Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Ion-pairing molecular recognition in water: aggregation at low concentrations that is entropy-driven

J Am Chem Soc. 2002 Dec 18;124(50):14959-67. doi: 10.1021/ja020612e.

Abstract

Investigations into the thermodynamic parameters that characterize the binding of citrate to tris-guanidinium host 1 in water are reported. The parameters K(a), DeltaH degrees, DeltaS degrees, and DeltaG degrees for the binding event were quantified using isothermal titration calorimetry (ITC) techniques. The 1:1 binding stoichiometry was verified by a Job plot derived from NMR data, and the microcalorimetry data was collected for solutions of 1 and citrate ranging from 1 to 100 mM using phosphate buffer concentrations of 5 and 103 mM. At low buffer concentrations (low ionic strength) complexes with greater than 1:1 stoichiometries were observed by ITC, and K(1) was determined to range from 2.0 x 10(3) to 3.0 x 10(3) M(-1). At higher buffer concentrations (high ionic strength) the higher-order complexes were not detected, and K(1) was determined to be 409 M(-1). The 1:1 association of host 1 and citrate is characterized by a large favorable entropy component and negative enthalpy. However, the complexes with higher-order stoichiometry arise from desolvation processes that result from the association of polyions in aqueous media and is entirely entropy driven. This leads to an unusual observation: the dilution of one component of the host/guest complex leads to the formation of the higher-order complexes. The reason for this observation is discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Calorimetry
  • Citric Acid / chemistry*
  • Entropy
  • Guanidine / chemistry*
  • Kinetics
  • Osmolar Concentration
  • Solutions
  • Thermodynamics
  • Water / chemistry*

Substances

  • Solutions
  • Water
  • Citric Acid
  • Guanidine