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Abstract: An alternative polynomial approximation for the activation sigmoid
function is developed here. It can considerably simplify the input/output opera-
tions of a neural network. The recursive algorithm is found for Chebyshev expan-
sion of all constituting polynomials.
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1. Introduction

We assume a single neural network consisting of a distinct number of input nodes
and one output node [6]. In order to evaluate the output we have to apply the

standard activation sigmoid function σ(y) to the sum y =
∑N

i=1 wixi, where xi

are the values computed by the node’s predecessor, and wi are the weights of the
corresponding edges. As the activation sigmoid function σ(y) of a neural network
satisfies the Riemann integrable condition, it can be approximated by the Cheby-
shev series. We present the recursive algorithm [8] for Chebyshev approximation of
the activation sigmoid function and its natural generalization to a multiple number
of inputs. These results can be applied in several neural networks [5], such as multi-
layer perceptron (MLP), wavelet networks, radial basis function networks (RBFN),
piecewise smooth networks (PWSN), the time delay input multilayer perceptron,
general regression neural networks (GRNN), recurrent neural networks, and the
unified model UM. A common activation sigmoid function σ(y) is usually repre-
sented through

σ(y) =
ey − e−y

ey + e−y
= tanh y, (1)

σ(y) =
1

1 + e−y
. (2)
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There are different approaches for evaluating these functions when using digital
implementations, such as a truncated series expansion [5], look-up tables,

σ(y) = tanh y ≈ y −
y3

3
+

2y5

15
, (3)

or linear piecewise approximation [3], [4]

σ(y) =
1

1 + e−y
≈ c1y + c2. (4)

In the following sections we present an efficient algorithm for coefficients a(n) for
Chebyshev representation of the activation sigma function

σ(y) =

N
∑

n=0

a(n)Tn(w), (5)

and develop an explicit expansion of σ(x+y) in bilinear form employing Chebyshev
polynomials.

2. Sigmoid Function and Polynomial

Representation

The Bernstein basis functions of degree n on t ∈ (0, 1) are defined in [2] by

bn,k(t) =

(

n

k

)

tk (1− t)n−k. (6)

By simple transformation w = 2 t − 1 we obtain the basis functions on interval
w ∈ (−1, 1) with

bn,k(w) = 2−n

(

n

k

)

(1 + w)k (1− w)n−k. (7)

In [8] we have recognized that the integral of a normalized Bernstein basis function

Cp,q(w) =
p+ q + 1

2

∫

dw

(

p+ q

q

)(

1 + w

2

)q (
1− w

2

)p

(8)

gives the maximally flat step function in the form

Cp,q(w) =

(

1 + w

2

)q+1 p
∑

µ=0

(

µ+ q

µ

)(

1− w

2

)µ

. (9)

We have also derived the differential equation

(1− w2)C
′′

p,q(w) + [p− q + (p+ q)w]C
′

p,q(w) = 0 (10)
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from which the expansion of Cp,q(w) in Chebyshev polynomials follows

Cp,q(w) =

N
∑

n=0

a(n)Tn(w), (11)

where N = p + q + 1. As
d

dw
Tn(w) = nUn−1(w) we can write the Chebyshev

expansion of the first derivative
d

dw
Cp,q(w)

d

dw
Cp,q(w) =

N
∑

n=1

α(n)Un−1(w). (12)

A maximally flat step function is a continuous function with all consecutive deriva-

given p and q, N = p+ q + 1

initialization α(N) = (−1)p 2−2(p+q) N

2

(

p+ q

q

)

α(N − 1) = 2 (q − p)α(N)
body

(for µ = N − 1 to 2 )
N + 1− µ

2
α(µ− 1) = (q − p)α(µ)−

N + 1 + µ

2
α(µ+ 1)

(end loop on µ)

(for µ = N to 1 )

a(µ) =
α(µ)

µ
(end loop on µ)

a(0) = 1−

N
∑

n=1

a(n)

Tab. I Recursive algorithm for the evaluation of coefficients α(n) and a(n).

tives, and it can be easily identified as a sigmoid function

σ(w) ≡ Cp,q(w) =

(

1 + w

2

)q+1 p
∑

µ=0

(

µ+ q

µ

)(

1− w

2

)µ

=

N
∑

n=0

a(n)Tn(w).

(13)
This sigmoid function is confined to the interval (−1, 1). The study of a standard
representation of the sigmoid function is typically limited to the range (−8, 8)
[3]. We can compare our definition with the standard sigmoid function σ(w) =

1

1 + e−8w
reduced to this interval and conclude that the step function C11,11(w)

has equivalent properties with the difference ∆(w) = C11,11(w)−σ(w) of 2%. Using
different values for p, q, we can move the origin of the switching process along the
w axis – see Fig. 3.
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Fig. 1 Step function C8,8(w) and its derivative related to a sigmoid function.
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Fig. 2 Step function C11,11(w), sigmoid function σ(w) =
1

1 + e−8w
, and their

difference ∆(w).
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Fig. 3 Step functions C4,16(w)C6,14(w), C8,12(w), C10,10(w), C12,8(w), C14,6(w),
C16,4(w).

390
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3. Input/Output Operation of a Simple Neural

Network

For a neural network it is important to represent consistently the addition of ar-
guments w = x + y. We have developed addition and multiplication theorems for
Chebyshev polynomials [7] in alternative forms

Tn(x+ y) =
n

2

n
∑

k=0

k
∑

ℓ=0

1

k

(

k

ℓ

)

Ck
n−k(x)Tk−2ℓ(y), (14)

where Ck
n−k(x) are ultraspherical polynomials [1]. Formula (14) provides a decom-

position of the argument w = x+ y between two types of orthogonal polynomials,
Chebyshev and ultraspherical. In order to make the polynomial representation
uniform we can assume eq. (14) in the form

Tn(x+ y) =

n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk(x)Tℓ(y) (15)

and use the standard recursive formula for Chebyshev polynomials

Tn+1(x+ y) + Tn−1(x+ y) = 2 (x+ y)Tn(x+ y). (16)

Formula (16) is used to develop an algorithm for the matrix ak,ℓ(n)

2 (x+ y)Tn(x+ y)= 2 xTn(x + y) + 2 y Tn(x+ y)

=
n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)2 xTk(x)Tℓ(y) +
n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk(x)2 y Tℓ(y)

=

n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n) (Tk+1(x) + Tk−1(x)) Tℓ(y) (17)

+
n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk(x) (Tℓ+1(y) + Tℓ−1(y))

=

n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk+1(x)Tℓ(y) +

n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk−1(x)Tℓ(y)

+
n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk(x)Tℓ+1(y) +
n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk(x)Tℓ−1(y).

By replacing the summation indexes in a following way p = k + 1, q = ℓ, p =
k− 1, q = ℓ, p = k, q = ℓ+1 and p = k, q = ℓ− 1, we obtain a new set of equations

2 (x+ y)Tn(x+ y)=

n+1
∑

p=1

n
∑

q=0

ap−1,q(n)Tp(x)Tq(y) +

n−1
∑

p=−1

n
∑

q=0

ap+1,q(n)Tp(x)Tq(y)

+
n
∑

p=0

n+1
∑

q=1

ap,q−1(n)Tp(x)Tq(y) +
n
∑

p=0

n−1
∑

q=−1

ap,q+1(n)Tp(x)Tq(y).
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Comparing the coefficients with the same degree of polynomials Tp(x)Tq(y), we
arrive at a compact formula for the matrix ap,q(n)

ap,q(n+1)+ap,q(n−1) = (1+δp,1) ap−1,q(n)+ap+1,q(n)+(1+δ1,q) ap,q−1(n)+ap,q+1(n).
(18)

The Kronecker delta δp,1 appears here due to the fact that T−1(x) = T1(x) and
it contributes to the index p = 1 twice. The algorithm produces computation of
Tn(x+ y) as a bilinear form, for example

T6(x+ y) =





















1
T1(x)
T2(x)
T3(x)
T4(x)
T5(x)
T6(x)





















T 



















109 0 138 0 30 0 1
0 348 0 132 0 12 0
138 0 168 0 30 0 0
0 132 0 40 0 0 0
30 0 30 0 0 0 0
0 12 0 0 0 0 0
1 0 0 0 0 0 0









































1
T1(y)
T2(y)
T3(y)
T4(y)
T5(y)
T6(y)





















, (19)

where vT denotes transposition of vector v. It is worth noting that the off-diagonal
contains the binomial coefficients. In this example n = 6 and they are

(

n
0

)

≡
(

n
n

)

=

1, 2
(

n
1

)

≡ 2
(

n
n−1

)

= 12, 2
(

n
2

)

≡ 2
(

n
n−2

)

= 30, and 2
(

n
3

)

= 40.

4. Conclusion

We have developed a polynomial approximation for the activation sigmoid function.
The algorithm is based on Chebyshev expansion for all constituting polynomials.
Combining equations (13) and (15), we obtain

σ(x + y) =

N
∑

n=0

a(n)Tn(x+ y) =

N
∑

n=0

a(n)

n
∑

k=0

n
∑

ℓ=0

ak,ℓ(n)Tk(x)Tℓ(y). (20)

The main advantage of representation (20) over the standard sigmoid activation
function σ(y) consists of decoupling of the nonlinear switching process, which is
now hidden in coefficients a(n), and the weighting of the various inputs, embedded
in coefficients ak,ℓ(n). This approach enables us to state, that a major objective of
future research will concern of finding the uniform and finite input/output opera-
tions for a forward neural network as a generalization of a bilinear form

σ(w1x1 + w2x2) = Tk(x1)Ak,ℓTℓ(x2). (21)

We have also arrived at a rather compact form for the derivative of the sigmoid
function which mimics eq. (20)

d

dw
σ(w)|w=x+y =

N
∑

n=1

α(n)Un−1(x + y) =

N
∑

n=1

α(n)

n−1
∑

k=0

n−1
∑

ℓ=0

αk,ℓ(n)Uk(x)Uℓ(y).

(22)
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