Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Interaction of flexible surface hairs with near-wall turbulence

J Phys Condens Matter. 2011 May 11;23(18):184120. doi: 10.1088/0953-8984/23/18/184120. Epub 2011 Apr 20.

Abstract

The interaction of near-wall turbulence with hairy surfaces is investigated in a turbulent boundary layer flow along a flat plate in an oil channel at Re = 1.2 × 10⁶. The plate is covered locally with a dense carpet of elastomeric micro-hairs (length L = 1 mm, length in viscous units L( + ) = 30) which are arranged in a regular grid (60 × 30 hairs with a streamwise spacing Δx( + )≈15 and a spanwise spacing Δy( + )≈30). Instead of the micro-structures used in previous studies for sensory applications, the surface hairs are considerably larger and much more densely distributed with a spacing of S/D < 5 such that they interact with each other by flow coupling. The non-fluctuating mean part of the flow forces a substantial pre-bending in the streamwise direction (reconfiguration). As a consequence, the hairs align with the streamwise direction, thus imposing anisotropic damping characteristics with regard to flow fluctuations in streamwise and spanwise or wall-normal directions. Near-wall high-frequency disturbances excited by the passage of turbulent sweeps are dampened over their course along the carpet. The cooperative action of the hairs leads to an energy transfer from small-scale motion to larger scales, thus increasing the coherence of the motion pattern in streamwise and spanwise directions. As a consequence of the specific arrangement of the micro-hairs in streamwise columns a reduced spanwise meandering and stabilization of the streamwise velocity streaks is achieved by promoting varicose waves and inhibiting sinusoidal waves. Streak stabilization is known to be a major contributor to turbulent drag reduction. Thus it is concluded that hairy surfaces may be of benefit for turbulent drag reduction as hypothesized by Bartenwerfer and Bechert (1991 Z. Flugwiss. Weltraumforsch. 15 19-26).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anisotropy
  • Elasticity
  • Elastomers
  • Hydrodynamics
  • Models, Statistical
  • Motion
  • Movement
  • Physics / methods*
  • Polymers / chemistry
  • Stress, Mechanical
  • Surface Properties*

Substances

  • Elastomers
  • Polymers