �=0

T (n)e
2πinx

24 K0

(
2π|n|y
24

)
,

where K0(x) is the Bessel function, whose Mellin transform is Γ(s/2)2 up to trivial factors.
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In [25], Zagier defined the function

f(z) :=

{
q

1
24σ(q) if z ∈ H ∪Q,

−q
1
24σ∗(q−1) if z ∈ H− ∪Q,

where H is the complex upper half-plane and H− is the complex lower half-plane. Using the
theory of period functions developed in [18], Zagier then showed that

(2z + 1)f

(
z

2z + 1

)
− e

πi
12f(z) = −

∫ ∞

1
2

[u(τ), rz(τ)],

where rz(τ) := (Im (τ) /(τ − z)(τ − z))1/2 and [·, ·] denotes the Green’s form

[u(τ), v(τ)] :=
∂u(τ)

∂τ
v(τ)dτ + u(τ)

∂v(τ)

∂τ
dτ .

2.4. L-functions and Dirichlet series. In this paper we do not need the quantum mod-
ularity of σ(q). Instead, we require the relationship between σ and the Maass wave form
u given by the Hecke character χ1. ¿From this, one could produce various L-series, whose
analytic properties produce the desired asymptotics results. Recall that {T (n)}n∈24Z+1 are
the Fourier coefficients of u(z) given in equation (2.7). By Theorem 1.1 in [10], we can write

qσ
(
q24

)
=

∑
n≥0

T (n)qn, and q−1σ∗ (q24) = ∑
n<0

T (n)q|n|

and combine them into one q-series

ϕ(q) := q
1
24σ(q) + q−

1
24σ∗(q) =

∑
n∈Z

T (n)q
|n|
24 .

We then define the following L-series arising from σ and σ∗, namely

D(s) :=
∑
m≥1

T (m)

ms

and for ε ∈ {+,−},
Lε(s) :=

∑
m≥1

T (m) + εT (−m)

ms
.

Clearly D(s) = 1
2
(L+(s) + L−(s)) and is only “half” of the usual L-function associated to a

Hecke character. Moreover, set

Λ+(s) := (1152)
s
2π−sΓ

(s
2

)2

L+(s),

Λ−(s) := (1152)
s+1
2 π−(s+1)Γ

(
s+ 1

2

)2

L−(s).

Theorem 2.1 of [10] gives

Proposition 2.1. We have

Λε(1− s) = Λε(s).
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Proof. The claim for Λ+ is directly given in Theorem 2.1 of [10]. A key step is to realize

ϕ(q) =
∑

a⊂Z[
√
3]

χ2(a)q
|N(a)|

24 ,

where χ2 is a certain ideal character and N is the usual norm of ideals and to then write
L+ as a Hecke L-function. The claim for Λ− follows from the proof of Theorem 3.1 of [10]
observing that ( −3

N(·)) exactly weights the coefficients n ≡ 1 (mod 24) with +. �

It is an easy consequence to derive the following lemma.

Lemma 2.2. For s > 0, we have

D(−s) =
(1152)s+

1
2

2 π2s+1

⎛
⎝(

Γ
(
s+1
2

)
Γ
(− s

2

)
)2

L+(1 + s) +

(
Γ
(
s
2
+ 1

)
Γ
(−s+1

2

)
)2

L−(1 + s)

⎞
⎠ .

In the next section we will show how the asymptotics of these L-values control the asymp-
totics of the coefficients rn. For this, we require the following asymptotic bahvior of D at
negative integers.

Proposition 2.3. As m → ∞, we have

D(−m) =

(
288

π2

)m
12
√
2

π2
m!2

(
1 +O

(
1

2m

))
.

Proof. We use Lemma 2.2 and observe that, due to the poles of the Γ-function at nonpositive
integers, the first (resp. the second) summand vanishes if m is even (resp. odd). We may
then easily compute that

D(−m) =

(
288

π2

)m
12
√
2

π2
m!2L±(1 +m),

where we have the + sign for m odd and the − sign for m even. To finish the proof, observe
that T (m) = O(logm) since it is the value of a Hecke character, hence

L±(1 +m) = 1 +O

(∑
�≥2

�ε

�m+1

)
= 1 +O

(
2−m+ε

)
,

for ε > 0. �
Finally we require a general lemma relating Dirichlet series at negative integers to the

coefficients of their associated exponential generating functions (see page 47 of [23]).

Lemma 2.4. Assume that D(s) :=
∑

n≥1
an
ns converges for at least one s ∈ C and that

f(t) :=
∑

n≥1 ane
−nt converges for all t > 0. Further assume the existence of an asymptotic

expansion
f(t) ∼ b0 + b1t+ · · · (t → 0) .

Then D(s) has a holomorphic continuation to C and

D(−n) = (−1)n n!bn.



10 KATHRIN BRINGMANN, YINGKUN LI, AND ROBERT C. RHOADES

3. Proof of Theorem 1.3

This section uses the asymptotics for the L-values D(−m) derived in Proposition 2.3 to
prove Theorem 1.3.
We first determine the asymptotic behavior of the Taylor coefficients of σ (e−t). We there-

fore set

(3.1) σ
(
e−t

)
=

∞∑
m=0

(−1)mbm
tm

m!
= 2− 2t+ 5t2 − 55

3
t3 +

1073

12
t4 − 32671

60
t5 + · · · .

Lemma 3.1. We have as n → ∞

bn = n!2
12
√
2

π2

(
12

π2

)n (
1 +O

(
1

n

))
.

Proof. Applying Lemma 2.4 to the function qσ (q24) =
∑

n≥1 T (n)q
n yields that

e−tσ
(
e−24t

) ∼ ∑
m≥0

αmt
m,

with αm := D(−m)(−1)m

m!
for m ∈ N. Proposition 2.3 then gives that

αm = (−1)m
(
288

π2

)m
12
√
2

π2
m!

(
1 +O

(
1

2m

))
.

To determine the asymptotic behavior of σ itself, we insert the Taylor expansion of the
exponential function, yielding

σ
(
e−t

) ∼ ∑
n≥0

(
t

24

)n ∑
0≤m≤n

αn−m

m!
.

Using that

αn−m

αn

∼ (−1)m
(

π2

288

)m
(n−m)!

n!

gives ∑
0≤m≤n

αn−m

m!
∼ αn

∑
0≤m≤n

(−1)m
(

π2

288

)m
(n−m)!

m!n!
.

Now ∣∣∣∣∣
∑

1≤m≤n

(−1)m
(

π2

288

)m
(n−m)!

m!n!

∣∣∣∣∣ ≤ 1

n
+

∑
1≤m≤n

1

n2
� 1

n
.

This directly gives the claim. �

Proof of Theorem 1.3. To prove the theorem, we first note that

tm

m!
=

∞∑
n=m

Sn,m
(1− e−t)n

n!
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where Sn,m are the Stirling numbers of the first kind (see p.954 of [24]). Along with equation
(2.4), this gives that

∞∑
n=0

rnx
n =

1

2
σ(1 + x) =

1

2

∞∑
m=0

(−1)mbm

∞∑
n=m

Sn,m
(−x)n

n!

=
1

2

∞∑
n=0

bn
xn

n!

n∑
k=0

(−1)kSn,n−k
bn−k

bn
.(3.2)

As a consequence of the recursion formula Sn+1,m+1 = Sn,m+nSn,m+1, the Stirling numbers
satisfy

Sn,n−k =
Pk(n)

2kk!

for a monic polynomial Pk(x) of degree 2k. Furthermore for each j, the coefficient of x2k−j in
Pk(x) is the value at k of a polynomial (−1)jcj(y), which has degree 2j and is independent
of k or n. Thus, we can write

Sn,n−k =
n2k

2kk!

(
1− c1(k)

n
+

c2(k)

n2
+ · · ·

)
,

for all n ∈ N and 0 ≤ k ≤ n.
Moreover, Lemma 2.4 gives that

bn−k

bn
∼

(
(n− k)!

n!

)2 (
π2

12

)k (
1 +O

(
k

n

))
.

Some simple manipulation gives us that for all k, n ∈ N with k ≤ n,(
(n− k)!

n!

)2

= n−2k

(
1 +

d1(k)

n
+

d2(k)

n2
+ . . .

)

where dj(x) are polynomials in x independent of k and n. Inserting these into (3.2) and
using the asymptotic for bn from Lemma 3.1 results in

rn ∼ bn
2n!

n∑
k=0

(−1)k

k!

(
π2

24

)k (
1− c1(k)

n
+ . . .

)(
1 +

d1(k)

n
+ . . .

)(
1 +O

(
k

n

))

∼ bn
2n!

( ∞∑
k=0

(−1)k

k!

(
π2

24

)k

+O

(
1

n

))

∼ 6
√
2

π2
n!

(
12

π2

)n

e−
π2

24

(
1 +O

(
1

n

))
.

To obtain the asymptotic for fn, recall that

∞∑
n=0

fnx
n = J

(
1

1− x

)
= −1

2
σ∗(1− x).
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The second equality follows from equation (2.6). By the same reasoning, equation (3.1)
implies that

−σ∗(e−t) =
∞∑

m=0

bm
tm

m!
.

This gives
∞∑
n=0

fnx
n =

1

2

∞∑
n=0

bn
xn

n!

n∑
k=0

Sn,n−k
bn−k

bn
.

The same argument for rn then leads to the desired asymptotic

fn ∼ 6
√
2

π2
n!

(
12

π2

)n

e
π2

24

(
1 +O

(
1

n

))
.

�

4. Generating Function identities

This section contains the proofs of new identities for the generating functions for the se-
quence {rn} (the number of primitive row-Fishburn matrices), {pn} (the number of primitive
Fishburn matrices), and {gn} (the number of Fishburn matrices).

Proof of Theorem 1.4. Jeĺınek proved the generating function for the sequence {fn} is−1
2
σ
(

1
1−x

)
(see Section 2.2). Moreover, (2.6) gives σ(q−1) = −σ∗(q) at every root of unity, where σ∗(q) =
−2

∑∞
n=0 q

n+1(q2; q2)n (see (2.5)). Additionally, the identity −σ∗(q−1) = σ(q) holds to infi-
nite order at q = 1 (see [25]). It follows that as power series in x, −1

2
σ
(

1
1−x

)
= 1

2
σ∗(1− x).

For the second claim of the theorem, begin by noting that Theorem 3 of Andrews, Jiménez-
Urroz, and Ono [4] contains the identity

∞∑
n=0

((
q; q2

)
n
− (

q; q2
)
∞
)
= −1

2
σ∗(q)− (

q; q2
)
∞

∞∑
n=1

q2n

1− q2n
.

Set q = 1 − x and consider the resulting formal power series in x. Appealing to (2.5) and
the first part of the theorem yields the desired result. Note that ((1− x); (1− x)2)∞ is zero
as a formal power series in x.
The third identity is similar. Theorem 3 of [4] contains

∞∑
n=0

(
1

(−q)n
− 1

(−q)∞

)
= −σ∗(q)− 1

(−q)∞

∞∑
n=1

qn

1− qn
.

Use (−q; q)∞ = 1
(q;q2)∞ . Then, set q = 1 − x. Analogously to the second identity, the third

identity follows by considering the formal power series.
Recall that Zagier proved the generating function for {pn} can be expressed as F (1 + x)

where F (q) =
∑∞

n=0

∏n
i=1(1− qi). Moreover, F (1/(1− x)) is the generating function for gn.

The final two claims in the theorem follow from a q-series identity for F (q). To be more
precise, Bryson, Ono, Pitman and the third author [7] showed that

U(q) :=
∞∑
n=0

qn+1 (q)2n
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satisfies

U
(
q−1

)
= F (q)

at every root of unity to infinite order. For the first of the final two claims take q =
1 + x and the formal power series expansion to obtain the result. The final result follows
analogously. �

5. Open Problems and Relations to q-hypergeometric series

This section presents some open problems. There are many refinements of the generating
functions considered in this paper. For instance, let pn,k be the number of (2+2)-free posets
of size n with k minimal elements. The numbers pn,k also count

(1) ascent sequences of length n with k elements;
(2) permutations of length n avoiding a certain pattern whose left-most decreasing run

is of size k;
(3) regularized linear chord diagrams on 2n points with initial run of openers of size k;
(4) Fishburn matrices of size n such that the sum of the first row is k;

Kitaev and Remmel [17] proved that

∑
n,k

pn,kx
nzk = 1 +

∞∑
n=0

zx

(1− zx)n+1

n∏
i=1

(
1− (1− x)i

)
or alternatively ∑

n,k

pn,kx
nzk =

∞∑
n=0

n∏
i=1

(1− (1− x)i−1(1− xz)).

The second of these formulas was conjectured in [17] and proved by Yan [22]

Open Problem. What is the asymptotic distribution of the number of minimal elements in
(2+2)-free posets of size n?

Open Problem. What quantum modular form properties, if any, exist for the two variable
generating function of the sequence {pn,k}?
For other refinements and generating functions for statistics on (2+2)-free posets see

[5, 12, 15, 17]. Analogous questions apply to the statistics in those works as well.

Stoimenow [21] introduced the notion of connected regular LCDs and denoted the number
of such of size n by λc

n. He conjectured that

lim
n→∞

λc
n

gn
=

1

e
.

The generating function is

Λ(x) =
∞∑
n=1

λc
nx

n = x+ x2 + 2x3 + 5x4 + 16x5 + 63x6 + 293x7 + 1561x8 + · · ·

Zagier [24] showed
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Theorem 5.1. The generating function Λ(x) equals Φ−1
x (1), where

Φx(z) :=
∞∑
n=0

(q)n
(−z)n+1

with q = 1− x.

Curiously, Φx(1) is a quantum modular form related to the half-derivative of a weight
1/2 modular form, similar to the situation arising for F (q). In particular, Theorem 2 in [4]
implies that

2
∞∑
n=1

(−1)nnqn
2

=
1

2

∞∑
n=0

(
(q; q)n
(−q; q)n

− (q; q)∞
(−q; q)∞

)
− (q; q)∞

(−q; q)∞

∞∑
j=1

qj

1− q2j
.

So that

Φx(1) = 2
∞∑
n=1

(−1)nnqn
2

,

where the meaning is that the value at any valid root of unity of the left hand side is equal to
the radial limit of the right hand side as q tends toward that root of unity. This is completely
analogous to the strange identity of Zagier for F (q) and the half-derivative of the Dedekind
eta-function. In this case the right hand side is the half-derivative of the weight 1/2 theta

function
∑

n∈Z(−1)nqn
2
.

Open Problem. What role, if any, do quantum modular forms play in the asymptotics for
λc
n?

Split interval orders add a distinguished point fx to each interval [�x, rx]. Define (X,≺) as
a split interval order if there are real ax ≤ fx ≤ bx for all x ∈ X such that, for all x, y ∈ X

x ≺ y ⇔ [fx < �y and rx < fy].

See Fishburn and Trotter’s paper [14] for general discussion about these objects. Reeds and
Fishburn [20] computed the number of split interval orders of size n, denoted ��n, for n < 10.

n 1 2 3 4 5 6 7 8 9
��n 1 2 5 16 63 315 1979 15576 151606

Open Problem. Find a generating function for the sequence {��n}n.
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