
Before the widespread use of computers and the
Internet, cryptography—from the Greek kryptos
(hidden) and graphein (writing)—was largely

the domain of the military or diplomats.  Indeed, the
earliest recorded instance of encryption dates to about
400 BC, when the Spartans used a device called a scytale
to send coded messages between military commanders.
A strip of parchment or leather was wrapped spirally
around a baton or staff of a certain diameter.  The
sender wrote the message down the length of the staff,
and then unwrapped the parchment, effectively scram-
bling the order of the letters.  To decode the message, the
recipient had to wrap the parchment around a staff of
the same diameter, whereupon the transposed letters
returned to their original order. 

In today’s information age, we make use of data
scrambling whenever we use a password to check e-mail,
withdraw money from an automated bank teller
machine, make a cellular phone call, or charge a pur-
chase over the Internet.  We rely on encryption to ensure
the validity of our financial transactions, prove our
identity, and safeguard our
privacy.  Although some
people hesitate to conduct
business over the Internet,
most of us engage in online
transactions with confi-
dence that encryption pro-
tects our activities. 

This faith is generally
well founded.  Many of the
new methods of encrypting
and decrypting information
involve public-key cryptogra-
phy, which was invented

about 25 years ago.  The security of many public-key sys-
tems (there are several kinds) is explicitly based on a
long-standing challenge in the branch of mathematics
known as number theory—the study of the properties
and patterns of integers, whole numbers such as -2, -1,
0, 1, 2,…100,…  Number theory has for centuries been
widely regarded as the purest of the pure sciences, but in
recent years it has found many applications.

Number theory has played an essential role in the
development of public-key cryptography.  Without the
basic inquiry carried out by early theorists, today’s com-
puter transactions would be easy pickings for would-be
thieves and swindlers.  The number theorists’ challenge
to potential intruders is this: Given a (very, very large)
number obtained by multiplying two other numbers,
find the two (very large) numbers that were multiplied
to produce it.  These numbers can be thought of as the
keys that lock and unlock the encryption code.  The task
of finding these keys is so difficult that the snoops must
either be bizarrely lucky (as lucky, say, as one person
winning 20 state lotteries simultaneously) or they must

solve a problem that has
stumped the smartest people
in the world for more than
2000 years.  Every time we
conduct an encrypted
transaction, we’re betting
that the snoops will lose. 
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Early Ciphers

Encryption’s history has been one of unceasing
efforts to devise uncrackable codes—and equally
unceasing efforts to crack them.  Early ciphers were
relatively simple systems, easy for both sender and
receiver to use.  Julius Caesar, for instance, encoded
messages with a “substitution cipher” in which each
letter is replaced by the third letter after it in the
alphabet: A is replaced by D, B by E, etc.  At the end
of the alphabet, the pattern wraps around to the
beginning: X becomes A, Y becomes B, and Z
becomes C.  Unfortunately, simplicity of use is a dou-
ble-edged sword: The ciphertext thus encoded is
highly susceptible to being decoded. Caesar’s cipher
can be cracked simply by moving each letter in the
encoded message back three spaces in the alphabet.
More sophisticated substitution ciphers, in which the
alphabet is thoroughly scrambled, are nevertheless
easy enough for amateurs to break, as fans of the
“Cryptoquote” puzzles in today’s magazines and
newspapers can attest.  In any sufficiently long pas-
sage of English text, the most common letter is usual-
ly “E,” the second most common is “T,” and a three-
letter word that appears repeatedly is probably
“THE.”  By applying this type of “frequency analy-
sis,” an eavesdropper can easily guess which letters in
the ciphertext represent “E,” “T” and so on.

Over the years, people who wanted greater secre-
cy came up with more elaborate coding schemes.  
In the 1500s, Blaise de Vigenère, a French diplomat,
invented a method for encrypting different letters in
a message with different ciphers.  Thus, an “E” in
one position might be coded as “M,” while an “E”
in another position might be coded as “K,” thereby
foiling anyone attempting to decode the message
using frequency analysis.

In the Vigenère cipher, the sender and recipient
had to agree on a keyword (or perhaps a literary pas-
sage) whose letters told them how far forward or
backward to shift the alphabet for every letter in the
message.  If the keyword “BIG” was used for example,
the sender would code the message in sets of three let-
ters.  The first letter of the first trio would need to be
shifted forward by one (since “B” is one letter after
“A”), the second letter would need to be shifted for-
ward by eight (“I” is eight letters after “A”), and the
third letter would need to be shifted forward by six
(“G” is six letters after “A”).  After that, the pattern
would repeat itself as in the following example:

Plaintext: THE BUTCHER THE BAKER AND
THE CANDLESTICK MAKER

Key: BIG BIGBIGB IGB IGBIG BIG
BIG BIGBIGBIGBI GBIGB

Ciphertext: UPK CCZDPKS BNF JGLMX BVJ
UPK DITETKTBODS SBSKS

Knowing that “BIG” was the key, the recipient
could easily decipher the message by shifting its letters
back the corresponding amounts.

For many years Vigenère’s cipher was considered
unbreakable, but Charles Babbage, an independently
wealthy Englishman known mostly for his pioneer-
ing work in computer science, showed in the 1850s
that it was not so.  Babbage hacked the system by
looking for repeated strings of letters.  Of course,
the strength of Vigenère’s cipher was supposed to
be that it encoded letters differently in different
places.  The first “THE” in the message above is
rendered as “UPK” and the second as “BNF”.
Also, the two “AKER”s code differently. But the
first and third “THE”s both code as “UPK.”  The
“T” in the first “THE” is coded with a “B,” and so
is the “T” in the third “THE.”  This happens
because the third “THE” begins 21 letters after the
first “THE”; hence the 3-letter keyword “BIG” has
cycled around 7 times and is back to the beginning
again.

In any message that is much longer than the key,
some repeats of this sort are bound to occur.  How
would an eavesdropper exploit this fact?  If, say, the
ciphertext “UPK” appeared twice, 21 letters apart,
then he could deduce that 21 was probably a multiple
of the keyword’s length.  Or to put it another way,
the number of letters in the keyword was a divisor of
21. (A divisor or factor of a number is a number that
goes into it with no remainder.  The divisors of 21 are
1, 3, 7, and 21.)

Given enough clues of this sort, an eavesdropper
could pin down the exact length of the keyword.
Once he knew the length, he could do ordinary fre-
quency analysis to decode the message.  Notice that
the math comes first: The eavesdropper figures out
the length of the keyword before even attempting to
figure out what its letters are.

Babbage’s ingenious technique broke new ground
in cryptography by introducing mathematical tools to
a subject that previously had seemed to be about
words. Even if an encryption system does not use
mathematics explicitly, its hidden patterns can often
be teased out that way.  Mathematics is, after all, the
science of patterns.
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The Enigma Challenge

Although perhaps not fully appreciated,
mathematical decryption techniques made a huge
contribution to the Allied victory in World War II.
In that war, Germany encrypted most of its military
transmissions with a machine called “Enigma.”  Part
electrical, part mechanical, it was like a combination
lock with more than 1023 possible combinations.
(For comparison, this is roughly the number of
tablespoons of water in all the world’s oceans.)
Moreover, the Germans changed the combination
every day—sometimes several times a day.
Recipients of the transmissions needed to possess
not only a duplicate Enigma machine, but also to
know the correct combination.

If the Allies had had to rely solely on frequency
analysis or trial and error, they would still be hunting
for that one tablespoon of water in an ocean of possi-
bilities.  However, thanks in large part to crucial ear-
lier work by Polish cryptographers and mathemati-
cians, a team of British codebreakers led by mathe-
matician Alan Turing found a shortcut that eliminat-
ed almost all of the trial and error for finding the
current combination.  Now it was more like hunting
for one particular tablespoon of water in a small wad-
ing pool.  Turing’s solution exploited both the math-
ematical structure of the Enigma machine and certain
regularities in the German transmissions, such as
their punctual release each morning of a weather 
bulletin containing the word “Wetter” (the German
word for “weather”).  

As this episode shows, complexity is no guarantee
of security.  The most elaborate cryptosystem in the
world can be broken if it contains hidden patterns, or
if its users unintentionally introduce patterns (such as
the weather bulletins).  To be truly unbreakable, a
cipher would have to be pattern-free.  Imagine, for
example, a Vigenère cipher whose key is an endless
string of randomly generated letters.  Such a method
has actually been used: It is called a “one-time pad,”
because the sender and recipient typically store the
key on identical pads of paper, use each page once,
tear it off, and never use it again. 

However, even though the one-time pad offers
the ultimate in security, it dismally fails a second
important criterion for a successful code: It is not
easy to use.  For the method to work the sender
somehow has to deliver to the recipient—in a secure
fashion—a key pad that is longer than the messages

to be sent.  This might just be feasible for messages
to a single spy, but it would never be practical for
widespread military or commercial use.  The “key
distribution problem,” as this difficulty is known,
would remain an obstacle until the latter part of the
twentieth century, when mathematics once again
came to the rescue.

In Cryptography We Trust

All encryption systems invented before 1970 had
one thing in common: They were symmetric. In
other words, the keys for encryption and decryption
were the same, so a person in possession of the key
could either send or receive messages.  But in the
early 1970s, Whitfield Diffie of Stanford University
realized that for some applications this two-way capa-
bility was superfluous.  If the message traffic is one-
way, then the encoding and decoding keys can be 
different, thus providing an extra level of security.

Together with Martin Hellman of Stanford, Diffie
sketched out how such a system would work.  The
magic ingredient was a “one-way function,” a mathe-
matical operation that is easy to do in one direction
but virtually impossible to reverse without additional
information.  First, each message recipient (say, Alice)
chooses a “private key” that she will use to decode
messages. (The system should offer a huge number of
possibilities, so that Alice can pick a key more or less
at random.)  Then she uses the “one-way function”
to work out the corresponding encoding key.  This is
a “public key,” which she can share with the whole
world, and anyone can use it to send an encrypted
message to her.  However, only Alice can decrypt the
message.  There is only one decrypting key that will
work (her private key), and no one else can figure it
out because that would require them to reverse the
one-way function.

This simple realization, that cryptosystems did not
have to be symmetric, led to a new era in cryptogra-
phy.  It took away the cloak and dagger.  Anyone can
use public-key cryptography, not just spies and spy
agencies.  As Diffie has pointed out, in these systems
you don’t need to trust or even know the people you
are communicating with; you only need to trust the
system itself.  This makes public-key cryptography
perfect for the world of electronic commerce.

Figure 1 shows how public-key cryptography
works in a typical commercial situation.  Alice, a
banking customer, wants to instruct Bob, her banker,
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to transfer funds from one of her accounts to anoth-
er.  She scrambles the message using Bob’s public key
before sending it to him.  Because Bob is the only
person with the private key capable of reversing that
function, Alice knows that no eavesdropper can read
her message. 

But how does Bob know the message really came
from Alice?  Before Alice encrypts her message to Bob
for transmission, she creates an ingenious construct
called a “digital signature.”  To do this she first uses 
a second one-way mathematical function called a
“hash” to scramble and greatly shorten the message

she intends to send, including the date.  (The hash is
different from her private key; it is a cipher without a
back door, which no one, even Alice, can unscram-
ble.)  She then encrypts this already scrambled
“hashed” message, this time using her private key.
The final product of this two-step process is Alice’s
digital signature.  She appends what is now a string of
gibberish (her digital signature) to her plaintext mes-
sage.  Finally, she encrypts the whole thing with
Bob’s public key and sends it to him electronically. 

Bob decrypts Alice’s message using his private key.
At the end of the message (“Please transfer $500

1586
Blaise de Vigenère, a French
diplomat, develops the first
polyalphabetic cipher, in
which letters may be encoded
differently depending on their
position in the document.

Circa 300 BC
Euclid composes The
Elements. Three of its thir-
teen books are devoted to
number theory, introducing
such fundamental concepts as
divisibility, prime numbers,
and composite numbers.

58-51 BC
Julius Caesar conquers
Gaul.  His book on the
Gallic Wars contains the
first documented use of
encrypted messages.

“The Code War” — Timeline
As long as there have been secrets, there have been codes designed to preserve them and eavesdroppers interested in

breaking those codes.  In this century encryption methods have increasingly been based on sophisticated mathematics—
particularly number theory, a specialty previously noted for its lack of practical applications.  Thousands of lives have

been saved and billions of dollars in electronic commerce made possible by advances in the theory of encryption.

1940
Relying on earlier work by Polish
mathematicians and cryptographers,
British mathematician Alan Turing
cracks the Enigma cipher.  The ability
of Western commanders to decipher
secret German messages hastened
the Allied victory in World War II.

1640
French mathematician Pierre
de Fermat discovers “Fermat’s
little theorem,” which is still
used to test large numbers for
primality, even though it is 
not infallible.

1801
German mathematician Carl Friedrich
Gauss publishes Disquisitiones
Arithmeticae, the founding document of
modern number theory.  He is the first to
appreciate the power of modular arith-
metic, which greatly clarifies the some-
what mysterious results of Fermat.
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Figure 1:  A schematic illustration of public-key encryption, including a digital signature.  The figure shows how public-key 
cryptography might work in a typical commercial situation.  
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from my savings account to my checking account.”),
Bob sees a string of gibberish—Alice’s digital signa-
ture—and knows that if the message really came from
Alice he can reverse the effects of Alice’s private key
by applying her public key to the signature.  What
then pops out is the gibberish “hash” of the message.
As the hash is a one-way function, for all practical
purposes, it is impossible to extract any meaning from
the hashed data.  But Bob can also hash the message
he has already decrypted, using the same hashing
function Alice used, and produce his own string of
gibberish.  If the two strings agree, he knows the
message that he decrypted is authentic and came from
Alice.  The “double gobbledygook” nature of Alice’s
digital signature prevents Bob from forging Alice’s
signature in the future, even though he can produce
the same gibberish she did.  Since her digital signa-
ture is inextricably connected to this particular mes-
sage and the time it was sent, knowing how to pro-
duce it will not help Bob at all if he tries to pass him-
self off as Alice on another occasion.

Of course, Bob and Alice do not need to be math-
ematical wizards to do all this; it can all be automated
in Alice’s ATM card and Bob’s computer.  Similar
exchanges of information now go on all the time even
in places you would never expect. 

It is worth noting that conventional “symmetric”
cryptography has not been made obsolete by public-key

cryptography.  In fact, the two usually work hand in
hand. A common application of public-key encryp-
tion occurs today on secure websites using just such
a combination.  When a secure session is initiated
between two computers, one of them creates a sym-
metric key, encodes it via public-key encryption,
and sends it to the other.  They then use symmetric-
key encryption for the rest of the session, because
this is faster.  After each session is completed the
symmetric key is discarded and a new one is gener-
ated for the next session.

The Method Behind the Magic

As mentioned above, public-key cryptosystems
rely on one magic ingredient: the one-way function.
At the time that Diffie and Hellman wrote their first
paper they did not have any particular function in
mind.  Shortly thereafter Ralph Merkle, a student of
Hellman’s, proposed one, which eventually proved to
be unsatisfactory because it was not as hard to
reverse as it initially appeared.  It was left to another
troika of mathematicians to invent a one-way func-
tion that was both simple and resistant to attack, and
their invention remains the most popular public-key
system to this day.

1988 
The “number field
sieve” method is
invented by John
Pollard.

1994
Rivest, Shamir, and
Adleman’s 1977 mes-
sage is decoded by a
team of hundreds of
computers using the
quadratic sieve method.

1976
Whitfield Diffie, Martin Hellman 
and Ralph Merkle propose a new
approach to cryptography in which
the encryption and decryption keys
are different.  This launches the
era of public-key cryptography.
They were unaware that James
Ellis of British intelligence had
already come up with the same
idea but had to keep it secret.

1977
Ronald Rivest, Adi Shamir, and
Leonard Adleman invent the
RSA encryption algorithm, a
public-key system whose secu-
rity depends on the difficulty of
factoring large numbers.  They
publicly challenge anybody to
decode a message encoded
with a 129-digit number.

1981
Carl Pomerance develops
the “quadratic sieve”
method, which allows
large factorization prob-
lems to be parceled out
to many computers work-
ing in parallel.

1999 
A 155 digit RSA challenge
number is factorized by a
group of researchers
using the general number
field sieve method.

1994
Peter Shor of AT&T
Research develops a
“quick” (i.e. polynomi-
al-time) factoring algo-
rithm that would work
on a quantum computer.
However, it remains
uncertain whether such
a computer can ever 
be built. 

2002
Manindra Agrawal, Neeraj
Kayal, and Nitin Saxena
develop a polynomial-time
testing algorithm for prime
numbers that works on
ordinary computers.  It
relies on an ingenious
modification of Fermat’s
little theorem.
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The RSA cryptosystem, devised in 1977 by
Ronald Rivest, Adi Shamir, and Leonard Adleman,
rests on the idea that multiplying numbers is easy, but
finding their divisors is hard.  To make things as hard
as possible for the computer, you should make sure
your initial numbers are prime numbers.  These are
the numbers, such as 2, 3, 5, 7, and so forth that
have no divisors aside from themselves and 1.  Any
desktop computer can multiply two 150-digit num-
bers together and print out the 300-digit result in a
fraction of a second.  But if you feed that 300-digit
number to the biggest and fastest computer in the
world, it will be unable to discover the two 150-digit
numbers that you used to create it. 

Thus, the simple act of multiplying two prime
numbers together has all the hallmarks of a one-way
function: It is easy to do, and hard to undo.  But how
do you tranform it into a public-key cryptosystem?

The answer is far from obvious, and a great tribute to
the ingenuity of Rivest, Shamir, and Adleman.

Their system exploits a subtle difference between
prime numbers and composite (non-prime) numbers
that was first noticed around 1640 by the French
mathematician Pierre de Fermat.  Suppose you pick
any number, n, and any other number a that is
smaller than n. (As we shall see later, in the RSA
system, n is a public key and a is the plaintext; but
for Fermat they were just numbers.)  Now multiply
a by itself, over and over.  To keep the numbers
from getting too big, at each step divide by n and
take the remainder.  (This is called “reduction modulo
n.”) Figure 2 shows what happens with n = 13 and
a = 2: The sequence starts out 1, 2, 4, 8, 3 (the
sequence always starts with 1 and is then multiplied
by a repeatedly; here, the sequence goes as 1,
1×2=2, 2×2=4, 4×2=8, 8×2=16—which reduces to 
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Figure 2:  The figure illustrates the “circularity” of multiplication modulo a prime number by showing the computation of 213

modulo 13.  The multiples of 2, modulo 13, (20, 21, 22, … 213) are arranged around a clock face in the following order: 1 (in the
12:00 position), 2 (in the 1:00 position), 4 (in the 2:00 position) and so on.  Each number is obtained by doubling the previous
number and then reducing it modulo 13.  The “≡” symbol denotes equivalence or “congruence” modulo 13.  Note that thanks to
Fermat’s little theorem, each time you take 13 steps around this clock face, you end up in the same place you started. 

This article was published in 2003 and has not been updated or revised.



3 modulo 13—and so on), and after 13 steps, it
comes back to 2 again.

According to Fermat, this is no accident.  When
n is prime, the repeated-multiplication trick always
cycles back to its starting point after n steps.
(Mathematicians say this as follows: an is congruent
to a modulo n. The symbol an refers to a multi-
plied by itself n times, or a to the n-th power.)  But
when n is not prime, the number of steps needed to
cycle around is usually not equal to n. Predicting
just how many steps it will take is
hard: To do it, you need to know
what the divisors of n are.
(Remember that whenever n is not
prime, it will have divisors.)

Until the 1970s, number theo-
rists had never suspected that this
repeated-multiplication trick (called
“Fermat’s little theorem,” to distin-
guish it from the more famous
“Fermat’s last theorem”) could be
used for cryptography.  Rivest,
Shamir, and Adleman’s unprece-
dented insight was this: If the num-
ber a is thought of as a message,
then multiplying it repeatedly, say e
times by itself (i.e., raising it to the
e-th power) and then reducing mod-
ulo n is a way of scrambling the
message.  To unscramble the cipher-
text, you don’t have to reverse the
process: Instead, you just keep on
multiplying ae by itself!  After some
additional number of steps (say, d
steps), the message will magically
pop out again.

Figure 3 shows in detail how
Rivest, Shamir, and Adleman incorpo-
rated this idea into a cryptosystem.
Remember that, in public-key cryp-
tography, message recipients are
responsible for generating their own
public and private keys.  First, Bob
chooses two very large prime numbers
p and q, say 150 digits long each, for
his private key.  Aside from the restric-
tion that they are prime, they can be
chosen completely arbitrarily.  His
public key consists of n, which is p
times q (and is therefore not prime),
and e, the encoding key, which must
satisfy a few mild conditions relating

to the factors of n. These conditions do not pose any
difficulty for Bob, because he knows p and q. Finally
he computes the unique decoding key d that will work
in the manner described in the last paragraph.  That is,
when any number a is multiplied by itself e times mod-
ulo n, and the result (ae) is multiplied by itself d more
times modulo n, the original
number a results.  This num-
ber d also becomes part of the
private key, and can only be
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Figure 3:  A schematic illustration of the RSA system of encryption, worked out
using primes p = 61 and q = 83.  The seemingly enormous calculations involved
in multiplying numbers by themselves 19 and 259 times can actually be done
quite easily, as illustrated in the figure.  The “ ≡” symbol denotes equivalence in
the modular system.  

(2741)259 ≡ 0805
mod 5063

(3367)259 ≡ 1216
mod 5063

08  05  12  16
H E L P

Bob releases his public key 
  and keeps his private key safe.

p = 61, q = 83
n = p × q = 61 × 83 = 5063
k = (p – 1) × (q  – 1) =
60 × 82 = 4920
e = 19 (Encryption key)
d = 259 (Decryption key)

My private key
d = 259
p = 61
q = 83

H   E

(0805)19 
 ≡ 

2741 mod 5063

(1216)19 

3367 mod 5063

Bob receives the message 2741 3367 
He raises each chunk to the dth power
(2741)259 ≡ 0805 and (3367)259 ≡ 1216 
  modulo 5063 
He deciphers the message to be “HELP”

L   P

 ≡ 

Bob works out his encoding and
  decoding keys as follows:  
He chooses two primes, p (= 61) and q (= 83)
He multiplies them to get n (= 5063)
He calculates k = (p – 1) × (q – 1) (= 4920)
He chooses the encoding key e (= 19)
  that has no divisors in common with k
He works out the decoding key d (= 259) as
  d × e must be congruent to 1, modulo k
  259 × 19 = 4,921 ≡ 1 modulo 4920 

Alice sends a message to Bob 
  (HELP) as follows:
She converts the letters to numbers 
  (08051216) using the scheme 
  H = 08 (since it’s the 8th letter) etc.
She splits these numbers into two chunks
  that are each less than n: 0805 and 1216
She encodes the two chunks by raising
  them each to the eth power: 
     (0805)19 ≡ 2741 and 
        (1216)19 ≡ 3367 modulo 5063 

My public key
is e = 19,
n = 5063
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computed by someone who is privy to
the secret values of p and q. These cal-
culations are shown in detail in figure 3.  

To send Bob the message “HELP”
using Bob’s public key, Alice first con-
verts the letters into numbers using a
scheme such as A = 1, B = 2, etc.
(Punctuation and spaces can also be
converted, for example by using the
standard ASCII codes that are used by
computer word processors. This is not
part of the RSA cryptosystem per se.)
If necessary, she splits the complete
text of the converted message into
chunks that are no larger than n. Then
she multiplies each chunk by itself e
times and reduces it modulo n. The
resulting number is the ciphertext.  To
recover the original message, Bob mul-
tiplies the ciphertext by itself d more
times and reduces it modulo n.

Now consider the predicament of
an eavesdropper whom we will call
Eve.  If n were a prime number,
Fermat’s little theorem would tell her
exactly how many multiplications
would unscramble Alice’s message.
But because n is not prime, she needs to know its
divisors to figure that out (since the private key d is
derived from the divisors of n as shown in figure 3)
– and that would force her to reverse a one-way
function.  Nor can she undo Alice’s e multiplica-
tions, because undoing multiplications, even modulo
n, is difficult.  She can’t even use trial and error,
multiplying the ciphertext by itself until a coherent
message pops out, because in practice d is too large
for that to work. 

Figure 4 shows how modular computation works.
In this example, Bob knows that d = 64 and 264 will
yield the message.  He can take a short cut while Eve
has a much more laborious job.  By repeated squar-
ing, Bob finishes the calculation after only 6 multipli-
cations as shown in the figure.  But Eve, who has to
check each power of 2 to see if she gets a message or
only gibberish, would need to do one multiplication
at a time until she gets to 264 and will hence take 64
steps.  And Bob’s advantage over Eve grows bigger
and bigger as d gets larger.  So Eve is stuck, and
Alice’s secret is safe.

The RSA technique is vulnerable when the sender
encrypts precisely the same message (e.g., “SELL”)
more than once, resulting in the same ciphertext.  An

eavesdropper could note this and, perhaps, guess the
message content even without figuring out the key.
Thus, in practice, the message is usually scrambled
first by a fast symmetric-key cipher as described in the
example of secure websites.  This will produce a dif-
ferent ciphertext each time because the symmetric key
will change.

How Safe is Safe?

One of the great virtues of the RSA technique is
its adaptability.  If you want more security, you can
simply use larger primes p and q to create the public
key n. Prime numbers are not only fairly common
but there is a limitless supply of them; so you’ll
never run out.  

Indeed, key length is the parameter that governs
the security of the RSA cryptosystem, and all similar
mathematical systems.  In 1977, when Rivest, Shamir,
and Adleman announced their system, they posed a
famous challenge in Scientific American, offering $100
to anyone who could decode a message that was
encoded using a 129-digit key.  (Their number was n
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21 = 2

22 = 4

24 = 42 = 16 
(at each step, we are squaring the result of the previous step)

28 = 162 = 256

216 = 2562 = 65536 ≡ 6020 modulo 14879
(The number 65536 is reduced to a smaller number due to the  
modular arithmetic.  Each time we do an operation, we replace the 
result by the remainder when 14879 divides that result.  Here, 6020 
replaces 65536 since 14879 goes into 65536 four times, with a 
remainder of 6020.)

232 = 60202 = 36240400 ≡ 10035 modulo 14879
(14879 divides 36240400 a total of 2435 times, with a remainder of 
10035; hence a congruent 5-digit number replaces the 8-digit result.)

264 = 100352 = 100701225 ≡ 153 modulo 14879
(14879 divides 100701225 a total of 6768 times, with a remainder 
of 153; hence the 9-digit number gets compressed to 3 digits.) 

Computation of 264 modulo 14879

Figure 4:  A simple example to demonstrate the power of modular arithmetic.  By
using only the remainders of numbers when they are divided by n (in this exam-
ple, n = 14879), seemingly difficult calculations (in this example, multiplying 2
by itself 64 times) become tractable. 
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= 1143816257578888676692357799761466120102
182967212423625625618429357069352457338978
305971235639587050589890751475992900268795
43541.  Can you find its two prime factors?)  With the
factoring methods and computer technology then
available, the three codemakers estimated that it would
take someone 40 quadrillion years to break the cipher.  

This was like waving a red flag in front of a bull.
In the end it took only 17 years, accompanied by
tremendous advances in computer technology and
factoring algorithms, for persistent mathematicians
and computer scientists to decode the message.  Led
by a group of experts, a team of more than 600 vol-
unteers in two dozen countries, collaborating over the
Internet, factored the RSA 129-digit key in 1994.
The team used a new factoring algorithm called 
the “quadratic sieve,” invented in 1981 by Carl
Pomerance, now at Bell Labs, which has the ability to
distribute the computation among many computers.

Even though the message was decoded (it read:
“The magic words are squeamish ossifrage.”), the
three cryptologists had proved their larger point.
Despite knowing exactly how RSA worked, the
experts needed a huge investment of time, widespread
use of the Internet, and the development of new
mathematical methods to crack it.  RSA-129 was bro-
ken, but RSA itself was still secure.  RSA factoring
challenges are still mounted periodically.  For exam-
ple, one of the RSA 155-digit keys was factored in
1999 using the “number field sieve” invented by
John Pollard.  This shows that users must use longer
keys as technology improves—perhaps 300 digits
instead of 129 or 155.  There is only one develop-
ment that would seriously threaten the security of
RSA itself: a breakthrough in the time it takes to split
a number into its prime factors.

At present, it is much easier to determine whether
a number is prime than it is to find the divisors of a
composite number.  As noted above, Fermat’s little
theorem can be used as a sort of litmus test for pri-
mality.  If a number n fails the test—that is, if some
smaller number a, when multiplied by itself n times
and then reduced modulo n, does not yield the origi-
nal number a back again—then you are guaranteed
that n is composite.  (Even though you have no clue
what its divisors are!)

Unfortunately, this test is not quite so foolproof in
the reverse direction.  A few composite numbers n do
manage to pass Fermat’s test for primality.  (The
smallest such “pseudoprime” is 561, which is 3×11×
17.)  In recent years, mathematicians have come closer
and closer to eliminating this loophole.  And in 2002

three computer scientists—two of them undergraduate
students—finally finished the job.  Manindra Agrawal,
Neeraj Kayal, and Nitin Saxena of the Indian Institute
of Technology in Kanpur, India, astounded the mathe-
matical world when they discovered an improved ver-
sion of Fermat’s test that has no exceptions.  More
than that, they demonstrated that their method could
be programmed to run quickly on a computer. No
previous primality test had met this double “gold stan-
dard” of guaranteed correctness and practicability.

Some of the initial publicity over this new primali-
ty test suggested that it might weaken the RSA cryp-
tosystem.  In fact, precisely the opposite is the case.
The RSA system depends on the validity of two asser-
tions: Finding prime numbers must be easy (other-
wise Bob would never be able to generate his keys),
but finding the prime divisors of composite numbers
must be hard (otherwise Eve would be able to read
Bob’s mail).  Thanks to Agrawal, Kayal, and Saxena,
the first of these two statements can now be made
confidently, without any hemming and hawing about
pseudoprimes.  But their work has no effect on the
second assertion.  The only grounds for worry are
psychological: If mathematicians missed the Agrawal
et al. primality test for so long, perhaps they could
also be missing an easy factorization method.

Facing the Future

It scarcely qualifies as easy, but scientists have
found a factorization method that may one day spoil
the RSA cryptosystem.  This method assumes that,
one day, physicists will be able to build a quantum
computer—a computer that, unlike the computers of
today, would work not according to the digital logic
we are used to, but would rely on quantum mechani-
cal principles to carry out a huge number of opera-
tions simultaneously, that is, in parallel.  The laws of
quantum physics would make these computers behave
very differently from classical ones.  A circuit in a clas-
sical computer is either on or off, representing a bit of
data that is either 1 or 0.  But in a quantum computer,
the particles can exist in many states at once; or in the
language used by some physicists, they exist in many
different universes.  In effect, all those computers in
the parallel universes could be put to work factoring
large numbers very quickly—a boon for codebreakers.

The catch is that it will be formidably difficult to
make a quantum computer.  At present, no one
knows how to control large numbers of subatomic
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particles with sufficient precision.  According to even
the most optimistic estimates, quantum computers are
still decades away.

But supposing a quantum computer does someday
become a reality, does that mean that no secrets will
ever be safe again?  Hardly.  Other public-key algo-
rithms use different “one-way functions” that are not
known to be reversible by a quantum computer.
Presumably one of these would step into the breach if
RSA lost its luster.  But more fundamentally, if physi-
cists learn to control quantum states well enough to
build a computer, they will also be able to control
them well enough to create a new kind of cryptosys-
tem.  This “quantum cryptography” has already been
demonstrated in principle.  Thanks to the Heisenberg
Uncertainty Principle, which says that just observing a
particle alters its state, any eavesdropper reading a
specially quantum-encrypted message would alter the
message, thereby alerting both sender and receiver
that the message had been tampered with. 

Whatever the future may bring, cryptography has
moved past the era of clever gadgets, into an era
when the security of encoded messages will be pro-
tected by the most fundamental principles in science
—either the structure of our number system or the
subatomic architecture of our universe.  The more we
can learn to decode nature’s secrets, it seems, the bet-
ter we will be able to guard our own.
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