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I.  Introduction 
 
 It is quite easy to introduce this topic such that the educated layman with an 
interest in mathematics can appreciate it.  Given e =  2.718281…, the base of natural 
logarithms, one can easily show that, 
 

 epv163 = 262,537,412,640,768,743.99999999999925… 
 
The mathematical constants e and π  are transcendental numbers, that is, they can 

never be the roots of finite equations with coefficients in the rational field.  Yet, here we 
have a combination of e and π  that is almost an integer.  One perhaps can assume it to be 
mere coincidence; of the infinity of possible numbers of the form epvd for some positive 
integer d, it may be expected there will be some that will be close to an integer. 

However, when the above number, as well as others, shows a certain “internal 
structure”, namely, 

 
epv67 = 52803 + 743.9999986… 
epv163 = 6403203 + 743.99999999999925… 

 
including some relations that involve square roots, 
 
 epv22 ˜  2 6(1+v2)12 + 23.99988… 
 epv58 ˜  2 6((5+v29)/2)12 + 23.999999988… 
 
and, 
 



 epv42 ˜  4 4(21+8v6)4 – 104.0000062… 
epv130 ˜ 124(323+40v65)4 – 104.0000000000012… 

 
one cannot dismiss it as just coincidence.  Something interesting is going on. 

It turns out the answer has to do with modular functions and what are called class 
polynomials, namely the Hilbert, Weber, and Ramanujan class polynomials, respectively, 
for the three pairs of examples above. 
 
II. Hilbert Class Polynomials 

 
The modular function involved in the first pair of examples is known as the j-

function.  This function, j(q), has the series expansion, 
 
 j(q) = 1/q + 744 + 196884q + 21493760q2 + 864299970q3 + … 
 
where q = e2πiτ and τ is the half-period ratio.  The expansion somehow “explains” why in 
the first pair of examples we find the approximations for 744.   

The j(q) is dependent on the τ.  If τ involves a quadratic irrational √d, then an 
important result is that j(q) is an algebraic number of degree n, where n is the class 
number of d.  We can say two things: First, this algebraic number is in fact an algebraic 
integer, or it is defined by an equation with the leading coefficient as 1 (a monic 
equation). Second, this equation, the Hilbert class polynomial, is a solvable equation, or 
solvable using only a finite number of arithmetic operations and root extractions.  Thus, 
for any transcendental number epvd, if we know the class number n of d, then we can find 
an approximation to it involving an algebraic number of degree n solvable in radicals. 

Class numbers are involved in the study of number fields, though we need not go 
into the details here.  The list of numbers d, or discriminants, belonging to particular class 
numbers n has been made for smaller n.  One is referred to Mathworld, 
http://mathworld.wolfram.com/ClassNumber.html for a listing of up to class number 25. 

For class number 1, there are 9 discriminants, namely, 3, 4,7, 8, 11, 19, 43, 67, 
163, also called the Heegner numbers.  The last five give the more impressive 
approximations to epvd involving integers, since j(q) would be an algebraic integer of 
degree 1, which is simply a plain integer.  However, there are also discriminants of class 
number 2, so j(q) would be an algebraic integer of degree 2, or a root of a quadratic. And 
so on for the higher class numbers, examples of which we will give here. 
 I have tabulated the j(q) of the lower class numbers, with the entries for class 
numbers 1 and 2 computed by myself.  They have been grouped in a manner that will be 
justified eventually.  For the highest d of class number 1 and 2, I also included the error 
difference of the approximation.  While epv163 is visually impressive, instantly 
recognizable as a near integer and thus almost the root of a linear equation with a 
difference of only 7.5 x 10-13, the transcendental number epv427 is more numerically 
impressive, though how many of us can recognize at a glance that it misses being the root 
of a quadratic by a mere 1.3 x 10-23? 
 
Class Number 1 (9 discriminants) 
 



 epv11 ˜ 323 + 738 

 epv19 ˜ 963 + 744 

 epv43 ˜ 9603 + 744 

 epv67 ˜ 52803 + 744 

 epv163 ˜ 6403203 + 744  (7.5 x 10-13) 

 
 I have included only the five highest Heegner numbers.  Technically, there are 13 
discriminants with class number 1, though only 9 are maximal.  Some of the others are, 
 
 epv16 ˜ 663  - 744 

 epv28 ˜ 2553 - 744 

 
Class Number 2 (18 discriminants) 
 
 epv20 ˜  2 3(25+13v5)3 - 744 

 epv52 ˜ 303(31+9v13)3 - 744 

 epv148 ˜ 603(2837+468v37)3 - 744 

 

 epv24 ˜ 123(1+√2)2(5+2√2)3 - 744 

 epv40 ˜  6 3(65+27v5)3 - 744 

 epv88 ˜ 603(155+108v2)3 - 744 

 epv232 ˜ 303(140989+26163v29)3 - 744 

 

 epv35 ˜ 163(15+7v5)3 + 744 

 epv91 ˜ 483(227+63v13)3 + 744 

 epv115 ˜ 483(785+351v5)3 + 744 

 epv187 ˜ 2403(3451+837v17)3 + 744 

 epv235 ˜ 5283(8875+3969v5)3 + 744 

 epv403 ˜ 2403(2809615+779247v13)3 + 744 

 epv427 ˜ 52803(236674+30303v61)3 + 744  (1.3 x 10-23) 

 
 The above numbers follow the pattern of Ramanujan’s constant, approximately 
cubes of algebraic numbers plus 744 if the discriminant is odd, minus 744 if the 
discriminant is even.  (Other than epv24 but that’s because it involves d that is a multiple 
of 3.)  For the last four discriminants of class number 2, namely d = 15, 51, 123, 267, it 



took some time to find j(q) and it turned out that for these discriminants, j(q) is not a 
perfect cube.  Mathworld would give epv51 as, 
 
 epv51 ˜ 4*483(6263+1519√17) + 744 
 

However, these discriminants also happened to be multiples of 3.  I was aware of 
a technique (see paper by Yui and Zagier) to factor certain algebraic roots and express it 
in terms of fundamental units, and another factor which turns out to be a perfect cube.  So 
we can have expressions for the j(q) of these discriminants using smaller numbers, 
namely the square of a fundamental unit and a perfect cube, given below: 
 
 epv15 ˜  3 3((1+√5)/2)2(5+4√5)3 + 743 

 epv51 ˜ 483(4+√17)2(5+√17)3 + 744 

 epv123 ˜ 4803(32+5√41)2(8+√41)3 + 744 

 epv267 ˜ 2403(500+53√89)2(625+53√89)3 + 744  (1.0 x 10-17) 

 
Note that: 

 (1/2)2 - 5*(1/2)2 = -1 

 42 -17*12 = -1 

 322 - 41*52 = -1 

 5002 - 89*532 = -1 

 
Class Number 3 (16 discriminants) 
 
 For the next class numbers 3, 4, 5, we will not give the complete list but just a few 
examples.  Only epv59 and epv83 have been derived by myself, the others are from other 
authors.  The drawback of Hilbert class polynomials is the size of their coefficients and a 
signature of these polynomials is that their constant term is a perfect cube, which may be 
an indication that the root is a perfect cube of an algebraic number.  I have observed that 
for some discriminants, we indeed can have a simplification of these polynomials. For 
example, while for d = 23 the Hilbert class polynomial is given by (see paper by Morain), 
 
 y3+3491750y2-5151296875y+233753 = 0 
 
by setting y = x3, it will factor such that, after scaling, it simplifies to the equation below.  
The other class polynomials have been reduced in the same manner.  I believe that for 
odd class numbers, the Hilbert class polynomial in the variable y, by setting y = x3, can be 
factored so that it will have smaller coefficients.  For even class numbers, especially if 
the discriminant is a multiple of 3, it may not simplify so easily.  We have then, 
 
 epv23 ˜  5 3x3 + 744; (x3-31x2+26x-187=0) 



 epv31 ˜  3 3x3 + 744; (x3-114x2+93x-4301=0) 

 epv59 ˜ 323x3 + 744; (x3-98x2+67x-22=0) 

 epv83 ˜ 1603x3 + 744; (x3-87x2+5x-2=0) 

 
Class Number 4 (54 discriminants) 
 
 epv55 ˜  x3 + 744; (x4-2355x3-8370x2-5553900x-26484975=0) 

 epv56 ˜  4 3x3 – 744; (x4-646x3+8347x2-11286x+84337=0) 

 
Class Number 5 (25 discriminants) 
 
 epv47 ˜  5 3x3 + 744; (x5-264x4+484x3-15419x2+21714x-80707=0) 
  
and so on… 
 
III. Weber Class Polynomials 
 
 The modular function involved in the second pair of examples is known as the 
Weber modular function.  For brevity, perhaps we can call it as the w-function or w(q).  
This function has the series expansion, 
 
 w(q) = 1/q + 24 + 276q + 2048q2 + 11202q3 + … 
 

Again, we can see in the expansion why in the second pair of examples we have 
approximations to a certain constant, this time the integer 24.  Just like with the j- function 
j(q), the w(q) is also an algebraic number determined by an equation of degree k 
dependent on the class number n of the discriminant d.  This equation, the Weber class 
polynomial, is also solvable in radicals. 
 However, there are some complications with regards to the degree since it is not 
necessarily k = n.  The degree k is also dependent on the nature of the discriminant d, 
especially for odd d if it is of the form 8m+3 or 8m+7. 
 
A. Odd Class Numbers 
 

Let x be the real root of its class polynomial.  If a discriminant d of form 8m+3 
has class number n, then the general form is, 
 epvd ˜  x24 - 24 
where x is a root of an equation of degree 3n with a constant term -2n.  (The exception to 
this rule seems to be d = 3, which has a Weber class polynomial that is not a cubic.)  If a 
discriminant d of form 8m+7 has class number n, then the general form is, 

epvd ˜  212x24 – 24 
where x is a root of an equation of degree n with a constant term -1.   

The Weber class polynomials for odd class numbers up to nine I found by myself  
using the Integer Relations applet found at 



http://www.cecm.sfu.ca/projects/IntegerRelations/ .  I admit there was a certain 
satisfaction in finding it independently, as you use the approximations (epvd + 24)1/24 and 
(epvd + 24)1/24/√2, gradually increase the sensitivity of the applet, and it would churn out 
candidate polynomials with increasingly large coefficients, then suddenly there would be 
this polynomial with small coefficients, sometimes just single digits, with much higher 
accuracy than the one before and you know this was the one you were looking for. 
  This was a few years back. Since then, Annegret Weng has made available the 
Weber class polynomials of up to d = 422500.  See http://www.exp-math.uni-
essen.de/zahlentheorie/classpol/class.html .  For the list below, we will give for d of form 
8m+3 only for class number one, which would then have cubic class polynomials (with 
the exception of d = 3).  For other odd class numbers n, it is understood that such d would 
have class polynomials of degree 3n, which are quite tedious to write down.  However, 
we can do so for d of form 8m+7. 
 
Class Number 1 (9 discriminants, 6 of the form 8m+3) 
 
 epv11 ˜  x24 – 24; (x3-2x2+2x-2=0) 

 epv19 ˜  x24 – 24; (x3-2x-2=0) 

 epv43 ˜  x24 – 24; (x3-2x2-2=0) 

 epv67 ˜  x24 – 24; (x3-2x2-2x-2=0) 

 epv163 ˜  x24 – 24; (x3-6x2+4x-2=0) 

 
Class Number 3 (16 discriminants, 2 of the form 8m+7) 
 
 epv23 ˜  2 12x24 – 24; (x3-x-1=0) 

 epv31 ˜  2 12x24 – 24; (x3-x2-1=0) 

 
Class Number 5 (25 discriminants, 4 of the form 8m+7) 
 
 epv47 ˜  2 12x24 – 24; (x5-x3-2x2-2x-1=0) 

 epv79 ˜  2 12x24 – 24; (x5-3x4+2x3-x2+x-1=0) 

epv103 ˜  212x24 – 24; (x5-x4-3x3-3x2-2x-1=0) 

 epv127˜  212x24 – 24; (x5-3x4-x3+2x2+x-1=0) 

 
Class Number 7 (31 discriminants, 5 of the form 8m+7) 
 
 epv71 ˜  2 12x24 – 24; (x7-2x6-x5+x4+x3+x2-x-1=0) 

 epv151 ˜  212x24 – 24; (x7-3x6-x5-3x4-x2-x-1=0) 

 epv223 ˜  212x24 – 24; (x7-5x6-x4-4x3-x2-1=0) 



 epv463 ˜  212x24 – 24; (x7-11x6-9x5-8x4-7x3-7x2-3x-1=0) 

 epv487 ˜  212x24 – 24; (x7-13x6+4x5-4x4+7x3-4x2+x-1=0) 

  
and so on… 
 
B. Even Class Numbers 
 
 While the discriminants d of odd class numbers seem to be always odd (other than 
class number 1 which has d = 4, 8), discriminants of even class numbers are a mix of odd 
and even.  I have observed that given even discriminants 4p or 8q of even class numbers 
with p or q prime, the appropriate root of the Weber class polynomial seems to 
approximate epvp and epv(2q).  We can call the first as group 1 and the second as group 2, a 
grouping I also used earlier.  I will be limiting this section only to these and not the odd 
discriminants of even class numbers. 
  For the w(q) of class number 4 labeled Others, these were taken from Weber’s 
book (Lehrbuch der Algebra), an old book I found in the library.  These radicals are too 
beautiful to be locked up in the musty pages of an old book. 
 
Class Number 2 
 
Group 1     Group 2 
 
 epv5 ˜  26(φ)6 – 24   epv6 ˜  26(1+v2)4 + 24 

 epv13 ˜  2 6((3+v13)/2)6 – 24  epv10 ˜  2 6(φ)12 + 24 

 epv37 ˜  2 6(6+v37)6 – 24  epv22 ˜  2 6(1+v2)12 +24 

epv58 ˜  2 6((5+v29)/2)12 +24 

 
where φ  is the golden ratio (1+v5)/2 = 1.61803… It’s interesting how this number crops 
up in the expressions for w(q) whenever d is a multiple of 5, though perhaps it is to be 
expected since it is also a fundamental unit.  (The other 11 discriminants, other than epv15, 
are almost-roots of sextics.) 
 
Class Number 4 
 
Group 1     Group 2 
 
 epv17 ˜  2 6(Pv17)12 – 24  epv14 ˜  2 6(Pv14)12 + 24 

 epv73 ˜  2 6(Pv73)12 – 24  epv34 ˜  2 6(Pv34)12 + 24 

 epv97 ˜  2 6(Pv97)12 – 24  epv46 ˜  2 6(Pv46)12 + 24 

 epv193 ˜  26(Pv193)12 – 24  epv82 ˜  2 6(Pv82)12 + 24 

epv142 ˜  26(Pv142)12 + 24 



 
where, 
 Pv17 = (1+v17+vr1)/4;  r1 = 2(1+v17) 

 Pv73 = (5+v73+vr2)/4;  r2 = 2(41+5v73) 

 Pv97 = (9+v97+vr3)/4;  r3 = 2(81+9v97) 

 Pv193 = (13+v193+vr4)/2;  r4 = 2(179+13v193) 

 

 Pv14 = (1+v2+vr5)/2;  r5 = (-1+2v2) 

 Pv34 = (3+v17+vr6)/4;  r6 = 2(5+3v17) 

 Pv46 = (3+v2+vr7)/2;  r7 = (7+6v2) 

 Pv82 = (9+v41+vr8)/4;  r8 = 2(53+9v41) 

 Pv142 = (9+5v2+vr9)/2;  r9 = (127+90v2) 

 
Others: 
  
 epv70 ˜  2 6(Pv70)12 + 24  epv85 ˜  2 6(Pv85)6 - 24 

 epv130 ˜  26(Pv130)12 + 24  epv133 ˜  26(Pv133)6 - 24 

 epv190 ˜  26(Pv190)12 + 24  epv253 ˜  26(Pv253)6 - 24 

       

 epv30 ˜  2 6(Pv30)4 + 24   epv33 ˜  2 6(Pv33)4 - 24 

 epv42 ˜  2 6(Pv42)4 + 24   epv57 ˜  2 6(Pv57)4 - 24 

 epv78 ˜  2 6(Pv78)4 + 24   epv177 ˜  26(Pv177)4 - 24 

 epv102 ˜  26(Pv102)4 + 24 

      epv21 ˜  2 6(Pv21)2 - 24 

epv93 ˜  2 6(Pv93)2 - 24  

 
where,  
 Pv70 = (φ)2 (1+v2) 

 Pv130 = (φ)3 (3+v13)/2 

 Pv190 = (φ)3 (3+v10) 

 

 Pv30 = (φ)3 (3+v10) (Curious, same as above.) 

 Pv42 = (7+2v14) (14+3v21)/7 



 Pv78 = (3+v13)3 (5+v26)/8 

 Pv102 = (2+v2)3 (3v2+v17)2/v8 

 

 Pv85 = (φ)4 (9+v85)/2 

 Pv133 = (3+v7)2 (5v7+3v19)/4 

 Pv253 = (5+v23)2 (13v11+9v23)/4 

 Pv33 = (1+v3)3 (3+v11)/4 

 Pv57 = (1+v3)3 (13+3v19)/4 

 Pv177 = (1+v3)9 (23+3v59)/32 

 Pv21 = (v3+v7)3 (3+v7)2/16 

 Pv93 = (3v3+v31)3 (39+7v31)2/16 

 
 For the next class numbers 6, 8, 10, 12, while I have the complete list for groups 1 
and 2, we will give only one example per group to illustrate a certain pattern. 
 
Class Number 6 
 
Let, y = x – 1/x 
 
Group 1: epv29 ˜  26x6 – 24; (y3-9y2+8y-16=0) 
 
Group 2: epv26 ˜  26x12 + 24; (y3-2y2+y-4=0) 
 
Class Number 8 
 
Let, y = x + 1/x 
 
Group 1: epv41 ˜  26x12 – 24; (y4-5y3+3y2+3y+2=0) 
 
Group 2: epv62 ˜  26x12 + 24; (y4-2y3-17y2-24y-8=0) 
 
Class Number 10 
 
Let, y = x – 1/x 
 
Group 1: epv181 ˜  2 6x6 – 24; (y5-573y4-81y3-3483y2-3240y-3888=0) 
 
Group 2: epv74 ˜  26x12 + 24; (y5-8y4+14y3-36y2+41y-28=0) 
 
Class Number 12 
 



Let, y = x + 1/x 
 
Group 1: epv89 ˜  26x12 – 24; (y6-5y5-27y4-25y3+28y2+44y+16=0) 
 
Group 2: epv274 ˜  2 6x12 + 24; (y6-57y5+168y4-78y3+45y2-345y+202=0) 
 
and so on… 
 

We can summarize our results.  Given even discriminants 4p or 8q of even class 
numbers with p or q prime.  For class numbers 2, 6, 10,… (4m+2),  let, y = x – 1/x, 
where y is the appropriate root of an equation of degree (4m+2)/2 = 2m+1: 
 
Group 1: epvp ˜  2 6x6 – 24; Group 2: epv(2q) ˜  26x12 + 24 
 
For class numbers 4, 8, 12,… (4m+4),  let, y = x + 1/x, where y is the appropriate root of 
an equation of degree (4m+4)/2 = 2m+2: 
 
Group 1: epvp ˜  2 6x12 – 24; Group 2: epv(2q) ˜  26x12 + 24 

 
In other words, for what we defined as groups 1 and 2, we can observe two things: 

(a) Let x be the appropriate root of the Weber class polynomial.  For group 1, epvp is 
closely approximated by 26x6 for class number 4m+2 but 26x12 for class number 4m+4.  
For group 2, there is no difference and epv(2q) is closely approximated by 26x12.  (b) For 
class number 4m+2, the Weber class polynomial in x is a semi-palindromic polynomial, 
the same whether read forwards or backwards but only if we disregard sign.  However, 
for class number 4m+4, it is a true palindromic polynomial. 
 
IV. Ramanujan Class Polynomials 
 
 The modular function involved in the last pair of examples has a formal 
designation in another context, the Monster group, which we will be going into later.  
However, for purposes of consistency, perhaps it is permissible to call it as the r-function 
(for Ramanujan) since he did work on this function.  This function, r(q), has the series 
expansion, 
 
 r(q) = 1/q + 104 + 4372q + 96256q2 + 1240002q3 + … 
 
and we see why the last pair of examples involved approximations to 104.  Just like j(q) 
and w(q), r(q) again is an algebraic number determined by an equation of degree k 
dependent on the class number n of some discriminant d.  This equation, which perhaps 
we can call the Ramanujan class polynomial, is solvable in radicals. 
 The r(q) given below for class numbers 2 and 4 were known to Ramanujan, 
though for d = 14, 82, 42, 190, it doesn’t seem to be found in his Notebooks.   
 
Class Number 2 
 



epv5 ˜ (4√2)4 + 100 

 epv13 ˜ (12√2)4 + 104 

 epv37 ˜ (84√2)4 + 104 

 

 epv6 ˜ (4√3)4 - 106 

 epv10 ˜ 124 -104 

 epv22 ˜ (12√11)4 -104 

 epv58 ˜ 3964 -104 

 
Class Number 4 
 
(Unknown for epv17, epv73, epv97, epv193.)  
 
 epv14 ˜  4 4(11+8v2)2 - 104 

 epv34 ˜ 124(4+v17)4 - 104 

 epv46 ˜ 124(147+104v2)2 - 104 

 epv82 ˜ 124(51+8v41)4 - 104 

 epv142 ˜ 124(467539+330600v2)2 - 104 

 

 epv30 ˜ (4v3)4(5+4v2)4 - 104 

 epv42 ˜  4 4(21+8v6)4 - 104 

 epv78 ˜ (4v3)4(75+52v2)4 - 104 

 epv102 ˜ (4v3)4(200+49v17)4 - 104 

 

 epv70 ˜ (12v7)4(5v5+8v2)4 - 104 

 epv130 ˜ 124(323+40v65)4 - 104 

 epv190 ˜ (12v19)4(481+340v2)4 - 104 

 
Class Number 6 
 

The r(q) for class number 6 was found by myself, using an assumption and again 
the Integer Relations applet.  I observed that, in the r(q) for class number 2 for what we 
defined as group 2 (namely d = 6, 10, 22, 58) for d = 6 & 22, r(q) was a quadratic 
irrational, while for d = 10 & 58, r(q) was an integer.  The difference was that d of the 
former was of the form 2(4m-1) while for the latter was 2(4m+1).  Since we already 



know that the degree k of the r(q) can be dependent on the nature of d, might it be the 
case that for d = 2(4m+1) of class number n, then epvd ˜  x4 – 104, where x is a root of an 
equation of degree n/2? 

It seems it was the case.  A check to the validity of the four cubics below can be 
made considering the polynomial discriminants are given by 3d.  It is hoped that an 
interested reader can provide the missing polynomials for class number 8 and above. 
 
 epv26 ˜ (4x)4 – 104; (x3-13x2-9x-11=0) 

 epv106 ˜ (12x)4 – 104; (x3-271x2+63x-49=0) 

 epv202 ˜ (12x)4 – 104; (x3-5871x2+2815x-913=0) 

 epv298 ˜ (12x)4 – 104; (x3-64419x2-16061x-1441=0) 

 
Class Number 8 
 
 epv178 ˜ (12x)4 – 104; x = ? 

 epv226 ˜ (12x)4 – 104; x = ? 

 epv466 ˜ (12x)4 – 104; x = ? 

 epv562 ˜ (12x)4 – 104; x = ? 

 
 I am aware of r(q) only for class numbers 2, 4, 6 so far, or only for even n.  
Ramanujan nor others does not seem to have worked on class polynomials defining r(q) 
for odd n.  It should be interesting to know if indeed there are such polynomials. 
 
V.  Pi Formulas 
 

We can use our modular functions j(q), r(q), and perhaps also w(q) to come up 
with formulas for pi, or more accurately 1/π .  We have the following infinite series due to 
the Chudnovsky brothers (where the summation Σ is understood to go from n = 0 to 
infinity), 
 

Let, c = (-1)n(6n)!/((n!)3(3n)!) 
 
 1/(4π) = Σ c (154n+15)/(323)n+1/2 

 1/(12π) = Σ c (342n+25)/(963)n+1/2  

 1/(12π) = Σ c (16254n+789)/(9603)n+1/2  

 1/(12π) = Σ c (261702n+10177)/(52803)n+1/2  

 1/(12π) = Σ c (545140134n+13591409)/(6403203)n+1/2  

 



which uses the j(q) of d = 11, 19, 43, 67, 163 of class number 1.  The “signature” of the d 
can be found in the formula, other than the j(q) in the denominator.  Consider the 
factorizations, 
 
 154 = 2*7*11 

 342 = 2*32 *19 

 16254 = 2*33 *7*43 

 261702 = 2*32 *7*31*67 

 545140134 = 2*32 *7*11*19*127*163 

 
The general form of the formula seems to be: 
 
 1/(12π) = Σ c (An+B)/(C)n+1/2 
 
where A, B, C are algebraic numbers of degree k.  Thus, one can also use the j(q) of the d 
of class number 2 and so on.   
 The inspiration for the formulas derived by the Chudnovskys was a set of 
beautiful formulas for 1/π  (17 in all) found by Ramanujan and listed down in his 
notebooks with little explanation on how he came up with them.  Most of them involve d 
of class number 2.  What I’m interested are the two formulas: 
 
 1/(π√8) = 1/32 Σ r (10n+1)/124n 

 1/(π√8) = 1/992 Σ r (26390n+1103)/3964n 

 
where, r = (4n)!/(n!4).  To recall, 
 
 epv10 ˜ 124 – 104 

 epv58 ˜ 3964 – 104  

 
The two formulas use the r(q) of the above.  (Note that 10 = 2*5 and 26390 = 
2*5*7*13*29.)  I believe the general form is, 
 
 1/(π√8) = 1/D Σ r (An+B)/C4n 
 
where A, B, C, D are algebraic integers of degree k and C4 is the r(q) of a d of class 
number 2k.  Thus, it will be restricted to even class numbers.  It may then be a slightly 
different general form to the one found by the Borweins, though I’m not sure if they will 
turn out to be essentially the same.  The next candidates will be d = 34, 82 with class 
number 4 and r(q) of algebraic degree 2,  
 
 epv34 ˜ 124(4+v17)4 – 104 



 epv82 ˜ 124(51+8v41)4 – 104  

 
and which should have A, B, D also as algebraic numbers of degree 2 if my assumption is 
correct.  I am not aware of pi formulas that use the Weber function w(q) though I believe 
one can perhaps find general forms in analogy with what was done for j(q) and r(q). 
 
VI.  Monster Group and Conclusion 
 
 Before we go to a fascinating connection to group theory and conclude our paper, 
we can make a small clarification regarding the constant eπ√163.  Ramanujan worked 
mostly on d with class number a power of two, and while eπ√58 is found in his notebooks, 
eπ√163 is not.  Hermite was aware of it as being an almost- integer c. 1859.   

The name is taken from an April Fool’s joke by Martin Gardner where he claimed 
Ramanujan had conjectured that it was exactly an integer.  In fact, numbers of the form 
eπ√d for positive integer d are transcendental, as proven by Aleksandr Gelfond.  However, 
this interesting property of  eπ√163 seems to be in line with the body of Ramanujan’s work 
which itself is most interesting, especially keeping in mind the conditions in which it was 
made.  So it turns out the name for this constant is fitting indeed. 

We pointed out earlier that there is a connection between the modular functions 
we have mentioned and what is called the Monster group.  To recall, the series expansion 
of the j- function was, 

 
j(q) = 1/q + 744 + 196884q + 21493760q2 + 864299970q3 + … 
 
Now, the Monster group M, the largest of the 26 sporadic groups, is the group of 

rotations in 196883-dimensional space.  Its irreducible representations are given by 1, 
196883, 21296876…etc.  It was noticed by John McKay in the late 70’s that 196883 was 
awfully close to the coefficient 196884 of the j-function above. When John Conway was 
told by J.G. Thompson about this observation, he thought that it was “moonshine”, or 
fanciful.  However, when you realize that, 

 
196884 = 1 + 196883 
21493760 = 1 + 196883 + 21296876 

 
and so on, or the coefficients of the j- function seemed to be simple linear combinations of 
the representations of the Monster, then something really interesting must be going on.  
The assumed relationship between the j- function and the Monster was known as the 
Monstrous Moonshine Conjecture, after a paper written by Conway and S. Norton in 
1979 and was finally proven to be true by Richard Borcherds in 1992.  And as if that 
amazing relationship was not enough, the proof used a theorem from string theory!  
Borcherds eventually won the Fields medal for proving this conjecture. 
 Thus, the coefficients of the j-function are also known as the McKay-Thompson 
series of class 1A for Monster.  And what about our other modular function w(q)?  

  
 w(q) = 1/q + 24 + 276q + 2048q2 + 11202q3 + … 
 



The coefficients of the w-function happen to be also connected to the Monster and is 
known as the McKay-Thompson series of class 2B for Monster.  For r(q)? 
 
 r(q) = 1/q + 104 + 4372q + 96256q2 + 1240002q3 + … 
 
The list of coefficients is also known as the McKay-Thompson series of class 2A for 
Monster. 
 And so we have this profound connection between two seemingly different 
mathematical topics.  Ramanujan would have loved this. 
 
 

--End-- 
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