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Visual word identification requires readers to code the identity and order of the letters in a word and
match this code against previously learned codes. Current models of this lexical matching process posit
context-specific letter codes in which letter representations are tied to either specific serial positions or
specific local contexts (e.g., letter clusters). The spatial coding model described here adopts a different
approach to letter position coding and lexical matching based on context-independent letter representa-
tions. In this model, letter position is coded dynamically, with a scheme called spatial coding. Lexical
matching is achieved via a method called superposition matching, in which input codes and learned codes
are matched on the basis of the relative positions of their common letters. Simulations of the model
illustrate its ability to explain a broad range of results from the masked form priming literature, as well
as to capture benchmark findings from the unprimed lexical decision task.
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The experimental and theoretical analysis of the processes in-
volved in visual word identification has been a focus of cognitive
science research in the last few decades (for reviews, see Carr &
Pollatsek, 1985; Jacobs & Grainger, 1994; Rastle, 2007; Rayner,
1998; Taft, 1991). Word identification is an integral component of
reading and of language comprehension more generally, and
hence, understanding this process is critical for theories of lan-
guage processing. Beyond that, however, the study of isolated
visual word identification has attracted researchers because it
provides a means of addressing fundamental cognitive questions
pertaining to how information is stored and subsequently retrieved.
For a variety of reasons, the domain of visual word identification
is extremely well suited to studying issues related to pattern
recognition. First, printed words (particularly in alphabetic lan-
guages) have many advantages as experimental stimuli, given that
they are well-structured, discrete stimuli with attributes (such as
frequency of occurrence, legibility, spelling–sound consistency,
etc.) that are relatively easy to manipulate and control in experi-
mental designs. Second, a variety of tasks have been developed
with which to measure the time that it takes to identify a word, and
this has led to a particularly rich set of empirical findings. Finally,
printed words are highly familiar patterns with which the great
majority of literate people demonstrate considerable expertise.
Skilled readers are able to recognize familiar words rapidly (typ-
ically within about 250 ms, e.g., Pammer et al., 2004; Rayner &
Pollatsek, 1987; Sereno & Rayner, 2003), in spite of the fact that

they must distinguish these words from among a pool of tens of
thousands of words that are composed of the same restricted
alphabet of letters. To the reader this process appears effortless,
but to the cognitive scientist it remains somewhat mysterious.

The Lexicalist Framework

In models of visual word identification, the goal of processing is
often referred to as lexical access or lexical retrieval. In the present
article, I describe the same state as the point of lexical identifica-
tion. Such a state has been referred to as a “magic moment” at
which the word has been recognized as familiar, even though its
meaning has not yet been retrieved (e.g., Balota & Yap, 2006).
Indeed, the point at which lexical identification occurs can be
thought of as the gateway between visual perceptual processing
and conceptual processing. In the E-Z reader model of eye move-
ments during reading (e.g., Reichle, Pollatsek, Fisher, & Rayner,
1998), the completion of lexical identification may be viewed as
the point at which attention is shifted from the current word to the
next word. At a functional level of description, at least, this way of
thinking about lexical identification implies an internal lexicon (or
word level) containing unitized lexical forms. As Andrews (2006)
notes, a lexicalist perspective of this sort need not entail assump-
tions about the nature of lexical knowledge—in particular, whether
this knowledge is subserved by localist or distributed representa-
tions. Nevertheless, a localist account is the most straightforward
means of implementing a lexicalist view (for discussion of theo-
retical arguments favoring localist over distributed representations,
see Bowers, 2002; Bowers, Damian, & Davis, 2009; Davis, 1999;
Page, 2000). According to such a localist account, lexical knowl-
edge is underpinned by the existence of (and connections involv-
ing) nodes that code specific words. In the strongest version of
such a localist account it may even be postulated that there are
individual cells in the brain that code for specific words (e.g., an
individual neuron that codes the word cat; Bowers, 2009); in
support of such an account, recent evidence with functional mag-
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netic resonance imaging rapid adaptation techniques provides ev-
idence for highly selective neuronal tuning to whole words in the
cortical region that has been labeled the visual word form area
(Glezer, Jiang, & Riesenhuber, 2009).

There is an alternative to the lexicalist view. Some proponents
of parallel-distributed processing models have rejected not only
the notion of localist word representations but also the lexicalist
view (e.g., Plaut, McClelland, Seidenberg, & Patterson, 1996;
Seidenberg & McClelland, 1989) and have proposed models of
ostensibly lexical tasks that include no lexicon. Debates about
whether such models capture the central features of lexical pro-
cessing (indeed, whether such models can even explain how read-
ers are able to distinguish words from nonwords) are ongoing (e.g.,
Besner, Twilley, McCann, & Seergobin, 1990; Bowers & Davis,
2009; Coltheart, 2004; Dilkina, McClelland, & Plaut, 2008; Sib-
ley, Kello, Plaut, & Elman, 2009) and will not be rehearsed here.
There is no extant parallel-distributed processing model that can
simulate the empirical results that form the critical database for the
present investigation, and thus I do not consider such models
further in this article.

Subprocesses in Visual Word Identification

Within a lexicalist framework, successful word identification
appears to involve a number of basic processes (e.g., Forster, 1992;
Jacobs & Grainger, 1994; Taft, 1991). First, it is necessary for the
reader to encode the input stimulus by forming some representa-
tion of the sensory input signal. This representation needs to
encode both the identity and the order of the letters in the input
stimulus. Second, this input code must be matched against abstract
long-term memory representations—lexical codes. Third, the best
matching candidate must somehow be selected from among the
tens of thousands of words in the reader’s vocabulary. The present
article considers each of these processes. The primary focus is on
the first two processes, investigating how sensory input codes are
matched against lexical codes and the nature of the input and
lexical codes that are used in this process. The resulting match
values then feed into a competitive selection process. All three of
these processes are modeled herein in a series of simulations.

A Discrepancy Between Theory and Data

The last decade has seen a surge of interest in orthographic input
coding and lexical matching, resulting in a large body of empirical
data (e.g., Bowers, Davis, & Hanley, 2005a; Christianson, John-
son, & Rayner, 2005; Davis & Bowers, 2004, 2005, 2006; Davis
& Lupker, 2010; Davis, Perea, & Acha, 2009; Davis & Taft, 2005;
Duñabeitia, Perea, & Carreiras, 2008; Frankish & Barnes, 2008;
Frankish & Turner, 2007; Grainger, Granier, Farioli, Van Assche,
& van Heuven, 2006; Guerrera & Forster, 2008; Johnson, 2007;
Johnson & Dunne, 20xx; Johnson, Perea, & Rayner, 2007; Ki-
noshita & Norris, 2008, 2009; Lupker & Davis, 2009; Perea &
Carreiras, 2006a, 2006b; Perea & Lupker, 2003a, 2003b, 2004;
Peressotti & Grainger, 1999; Rayner, White, Johnson, & Liv-
ersedge, 2006; Schoonbaert & Grainger, 2004; Van Assche &
Grainger, 2006; Van der Haegen, Brysbaert, & Davis, 2009; Wel-
vaert, Farioloi, & Grainger, 2008; White, Johnson, Liversedge, &
Rayner, 2008). In the majority of these experiments, researchers
have used the masked form priming paradigm (Forster, Davis,

Schoknecht, & Carter, 1987) to investigate the perceptual similar-
ity of pairs of letter strings that differ with respect to letter
substitutions, transpositions, additions, and deletions; converging
evidence has also been reported recently with the parafoveal
preview technique (e.g., Johnson & Dunne, 20xx; Johnson, Perea,
& Rayner, 2007). The resulting empirical database provides strong
constraints on models of visual word recognition.

The literature includes a variety of computational models of
visual word recognition, including the original interactive activa-
tion (IA) model (McClelland & Rumelhart, 1981), extensions of
the IA model (Grainger & Jacobs, 1994, 1996), dual-route models
(dual-route cascaded (DRC), connectionist dual-process (CDP),
and CDP�; Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; C.
Perry, Ziegler, & Zorzi, 2007; Zorzi, Houghton, & Butterworth,
1998), and parallel-distributed processing models (Harm & Sei-
denberg, 1999; Plaut et al., 1996; Seidenberg & McClelland,
1989). However, for all their successes, none of the above models
is able to account for the results reported in the articles cited in the
above paragraph. This discrepancy between theory and data points
to fundamental problems in the standard approach to orthographic
input coding and lexical matching.

In Davis (1999) and in subsequent articles, I have argued that
these problems stem from the commitment of previous models to
orthographic input coding schemes that are context-dependent (in
the sense that they are either position- or context-specific) and that
a satisfactory solution to these problems requires a context-
independent coding scheme (see Bowers et al., 2009, for a recent
discussion of the same issue in a different domain, i.e., serial order
memory). I have also argued that lexical selection involves a
competitive process and that this has important implications for the
interpretation of experimental data (e.g., Bowers, Davis, & Han-
ley, 2005b; Davis, 2003; Davis & Lupker, 2006; Lupker & Davis,
2009). In the present article, I show how a context-independent
model of orthographic input coding and lexical matching can be
embedded within a competitive network model of lexical selection.
The resulting model, which I will refer to as the spatial coding
model, provides an excellent account of a large set of masked
primed lexical decision findings pertaining to orthographic input
coding, as well as explaining benchmark findings from the
unprimed lexical decision task. Additionally, the model explains a
considerable proportion of the variance at the item level in
unprimed lexical decision.

How the Spatial Coding Model Is Related to the
SOLAR and IA Models

Davis (1999) developed the context-independent orthographic
input coding scheme within the framework of the self-organizing
lexical acquisition and recognition (SOLAR) model. This model
was developed with the goal of explaining how visual word
recognition is achieved in realistic input environments, that is,
environments that are complex and noisy and that change over
time, thereby requiring the model to self-organize its internal
representations. The SOLAR model is a competitive network
model (e.g., Grossberg, 1976) and, therefore, part of the same class
of models as the IA model. However, the features of the SOLAR
model that enable it to self-organize result in a model that is
considerably more complex than the IA model. These features
include mechanisms governing the learning of excitatory and
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inhibitory weights, a novel means of encoding word frequency
(and a learning mechanism that modifies internal representations
accordingly), and a mechanism for chunking identified inputs and
resetting the component representations. Though interesting in
their own right, these features are not critical to the phenomena
modeled here (e.g., masked priming effects are not strongly influ-
enced by online self-organization processes). The model that I
develop in the present article draws on key aspects of the SOLAR
model, notably the spatial coding scheme described in Davis
(1999), the superposition matching algorithm subsequently devel-
oped in Davis (2001, 2004; see also Davis & Bowers, 2006), and
the opponent processing model of lexical decision described in
Davis (1999) but does not include the learning or chunking mech-
anisms of the SOLAR model; it also incorporates simpler assump-
tions with respect to frequency coding and lateral inhibitory con-
nectivity. Thus, one way to think about the spatial coding model
described here is as a (slightly simplified) stationary (i.e., non–
self-organizing) version of the SOLAR model.

Another way to think about the spatial coding model I develop
here is as an exercise in the nested modeling strategy (Jacobs &
Grainger, 1994) that has guided the development of many com-
putational models of visual word recognition in recent years (e.g.,
Coltheart, Curtis, Atkins, & Haller, 1993; Coltheart et al., 2001;
Davis, 1999; 2003; Davis & Lupker, 2006; Grainger & Jacobs,
1994, 1996; C. Perry et al., 2007). These models have adopted a
cumulative approach in which the best features of existing models
are preserved in new models. In particular, each of the models
listed above has incorporated a version of the IA model. This
choice may have been related partly to the initial success of the
original model in explaining data from the Reicher-Wheeler task
(McClelland & Rumelhart, 1981; Reicher, 1969; Rumelhart &
McClelland, 1982), but also no doubt reflects the fact that this
model captured many of the essential features of the localist,
lexicalist framework in a way that enabled detailed modeling of
the temporal characteristics of lexical identification. Thus, the
above-cited work has established that extensions of the IA model
can explain not only Reicher-Wheeler data (e.g., Grainger &
Jacobs, 1994) but also a broad range of other empirical results
from the perceptual identification task, the unprimed lexical deci-
sion task, and the masked priming variant of the lexical decision
task (Davis, 2003; Davis & Lupker, 2006; Grainger & Jacobs,
1996; Jacobs & Grainger, 1992; Lupker & Davis, 2009). Further-
more, the IA model has been used to provide the lexical route of
dual-route models of reading aloud (Coltheart et al., 2001; C. Perry
et al., 2007).

Although the nested modeling approach entails retaining the
best features of previous models, features that are at odds with
critical data should be replaced. To this end, the spatial coding
model retains central assumptions of the IA model—localist letter
and word representations, hierarchical processing, lateral inhibi-
tion, frequency-dependent resting activities—while modifying the
IA model’s orthographic input coding and lexical matching algo-
rithm. In effect, then, the spatial coding model grafts the front end
of the SOLAR model onto a standard IA model. Indeed, as is
shown in the Appendix, given an appropriate parameter choice, the
original McClelland and Rumelhart (1981) model can be specified
as a special case of the present model (thus, although I do not
consider Reicher-Wheeler data here, there is at least one parame-
terization of the model that accommodates the same set of findings

as the original model). Although I do not attempt it here, it would
be possible to use the spatial coding model as the lexical route of
a dual-route model of word reading, following the approach of
Coltheart et al. (2001) and C. Perry et al. (2007).

Overview of the Present Article

This article is arranged into two parts. The first part describes
the model. I begin by describing the spatial coding scheme. What
distinguishes this coding scheme from other schemes is its com-
mitment to position and context-independent letter representations.
This aspect of spatial coding, combined with its approach to
coding letter position and identity uncertainty, underlies its ability
to explain data that are problematic for other models. I then
describe an algorithm (called superposition matching) for comput-
ing lexical matches based on spatial coding; I also discuss a
possible neural implementation of superposition matching.

The set of equations describing spatial coding and superposition
matching makes it possible to compute a match value representing
orthographic similarity for any pair of letter strings. The relative
ordering of match values for different forms of orthographic sim-
ilarity relations is consistent with some general criteria that have
been adduced from empirical data (Davis, 2006). However, to
evaluate the model properly, it is necessary to derive predictions
that are directly relevant to the dependent variables measured in
experiments on orthographic input coding. To this end, I embed
the spatial coding and superposition matching equations within a
model of lexical selection and then explain how this model can
simulate lexical decision. The resulting model is able to make
predictions concerning primed and unprimed lexical decisions.

In the second part of the article, I demonstrate the application of
the spatial coding model. In particular, I present a set of 20
simulations that model critical data from the masked form priming
paradigm, examining the effect of letter replacements, transposi-
tions, reversals, and displacements. The results demonstrate the
broad array of findings that are explained by (and in several cases
were predicted by) the spatial coding model. I also show that the
model can explain various benchmark findings from the unprimed
lexical decision task.

Part 1: Description of the Model

Spatial Coding

Davis (1999) introduced spatial orthographic coding as a means
of encoding letter order that solves the alignment problem (i.e.,
that supports position-invariant identification) and captures the
perceptual similarity of close anagrams. This general method of
encoding order has its origins in Grossberg’s (1978) use of spatial
patterns of node activity to code temporal input sequences, and
similar coding schemes have been used by Page (1994) in a model
of melody perception and by Page and Norris (1998) in their
primacy model of serial recall. The fundamental principle under-
lying spatial orthographic coding is that visual word identification
is based on letter representations that are abstract (position- and
context-independent) symbols. According to this idea, the abstract
letter identities used for orthographic input coding are abstract in
an even more extensive sense than has previously been proposed in
standard models: In addition to abstracting away from visual form
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(e.g., case, size, and color), these letter identities abstract away
from positional and contextual factors. Essentially, they are mental
symbols of the form proposed in Fodor’s representational theory of
mind (e.g., Fodor, 1975). Thus, according to spatial coding, the
same letter a node can activate in response to the words ape, cat,
star, or opera.

The relative order of the letters in a letter-string is encoded by
the pattern of temporary values that are dynamically assigned
(tagged) to these letters. Different letter orderings result in differ-
ent spatial patterns (hence the term spatial coding; note that the
word spatial does not refer to visuospatial coordinates). Some
examples of spatial coding are shown in Figure 1. These examples
show the pattern of values over the o, p, s and t letter nodes for four
different words: stop, post, opts, and pots. The values assigned to
letter nodes in these examples correspond to the serial positions of
the corresponding letters in the stimulus, for example, the first
letter is coded by a value of 1, the second letter is coded by a value
of 2, and so on. This is the most straightforward version of spatial
coding. In previous descriptions, I have sometimes assumed a
primacy gradient rather than a recency gradient (i.e., the first letter
is assigned the largest value, the second letter is assigned the next
largest value, and so on). The two versions are mathematically
equivalent when using the superposition matching algorithm: All
that is critical is that the values are assigned so as to preserve the
sequence in which the letters occurred in the input string.

Figure 1 illustrates how anagrams may be coded by exactly the
same set of letter representations but by different relative patterns
across these representations. For example, the spatial pattern used
to code the word stop is quite different from that which is used to
code the word pots, whereas pots and post are coded by quite
similar patterns. Nevertheless, the fact that the same set of repre-
sentations is used in each case is the critical difference between
this approach and position- or context-specific coding schemes,

which would code the word stop with an entirely different set of
representations than those used to code its anagram pots.

One point that is important to note (and which has frequently
been misunderstood) is that the gradient of values in an ortho-
graphic spatial code is purely a positional gradient—it is not a
weighting gradient. That is, letter nodes that are assigned larger
values are not given greater weight in the matching process than
are nodes that are assigned smaller values. To use an analogy, the
position of the notes following a treble clef indicates the pitch of
those notes, not their loudness or duration. Thus, assigning a value
of 1 to the node that codes the first letter of a stimulus and a value
of 4 to the node that codes the last letter of a (four-letter) stimulus
does not imply that the last letter is four times as important as the
first letter: The values of the spatial code convey information about
position only. This is not to say that all letters are in fact always
given equal weighting during lexical matching but rather that
coding differences in letter weighting requires a separate dimen-
sion, as described below.

Coding uncertainty regarding letter position. The percep-
tual coding of both letter position and letter identity is subject to a
considerable degree of uncertainty, particularly in the earliest
stages of word perception following the initial detection of the
stimulus (e.g., Estes, Allmeyer, & Reder, 1976). Position uncer-
tainty is a fundamental characteristic of the visual input to the
lexical matching system, and any plausible model of orthographic
coding needs to incorporate uncertainty in the signals output by
letter nodes. For simplicity, the following discussion assumes that
position uncertainty is restricted to the input code and that the
learned code is error free. In spatial coding, letter position uncer-
tainty is modeled by assuming that the position codes associated
with letter signals are scaled Gaussian functions rather than point
values. Thus, the model includes a parameter called �, which
reflects the degree of letter position uncertainty. Similar assump-

Figure 1. Examples of spatial coding. These examples show the pattern of values over the o, p, s and t letter
nodes. The same letter nodes are used to code the words stop, post, opts, and pots, but with different dynamically
assigned spatial patterns.
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tions about the coding of letter position uncertainty have been
made in other models of letter position coding (e.g., Gomez,
Ratcliff, & Perea, 2008; Grainger et al., 2006). One way to depict
this uncertainty is to plot the spatial code with error bars for each
position code, as shown in Figure 2A. Another way to represent
the spatial code is to rotate the axes so that the horizontal axis
represents the position code, as shown in Figure 2B. The Gaussian-
shaped uncertainty functions plotted in this figure are described
mathematically by the equation

spatialj� p� � e
�� p�posj

� �2

, (1)

where the subscript j indexes the letters within the spatial code and
posj is the (veridical) serial position of the jth letter within the input
stimulus. For example, as a is the second letter of cat, the function
coding the letter a in Figure 2B has the equation

spatialA� p� � e
�� p�2

� �
2

. (2)

Equation 2 holds wherever the word is fixated and whichever
position-specific letter features are activated by the a in cat. At the
same time, the specific value of 2 in this example is not critical—
what is critical is the relative pattern among the letters within the
spatial code. Thus, adding a constant to the values shown in the
horizontal axis in Figure 2B would not disrupt the spatial code
(e.g., values of 5, 6, and 7 for the letters c, a, and t would work
equally well).

Factors affecting letter position uncertainty. A number of
factors are likely to affect the magnitude of the � parameter. One
plausible assumption is that letter position uncertainty varies as a
function of distance from fixation. That is, letters that are fixated
are subject to relatively little position uncertainty, whereas letters
in the parafovea may be associated with considerable position
uncertainty. This relationship between letter position uncertainty
and position of fixation provides the most likely explanation of the
data of Van der Haegen et al. (2009), who observed that transposed
letter (TL) priming effects increased considerably as the distance
between the point of fixation and the TLs increased from zero to
three letter widths. Davis, Brysbaert, Van der Haegen, and Mc-
Cormick (2009) showed that the spatial coding model can fit these
data well if � is assumed to increase linearly as a function of
distance from fixation.

Thus, the assumption that � increases with distance from fixa-
tion helps to account for masked priming data; it is also supported
by independent data from letter report tasks (Chung & Legge,
2009; Davis, McCormick, Van der Haegen, & Brysbaert, 2010). In
general, however, this assumption is not useful for modeling data
from the majority of published experiments, as fixation position is
typically not controlled. However, another variable that is likely to
affect � is word length. Indeed, the assumption that � increases
with distance from fixation implies that the average value of � for
the letters in a word will tend to be larger for longer words than for
shorter words, given that the letters in longer words will, on
average, be further from fixation. This assumption is implemented
in the simulations reported below by assuming the following linear
relation between stimulus length and �:

� � �0 � ��stimulusLength, (3)

where �0 and �� are parameters.
Coding uncertainty regarding letter identity. The spatial

coding model also encodes uncertainty about letter identity. Letters
for which there is considerable perceptual evidence in the input are
coded by large letter activities, whereas letters that are only weakly
supported by the perceptual input are coded by small letter activ-
ities. In the case in which there is no ambiguity concerning letter
identity, each letter in the input stimulus is coded by a letter
activity of 1.

Figure 2. A: Spatial coding of cat with position uncertainty and error bars
for each position code. B: Shows a different way of representing Figure
2A. C: Spatial coding of cat with position and identity uncertainty.
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The simultaneous coding of letter position and letter evidence
necessitates a two-dimensional coding scheme. An example with
this scheme is depicted in Figure 2C. Each letter node is associated
with a two-dimensional function. The amplitude of the function
represents the degree of letter evidence; in this example, it is
assumed that there is less perceptual evidence supporting the
middle letter than the two exterior letters.

signalj(p, t) � actj�t�e
�� p�posj

� �2

. (4)

As in Equation 1, the signal function in Equation 4 varies as a
function of position, where the central tendency of the function
represents the veridical letter position (posj), and the width of the
function reflects the degree of letter position uncertainty (note that
the label spatial in Equation 1 has been replaced by signal in
Equation 4). The signal function in Equation 4 also varies over
time (t). This reflects the fact that letter activity changes over time
as initial letter ambiguity is resolved (the equation governing this
change is described below). It would also be plausible to assume
that position uncertainty varies over time (i.e., that uncertainty
decreases with time), but for simplicity the present implementation
assumes a fixed value of � throughout time. The maximum value
of the function in Equation 4 is 1, which occurs when the letter
activity takes its maximum value of 1, �actj(t)�1	 and p � posj.

The Gaussian-shaped functions assumed in the spatial coding
model serve the same function as the Gaussian distributions in
Gomez et al.’s (2008) overlap model. However, in the latter model,
the setting of � affects not only the horizontal extent of the
position-uncertainty function but also the amplitude (height) of the
function. This effect of � is inconsistent with the two-dimensional
coding scheme assumed here, in which the amplitude of the
function represents the degree of letter identity uncertainty (i.e., it
is important in the spatial coding scheme not to confound the
coding of position uncertainty with the coding of letter identity
uncertainty). This point is illustrated by Figure 2C, in which the
amplitude of the letter a function is lower than that of the c and t
functions (and the t function has a slightly lower amplitude than
the c function) because this letter’s identity is supported by weaker
perceptual evidence, although its position is coded just as accu-
rately (i.e., the three functions have equivalent horizontal extents).
Another difference between the uncertainty functions in the two
models is that the scaling of the Gaussian functions in the spatial
coding model ensures that match values vary on a scale from 0 to 1.

Neural implementation of spatial coding. A neural instan-
tiation of the two-dimensional spatial coding scheme was de-
scribed by Davis (2001, 2004; see also Davis, in press). According
to this account, the first dimension—the signal amplitude that is
assumed to encode letter evidence—reflects the mean firing rate of
a population of neurons that contribute to coding a given letter.
The second dimension—the position code—reflects the phase with
which the neurons within this population fire (with the � parameter
perhaps reflecting the noisy distribution of phase values). This
phase coding hypothesis asserts that the position code is encoded
in the phase structure of letter output signals. It is assumed that
letter nodes output signals in a rhythmic fashion, such that these
nodes “fire” with a fixed periodicity, for example, at times t, t �
P, t � 2P, t � 3P, and so on, where p is a constant that represents
the period length. Different letter nodes may fire at different times

within this repeating cycle, in which case they are said to have
different phases. The phase of the waves output by letter nodes is
an index of relative position information: Earlier letters are coded
by waves that are output earlier in the cycle. This is illustrated in
Figure 3, which shows the letter signals output by the letter field
when the input stimulus is the word stop (the right-hand side of the
figure is described in the next section). In this case, waves are
output by the letter nodes that code s, t, o, and p (in that sequence);
the waves are shown at a point in time soon after the p letter node
has output its signal. Note that the wave output by the s node is the
most advanced at this point because it was output first, whereas the
wave output by the t node is the second most advanced, and so on.
As can be seen, there is some temporal overlap among these
waves, reflecting letter position uncertainty.

Construction of the spatial (phase) code. Although a phase
code could be constructed via a purely parallel process, the process
I hypothesize here involves a very rapid serial process that scans
from left to right across position-specific letter channels (in lan-
guages that are read from right to left, the scan would operate in
that direction). This scan comprises a coding cycle that is divided
into a sequence of phases, which correspond to the times within the
cycle when a sequence coding mechanism (the spatial coder) sends
rhythmic excitatory pulses to the letter level. This mechanism
dynamically binds letter identity information with letter position
information. I assume that this process ordinarily begins with an
initial figure–ground segmentation process that determines the
spatial extent of the stimulus and identifies the letter channels
corresponding to the initial and final letters. The identification of
the initial letter channel triggers the beginning of the coding cycle.
The spatial coder sends an excitatory signal to that channel that
causes active letter nodes within the channel to “fire,” that is, to
output signals to the word level. Because this is the start of the
cycle, one can denote the resulting signals as having a phase of 1,
although the absolute phase value is not critical. The spatial coder
then moves its “attention” rightward to the next letter channel, so
that its next rhythmic pulse causes letter nodes within that channel
to fire with a phase of 2. This process continues until the spatial
coder reaches the letter channel corresponding to the final letter.
Thus, the spatial coder coordinates the letter output signals to the
word level, causing active nodes within these channels to fire with
a later phase for letters occurring later in the input stimulus. Davis
(in press) discusses how a neural network architecture known as an

Figure 3. Schematic depiction of match computation at the STOP word
node when the input stimulus is stop. Waves are output by the letter nodes
that code s, t, o, and p (in that sequence). The waves are shown at a point
in time soon after the p letter node has output its signal.
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avalanche network (Grossberg, 1969) could implement the serial
scan. The phase coding account provides a plausible description of
how the theoretical ideas underlying spatial coding and superpo-
sition matching could be implemented within the brain (see Davis,
in press, for further discussion of the neural plausibility of this
implementation). Nevertheless, the success of spatial coding as a
functional account does not depend on this particular neural in-
stantiation being correct.

Superposition Matching

Superposition matching is a method for computing the match
between two spatial codes: one that represents the current input to
the system and another that represents the stored representation of
a familiar word (the template). The template word is coded in the
pattern of weights that connects the word node to the letter level,
with the same spatial orthographic coding scheme that is used to
code the input stimulus (e.g., a weight value of 1 for the first letter
of the template, 2 for the second letter, and so on). The spatial
coding model assumes that there is no uncertainty associated with
the positions of the letters in the stored representation of familiar
words, and hence, letter position is coded by point values rather
than distributions. Lexical matching can thus be conceived of as an
operation involving the comparison of two vectors: a signal vector
representing the bottom-up input signals passed to the word node
and a weight vector representing the template. As an example of
the calculations involved in superposition matching, Table 1A
illustrates the case in which the input stimulus is the word brain
and the template is also the word brain. The first column of the
table lists the letters of the template. The second column of the
table lists the values of the spatial code for the input stimulus (i.e.,
the position-uncertainty functions are centered on these values).
The third column of the table lists the values of the spatial code for
the template. These values are identical to those in the first column
because the stimulus is a perfect match to the template.

The superposition matching algorithm involves three steps.
First, a signal-weight difference function is computed for each of
the letters of the template. The central values of these functions are
shown in the final column of Table 1A, and the signal-weight
difference functions themselves are shown in Figure 4A. Signal-
weight differences of 0 are computed for each of the comparison

letters (this is always the case when the stimulus is identical to the
template), and thus the signal-weight difference functions are
perfectly aligned.

The second step is to combine these signal-weight difference func-
tions by computing a superposition function. The superposition of a
set of signal-weight difference functions is simply the sum of the
functions. The superposition function for the example I have been
discussing is the top function in Figure 4A. Some examples of
superposition functions for a variety of other cases are shown in
Figure 4. For simplicity, these examples assume there is perfect letter
identity information, that is, act(t) � 1.

The final step in the computation of the match value is to divide
the peak of the superposition function by the number of letters in
the template. In the example illustrated in Figure 4A, this division
results in a match value of 1, which is the maximum match value.

A critical theoretical advantage of the superposition function is
that it is sensitive to the relative values rather than the absolute
values of the signal-weight differences. This is illustrated by the
situation in which the input stimulus is a superset of the template,
such as wetbrain (for the template brain). The signal-weight dif-
ference calculations for this stimulus are shown in Table 1B, and
the resulting difference functions are depicted in Figure 4B. As can
be seen, the five signal-weight difference functions are centered on
3 rather than on 0. Although the difference and superposition
functions have been shifted by three positions (reflecting the fact
that the letters of brain have been shifted three positions to the
right in wetbrain), the superposition function has the same shape
and peak, resulting in a match value of 1. This example illustrates
how spatial coding, combined with superposition matching, sup-
ports position-invariant identification.

The examples depicted in Figure 4C–4F illustrate situations in
which the input stimulus is (Figure 4C) an outer-overlap superset
of the template, as in the case of Brahmin (for the template brain);
(Figure 4D) a transposition neighbor of the template (e.g., the
stimulus Brian); (Figure 4E) a nonadjacent transposition neighbor
of the template (e.g., the stimulus slate for the template stale); or
(Figure 4F) a backward anagram (e.g., the stimulus lager for the
template regal). Note that the superposition function becomes
broader and shallower (and consequently, the match value be-
comes smaller) across the latter three examples as the disruption to
the relative positions of the letters increases. In particular, when
the string is reversed, none of the signal-weight difference func-
tions are aligned (see Figure 4F), and the match value is relatively
small (.25).

Implementation of superposition matching. To implement
superposition matching, I assume that the transmission of the
spatial code to the word level goes via an intermediate set of nodes
called receivers. For example, the cat word node is connected to
separate receivers for the letters c, a, and t. These nodes compute
signal-weight difference functions and output the result to the
word node. Receiver nodes also serve the function of resolving the
competition among the different outputs emanating from the letter
level, as described below.

The phase coding hypothesis suggests that the connections
between letter nodes and receiver nodes should be coded by a
special kind of weight. Rather than a conventional weight, which
multiplies the incoming input signal, these connections function as
delay lines, which shift the phase of incoming input signals. This
function is mathematically equivalent to the operation of comput-

Table 1
Examples of Signal-Weight Difference Calculations Required for
Superposition Matching

Input Stimulus code Template code Difference

A. brain
B 1 1 0
R 2 2 0
A 3 3 0
I 4 4 0
N 5 5 0

B. wetbrain
B 4 1 3
R 5 2 3
A 6 3 3
I 7 4 3
N 8 5 3
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Figure 4. Examples of superposition matching. Figures A–F illustrate situations in which the input stimulus is
(A) identical to the template word, (B) a final overlap superset of the template, (C) an outer-overlap superset of
the template, (D) a transposition neighbor of the template, (E) a nonadjacent transposition neighbor of the
template, or (F) a backward anagram. TL � transposed letter.
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ing a signal-weight difference. The mathematical operation of
superposition is realized by assuming that word nodes integrate the
inputs coming from each of their receivers over relatively narrow
temporal windows. In effect, word nodes act as temporal coinci-
dence detectors. When there are few inputs to the node or when
multiple inputs are out of phase with each other (as in the case of
reversal anagrams like lager–regal), the summed input is relatively
small, but when there are multiple inputs that are in phase (i.e.,
when they are temporally coincident, arriving at the word node at
the same time), the summed input is relatively strong.

Formal description of match calculation. The following
equations formalize the above description. I begin by considering
a simplification, in which there is just one receiver node for each
letter of the template, and this node receives input from just one
letter node (below, I consider the more realistic case in which there
are multiple receiver nodes for each letter of the template, which
is required to handle repeated letters). Each of these receiver nodes
is connected to the letter level by a delay line with value delayri,
where the subscript i indicates that the receiver is attached to the
ith word node, and the subscript r is used to index the different
receivers attached to this node (e.g., when the template is cat, the
subscript r takes on values of 1, 2, or 3); in Equation 5 below, r is
also used to index the letter node to which the receiver is attached.
The value of delayri corresponds to the expected ordinal position
of the corresponding letter within the template. (I note in passing
that it would be possible to use complementary coding, in which
the value of delayri is determined by subtracting the expected
ordinal position of the letter from some fixed constant. The delay
value would then be added rather than subtracted in Equation 5,
which has a more ready physical interpretation. Nevertheless,
exactly the same match values would result).

The receiver function is calculated by subtracting this delay
value from the output signal of the letter node to which it is
connected:

receiverri � p, t� � spatialr � p, t� � delayri. (5)

The superposition function is found by summing across the re-
ceiver functions for each of the template’s receivers:

superposi� p, t� � �r
receiverri� p, t�. (6)

The value of matchi(t) is then

matchi�t� � � 1

leni
� superposi�resPhasei�t�, t	, (7)

where leni is the length of (i.e., number of letters in) the template,
and resPhasei(t)—the resonating phase—is defined as follows:

resPhase i�t� � p� such that Si� p�, t� � max�Si� p, t�	. (8)

That is, the resonating phase corresponds to the value of the
signal-weight difference where the superposition function is at its
peak; for example, for the situation depicted in Figure 4B, the
resonating phase is 3. Basing matchi(t) on the maximum instanta-
neous strength of the incoming superposition signal at time t
implies that word nodes function as temporal coincidence detec-
tors, as described earlier.

Dealing With Repeated Letters

A critical issue that must be addressed in the description of
spatial coding is how to code stimuli that contain letter repetitions.
Handling repeated letters requires that each letter should be coded
by multiple letter nodes. To see why, consider the alternative
whereby there is just a single letter node for each of the letters of
the alphabet. In this scenario, coding any word that contained a
repeated letter (e.g., book) would necessitate being able to simul-
taneously code the positions of two (or more) letters with a single
letter node, which is not possible in a spatial coding scheme (as
Davis, 1999, notes, attempting to do so would interfere with
veridical coding of letter order).

Thus, rather than assuming a single receiver node for each letter of
the template, it is necessary to assume there are multiple copies, or
clones, of each receiver node. It is critical that the word node treats
each of these different receivers as functionally equivalent; this is the
principle of clone equivalence. That is, each receiver is equally
capable of signaling to a word node the presence of a letter string that
includes that letter. For example, the word node that codes stop
activates in response to any set of s, t, o, and p receivers from which
it receives temporally coincident (phase-aligned) signal functions.

The receiver nodes associated with a particular word node are
organized into separate banks; that is, there is one bank of receiver
nodes for each of the letters in the template. The present imple-
mentation assumes that there are position-specific letter channels
(see Figure 6) and that each bank contains one receiver node for
each letter channel, so that each of the nodes within a bank
receives input from a corresponding letter node within a particular
channel. For example, the cat word node is connected to three
banks of receivers (for the letters c, a, and t, respectively), with the
a bank containing one node that receives inputs from a in Channel
1, another node that receives inputs from a in Channel 2, and so on.
I note in passing that it is also possible to implement receiver
banks that have far fewer receivers within each bank (e.g., four is
sufficient to code all English words).

The receiver function computed by an individual receiver within
bank b of the ith word node is calculated in the same way as before,
but the notation includes an additional subscript:

receiverbci� p, t� � signalcj� p, t� � delaybi. (9)

The key difference between Equation 5 and Equation 9 is that the
latter equation embodies the possibility that multiple receivers could
activate for the same letter of the template. In particular, this situation
arises when the stimulus includes one or more repeated letters.

Interactions Between Receiver Nodes

To deal with this situation appropriately, the model assumes that
there are competitive-cooperative interactions between and within
receiver banks. Specifically, there is winner-take-all competition
between the receivers within each bank and between receivers in
different banks that code separate occurrences of the same letter,
and there are cooperative signals between receiver nodes that are
in phase with each other (i.e., nodes that have computed equivalent
signal-weight differences). There are also cooperative signals be-
tween receiver nodes that are in phase with each other, that is,
nodes that have computed equivalent signal-weight differences.
These competitive–cooperative interactions are weighted by letter
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activity; that is, clones that receive strong letter signals carry
greater weight than those that receive weak letter signals. The
effect of these competitive-cooperative interactions is to select (at
most) one winner within each bank (it is possible for a bank to
contain no winners; for example, this occurs when the input
stimulus does not contain the letter represented by that bank). One
can define winningReceiverbi to denote the particular receiver that
activates in bank b. Equation 6 is then modified to become

superposi� p, t� � �b
winningReceiverbi� p, t�. (10)

When neither the stimulus nor the template contain repeated let-
ters, it is straightforward to determine the winning receiver (it is
the only receiver activated in the bank), and the situation is the
same as described in Equations 5–8. The principle of clone equiv-
alence implies that it does not matter which of the receivers in a
bank activates for a given letter.

If the input stimulus has repeated letters, there will be at least
one bank in which two or more receiver nodes become active. The
identity of the winning receiver within this bank depends on the
pattern of competitive and cooperative interactions between the
full set of receivers. To illustrate, Figure 5A shows the signal-
weight differences computed when the input stimulus is the word
stoop and the template is also the word stoop. These differences
are shown in a matrix, in which the columns of the matrix repre-
sent the five banks of receivers (corresponding to the five letters of
the template) and the rows represent the different receivers within
each bank, each of which receives input from a separate letter
channel (only the first five receivers are depicted, as this is
sufficient to show all of the critical functions). For the letters s, t,
and p, the computations are straightforward. Only one letter clone
in each bank receives a positive output, and the signal-weight
difference is equal to 0 in each case; that is, these three letters
occur in their expected position. For the remaining two comparison

letters (the repeated letter o), there are two active receivers in each
bank. That is, the first o in the stimulus stoop could represent the
first or the second o in the template and likewise for the second o
in the stimulus. For the observer, it is self-evident that the third
letter in the stimulus corresponds to the third (rather than the
fourth) letter of the template. The network determines this on the
basis of the competitive–cooperative reactions among receivers.
The presence of five receivers that compute a signal-weight dif-
ference of 0 results in this being the resonating phase (see Equation
8). As a consequence of cooperative signals between these phase-
aligned receivers, the competition between o receivers is won by
those nodes that share the resonating phase, that is, Clone 3 in the
first o bank (Bank 3), and Clone 4 in the second o bank (Bank 4).
The winning receivers are indicated in the figure by the differences
shown in bold font. Here, the set of five equivalent signal-weight
differences will result in a match value of 1, as is appropriate for
a stimulus that perfectly matches the template.

The present approach avoids a problem with alternative methods of
dealing with repeated items (e.g., Bradski, Carpenter, & Grossberg,
1994; Davis, 1999) that do not obey the principle of clone equiva-
lence. Such methods do not explain how the embedded word stop can
be identified in the stimulus pitstop because the stop node attends to
the first occurrences of p and t in the stimulus and therefore sees the
input as p ts o By contrast, the competitive–cooperative interactions
among receivers described here ensure that it is the second p and t in
pitstop that activate the stop template.

Another issue relating to how the model handles repeated letters
arises when the template, and not the stimulus, contains repeated
letters. An example of this situation is depicted in Figure 5B. Here,
the template is again the word stoop, but the stimulus is the word
stop. Although the stimulus contains only a single o, signal-weight
differences are computed in both of the o receiver banks. The
problems, then, are (a) how the network prevents the single oc-

Figure 5. Illustration of computations performed by receiver nodes associated with the STOOP word node. A:
Input stimulus � stoop. B: Input stimulus � stop.
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currence of the letter o from doing double duty and contributing to
both of the o receiver banks and (b) if it avoids the double-duty
problem, how it chooses the correct receiver bank, so as to opti-
mize the match value. These problems can be resolved by compe-
tition between receiver banks, which implements a one-letter, one-
match rule that restricts stimulus letters from participating in more
than one signal-weight match. The resonating phase for this set of
signal-weight differences is 0 (there are three differences of 0 versus
two differences of �1). Consequently, the receiver in the first o bank
(Bank 3) attracts stronger cooperative signals than does the receiver in
the second o bank (Bank 4), and this allows it to suppress the latter
node. The assumption here is that there is winner-take-all competition
not only between the receivers within each bank but also between
receivers in different banks that receive inputs from the same letter
node (e.g., Clone 3 in Bank 3 sends inhibition to Clone 3 in Bank 4
but not to Clone 4 in Bank 4). This competition between receivers
prevents the single occurrence of the letter o from activating both o
receiver banks. The four winning receivers are once again shown in
bold, and the resulting signal weight differences (0, 0, 0, and �1) give
rise to a match value of .72.

The present implementation of the model makes the simplifying
assumption that the competitive–cooperative interactions between
receivers occur instantaneously. In practice, however, a few cycles
of processing may be required for within and between-bank com-
petition to resolve potential ambiguities in the case of words with
repeated letters. This additional processing time may explain the
inhibitory effect of repeated letters on lexical decision latency
reported by Schoonbaert and Grainger (2004).

Dynamic End-Letter Marking

The match calculations described thus far assign equal weight to
all serial positions. However, there are various findings pointing to
the special status of exterior letters, especially the initial letter.
Transpositions that affect the exterior letters have a more disrup-
tive effect on word identification than do transpositions of interior
letters (e.g., Bruner & O’Dowd, 1958; Chambers, 1979; Holmes &
Ng, 1993; Perea & Lupker, 2003a; Schoonbaert & Grainger, 2004;
Rayner et al., 2006; White et al., 2008). Furthermore, participants
are able to report the exterior letters of briefly presented letter
strings with relatively high accuracy but make frequent location
errors for interior letters (e.g., Averbach & Coriell, 1961; Merikle,
Lowe, & Coltheart, 1971; Mewhort & Campbell, 1978).

Different models attempt to accommodate this aspect of ortho-
graphic input coding in different ways, that is, by assuming special-
ized end-letter nodes (Jacobs, Rey, Ziegler, & Grainger, 1998; Whit-
ney, 2004), a smaller position-uncertainty parameter for the initial
letter (Gomez et al., 2009), or specialized receptive fields for initial
letter nodes (Tydgat & Grainger, 2009). The approach taken here
shares similarities with each of the above mechanisms, as well as with
recent models of serial recall (e.g., Farrell & Lelièvre, 2009).

Dynamic end-letter marking is an extension of the basic spatial
coding model to accommodate the special status of exterior letters.
Conceptually, this mechanism is straightforward: In addition to
tagging each letter with a position code, the initial and final letters
are explicitly marked as such; for example, the s and p in stop are
tagged as the initial letter and the final letter, respectively. End-
letter marking is envisaged as a process that complements spatial

coding, providing an additional means of constraining the set of
potential lexical candidates.

Exterior letter banks. End-letter marking is implemented in
the spatial coding model via the assumption of specialized letter
representations that explicitly (but temporarily) encode the exterior
letters of the current stimulus. Thus, there is an initial letter bank
that codes the initial stimulus letter and a final letter bank that
codes the final stimulus letter (see Figure 6). Both of these banks
contain one node for each letter of the alphabet (the figure shows
only a subset of the nodes). There are excitatory connections
between the two exterior letter banks and the word level; the
weight of the connection from the jth node within the initial letter
bank to the ith word node is denoted wji

initial, whereas the weight of
the connection from the jth node within the final letter bank to the
ith word node is denoted wji

final. It is assumed that these connections
are pruned during the course of learning so that, ultimately, each
word node has a positive connection to exactly one node in the
initial letter bank and one node in the final letter bank.

Thus

wji
initial � � 1

leni � 2
if templatei,1 � j

0 otherwise
, (11)

and

wji
final � � 1

leni � 2
if templatei,leni � j

0 otherwise
. (12)

For example, Equation 11 implies that the weights from the initial
letter bank to the cat word node are all 0 except for the connection
from the c letter node in this bank. Likewise, Equation 12 implies

Figure 6. The spatial coding model. Figure depicts some of the nodes that
are activated when the input stimulus is cat; only a subset of nodes and
connections are shown.
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that the weights from the final letter bank to the cat word node are
all 0, except for the connection from the t node within this bank.

The value of
1

leni � 2
for the positive weights reflects a simplify-

ing assumption of weight normalization and weight equivalence
(recall that leni represents the length of the template). That is, the
weights to the ith node are normalized such that the incoming
weights sum to 1 and so that all positive connections are of
equivalent strength. The same assumption implies that the weight
from receiver bank b to the ithword node is

wbi �
1

leni � 2
. (13)

For example, the cat word node receives five positive connections
(two from the exterior letter banks and one each from the c, a, and t
banks), and each of these connections has a weight of 1/5 � .2. The
process by which these weights are learned is not modeled here, but
this learning can be achieved quite readily with a Hebbian-type
pattern learning algorithm (e.g., Grossberg, 1973). In alternative vari-
ants, the weights wbi could vary across receiver banks, so that greater
weights are assigned to letters that are more perceptually salient (e.g.,
the initial letter) or more informative with respect to lexical identity
(e.g., consonants as opposed to vowels).

The activation of nodes within the exterior letter banks can be
implemented as part of the function of the spatial coder. As noted
above, word identification is assumed to begin with an initial
figure–ground segmentation process that determines the spatial
extent of the stimulus. When the letter channel corresponding to
the initial letter is identified, a signal is sent to the initial letter
bank, briefly opening a gate so that this bank can receive letter
input signals. Likewise, when the letter channel corresponding to
the final letter is identified, a signal is sent to the final letter bank,
briefly opening a gate so that this bank can receive letter input
signals. The upshot of this mechanism is that the initial letter bank
temporarily mirrors the activity of the letter channel that corre-
sponds to the initial letter of the current stimulus, and the final
letter bank temporarily mirrors the activity of the letter channel
corresponding to the final letter. Thus, the word identification
system holds a temporary store of the initial and final letters of the
stimulus from quite early in the identification process.

Incorporating exterior letter feedback in the match calcula-
tion. The incorporation of the signals from the exterior letter
banks into the match calculation necessitates a slight modification
to the previous equation. The revised equation is of the form

matchi�t� � receiverOutputi�t� � extLetterMatchi�t�, (14)

where

receiverOutputi�t� � �b
wbiwinningReceiverbi(resPhasei, t), (15)

and the weights wbi are defined as in Equation 13. The exterior
letter match is simply the dot product of the exterior bank letter
activities with the corresponding weights to the word node:

extLetterMatchi�t� � �j
wji

initialactj
initial(t)

� �j
wji

finalactj
final(t). (16)

The inclusion of the normalized weights in Equations 15 and 16
ensures that the match values arising from Equation 14 are con-
strained to lie between 0 and 1 (and thus explicit division by leni

is unnecessary). Thus, Equations 3 through 16 define how the
model assigns a spatial code and how it computes the match
between spatial codes representing the stimulus and the template
for a familiar word. These equations involve only two parameters,
which determine how letter position uncertainty varies as a func-
tion of stimulus length (see Equation 3).

Evaluating the Match Values Produced by the Model

The set of equations presented above makes it possible to
compute a match value representing orthographic similarity for
any pair of letter strings. Table 2 lists match values for various
types of orthographic similarity relationships, as computed by the
spatial coding model with and without end-letter marking. Each
example assumes a five-letter template word, though the input
stimulus may contain fewer or more letters. As can be seen, the
models with and without end-letter marking make quite similar
predictions, but the addition of end-letter marking results in
smaller match values for stimuli in which the end letters differ
from the template and slightly larger values for stimuli with
exterior letters that match those of the template.

The relative ordering of match values for the different forms of
orthographic similarity relations shown in Table 2 is consistent
with some general criteria that were proposed by Davis (2006), on
a basis of a review of orthographic similarity data; for example,
nearly adjacent transposition neighbors like slate and stale are
more similar than double-substitution neighbors like smile and
stale, but less similar than single-substitution neighbors like scale
and stale). However, to properly evaluate the model it is necessary
to derive predictions that are directly relevant to the dependent
variables measured in experiments on orthographic input coding.
To this end, I next describe how the spatial coding and superpo-
sition matching equations can be embedded within a model of
lexical selection and how this model can simulate lexical decision.

Modeling Lexical Selection

Within the localist, lexicalist framework adopted here, lexical
selection involves competition between lexical representations.

Table 2
Examples of Match Values for Spatial Coding Models With and
Without End-Letter Marking

Type Stimulus Template
Without

ELM
With
ELM

Identity (12345) table TABLE 1.00 1.00
Initial superset (12345d) tablet TABLE 1.00 .86
Final superset (d12345) stable TABLE 1.00 .86
Outer superset (123d45) stable STALE .83 .88
Adjacent TL (12435) trail TRIAL .80 .86
Neighbor (d2345) teach BEACH .80 .71
Neighbor (1d345) scale STALE .80 .86
Neighbor once removed (13d45) sable STALE .70 .79
Nonadjacent TL (14325) slate STALE .62 .73
Double replacement (1dd45) smile STALE .60 .71
Reversed (54321) lager REGAL .22 .16

Note. ELM � end letter marking; TL � transposed letter.
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Evidence supporting such lexical competition has been reported by
Bowers, Davis, and Hanley (2005b) and Davis and Lupker (2006).
The most well known model implementing this form of lexical
selection is the IA model. As noted earlier, the spatial coding
model retains many of the features of the IA model, including that
model’s localist letter and word representations, hierarchical pro-
cessing, lateral inhibition, top-down feedback, and frequency-
dependent resting activities. However, the orthographic input cod-
ing scheme and lexical matching algorithm of the original model
are replaced by the spatial coding and superposition match algo-
rithm described above.

Overview of Differences Between the Spatial Coding
Model and the IA Model

The main differences between the spatial coding model and the
original IA model are the input coding scheme and the way in
which input stimuli are matched against word templates. However,
there are also some other differences between the models that
affect the present simulations. The original IA model was designed
to handle words of a fixed length (four letters). When words of
varying length are included in the vocabulary, there can be quite
intense competition between subsets and supersets, for example,
between words like come and comet. If the IA model’s processes
of lexical selection are not modified, it often fails to select the
correct target word due to competition from subsets and/or super-
sets. As described below, the spatial coding model introduces two
mechanisms to overcome this problem. There are also some dif-
ferences between the models with respect to (a) the way word
frequency influences word activation, (b) the nature of activity
decay, (c) the way in which incompatible information in the
stimulus inhibits word node activity, and (d) the nature of top-
down feedback. As is shown below, the latter changes to the model
have a small, positive impact on its ability to explain the data
simulated in the second part of this article, although a good fit to
the data can be obtained even without introducing these changes.
That is, it is the input coding and matching assumptions that have
been described already that are critical to explaining orthographic
similarity data.

Architecture of the Model

The architecture of the spatial coding model is shown in Fig-
ure 6. The model is a localist neural network model: Each node
within the model corresponds to a unique representation (e.g., a
letter feature, a letter, or a word). As in the IA model, there are
separate representational levels for letter features, letters, and
words, and there are connections between nodes in adjacent levels.
In addition, there are representational levels for coding exterior
letters and for coding stimulus length. Nodes within the latter two
levels receive inputs from the letter level and project connections
to the word level. Furthermore, the model incorporates a spatial
coding mechanism that coordinates the transmission of signals
from the letter level to the word level.

The nodes within the feature and letter levels are divided into
separate subsets representing different position-specific channels.
Whereas the original IA model consisted of four channels, the
present implementation includes 12. In other respects, these com-
ponents of the model are equivalent to the original IA model. The

representations at the letter level are treated as abstract letter
identities, although in practice the Rumelhart & Siple (1974) font
that is used to code letter features can only code uppercase letters.
Although more plausible accounts of the features that readers use
to identify letters are now available (e.g., Courrieu, Farioli, &
Grainger, 2004; Fiset et al., 2008; Pelli, Burns, Farrell, & Moore-
Page, 2006), McClelland and Rumelhart’s (1981, p. 383) assump-
tion that “the basic results do not depend on the font used” seems
like a reasonable starting point.

Nodes at the word level are not position-specific. The only
respect in which the word level in the spatial coding model differs
from the IA model is the assumption of the intermediate receiver
nodes that connect letter nodes to word nodes (these are not shown
in Figure 6). As described above, the purpose of these nodes is to
compute signal-weight difference functions, resolve the competi-
tion among the different outputs emanating from the letter level,
and output the result to the word node.

As in the word level of the IA model, a crucial aspect of
processing is that words compete with each other via lateral
inhibition: This is the means by which the model selects the
word node (or nodes) that best matches (match) the input
stimulus. That is, the node that receives the greatest input from
the letter level will dominate the activity at the word level and
suppress the activity of competing word nodes. As shall be seen
below, the presence of competitive interactions in the lexicon
has important implications for the interpretation of the masked
priming effects that have been the most common source of
evidence in recent studies of letter position coding and lexical
matching. As described below, the model implements lateral
inhibition by means of the summation nodes shown at the top of
Figure 6. This appears to be a neurally plausible method and is
the most viable method of implementation from a modeling
perspective (assuming direct lateral inhibitory connections be-
tween each pair of word nodes would require roughly 109

inhibitory connections for the current lexicon, versus approxi-
mately 30,000 in the present implementation).

Figure 6 also shows the exterior letter banks, which explicitly
code the initial and final letters of the stimulus. Both of these banks
contain one node for each letter of the alphabet (the figure shows
only a subset of these nodes). There are excitatory connections
between the two exterior letter banks and the word level (e.g., the
C node in the initial letter bank sends an excitatory connection to
the CAT word node, as seen in the figure).

Finally, the spatial coding model includes a stimulus length
field, shown on the left-hand side of Figure 6 (again, the figure
shows only a subset of the nodes within the field). The function of
the nodes within this field is to explicitly code the length of the
current input stimulus. Nodes of this type were previously pro-
posed by Smith, Jordan, and Sharma (1991) to extend the IA
model to processing words of varying length. As will be seen
below, this assumption is not the only way to handle competition
between words differing in length. Nevertheless, information
about stimulus length presumably becomes available quite early in
processing, based on both total letter level activity and independent
visual input signals, and thus it seems plausible that this informa-
tion is exploited by the visual word recognition system. Indeed,
during normal reading, the visual system presumably exploits an
estimate of the length of the next word to plan the saccade to that
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word so that the eyes land close to the preferred viewing location
(Rayner, 1979).

How Signals Flow Through the Model

Stimuli are presented to the model by setting the binary activ-
ities at the feature level. Active features then send excitatory
signals to all of the letter nodes containing that feature and inhib-
itory signals to all of the letter nodes not containing that feature;
these inputs result in the activation of letter nodes. The spatial
coding mechanism then coordinates the output of letter signals to
the word level, dynamically tagging these letter signals with a
phase code that indicates relative letter position. These signals are
intercepted by receiver nodes, which shift the phase of the signals
(thereby implementing the previously described signal-weight dif-
ference computation) and resolve competition due to repeated
letters. The signals output by receivers are then integrated at word
nodes, which implement the superposition matching algorithm.
Inputs from the exterior letter banks also contribute to the match
value computed by word nodes. In addition to the match value,
word nodes also compute a term that represents the mismatch
between the input stimulus and the template. The net input to the
word node is computed by combining these bottom-up match and
mismatch signals with lateral inhibitory and excitatory signals, as
well as length (mis)match signals from the stimulus length field.
This net input drives a differential equation representing changes
in activity over time. The other factors that influence this activity
equation are exponential decay and a term that reflects the fre-
quency of the word coded by the word node (thus high frequency
words become activated more rapidly than low frequency words).
When the stimulus is a word, the large match value computed by
the node that codes that word will ensure that it soon starts to
become more activated than do the others, and lateral inhibition
within the word level then allows this word node to suppress its
competitors. The time that it takes for the dominant word node to
exceed the identification threshold is the critical factor affecting
the speed of yes responses when the model simulates the lexical
decision task. When the stimulus is not a word, the model will
usually respond no, but the time that it takes to make this response
will depend on the extent to which the stimulus activates nodes at
the word level (i.e., very wordlike nonwords will take longer to
reject than less wordlike nonwords).

Resting activities. Each node has a resting activity to which it
decays in the absence of positive input, and this resting activity
serves as the starting activity of the node at the beginning of each
trial. The resting activity of letter nodes is assumed to be zero. The
resting activity of word nodes was offset below zero as a function
of log word frequency. The formula relating word frequency to
word node resting activity is as follows:

rest i � FreqScale� log10�freqi� � MaxF

MaxF�MinF �, (17)

where MaxF represents the log frequency of the most frequent
word in the model’s lexicon (the word the) and MinF represents
the log frequency of the most frequent word(s) in the model’s
lexicon. Equation 17 implies that the node coding the word the has
a resting activity of zero and that nodes coding the least frequent
words in the model’s lexicon (those with frequencies of 0.34 per
million words in the CELEX corpus, such as behemoth) have the

lowest resting activity, determined by the parameter FreqScale.
The latter parameter was set to .046 (i.e., the node coding behe-
moth has a resting activity of �.046), following the original IA
model (see McClelland & Rumelhart, 1988).

Activation dynamics. The activation dynamics of letter and
word nodes are governed by an activity equation that specifies how
node activity should change on each cycle of processing. This
activity equation is the same for letter and word nodes and takes
the following form:

act i�t � 
t� � acti�t� � shunti�t��neti�t�	 � decayi�t�

� FreqBias(resti). (18)

This equation says that the instantaneous change in a node’s
activity depends on four factors: (a) the current activity (acti), (b)
the net input to the node (neti), (c) the decay in node activity
(decayi), and (d) a bias input that favors higher frequency words.
The current activity influences the instantaneous change in activity
by moderating the effect of the net input, as can be seen in the
following equation for shunti:

shunt i�t� � �1 � acti�t� if neti�t� � 0
acti�t� � ActMin otherwise . (19)

The combination of Equations 18 and 19 implies that the effect of
the net input decreases as the node activity approaches its maxi-
mum value (in the case of positive net input) or its minimum value
(in the case of negative input). Positive inputs drive node activity
toward a maximum of 1, whereas negative inputs drive node
activity toward a minimum of ActMin; the parameter ActMin is set
to �.2, as in the original IA model.

The third factor in Equation 18 represents exponential decay.
This term is modified slightly from the original IA formulation so
that node decay is match dependent. Nodes that match the current
input stimulus well do not decay, whereas node activity decays
rapidly for nodes that do not match the current stimulus well. For
this purpose, the node’s current match value, which varies between
0 and 1, is compared with a parameter called DecayCutoff. Thus,

decay i�t� � 0, (20a)

when matchi(t) � DecayCutoff, and

decay i�t� � DecayRate�acti�t�	, (20b)

when matchi(t) � DecayCutoff, where DecayRate is a parameter
that controls the speed of the exponential decay in a node’s
activity. The computation of match values is described below.

The final factor in Equation 18, the FreqBias(resti) term, is a
negative input that effectively acts as a drag on the activation of
low frequency words (recall that the maximum value of resti is 0)
but has no effect on letter nodes (because all letter nodes are
assumed to have zero resting activities). The introduction of dis-
tinct parameters for FreqBias and DecayRate differentiates the
model from the IA model. When FreqBias is set equal to Decay-
Rate and DecayCutoff is set to 1, Equation 20b always holds, and
Equation 18 can be rewritten

act i�t � 
t� � acti�t� � shunti�neti�

� DecayRate�acti�t� � resti	, (21)
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which is identical to the original IA model. In the case where the
net input is 0, the decay term in Equation 21 implies that node
activity decays exponentially toward the node’s resting activity, at
a rate determined by DecayRate.

Computation of net input to letter nodes. Having explained
the various components of the activity equation—its shunting
term, exponential decay, and frequency bias—all that remains is to
explain how the net input term is computed. In the case of letter
nodes, there are two sources of input to the jth letter node in
channel c at time t:

netcj�t� � featureLetterInputcj�t� � wordLetterInputcj�t�. (22)

The top-down wordLetterInput signal is similar to the IA formu-
lation, but I delay detailed description of this component until the
activation of word nodes by letter nodes has been described. The
bottom-up featureLetterInput signal is computed in exactly the
same way as in the original IA model, by taking the dot product of
the feature activation vector and the feature-letter weight vector for
that letter node; that is,

featureLetterInputcj�t� � �k
wkjfeatureck�t�, (23)

where featureck(t) is the binary activity of the kth letter feature node
in channel c at time t, and wkj is the weight connecting that feature
node to the jth letter node. The value of this weight depends on the
compatibility of the feature with the letter and the parameters �FL

and 
FL, which represent the strength of feature-letter (FL) exci-
tation and inhibition, respectively. Compatible features and letters
(e.g., the feature representing the presence of a top horizontal bar
and the letter t) are connected by an excitatory connection with
strength wkj � �FL, and incompatible features and letters are
connected by an inhibitory connection with strength wkj � �
FL.

Letter nodes can compute a match value by counting the pro-
portion of positive feature signals they receive, or equivalently, via
linear transformation of the featureLetterInput signal; that is,

match �cj��t� �
featureLetterInputcj�t� � 14
FL

14��FL � 
FL�
. (24)

Equation 24 results in a match value that lies between 0 and 1 (the
constant 14 reflects the number of letter features in the Rumelhart-
Siple font). This match value can then be compared with the
DecayCutoff parameter, as described in Equation 20.

Computation of net input to word nodes. The net input to
the ith word node can be decomposed into four sources, represent-
ing (a) the match between the input stimulus and the node’s
template, (b) a measure of the mismatch between the input stim-
ulus and the node’s template, (c) lateral inputs from within the
word level, and (d) feedback from the stimulus length field (LW �
letter-word):

net i�t� � �LW�matchi�t�	Power � mismatchi�t� � wordWordi�t�

� lenMismatchi�t�. (25)

In practice, word nodes should also receive feedback from other
sources, such as phonological and semantic feedback. These inputs
are not incorporated in the present implementation but could
readily be added to the net input equation.

The computation of matchi—the first term in Equation 24—has
already been explained. This match value is raised to a power (in
order to contrast-enhance the input) and weighted by the parameter
�LW. I next describe how the remaining components of Equation
25 are computed.

Mismatch inhibition. The main source of bottom-up input to
word nodes is the match value, which measures how well the
current input stimulus matches the learned template. However,
another (weak) source of bottom-up input to word nodes is a
negative input that discounts evidence for a given word on the
basis of stimulus letters that are incompatible with that word. This
input helps to further constrain the set of potential lexical candi-
dates, while avoiding problems associated with letter-word inhi-
bition (e.g., Davis, 1999). The key difference between mismatch
inhibition and the letter-word inhibition in the original IA model
and related models (e.g., Coltheart et al., 2001; Grainger & Jacobs,
1996) is that mismatch inhibition takes account of the presence of
mismatching letters but not the identity of these mismatching
letters (and thus does not require any inhibitory letter-word con-
nections). A word node is able to estimate the number of mis-
matching letters in the stimulus by subtracting a count of the
number of letters that contribute toward the match with the tem-
plate from the number of letters that are in the stimulus. The
number of letters that contribute toward the match corresponds to
the number of winning receivers, whereas total activity at the letter
level (or activities at the stimulus length field) can be used to
estimate the number of letters in the stimulus. In practice, the latter
value is capped so that it does not exceed the number of letters in
the template. Thus, the equation for computing mismatch inhibi-
tion is

mismatchi � 
LW�min�stimulusLength, leni� � Ci	,

(26)

where Ci is the number of matching letters (i.e., the count of the
positive signals from the receiver banks to the ith word node) and

LW is a parameter weighing the influence of mismatch inhibition.
The cap on the larger value in Equation 26 is to ensure that
mismatch inhibition does not interfere with the recognition of
familiar lexical constituents in complex words. For example, if the
stimulus is wildcat, the mismatch is 3 (the number of letters in the
template) minus 3 (the number of winning receivers) equals 0,
rather than 7 (the number of letters in the stimulus) minus 3. In
cases like this, the letters in wild are additional letters rather than
mismatching letters, so it is appropriate to compute a 0 mismatch.
Equation 26 also implies that mismatch inhibition cannot help to
distinguish addition/deletion neighbors like widow–window, al-
though it does help to distinguish substitution neighbors like trail
and trawl. Furthermore, because the estimate of the number of
letters that contribute toward the match is not dependent on
position-specific coding, mismatch inhibition does not require that
letters be in the “correct” position to avoid inhibiting a word node.
For example, the G and D in the transposed-letter nonword jugde
activate winning nodes at the receiver banks for the judge word
node and thus do not count as mismatching letters. Note, however,
that some anagrams will give rise to mismatch inhibition because
the signal-weight difference functions for some constituent letters
are so distant from the resonating phase. For example, assuming
there is no extreme letter position uncertainty, the letters e and j in
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eudgj do not activate winning nodes at the receiver banks for the
judge word node, because they are too far from the resonating
phase (which in this case is 0); thus, the asymptotic value of
mismatchJUDGE is equal to 0 when the input stimulus is judge or
jugde but is equal to 2 when the input stimulus is eudgj.

Lateral excitatory and inhibitory influences on word node
activation. The wordWordi component in Equation 25 has two
components, one that is inhibitory, representing lateral inhibition
at the word level, and one that is excitatory, representing the
self-excitatory signal output by word nodes with positive activi-
ties:

wordWord i�t� � � 
wwwordInhibi�t�

� �wwwordExciti�t�. (27)

The relative contributions of these two components is weighted by
the parameters �
ww and �ww.

Word–word inhibition. The wordInhibi component in Equa-
tion 27 is computed in essentially the same way as in the IA model,
in that it is calculated by summing across all of the positive word
node activities (only active word nodes output a lateral inhibitory
signal). The only difference is that lateral inhibitory signals in the
spatial coding model are assumed to be length dependent. This
assumption conforms to what Grossberg (1978) refers to as mask-
ing field principles. According to these principles, nodes that code
longer words output stronger lateral inhibitory signals than nodes
that code shorter words and are also assumed to dilute incoming
lateral inhibitory inputs to a greater extent than nodes that code
shorter words. These assumptions are implemented in the spatial
coding model through a masking field weight that increases with
the length of the template word. The masking field (mf) weight for
the ith word node is

mf i � 1 � �leni � 4�wmf. (28)

Equation 28 implies that the masking field weight equals 1 for
words of four letters, which facilitates comparison with the orig-
inal IA model. The parameter wmf was set so that nodes that code
seven-letter words output lateral inhibitory signals that are approx-
imately twice as strong as those output by nodes that code four-
letter words (e.g., mfPLANNER � 2.05 versus mfPLAN � 1).

Lateral inhibition is implemented by assuming the existence of
a summation node that computes the total word inhibition signal.
This approach avoids the need to assume specific inhibitory con-
nections between each pair of word nodes. Figure 6 illustrates how
this summation works for a subset of word nodes. Nodes that code
words of different lengths output signals to different summation
nodes, so that there are separate activity totals Tlen for each
different word length (len). For example, the T3 summation node
receives inputs from the cat and rat word nodes but not from nodes
that code longer words such as cart, chart, or carrot. These signals
are weighted by the masking field weight, so that longer words
output a greater inhibitory signal. The total input to each of the
length-dependent summation nodes can be written as follows:

TLen�t� � �i��leni�Len�
mfi�acti�t�	�. (29)

As can be seen in Figure 6, each length-dependent summation
node sends a signal to a grand summation node. The total input to
the latter node is

wordSum�t� � �Len
TLen�t�. (30)

This value is then output by the grand summation node as an
inhibitory signal to the word level. Following masking field prin-
ciples, this inhibitory input is diluted at the word node according
to the length of the template word. Thus,

wordInhib i�t� �
wordSum�t�

mfi
. (31)

That is, an inhibitory input of a fixed magnitude has approximately
twice as much impact on nodes that code four-letter words as on
nodes that code seven-letter words.

Word–word excitation. The wordExciti component in Equa-
tion 27 represents the self-excitatory signal that a word node sends
itself. Self-excitation is a common component of competitive
networks, in which it can serve various adaptive functions (e.g.,
Carpenter & Grossberg, 1987; Davelaar, 2007; Grossberg, 1973;
Wilson & Cowan, 1972). In the original IA formulation, self-
excitation is included in the form of a term that ensures that word
nodes do not inhibit themselves (i.e., a word node effectively
subtracts its own activity from the incoming lateral inhibitory
signal). Thus, the strength of the self-excitatory signal corresponds
to the activity of the word node:

wordExcit i�t� � �acti�t�	�, (32)

where the [acti]
�notation indicates that only nodes with positive

activities output a self-excitatory signal. The parameter �ww,
which weights self-excitatory signals, is set to be slightly larger
than the parameter 
ww, which weights lateral inhibitory signals,
and thus self-excitation is used not only to cancel out self-
inhibition but also to enhance the competitive process, enabling the
best matching node to more rapidly suppress its competitors.

Length-matching. The lenMismatchi term in Equation 25
represents the feedback signal from the stimulus length field,
which consists of a net inhibitory signal to word nodes that do not
match the length of current input stimulus. It is assumed that
through a process of Hebbian learning, each word node develops
a positive connection to the stimulus length node with ordinality
corresponding to the length of the template, for example, the cat
node will develop a connection to the stimLen3 node. Thus, the
weight vni from the nth stimulus length node to the ith word node
is

vni � �1 if n � leni

0 otherwise . (33)

The facilitatory signal that the word node receives when the
stimulus length matches the template length balances a nonspecific
inhibitory signal that the stimulus length field sends to the word
level; the strength of the latter signal corresponds to the total field
activity (i.e., 1 when there is a letter string present and 0 other-
wise). This gives

lenMismatch i�t� � 
len��n �stimLenn�t�

� �n vni stimLenn�t�� . (34)
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That is, if the length of the input stimulus does not correspond to
its template length, the word node receives an extra inhibitory
input that is weighted by the parameter 
len. A relatively small
setting of this parameter is used in the current model, so that length
mismatch inhibition does not prevent addition and deletion neigh-
bors from becoming activated and interfering with identification of
the target, as is required by the empirical evidence (e.g., Bowers et
al., 2005a; Davis & Taft, 2005; Davis, Perea, & Acha, 2009).

The activation of nodes within the stimulus length field can be
achieved via various sources of input. An approximate (but poten-
tially unreliable) source of information regarding the length of the
input stimulus is provided by visual signals with low spatial
frequency. Activity at the letter level provides a somewhat more
reliable source of information regarding the length of the input
stimulus. At asymptote, only one letter is active within each
channel, and this node will have the maximum letter node activity
(of one), and thus the asymptotic total activity at the letter level is
equivalent to the stimulus length. A further source of information
regarding the likely length of the input stimulus is prior history; for
example, it is common in masked priming experiments to use
target stimuli of a fixed length. A full implementation of the
stimulus length field would combine these various inputs and use
lateral inhibitory interactions to select a single node. The present
implementation takes the simpler approach of setting the stimulus
length nodes directly, such that the activity of the node correspond-
ing to the target stimulus length is set to one and the other stimulus
length nodes are set to 0. For example, when the target stimulus is
cat, the activity of the stimLen3 node is set at one, whereas the
activity of other stimulus length nodes is set at 0.

Top-down feedback from word nodes to letter nodes. As in
the original IA model, top-down feedback is assumed to occur
between the word and letter levels. However, the switch to
position-independent letter coding necessitates a slightly different
implementation of this top-down feedback. For example, if the
stimulus wildcat leads to activation of the cat word node, this node
should send feedback to the letter nodes that code positions five
through seven rather than those for the first three positions. A word
node can use the resonating phase to determine which letter
channel should receive feedback signals. In particular, define

cj � IC � resPhasei � posj � 1, (35)

where IC is the channel corresponding to the leftmost letter of the
stimulus, resPhasei is the resonating phase of the ith word node (see
Equation 8), and posj is the veridical position of the jth letter within
the template. To illustrate, suppose wildcat is presented across
letter channels 3 to 11. In this case, the first letter projects to
Channel 3 (i.e., IC � 3), and the resonating phase of the cat word
is 4 (i.e., resPhasei � 4). Thus, cj � 3 � 4 � posj � 1 � posj �
6. That is, the channel that codes the first letter of the template is
cj � 1 � 6 � 7. Hence the cat node sends a positive feedback
signal to the C letter node in Channel 7. The strength of this
feedback is

wordLetterInputcji�t� �

�WL�act i�t�	�

�j featureLetterInputcj�t� � .001
, (36a)

where featureLetterInputcj(t) is as defined in Equation 22. The
division by featureLetterInput implies that top-down feedback has

a relatively weaker impact on channels that are receiving very
strong bottom-up input (i.e., top-down feedback tends not to over-
ride unambiguous bottom-up input, unless (�WL is large), but has
a large impact on channels that receive little (or no) bottom-up
input. For letter nodes that do not receive feedback,

wordLetterInputcji�t� � 0. (36b)

Equations 17–36 complete the description of how the input coding
and matching algorithm is embedded within a model of lexical
activation and selection. These equations require 15 parameters in
order to weight the various influences on letter and word nodes.

Simulating Lexical Decision

Each of the experiments simulated here used the lexical decision
task, and thus it is important to describe how the model can make
lexical decisions based on its internal states. For this purpose, the
opponent process model of lexical decision (Davis, 1999) was
used. According to this model, lexical decision involves a compe-
tition between two opposing channels, one that accumulates evi-
dence in favor of a yes response and another that accumulates
evidence in favor of a no response. A decision is reached once one
of the two channels exceeds a threshold activity (this decision
threshold was set at .8). The activity equations for these two
channels are similar in form to the shunting activity equations
assumed for letter and word nodes, thus,

d

dt
YES � �1 � YES� yesin � �1 � YES���NO	�; (37)

d

dt
NO � �1 � NO�noin � �1 � NO���YES	�. (38)

In Equations 37 and 38, the first term following the equals sign
shunts the positive input to the channel and establishes an upper
bound (of 1) on channel activity, whereas the final term shunts the
negative input to the channel (i.e., the inhibitory signal from the
competing channel) and establishes a lower bound (of �1) on
channel activity. The parameter � represents the strength of
between-channel inhibition and was set at .003.

The present implementation includes two sources of input to the
yes channel:

yes in�t� � yglobalwordSum�t� � yidID. (39)

The first source of input to the yes channel is the total activity at
the word level, weighted by the parameter yglobal, which was set at
.4. The wordSum term is simply the sum of the positive word node
activities; this source of input represents a measure of the word-
likeness of the stimulus. A second (and more reliable) source of
input to the yes channel is the evidence that lexical identification
has occurred. When a word node exceeds some identification
threshold � (a threshold of .68 is used in the present simulations),
it outputs a signal to the next level in the processing hierarchy; the
summed activity at this level therefore provides an index of word
identification having occurred. This higher processing level is not
shown in Figure 6, and it is not explicitly modeled in the present
simulations. Instead, the ID term in Equation 39 is used as a proxy
for the total activity at this level; thus, ID � 1 if a word node has
exceeded the identification threshold, and ID � 0 otherwise. The
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parameter yid weights the contribution of lexical identification to
the yes decision. A large value implies that the yes channel will
exceed the decision threshold (triggering a yes decision) soon after
lexical identification; all simulations reported here used a value of
yid � 1. With the present parameter settings, it typically takes
around 20 cycles following word identification before a yes re-
sponse is triggered.

The present implementation includes only one source of input to
the no channel:

no in�t� � nlettermax�actcj�t�	. (40)

This input represents the maximum activity at the letter level,
weighted by the parameter nletter, which was set at .36. Equation 40
implies that the decision process starts as soon there is activity in
the letter nodes (and not, for example, when the stimulus is a
forward mask such as ######). Furthermore, Equations 37–40
imply that the rate at which activity in the two channels grows
varies according to the rate of letter activation. If, for example,
stimulus degradation causes letter activation (and hence, also,
word activation) to grow relatively slowly, this rate modulation
ensures that the model will not say no prematurely.

The opponent process model has various advantages over the
variable deadline models that have been used in previous modeling
of the lexical decision task (e.g., Coltheart et al., 2001; Grainger &
Jacobs, 1996), notably, with respect to explaining the continuous
(rather than discrete) nature of reaction time distributions for no
responses (Davis, 1999). The model has yet to be applied to
detailed modeling of reaction time distributions (e.g., Norris, 2009;
Ratcliff, Gomez, & McKoon, 2004), although Davis (1999) con-
ducted simulations showing that the addition of noise to the yesin

and noin equations results in positively skewed distributions like
those observed in human data and observed that this skew is
greater for low frequency words than for high frequency words
(e.g., Andrews & Heathcote, 2001; Balota & Spieler, 1999).

Parameter Settings

Most of the parameters of the model are inherited from the original
IA model. The settings for these parameters are very similar to (in
most cases, identical to) those used in previous IA simulations (Davis,
2003; Davis & Lupker, 2006; McClelland & Rumelhart, 1981), with
the exception that the feature-letter parameters have higher values, so
that the speed of letter level activation, relative to the speed of word
level activation, is considerably faster than in the original model. This
parameter choice, combined with the step size parameter dt (i.e., the
width of the time slices used to update activities in the model, which
was set to .05), was chosen so that the scale of priming effects in the
model (measured in processing cycles) was comparable with the scale
of empirical priming effects (measured in milliseconds). The full list
of parameter settings is shown in Table 3. For convenience, the
parameters are listed in the order described in the text, together with
references to the equations in which they are introduced. Note that �
parameters weight excitatory inputs, whereas 
 parameters weight
inhibitory inputs.

The spatial coding model also introduces several new parame-
ters that are not in the original IA model; the implicit values of
these parameters in the original model are shown in parentheses in
Table 2. The introduction of letter position uncertainty that in-
creases linearly with the number of letters in the input stimulus

requires two new parameters, �0 and ��, as described in Equation
3. A further parameter (Power) is used to contrast-enhance the
bottom-up input to word nodes (see Equation 25). In previous
modeling, researchers have used values of 2 (Davis, 1999; Davis &
Bowers, 2004, 2006) or 3 (Lupker & Davis, 2009) for this param-
eter; the present simulations adopted an intermediate value of 2.5.
The modifications introduced to handle words of varying length
require two new parameters: the masking field parameter wmf (see
Equations 28–31) and the length mismatch parameter 
len (see
Equation 34). The FreqBias parameter, which modulates the com-
petitive advantage of higher frequency words (see Equation 18),
was set at 1.8 (larger settings of this parameter result in larger
frequency effects, but can lead to difficulty in identifying the
lowest frequency words). Finally, the parameter DecayCutoff,

Table 3
Parameter Settings Used in the Spatial Coding Model (SCM)
and in the Original Interactive Activation Model (IAM)

Parameter SCM IAM Equation

�0 .48 (0) (3)—Position uncertainty by length
function

�� .24 (0) (3)—Position uncertainty by length
function

FreqScale .046 .046 (17)—Scaling of word frequency in
resting activities

FreqBias 1.8 (�0.07) (18)—Resting activity input to
activity equation

ActMin �.2 �.2 (19)—Shunting of net input by
current activity

DecayCutoff .4 (1) (20)—Match-dependent decay

DecayRate 1 .07 (20)—Match-dependent decay

�FL .28 .005 (23)—Feature-letter input


FL 6 .15 (23)—Feature-letter input

�LW .4 .07 (25)—Net word input

Power 2.5 (1) (25)—Net word input


LW .04 .04 (26)—Mismatch inhibition


WW .34 .21 (27)—Word–word inhibition

�WW .44 .21 (27)—Word–word excitation

wmf .35 (0) (28)—Masking field weight


len .06 (0) (34)—Length mismatch

�WL .3 .3 (36)—Word–letter feedback

dt .05 .05 (18)—Step size: Temporal scaling
parameter

Note. Parentheses around values indicate parameters that are not (explic-
itly) included in IAM. Freq � frequency; ActMin � activity minimum;
FL � feature-letter; LW � letter-word; WW � word–word; mf � masking
field; len � length; WL � word–letter.
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which controls match-dependent decay (see Equation 20), was set
at .4.

The opponent process model of lexical decision requires five
parameters: an identification threshold �, three parameters that
weight the inputs to the yes and no channels (yglobal, yid, and n
letter), and a parameter, �, that controls the strength of the inhi-
bition between channels. Given the relatively large weight as-
signed to the yid parameter in the present simulations, the speed of
yes responses for words was dictated largely by the speed of
lexical identification (i.e., how long it took before the activity of a
word node exceeded the identification threshold).

Part 2: Application of the Model to Empirical
Phenomena

General Method for Running Masked Priming
Simulations

The general method for conducting the simulations was identical to
that used in previously reported simulations (Davis, 2003; Davis &
Lupker, 2006; Lupker & Davis, 2009). (The software and stimulus
files for running the simulations can be downloaded from this web-
page: http://www.pc.rhul.ac.uk/staff/c.davis/SpatialCodingModel/).
Each simulation used exactly the same stimuli as used in published
experiments, except where English language stimuli replaced those
used in the original French, Dutch, or Spanish language experi-
ments, as explicitly noted. The parameter settings of the model
were identical for the simulations of primed and unprimed lexical
decision. It would have been possible to achieve a better fit to the
data if parameters were allowed to vary across simulations, and in
some cases, this parameter variation might be justifiable, given
that the experiments simulated were run in different laboratories
with different populations of subjects. However, the main goal of
the simulations was not to maximize the fit between model and
data but to test whether a single model could capture all of the key
qualitative results in the empirical database of orthographic form
priming effects while also capturing the benchmark results in
unprimed lexical decision.

At the beginning of each trial, activities of all nodes in the model
were set to their resting levels. The input stimulus was then
presented to the model by setting the binary letter feature nodes to
the appropriate values. In the masked priming simulations, this
stimulus was the prime, and it was replaced at the feature level by
the target stimulus after 55 cycles (the value of 55 is approximately
equal to the mean, in milliseconds, of the prime durations used in
the experiments simulated here). The use of a fixed prime duration
facilitates comparison across simulations; any small variations in
prime duration in the actual experiments are treated as noise (along
with differences in stimulus luminance, participant populations,
and testing equipment). The letter-reset assumption of Davis and
Lupker (2006) was adopted, according to which the target onset
has the effect of resetting letter-level activities, as well as the yes
and no channels.

On each cycle of processing, the difference equation in Equa-
tions 18 was solved, causing activities of the letter and word nodes
to be updated; likewise, numerical integration of Equations 37 and
38 caused the activities of the yes and no channels to be updated
on each cycle. A decision was said to have been made once the

activity in one of the latter channels exceeded the criterion of .8.
Decision latencies were measured from target onset.

Vocabulary

The vocabulary of the model consisted of 30,605 words taken
from the N-Watch program (Davis, 2005). This set comprises all
of the words listed in the CELEX database (Baayen et al., 1993)
that (a) are between two and 10 letters in length, (b) occur six or
more times in the corpus, that is, have an expected occurrence of
at least 0.34 per million words, and (c) do not include capitals in
the database listing (e.g., proper nouns like England or Chris were
excluded).

Simulating Unprimed Lexical Decision With the Model

The majority of the simulations presented here focus on mod-
eling correct yes responses in the masked priming variant of the
lexical decision task. However, before introducing these simula-
tions, it is appropriate to present some results demonstrating that
the model can explain some benchmark findings in unprimed
lexical decision. I consider seven lexical decision findings that
Coltheart et al. (2001, p. 227) identified as “benchmark results that
any computational model of reading should be able to simulate.”

The word frequency effect. The first benchmark finding
noted by Coltheart et al. (2001), and probably the most well
established finding in the lexical decision task, is the word fre-
quency effect; that is, the finding that yes responses to high
frequency words are faster than yes responses to low frequency
words (e.g., Monsell, 1991; Murray & Forster, 2004; Rubenstein,
Garfield, & Millikan, 1970). Coltheart et al. (2001) demonstrated
the DRC model’s ability to simulate a word frequency effect by
reporting a simulation of the stimuli from Andrews (1989, 1992);
here, I take the same approach in testing the spatial coding model.
These stimuli consist of 24 low frequency words (with an average
frequency of occurrence of 2.4 per million words according to the
CELEX database) and 24 high frequency words (average fre-
quency of 444.4 per million). The model responded yes to each of
the words except for mope, which is not included in its vocabulary.
The mean predicted latencies of correct yes responses were 95.6
cycles for high frequency words, and 113.4 cycles for low fre-
quency words; this difference was statistically significant ( p �
10�16). The model also showed good predictive power at the item
level: The correlation between the model’s decision latency and
the mean human decision latency for each item (reported in Ap-
pendix A of Andrews, 1992) was .71.

The lexical status effect. The second benchmark finding
noted by Coltheart et al. (2001) is that correct yes responses are
faster than correct no responses (e.g., Rubenstein et al., 1970). This
result is readily simulated by the model provided that the noin

parameter is not set too high. By way of demonstration, I con-
structed a set of 48 nonwords by changing a single letter of each
of the words from the Andrews (1989, 1992) set. The mean
decision latency for these nonwords was 125 cycles (the range of
correct no latencies was 102 cycles to 160 cycles; the model made
two errors, misclassifying knaw and fect as words). This mean
latency is significantly slower ( p � 10�6) than the mean of 104
cycles for the matched words, although there is some overlap in the
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distributions (the range for correct yes responses was 89 cycles to
126 cycles).

The N effect on yes latencies. The third and fourth findings
described by Coltheart et al. (2001) as benchmark results related to
neighborhood size (N) and are (a) the facilitatory effect of N on
yes latencies to low frequency words and (b) the null effect of N
on yes latencies to high frequency words. As has been noted
previously (e.g., Bowers et al., 2005b; Davis, 2003), competitive
network models such as the IA model and the spatial coding model
predict a null effect of N on the speed of word identification (or
more precisely, the models predict no difference between small-N
words and large-N words, other things being equal; they do predict
an inhibitory effect of having one or two neighbors relative to
words with no neighbors). For example, the simulation of the
Andrews (1989, 1992) stimuli predicts no difference between the
large-N condition and the small-N condition ( p � .33).

One approach to making competitive network models predict a
facilitatory effect of N is to assume that fast yes responses are
sometimes made prior to word identification (e.g., Coltheart et al.,
2001; Grainger & Jacobs, 1996). This approach makes sense in
experiments in which N systematically distinguishes words from
nonwords. However, an alternative approach is to question the
status of the facilitatory N effect. As Stadthagen-Gonzalez and
Davis (2006) noted, N is positively correlated with imageability
and negatively correlated with age-of-acquisition (AoA; i.e.,
large-N words tend to be learned earlier than small-N words).
Although both of these variables are known to have large effects
on lexical decision latency (e.g., Balota, Cortese, Sergent-
Marshall, Spieler, & Yap, 2004; Brysbaert & Ghyselinck, 2006;
Cortese & Khanna, 2007; Stadthagen-Gonzalez, Bowers, & Dam-
ian, 2004; Whaley, 1978) and reading time (Juhasz & Rayner, 2003),
published experiments on N effects have not been controlled for their
effects, and manipulations of N have typically been confounded with
AoA and/or imageability (for example, the low frequency small-N
and large-N words in the Andrews stimuli are typical in differing
significantly with respect to both AoA and imageability ( p � .0005
and p � .05, respectively), based on the norms collected by Cortese
& Khanna, 2008, and Cortese & Fugett, 2004). In unpublished ex-
periments, Davis and Bowers (2010) found no effect of N on the
latency of yes responses when AoA and imageability were both
controlled. Thus, I claim that the model’s prediction of no effect of N
on yes responses is the correct one.

The N effect on no latencies. The fifth benchmark finding
noted by Coltheart et al. (2001) is the inhibitory effect of N on no
latencies to nonwords, a finding first reported by Coltheart et al.
(1977). Forster and Shen (1996) parametrically manipulated N and
found that no response latency increased linearly with nonword N.
It may be noted in passing that the latter result cannot be simulated
by the model described by Coltheart et al. (2001) because the
decision deadline procedure assumed in that model produces only
two possible latencies for no responses (one for easy nonwords and
another for more wordlike nonwords). I conducted a simulation of
the spatial coding model using Forster and Shen’s (1996) stimuli,
which consisted of 120 items split into four N conditions (roughly
N � 0, 1, 2, and 4). The model responded yes to three items: millet,
garter (which are words in the model’s vocabulary), and forver. As
can be seen in Figure 7, the mean correct latencies showed a
similar linear effect to that observed in the human data.

The pseudohomophone effect. The final two benchmark
findings noted by Coltheart et al. (2001) are the pseudohomophone
effect (Rubenstein, Lewis, & Rubenstein, 1971) and the interaction
of this effect with orthographic similarity to the base word (Colt-
heart & Coltheart, as cited in Coltheart et al., 2001). As Coltheart
et al. (2001, p. 231) noted, the DRC is able to simulate these
effects by virtue of “feedback to the orthographic lexicon through
the following route: letters to GPC rules to phoneme level to
phonological lexicon to orthographic lexicon.” The spatial coding
model does not incorporate such a route and cannot explain the
pseudohomophone effect. In principle, however, the addition of
such feedback would enable the model to capture these two find-
ings. For a demonstration of how these effects can be simulated by
an orthographic model by assuming external phonological feed-
back, see Davis (1999; Simulation 6.3).

The nonword legality effect. Another basic finding concern-
ing lexical decisions to nonwords is that illegal nonwords like
glazb can be rejected more rapidly than can legal nonwords like
drilk (Rubenstein et al., 1971). Presumably there is a phonological
contribution to this effect, and thus, the present model should not
be expected to provide a complete account of the illegality effect.
Nevertheless, a simulation with Rubenstein et al.’s (1971) stimuli
showed that the model’s latencies exhibit a significant effect in the
same direction, with mean no latencies of 102.3 cycles for illegal
nonwords and 124.1 cycles for legal nonwords ( p � .001).

Figure 7. A: Data from Forster and Shen (1996) showing the effect of
nonword N on the latency of no responses. B: Simulation results for the
model tested on the same stimuli.
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In summary, the spatial coding model captures a number of
basic lexical decision findings, including the word frequency ef-
fect, the lexical status effect, the nonword illegality effect, and the
inhibitory effect of nonword N, and extensions of the model to
include phonological processing would enable it to capture the
pseudohomophone effect. Other simulations of the model (not
reported here) have shown that it predicts the inhibitory effect of
higher frequency neighbors (e.g., Grainger, O’Regan, Jacobs, &
Segui, 1989), including the effects of addition and deletion neigh-
bors (e.g., Davis et al., 2009; Davis & Taft, 2005).

Ability of the Model to Predict Item-Level Variance

Another way to evaluate computational models of visual word
recognition is to examine how well these models predict perfor-
mance at the level of individual items. The development in recent
years of megadatabases of lexical decision and naming latencies
(e.g., Balota et al., 2004; Spieler & Balota, 1997) has facilitated
such evaluations. Initial findings based on this approach were not
especially promising. Spieler and Balota (1997) collected naming
latencies for approximately 2,870 monosyllabic words and found
that the orthographic error scores from the Seidenberg and Mc-
Clelland (1989) model predicted 10.1% of the variance, whereas
the settling times from the Plaut et al. (1996) model predicted just
3.3% of the variance in the human naming latencies. Subsequently,
Coltheart et al. (2001) reported that the DRC model accounted for
3.5% of the variance for a subset of 2,516 words from this
database. Clearly, predicting performance at the level of individual
items is a rather stringent test of computational models.

To compare the predictive power of the spatial coding model, I
used exactly the same set of monosyllabic words as a test set,
excluding a small proportion of items that were not included in the
model’s vocabulary (very low frequency words like awn); the
resulting set consisted of 2,715 words. Mean lexical decision
latencies for these items were obtained from the English Lexicon
Project (Balota et al., 2004). The correlation between the model’s
lexical decision latencies and the human data was .51; that is, the
model successfully accounts for 26% of the variance at the level of
individual items. It is also interesting to examine the naming
latencies for this set. Strictly speaking, the spatial coding model is
not able to name words because it has no phonological output
units. Nevertheless, it could be used to provide the lexical route of
a dual-route model of word naming, and thus, to the extent that
there is a lexical contribution to word naming latency, the model
should have some predictive power. The model’s latencies pre-
dicted 10.2% of the variance in the naming latencies from the
English Lexicon Project. In summary, although much of the vari-
ance in human lexical decision and naming latencies remains
unaccounted for, the spatial coding model appears to be doing at
least as well as other notable models of visual word recognition.

Masked Form Priming Simulations

Organization of simulations. The masked priming technique
has been used to study many different aspects of visual word
recognition, including orthographic, phonological, morphological,
and semantic processes. Given that the model under consideration
does not incorporate phonological, morphological, or semantic
representations or processes, I did not seek to simulate experiments

that specifically focus on these processes. Despite this restriction,
the relevant database of masked priming results is quite large.
Fortunately, the main results in this domain are fairly well estab-
lished. As Grainger (2008, p. 9) noted, “Perhaps the most stable,
replicable, and therefore uncontroversial results obtained with the
masked priming paradigm concern purely orthographic manipula-
tions.”

The simulations below are arranged thematically into subsec-
tions according to the type of letter string manipulation: replace-
ment, transposition, deletion, insertion, string reversal, or string
displacement. Multiple experiments are simulated within each
subsection. The relevant data from these experiments, together
with the predicted priming effects, are summarized in Table 4.
Attempting to capture the pattern of priming effects associated
with each of these string manipulations imposes very strict con-
straints on any model of orthographic input coding. As will be
seen, the spatial coding model handles this challenge quite suc-
cessfully.

A. Primes that involve letter replacement.
Simulation 1: The prime lexicality effect (Davis & Lupker,

2006, Experiment 1). There are many experiments demonstrat-
ing facilitatory neighbor priming effects, for example, that re-
sponses to the target SHIRT are faster following the one-letter
different prime shint relative to an unrelated prime like cland (e.g.,
Davis & Lupker, 2006; Forster et al., 1987; van Heuven, Dijkstra,
Grainger, & Schriefers, 2001). However, not all one-letter differ-
ent primes result in facilitatory priming. When the prime is itself
a word (e.g., short–SHIRT), responses to the target are slower,
relative to control word primes (e.g., Segui & Grainger, 1990).
This pattern of facilitatory priming from nonword neighbors and
inhibitory priming from word neighbors was demonstrated for the
same set of targets in a lexical decision experiment reported by
Davis and Lupker (2006). That is, classifications of a target like
AXLE were facilitated by the nonword neighbor prime ixle (rela-
tive to an unrelated nonword prime) but inhibited by the word
neighbor prime able (relative to an unrelated word prime like
door). Inhibitory priming effects were largest when the prime was
of high frequency and the target was of low frequency (e.g.,
inhibition tended to be stronger for able–AXLE than for axle–
ABLE). This effect can be observed in the mean latencies shown in
Table 4.

Results like those reported by Davis and Lupker (2006) are
important for understanding masked form priming effects, as they
reveal how such priming effects are subject to both excitatory and
inhibitory influences. Indeed, being able to simulate the results of
this experiment can be viewed as a prerequisite for each of the
simulations that follow, in which the excitatory and inhibitory
influences of masked primes are systematically varied. Simulation
1 sought to test the spatial coding model’s ability to predict the
prime lexicality effect. The simulation tested the same set of four
and five-letter words used by Davis and Lupker (2006). The basic
procedure followed that described in the General Method for
Running Masked Priming Simulations section, above.

The results of the simulation are shown in Table 4. As can be
seen, the model does a good job of capturing the prime lexicality
effect that was observed by Davis and Lupker (2006). That is,
related word primes produce inhibitory priming effects, whereas
related nonword primes produce facilitatory priming effects. The
model also captures the greater inhibitory priming for low fre-
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Table 4
Results of Twenty Masked Priming Simulations, Together With the Original Experiment Means

Index Simulation, experiment, and prime type

Data Model

DifferenceCritical Control Effect Critical Control Effect

Simulation 1
Davis & Lupker (2006) Experiment 1

1 HF primes, LF targets 679 645 �34 150 115 �35 �1
2 Nonword primes, LF targets 634 660 26 93 113 20 �6
3 LF primes, HF targets 586 573 �13 124 103 �21 �8
4 Nonword primes, HF targets 571 582 11 79 101 23 12

Simulation 2
van Heuven et al. (2001)

5 Shared neighbor prime 540 552 12 97 104 7 �5
6 No shared neighbor prime 524 552 28 84 104 20 �8

Simulation 3
Schoonbaert & Grainger (2004) Experiment 4

7 Replace initial letters 622 623 1 102 104 2 1
8 Replace initial letters 626 623 �3 105 104 0 3
9 Replace final letters 620 623 3 103 104 1 �2

Simulation 4
Lupker & Davis (2009) Experiment 2A (standard priming)

10 Replace 1 496 518 22 70 102 32 10
11 Replace 2 501 518 17 89 102 13 �4
12 Replace 3 517 518 1 99 102 3 2
13 Replace 4 514 518 4 99 102 2 �2
14 Replace 5 525 518 �7 100 102 1 8

Simulation 5
Lupker & Davis (2009) Experiment 2B (sandwich priming)

15 Replace 1 552 609 57 41 99 58 1
16 Replace 2 576 609 33 56 99 43 10
17 Replace 3 582 609 27 72 99 28 1
18 Replace 4 601 609 8 84 99 15 7
19 Replace 5 602 609 7 94 99 5 �2

Simulation 6
Perea & Lupker (2003b) Experiment 1

20 Identity 523 570 47 56 108 53 6
21 Internal transposition 556 586 30 76 106 31 1
22 Final transposition 554 567 13 92 104 12 �1

Simulation 7
Davis & Bowers (2006) Experiment 2 & 3

23 SN2 584 613 30 79 107 28 �2
24 SN4 582 613 31 78 107 29 �2
25 N1R� 595 613 19 86 107 21 2
26 N1R� 595 613 18 86 107 21 3

Simulation 8
Perea & Lupker (2004) Experiment 1B

27 SN 665 703 38 76 106 30 �8
28 NATN 679 703 24 81 106 24 0
29 DSN 696 703 7 97 106 9 2

Simulation 9
Guerrera & Forster (2008) Experiment 3A

30 T-I-6 610 636 26 78 109 30 4
31 T-all 637 636 �1 104 109 5 6

Lupker & Davis (2009) Experiment 1A (standard priming)
32 T-all 718 727 9 104 109 5 �4

Simulation 10
Lupker & Davis (2009) Experiment 1B (sandwich priming)

33 T-all 651 691 40 76 106 30 �10
Simulation 11

Guerrera & Forster (2008) Experiment 3A
34 Reversed halves 637 636 �1 105 109 3 4

Simulation 12
Davis & Lupker (2009) Experiment 2A (standard priming)

35 Reversed Interior 620 625 5 102 105 3 �2
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quency targets primed by high frequency words than for high
frequency targets primed by low frequency words. Finally, the
model does not show the frequency interaction for facilitatory
priming that was observed by Davis and Lupker (2006). However,
this interaction was not statistically significant, and the 11 ms
priming effect observed in the human data for high frequency
targets may be an underestimate of the true effect.

The outcome of this simulation effectively replicates Davis and
Lupker’s (2006) finding that a (modified) IA model with slot
coding could simulate their results. However, there are important
differences between the model tested by Davis and Lupker (2006)
and the model tested here. In the former simulation, the four-letter
word stimuli were tested with a vocabulary of 1,178 words and the

five-letter word stimuli were tested with a separate vocabulary of
3,370 words. By contrast, the present simulation tested all of the
stimuli with a fixed vocabulary over 25 times larger than that of
the original IA model. Furthermore, switching to spatial coding
introduces additional orthographic neighbors (e.g., transposition
neighbors, neighbors once removed, etc.). The simulation results
show that these changes in the structure of the lexical neighbor-
hood do not affect the model’s ability to simulate the basic prime
lexicality effect.

There is a far more important implication of these data. It would
be overly simplistic to draw the conclusion that related word
primes have inhibitory influences, whereas related nonword
primes have facilitatory influences. Rather, what these empirical

Table 4 (continued )

Index Simulation, experiment, and prime type

Data Model

DifferenceCritical Control Effect Critical Control Effect

Simulation 13
Davis & Lupker (2009) Experiment 1B (sandwich priming)

36 Reversed halves 684 693 9 100 106 6 �3
Davis & Lupker (2009) Experiment 2B (sandwich priming)

37 Reversed interior 643 666 23 80 102 21 �2
Simulation 14

Welvaert et al. (2008)
38 Insert 0 545 600 55 57 107 50 �5
39 Insert 1 556 600 44 69 107 38 �6
40 Insert 2 567 600 33 81 107 26 �7
41 Insert 3 578 600 22 89 107 18 �4

Simulation 15
Van Assche & Grainger (2006) Experiment 1

42 1234567 532 582 50 57 107 50 0
43 12334567, 12345567 541 582 41 65 107 42 1
44 12534567, 12345367 543 582 39 66 107 42 3
45 12d34567, 12345d67 543 582 39 65 107 42 3

Simulation 16
Schoonbaert & Grainger (2004) Experiment 1

46 Repeated letter deletion 565 607 42 74 106 33 �9
47 Unique letter deletion 572 607 35 75 106 31 �4
48 Repeated letter control 560 597 37 74 107 33 �4
49 Unique letter control 561 597 36 76 107 32 �4

Simulation 17
Peressotti & Grainger (1999) Experiment 2

50 1346 623 650 27 82 103 21 �6
51 1d34d6 629 641 12 90 104 13 1

Simulation 18
Peressotti & Grainger (1999) Experiment 3

52 1346 596 616 20 82 103 21 1
53 1436 611 616 5 91 103 12 7
54 6341 609 616 7 101 103 1 �6

Simulation 19
Kinoshita & Norris (2009)

55 Shifted halves 603 610 7 108 108 1 �6
Simulation 20

Grainger et al. (2006)
56 12345 531 576 45 74 101 28 �17
57 34567 539 576 37 74 101 27 �10
58 13457 547 576 29 78 101 23 �6
59 1234 562 585 23 88 101 13 �10
60 4567 573 585 12 93 101 8 �4
61 1357 577 585 8 95 101 6 �2

Note. Italicized values are differences of the values in the preceding two columns. HF � high frequency, LF � low frequency, SN � substitution
neighbor, N1R � neighbor once-removed, NATN � nonadjacent transposition neighbor, DSN � double substitution neighbor, T-I-6 � condition in which
the exterior letters were maintained in their correct position but the six interior letters were each transposed with an adjacent letter, T-all � condition in
which all eight letters of the target were transposed.
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data and simulation results show is that masked form priming
effects reflect the combination of facilitatory and inhibitory influ-
ences. In the case of word primes (especially high frequency word
primes), the inhibitory influences typically overwhelm the facili-
tatory influences, whereas in the case of nonword primes the
opposite is true. Nevertheless, it is critical to note that inhibitory
influences on masked priming are always present to the extent that
the prime activates competitors of the target, whatever the lexical
status of the prime. This insight has major implications for all of
the form priming experiments simulated in this article. In partic-
ular, it implies that the match values computed by models of
orthographic input coding are only part of the story. These match
values drive the facilitatory influence of the prime on the target.
But to make accurate quantitative predictions, it is necessary to
also take into consideration the inhibitory influences of the prime,
which requires conducting simulations of a full model of lexical
identification. Predictions based purely on match values fail to
capture these inhibitory influences of lexical competitors. For
example, the nonword blard and the word board result in equiv-
alent (large) match values with the target BEARD. This equiva-
lence may suggest that the unmediated facilitatory influence of
these primes on the target will be the same, but (as is clear from the
results of the experiment and the simulation) their inhibitory
influences on the target differ greatly. Understanding this point
allows one to realize why masked priming experiments sometimes
fail to observe facilitation for primes that are associated with
relatively high match values (e.g., Guerrera & Forster, 2008;
Schoonbaert & Grainger, 2004). It also enables one to devise
methods for overcoming these inhibitory influences, as discussed
below.

Simulation 2: The shared neighborhood effect (van Heuven,
Dijkstra, Grainger, & Schriefers, 2001). Another empirical phe-
nomenon that illustrates the influence of lexical competitors on
masked form priming is the shared neighborhood effect reported
by van Heuven et al. (2001). Shared neighbors are words that are
neighbors of both the prime and the target. For example, in the
case of the prime–target pair laby–LAZY, the word lady is a shared
neighbor. Van Heuven et al. (2001) found that form priming
effects were smaller when the prime and target shared a neighbor
(as in laby–LAZY), compared with trials when there were no shared
neighbors (e.g., lozy–LAZY).

Simulation 2 attempted to simulate this finding. The stimuli
were constructed to parallel the Dutch stimuli used by van Heuven
et al. (2001). There were 20 four-letter, low frequency, small-N
target words. For each target, three primes were constructed: one
that shared one or more neighbors with the target, another that was
a neighbor of the target but shared no neighbors with it, and a third
that was an unrelated nonword prime. Position of the replacement
letter was roughly matched across the two neighbor conditions.

The simulation slightly underestimated the magnitude of the
observed facilitatory priming effects but captured the critical
shared neighborhood effect in van Heuven et al.’s (2001) ex-
periment. That is, the priming effect was substantially greater
for primes that did not share any neighbors with the target than
for primes that shared a neighbor with the target. The results of
this simulation reinforce and strengthen the conclusion drawn
from Simulation 1. In this case, the critical primes are all
nonwords, so the results cannot be attributed to a simple prime
lexicality account. The two sets of related primes were equally

similar to their targets, and yet, one set produces a much larger
priming effect than does the other. Here, the facilitatory influ-
ence of bottom-up input is matched, but the inhibitory influ-
ences of lateral inhibition are not: Shared neighbor primes give
rise to activity in the target’s lexical competitors, and the
resulting competition diminishes the facilitatory influences of
the prime. Consequently, as in Simulation 1, the results of the
simulation cannot be determined purely on the basis of the
orthographic match between the primes and the targets.

Related shared neighborhood results have been reported with
word primes by Davis and Lupker (2006, Experiment 3) and with
partial word primes (e.g., c#be–CUBE) by Hinton, Liversedge, and
Underwood (1998) and J. R. Perry, Lupker, and Davis (2008).
Each of these findings can be interpreted by noting that all primes
have both facilitatory and inhibitory influences. This insight is also
relevant for the following simulations.

Simulation 3: The multiple-letter replacement constraint
(Schoonbaert & Grainger, 2004, Experiment 4). As noted al-
ready (and simulated in Simulation 1), form primes constructed
by replacing a single letter of the target are typically associated
with relatively large priming effects. However, when two letters
are replaced, priming effects are greatly diminished and often
absent (e.g., Perea & Lupker, 2003b, 2004; Peressotti &
Grainger, 1999; Schoonbaert & Grainger, 2004). An experiment
reported by Schoonbaert and Grainger (2004, Experiment 4) pro-
vides a good illustration of this apparent limit on form priming
effects. Although there was some evidence of form priming from
two-letter different primes in the case of seven-letter targets (as
also observed by Lupker & Davis, 2009), there was no evidence at
all of priming from two-letter different primes in the case of
five-letter targets, regardless of whether the position of replace-
ment was initial, medial, or final (see Table 4).

On the surface, this finding appears to pose a problem for all of
the current orthographic input coding schemes, which predict that
orthographic similarity values should decrease approximately lin-
early as more letters are substituted (at least for the replacement of
successive internal letters). There is a reasonably high overlap
between a five-letter target word and a two-letter different prime.
For a pair like BLEON and BARON, the match value is 5/7 � .71
(assuming dynamic end-letter marking). This match value is equiv-
alent to the match computed for one-letter different primes where
the different letter is an end letter, as in BAROY and BARON. Thus,
if there was a straightforward relationship between predicted
match values and observed priming effects, two-letter different
primes like prade–PROBE should, according to the spatial coding
model, produce priming effects that are at least as large as those
associated with one-letter different primes like baroy–BARON
(i.e., both primes should produce significant form priming).

From the foregoing discussion, however, it should be apparent
that there is not a straightforward relationship between predicted
match values and observed priming effects and that simulations are
required to predict the priming effects that should be observed for
two-letter different primes. To simulate Schoonbaert and
Grainger’s (2004) experiment, which was conducted with French
stimuli, I selected the 14 five-letter target words from their stim-
ulus set that are French–English cognates (such as rural and
baron). Each target was paired with the same four primes used by
Schoonbaert and Grainger (2004), that is, three separate two-letter
different primes (initial, inner, and final letter replacements) and
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an unrelated (all-letter-different) prime. For example, the primes
for the target BARON were upron (initial two-letter different),
bleon (inner two-letter different), barsy (final two-letter different),
and pievu (control, all-letter-different).

The results of this simulation are shown in Table 4. As can be
seen, the results for two-letter different primes mirrored the find-
ings of Schoonbaert and Grainger (2004), in that they show no
evidence of priming. In order to test whether the absence of
priming could be due to characteristics of the targets, I constructed
an additional one-letter different prime condition (i.e., one that was
not included in the experiment) by replacing the final letter of the
target, using the same replacement letter as for the two-letter
different prime that incorporated a final letter replacement (e.g.,
the one-letter different prime for the target BARON was baroy).
The mean decision latency for this condition was 93 cycles, that is,
a priming effect of 11 cycles. Thus, these targets are capable of
showing priming effects. Furthermore, although the match value
computed for one-letter different primes with final letter replace-
ments is equivalent to that computed for two-letter different primes
with inner letter replacements (e.g., bleon–BARON), the latter
condition showed no priming in the simulation. Thus, the absence
of priming for two-letter different primes cannot be explained
solely in terms of match values.

Why, then, is it that a prime like bleon does not (on average)
facilitate responses to a two-letter different target like BARON?
The reason for the absence of priming in the model in this case is
the same as for the primes with shared neighbors in Simulation 2:
The prime frequently activates competitors of the target more
strongly than the target itself. In the case of two-letter different
primes, these competitors are not quite as obvious, partly because
psycholinguists since Coltheart et al. (1977) have tended to count
only neighbors formed by a single letter replacement. Neverthe-
less, these competitors exist and exert an inhibitory influence on
priming; for example, in the case of bleon–BARON, the lexical
competitors will include words like blown (a neighbor once re-
moved of the prime), bacon, began, brown, and bean. One way to
establish that this is the correct explanation of the absence of
priming in the model is to disable all of the word nodes for words
that are shared neighbors (in the broad sense) of bleon and
BROWN (e.g., blown, bacon, began, baton, bison, begin, brown,
etc.). When this is done (defining a shared neighbor as any word
that produces a match of greater than .4 with both the prime and
the target), the priming effect for this trial changes from null to 10
cycles. Thus, according to the model, the multiple letter replace-
ment constraint in masked priming is due to the fact that increases
in the number of letters that differ between the prime and the target
both decrease the orthographic match between these two stimuli
(and increases the mismatch) and simultaneously increase the
likelihood that the prime will activate lexical competitors of the
target.

Relaxing the multiple-letter replacement constraint. As has
been seen, prime–target pairs that have relatively high match
values can have facilitatory, null, or inhibitory effects, depending
on the extent to which they activate lexical competitors of the
target. A technique for greatly reducing lexical competitor effects
has recently been developed by Lupker and Davis (2009). In this
technique, called sandwich priming, the prime of interest (e.g., a
related form prime or an unrelated control prime) is preceded by a
brief (masked) presentation of the target word; that is, the prime is

sandwiched between two presentations of the target. The aim of
the first presentation of the target stimulus is to give an initial
headstart to the activation of the target node, enabling it to over-
whelm lexical competitors that would ordinarily be activated by
the prime. Thus, if the absence of priming for two-letter different
primes in Simulation 3 was the result of lexical competitor effects,
it should be possible to obtain form priming for these stimuli if the
sandwich priming technique is used. Simulation 3A tested this
prediction. Sandwich priming was simulated by presenting the
target (for 40 cycles) prior to the prime of interest. In all other
respects, this simulation was identical to Simulation 3. The results
showed relatively large priming effects for two-letter different
primes; the size of the priming effect was 25, 38, and 25 cycles for
the initial, inner, and final letter replacement conditions, respec-
tively. Thus, as expected, the use of sandwich priming causes the
model to predict facilitatory effects for prime conditions that did
not produce priming in Simulation 3. This in turn leads to an
empirical prediction concerning the difference between conven-
tional masked priming and sandwich priming. Although this pre-
diction has not been tested for Schoonbaert and Grainger’s (2004)
stimuli, it has been tested by Lupker and Davis (2009) for seven-
letter English target words; this test is the subject of the next pair
of simulations.

Simulation 4: Parametric variation of number of replaced
letters (Lupker and Davis, 2009, Experiment 2A). Although the
replacement of two letters eliminates priming for five-letter word
targets, the spatial coding model predicts that two-letter different
primes should produce some priming for longer targets (the reason
for this prediction is straightforward, for example, a match of 4/6
is greater than a match of 3/5). The available evidence supports
this prediction, although there is some variability in the obtained
effects. The average priming effect for two-letter different primes
and five-letter targets, based on eight priming effects from four
experiments (Frankish & Barnes, 2008; Perea & Lupker, 2003a,
Experiments 1 and 2; Schoonbaert & Grainger, 2004, Experiment
4) is 0 ms (the median is 1 ms), whereas the average priming effect
for two-letter different primes and six-letter targets, based on five
priming effects from four experiments (Perea & Lupker, 2003b,
Experiment 3; Perea & Lupker, 2004, Experiments 1 and 2;
Peressotti & Grainger, 1999, Experiment 2) is 13 ms (the median
is 12 ms). Although only two of the latter five priming effects were
statistically significant, it seems likely that there is a genuine
priming effect here.

Lupker and Davis (2009) examined priming for seven-letter
targets, and parametrically manipulated the number of replaced
letters between one and five. Results are shown in Table 4. As can
be seen, the results showed clear priming effects (which were
statistically significant) for one- and two-letter different primes but
no priming for primes in which three or more letters of the target
were replaced. Simulation 4 tested whether this result is captured
by the model, with the same stimuli as in Lupker and Davis’s
(2009) experiment. As can be seen in Table 4, there was a rela-
tively good match between the observed data and the results of the
simulation, although the model overestimated the observed prim-
ing effect for one-letter different primes. The other slight discrep-
ancy between the model and the data was for the five-letter
different primes, but the �7 ms priming effect in the data is most
likely attributed to noise. In summary, the model does a good job
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of capturing the effects of letter replacement on masked form
priming.

Simulation 5: Parametric variation of number of replaced
letters (Lupker and Davis, 2009, Experiment 2B). In a separate
experiment, Lupker and Davis (2009, Experiment 2B) tested the
same stimuli with the sandwich priming technique. As Table 4
shows, the use of sandwich priming enabled significant priming to
be obtained even when the prime and target differed by three (out
of seven) letters. Simulation 5 tested whether this result is captured
by the model; it was identical to Simulation 4 except for the initial
presentation of the target for 40 cycles to simulate sandwich
priming. As can be seen in Table 4, there was a good match
between the observed data and the results of the simulation.

Summary of Simulations 1–5. The masked priming simula-
tions presented above each deal with situations in which one or
more letters of the target are replaced by other letters to form an
orthographically similar prime. The match calculations in such
cases are quite straightforward, but the simulations illustrate that
masked priming effects are more complex than a simple account
based on match values alone. Different prime–target pairs that are
associated with identical match values can result in facilitatory,
inhibitory, or null priming effects. Primes that are less similar to
the target can produce greater facilitation than those that are more
similar.

The cause of this additional complexity is lexical competition.
In the most extreme case, as demonstrated in Simulation 1, a prime
that is orthographically very similar to the target can nevertheless
lead to inhibitory priming if the prime is itself a word, thereby
promoting strong lexical competition. Corresponding, though less
extreme, instances of lexical competition are observed for primes
that are not themselves words but that activate words that can
compete with the target. Such primes may fail to produce facili-
tatory priming of the target, even though other primes matching the
target equally well produce facilitation, as in Simulations 2 and 3.

Simulations of lexical identification are essential for modeling
these interactions of orthographic similarity and lexical competi-
tion; models that rely solely on match calculation cannot hope to
provide an adequate account of form priming data. A further
benefit of a computational approach that attempts to model iden-
tification processes during masked priming is that it can be used to
suggest new priming methodologies. The sandwich priming tech-
nique illustrated in Simulation 5 is a case in point. This technique
was initially tested computationally, where it was shown to have
the potential to reduce lexical competitor effects. Subsequent em-
pirical tests of the technique have validated this claim and estab-
lished the usefulness of sandwich priming for obtaining priming
effects in situations where lexical competition would ordinarily
interfere with form priming (Lupker & Davis, 2009). Some of the
simulations presented below will illustrate the application of this
technique further. In particular, the value of techniques for reduc-
ing lexical competition will become apparent when extreme letter
transpositions are considered.

B. Primes that involve letter transpositions. A number of
early articles investigated TL similarity effects in unprimed tasks
(e.g., Andrews, 1996; Bruner & O’Dowd, 1958; Chambers, 1979;
O’Connor & Forster 1981; Taft & van Graan, 1998). However, in
recent times, researchers have tended to favor the masked form
priming procedure for investigating TL similarity effects. A search
of PsycInfo reveals 25 published articles investigating TL priming

in the last 5 years (several more are currently in press or under
submission), and most of these articles report multiple experi-
ments. Simulation 6 simulates an experiment from one of the early
and particularly influential studies reported in this series of articles
on TL priming (Perea & Lupker, 2003a). In Simulation 7, I
examine what happens when a letter transposition is combined
with a letter replacement, as in the experiments of Davis and
Bowers (2006). The latter data enabled the falsification of a
number of alternative models of orthographic input coding.

In the remaining simulations in this subsection, I investigate
increasingly severe disruptions of letter position. In Simulation 8,
I examine priming effects for primes in which the TLs are not
immediately adjacent (as in Simulation 6) but are instead separated
by an intervening letter. Experiments have shown that TL priming
effects are obtained when the TLs are nonadjacent, as in caniso–
CASINO (Davis & Bowers, 2005; Lupker, Perea, & Davis, 2008;
Perea & Lupker, 2004), although these effects are smaller than the
priming effects for adjacent TL primes. Finally, Simulations 9 and
10 investigate the effects of more extreme letter transpositions:
Simulation 9 simulates the results of Guerrera and Forster (2008,
Experiment 3), whereas Simulation 10 makes a prediction con-
cerning the outcome of an experiment with the same primes with
the sandwich priming methodology. The latter prediction has re-
cently been confirmed by Lupker and Davis (2009).

Simulation 6: Adjacent TL priming (Perea & Lupker, 2003a).
The goal in Simulation 6 was to investigate the ability of the
spatial coding model to capture adjacent TL priming effects. Data
from Experiment 1 of Perea and Lupker (2003a) provides an
appropriate test set for this purpose. Their experiment used five-
letter English words as target stimuli. In addition to manipulating
prime type, Perea and Lupker (2003a) also manipulated position of
transposition: internal (e.g., jugde–JUDGE) or final (e.g., judge–
JUDGE). The stimuli in this experiment were carefully controlled,
with orthographic controls for each of the TL primes. These
control stimuli were constructed by making letter substitutions for
the letters that were transposed in the TL primes; for example,
different participants saw the target GLOVE preceded by a TL-
internal prime (golve), a corresponding orthographic control
(gatve), a TL-final prime (gloev), or its corresponding ortho-
graphic control (gloac).

Table 4 shows the results of the experiment and the simulation.
As can be seen, there was a very close fit between model and data.
There was a strong overall TL priming effect, as measured relative
to orthographic controls. This TL priming effect was especially
large for internal transpositions, although the priming effect was
smaller than for identity primes (suggesting that letter position
does matter, though this comparison of priming effects must be
made with some caution because the identity priming effect was
measured relative to all-letter-different primes rather than two-
letter different orthographic controls). Priming was somewhat
smaller for final transpositions. The results of the simulation
reflect the relative flexibility of letter position coding when spatial
coding is used, whereas the weaker TL priming for final transpo-
sitions is the result of end-letter marking.

Simulation 7: Neighbor once-removed priming (Davis & Bow-
ers, 2006, Experiment 2–3). TL priming effects such as those
observed in Simulation 6 (and empirically in many experiments)
demonstrate the flexibility of the visual word identification system
with respect to letter position coding. This flexibility raises the

738 DAVIS



question of just how sensitive this system is to letter position. A
possibility left open by the basic TL priming effect is that the
system is so flexible because it is actually somewhat insensitive to
disruptions of letter position. One way to test this possibility is to
investigate the system’s sensitivity to the smallest possible disrup-
tion of letter position. This was the approach taken by Davis and
Bowers (2006).

Davis and Bowers (2006) compared two types of form primes:
neighbor primes, formed by substituting one of the letters of the
target with a different letter, and neighbor once-removed primes,
formed by combining a letter transposition with a substitution of
one of the TLs. For example, for the target word ANKLE, axkle is
a neighbor prime, whereas akxle is a neighbor once-removed
prime. Note that both of these primes contain four letters in
common with the target. The only difference, with respect to their
similarity to the target, is that one letter (in this case, the k) is in the
correct position in the neighbor prime but is one position away
from the correct position in the neighbor once-removed prime.
Given such a minimal difference, it would not seem implausible to
posit that these two primes could be indistinguishable from the
perspective of the target word node, and in fact, this is the predic-
tion of the discrete open-bigram coding model (Grainger & van
Heuven, 2003). However, Davis and Bowers (2006) found that this
prediction is incorrect—neighbor primes were slightly, but signif-
icantly, more effective than neighbor once-removed primes. Davis
and Bowers (2006) noted that the spatial coding model predicts
higher match values for neighbor primes than for neighbor once-
removed primes. However, they did not report simulations of
masked priming. Simulation 7 was therefore designed to test the
model’s ability to simulate the empirically observed pattern.

The simulation tested the same set of 120 five-letter English
target words used by Davis and Bowers (2006). Each target was
associated with five primes. Two of these were neighbor primes in
which the letter in either Position 2 or Position 4 of the target had
been replaced (rows 23 and 24, respectively, in Table 4). There
were also two neighbor once-removed prime conditions in which
the letter in either Position 4 or Position 2 of the target was
replaced and then transposed with the letter in Position 3 (rows 25
and 26, respectively, in Table 4). The final condition comprised
unrelated control primes. As can be seen in Table 4, both types of
form prime resulted in facilitatory priming, as in the experimental
data, and the priming effect was larger for neighbor primes than for
neighbor once-removed primes. The model provides a good fit to
both the qualitative and quantitative pattern of the data. One
further aspect of the results worth noting is that the model predicts
no effect of the serial position of the replaced letter for neighbor
primes (i.e., it did not matter whether the neighbor primes were
formed by substituting the second or the fourth letter). This pre-
diction agrees with the pattern observed by Davis and Bowers
(2006). Although there may be differences between exterior letters
and interior letters, there is apparently no difference in the status of
different interior letters.

The ability of both readers and the model to show differences
between neighbor and neighbor once-removed primes demon-
strates the exquisite sensitivity of position coding in the visual
word identification system. This sensitivity poses a challenge to
many open-bigram coding models (Grainger & van Heuven, 2003;
Whitney, 2001, 2004), although the overlap open-bigram model
(Grainger et al., 2006) does predict greater match values for

neighbor than for neighbor once-removed primes. At the same
time, the fact that neighbor once-removed primes are associated
with significant form priming, in contrast to the weak or null
priming effects associated with two-letter different primes (Simu-
lation 3), provides further evidence of the relative flexibility of
letter position coding (i.e., the letter k in akxle contributes toward
the match with ankle, despite being in the incorrect position). The
next three simulations probe the limits of this flexibility.

Simulation 8: Nonadjacent TL Priming (Perea & Lupker,
2004). Perea and Lupker (2004) reported data showing that non-
adjacent TL primes like caniso–CASINO produce greater form
priming than orthographic control primes like caviro–CASINO.
This finding, which has subsequently been replicated in English
(Davis & Bowers, 2005; Lupker et al., 2008), demonstrates that the
position uncertainty in the orthographic input code cannot be
captured by a position-specific model in which letter inputs are
assumed to “leak” into immediately adjacent channels. Perea and
Lupker (2004) also found (in three separate lexical decision ex-
periments) that the priming for nonadjacent TL primes was weaker
than for neighbor primes (e.g., casiro–CASINO). This result,
which has also been replicated in English (Davis & Bowers, 2005),
provides even stronger constraints on models of letter position
coding. Earlier open-bigram coding models predict larger match
values for nonadjacent TL primes than for neighbor primes (e.g.,
Grainger & van Heuven, 2003; Whitney, 2001), although more
recent open-bigram models can predict the opposite ordering,
given appropriate parameter choices (Grainger et al., 2006; Whit-
ney, 2004). The spatial coding model predicts the correct ordering
of match values, although as has been seen already, this does not
guarantee that the model will make the correct predictions regard-
ing the outcome of the masked form priming experiment. Simu-
lation 8 was designed to test the model’s ability to simulate the
empirical pattern.

The simulation tested a set of 102 six-letter English target
words; these words had an average frequency of 32 per million and
contained no repeated letters. The nonadjacent TL primes were
created by transposing the third and fifth letters of the target.
One-letter different primes were created by replacing the third
letter with a consonant that did not occur elsewhere in the letter
string, and two-letter different primes were created in a similar
way by replacing both the third and fifth letters. Unrelated primes
consisted of primes from the other conditions that shared no more
than one letter with the target. The results of the empirical data and
the simulation are shown in Table 4. As can be seen, the model
provides a good qualitative fit to the data. Nonadjacent TL primes
resulted in greater priming than did two-letter different primes but
weaker priming than one-letter different primes.

In summary, the empirical data originally reported by Perea and
Lupker (2004) provide critical information regarding the relative
perceptual similarity of orthographic neighbors formed by replac-
ing one or two letters or by transposing nonadjacent letters. As
Davis (2006) noted, these data place rather strict constraints on
theories of input coding by providing a yardstick by which to
measure the differential impact of replacing a letter versus altering
the position of that letter. A satisfactory model needs to capture the
fact that casino and caniso are more similar to each other than are
casino and caviro but less similar to each other than casino and
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casiro. The spatial coding model succeeds in satisfying these dual
constraints.

Simulation 9: Extreme Transpositions (Guerrera & Forster,
2008, Experiment 3). The TL priming effects discussed thus far
indicate that not all of the letters of a word need to be in the correct
position for that word to become activated by a letter string, and
the displaced letters can be at least a couple of positions away from
their correct position. One might therefore ask, what are the limits
of TL priming? Guerrera and Forster (2008) sought to answer this
question. To this end, they tested a range of anagram primes in
which most or all of the letters were out of their correct position.

One condition that Guerrera and Forster (2008) tested in several
experiments was one in which the exterior letters were maintained
in their correct position but the six interior letters were each
transposed with an adjacent letter (e.g., the prime for SANDWICH
would be snawdcih); they refer to this as the T-I-6 prime condition.
In each of their experiments, T-I-6 primes resulted in significant
form priming, typically in the range of 20 ms to 30 ms. As
Guerrera and Forster (2008, p.125) noted, “The degree to which
the human word recognition system tolerates transposition in the
input is quite remarkable.”

In Experiment 3, Guerrera and Forster (2008) tested the limits of
the system even further with a prime condition in which all eight
letters of the target were transposed (e.g., the prime for SAND-
WICH would be asdniwhc); they refer to this as the T-all prime
condition. In this case, there was no hint of a priming effect, and
thus, Guerrera and Forster (2008) concluded that they had “now
reached the limits of the system” (p. 133).

These two conditions provide important constraints on models
of letter position coding. The strong priming for T-I-6 primes
appears consistent with spatial coding, which predicts a match
value of .76 for these primes. A much smaller match value (of .45)
is computed for T-all primes. A simulation is required to establish
whether the former prime gives rise to a facilitatory priming effect
of the right general magnitude, and the latter prime results in no
priming at all. This was the aim in Simulation 9, in which I tested
three of the four prime conditions of Experiment 3 of Guerrera and
Forster (2008). (The remaining prime condition is tested in Sim-
ulation 11, when string reversal is considered). The target words
were the 96 eight-letter targets from Guerrera and Forster’s (2008)
experiment.

Table 4 shows the results of the simulation, together with the
results from Guerrera and Forster’s (2008) experiment. As can be
seen, the T-I-6 prime condition showed a strong priming effect, in
accord with the empirical data. By contrast, the T-all prime con-
dition showed no priming effect in the data and a very small
priming effect (of five cycles) in the model. The results of the
simulation differ somewhat from theoretical predictions made by
Guerrera and Forster (2008), who suggested that the moderately
high match for T-all primes implied that the spatial coding model
predicted “strong priming” (p. 137). As has been noted already, the
relationship between match values and masked form priming ef-
fects is not straightforward, and Simulation 9 provides further
evidence of this point.

Although the T-all priming effect in the model certainly could
not be characterized as strong, there is some evidence of priming
in this condition. Is this problematic for the model? Further em-
pirical data are relevant to considering this question. Lupker and
Davis (2009, Experiment 1A) replicated the T-all priming condi-

tion of Guerrera and Forster’s (2008) experiment, using exactly the
same stimuli. This experiment also showed a statistically nonsig-
nificant priming effect, but there was a 9 ms advantage for T-all
primes relative to control primes. The average of the priming
effects observed in these two experiments is thus 4 ms, that is,
quite close to the predicted priming effect of five cycles.

Simulation 10: Sandwich priming with extreme transpositions
(Lupker & Davis, 2009, Experiment 1). The reason for the
apparent disconnect between the match values for T-all primes and
the priming effects observed in Simulation 9 is that, as in previous
simulations, the prime activates lexical competitors of the target
more strongly than the target itself. For example, consider a
prime–target pair such as baonmrla–ABNORMAL. Though the
prime has a match of .45 with the target, it is a better match for a
number of other words, including banner (match � .625), baron,
baronial, formula, banana, bacteria, and so on. The (moderate)
activation of these word nodes interferes with the activation of the
target word node, with the consequence that the prime provides no
headstart to the processing of the target. By contrast, T-I-6 primes
like snawdcih are virtually always better matches for the target
(SANDWICH) than for any other words.

It may be apparent from the foregoing discussion that the
sandwich priming technique offers a potential method for reducing
the interference from such lexical competitors, thereby enabling
T-all primes to become effective form primes. This possibility was
tested by Lupker and Davis (2009). As noted above, using the
same prime–target stimuli as Guerrera and Forster (2008), they
replicated the latter’s finding of a nonsignificant T-all priming
effect when a standard masked priming methodology was used.
However, when they used sandwich priming, they found a 40 ms
T-all priming effect. With Simulation 10, I sought to simulate this
finding. The simulation was identical to Simulation 9, except that
sandwich priming was assumed; that is, the target was briefly
presented prior to the prime of interest.

Table 4 shows the results of the simulation, as well as the
relevant results from Lupker and Davis (2009). As can be seen, the
switch to sandwich priming transformed the five cycle priming
effect of Simulation 9 to a 29 cycle priming effect. The model’s
slight underestimation of the empirical effect may indicate that the
� parameter is underestimated for eight-letter words or that the
model’s account of the mechanisms underlying sandwich priming
is incomplete; it may be noted that increasing the sandwich prime
duration improves the quantitative fit to the data. Nevertheless, the
more salient point is that in both the model and the data, sandwich
priming has the effect of transforming a rather small T-all priming
effect into a very large effect.

The finding that T-all primes can give rise to substantial form
priming effects is important for two reasons. First, this finding
demonstrates the extraordinary flexibility of the letter position
coding system. Despite the fact that every single letter of the target
has been displaced, these primes are sufficiently similar to the
target to support its activation. This similarity is somewhat coun-
terintuitive (the word abnormal does not leap out at one when
confronted with its T-all prime baonmrla) and yet is exactly as
predicted by the spatial coding model. The assumption of position-
independent letter coding naturally leads to the prediction that
even quite extreme anagrams are relatively similar to their base
word (compared with all-letter-different controls). The fact that
sandwich priming is a sufficiently sensitive methodology to detect
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this similarity is the second noteworthy aspect of this finding. The
great potential of the sandwich priming methodology constitutes
powerful testimony to the theoretical and practical value of the
computational model that led to its development.

C. Primes that involve letter string reversal. String manip-
ulations like those considered in Simulations 6–10, in which a
single pair of letters is transposed or in which there are a small
number of pairwise transpositions, give rise to similar orthographic
similarity scores in spatial coding and open-bigram coding models
(e.g., Dehaene, Cohen, Sigman, & Vinckier, 2005; Grainger & van
Heuven, 2003; Grainger & Whitney, 2004; Schoonbaert &
Grainger, 2004; Whitney, 2001, 2004). However, the predictions
of these models are distinguished by a special case of letter
transposition that occurs when an entire string (or long substring)
of letters is reversed, as in draw and ward. Such manipulations
offer a particularly strong test of context-specific coding schemes
in which letter position is coded by activating nodes that code
where a letter occurs relative to another nearby letter: in particular,
whether it occurs before or after this letter. For example, draw
activates the open bigrams DR, DA, and DW, but not the reversed
open bigrams RD, AD, or WD (which are activated by ward).
Indeed, reversed letter strings like draw and ward do not share any
common bigrams. By contrast, these letter strings are reasonably
similar according to the spatial coding model.

Thus, examining effects of letter string reversal offers a means of
testing fundamental assumptions of different models of letter position
coding. Simulations 11 through 13 consider two different sorts of
string reversal manipulations. In Simulations 11 and 12, the aim is to
test whether the spatial coding model overestimates the similarity of
reversed letter strings such that it predicts form priming in situations
in which none is found (Davis & Lupker, 2010; Guerrera & Forster,
2008). Simulation 13 tests whether the spatial coding model can
correctly predict form priming effects in situations where reversed-
string priming is obtained (Davis & Lupker, 2010).

Simulation 11: Reversed-halves (RH) priming (Guerrera &
Forster, 2008). RH anagrams constitute another form of prime–
target relationship that was originally tested by Guerrera and
Forster (2008). These anagrams are formed by reversing the letters
in each half of a word (e.g., DRAWBACK �� wardkcab). This
manipulation greatly disrupts relative position but has a smaller
disruptive effect on absolute position because the internal letters of
each half are left adjacent to their original position (e.g., the R in
DRAWBACK has shifted by only a single position in wardkcab).
According to the spatial coding model, then, there should be a
moderate similarity score for RH anagrams.

By contrast, open-bigram coding models predict that RH ana-
grams are relatively dissimilar. Indeed, given the standard restric-
tions on the distance separating the letters of an open bigram, RH
anagrams like DRAWBACK and wardkcab do not share any open
bigrams. This prediction about the perceptual similarity of RH
anagrams is consistent with Guerrera and Forster’s (2008) find-
ings, which showed no evidence of a form priming effect when RH
anagrams were used as primes.

The aim in Simulation 11 was to test whether the spatial coding
model incorrectly predicts form priming for RH anagram primes. The
simulation tested the same stimuli used by Guerrera and Forster
(2008). Results are shown in Table 4, along with the corresponding
results from Guerrera and Forster’s experiment. The model predicts a

priming effect of only three cycles for RH anagram primes, which is
compatible with the null effect observed in the data.

Simulation 12: Reversed-interior (RI) priming (Davis & Lup-
ker, 2009). One possible explanation for the lack of priming
produced by RH anagram primes is that they differ from the target
with respect to the exterior letters, which may play a particularly
important role in lexical matching. This raises the possibility that
a reversed-string prime could support priming if the exterior letters
were preserved in their correct position. Davis and Lupker (2010)
have recently investigated this possibility, constructing RI primes
by reversing all of the internal letters of eight-letter words. For
example, for the target COMPUTER, the RI prime was cetupmor.
Control primes were formed by maintaining the exterior letters and
replacing all of the interior letters with letters that do not occur in
the target (e.g., calibnar). A standard masked priming paradigm
produced the results shown in Table 4. The 5 ms difference
between the RI condition and the control prime condition did not
approach significance.

According to the spatial coding model, the predicted match for
RI primes is reasonably high (.52, compared with .40 for control
primes). This raises the possibility that the model incorrectly
predicts form priming for RI anagram primes. The aim in Simu-
lation 12 was to check this possibility. The model was tested with
the same stimuli used by Davis and Lupker (2010). Results of the
experiment and the simulation are shown in Table 4. As can be
seen, the model and data agree in predicting virtually no priming
for RI primes. In summary, although the spatial coding model
predicts greater levels of similarity between reversed letter strings
than other models, Simulations 11 and 12 show that the model
correctly predicts the absence of masked form priming from the
reversed letter string primes that have been examined empirically
(Davis & Lupker, 2010; Guerrera & Forster, 2008).

Simulation 13: Sandwich simulations (Davis & Lupker, 2010).
The previous discussion of T-all primes (Simulations 9 and 10)
demonstrated that these primes do not give rise to priming in the
standard masked priming paradigm but are associated with robust
priming effects when the sandwich priming technique is used
(Guerrera & Forster, 2008; Lupker & Davis, 2010). By analogy,
Davis and Lupker (2010) speculated that reversed letter string
primes that do not give rise to priming in the standard masked
priming paradigm (e.g., Guerrera & Forster, 2008) might give rise
to priming effects when the sandwich priming technique is used.
That is, the absence of priming in the standard masked priming
paradigm may reflect effects of lexical competition. For example,
consider an RI prime–target pair such as cetupmor–COMPUTER.
Though the prime has a match of .56 with the target, it has a
slightly stronger match with a number of other words, including
tumour, stupor, camphor, and customer. The (moderate) activation
of these word nodes interferes with the activation of the target
word node, with the consequence that the prime provides no
headstart to the processing of the target. The sandwich priming
technique has the potential to reduce the interference from such
lexical competitors, so that reversed-string primes might become
effective form primes.

The results obtained by Davis and Lupker (2010) are consistent
with this conjecture (see Table 4). Using the same prime–target
stimuli as Guerrera and Forster (2008), Davis and Lupker (2010)
found a small but significant 9 ms priming effect for RH primes
when sandwich priming was used. Likewise, they found a signif-
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icant 23 ms priming effect for RH primes when sandwich priming
was used. In Simulation 13, I sought to simulate these two sand-
wich priming experiments, using the same stimuli as in the exper-
iments.

The results of the simulation are shown in Table 4. As can be
seen, the switch to sandwich priming transformed the null RI
priming effect of Simulation 12 to a 21 cycle priming effect, and
increased the two-cycle reversed halves priming effect of Simula-
tion 11 to a seven cycle priming effect. The magnitudes of these
effects are close to the human data.

These findings provide a further demonstration of the usefulness
of the sandwich priming technique. Moreover, they demonstrate
that the null effects of reversed-string primes in standard masked
priming effects cannot be interpreted as evidence for the weak (or
zero) perceptual similarity of strings formed through string rever-
sal manipulations. Rather, these findings suggest that such manip-
ulations result in pairs of strings that are at least moderately similar
to each other. This conclusion is consistent with spatial coding but
is problematic for open-bigram coding models (this point is dis-
cussed further below).

D. Superset primes. Each of the string manipulations consid-
ered thus far (letter replacement, letter transposition, and string
reversal) result in primes that preserve the string length of the
target. In the next two subsections, I consider string manipulations
that modify string length through the deletion or addition of letters.
Letter insertion has the interesting property of modifying absolute
letter position while maintaining relative order of letters (e.g.,
consider the order of the common letters in special and specxyial).
This is not to say that letter insertion should have no impact on
orthographic similarity. Although order is maintained, relative
position information is modified slightly by letter insertion (e.g.,
the c in specxyial is further away from the letter i than the c in
special). This disruption of letter contiguity leads to a slight
reduction in the match value for each inserted letter. The empirical
effects of letter insertion on masked priming have been investi-
gated in a series of experiments reported by Grainger and col-
leagues (Van Assche & Grainger, 2006; Welvaert, Farioli, &
Grainger, 2008). These experiments have tested the effect of
number of inserted letters on form priming and have also examined
whether letter insertion effects are dependent on the status of the
inserted letter (repeated or unique). These two issues are consid-
ered in Simulations 14 and 15.

Simulation 14: Parametric manipulation of number of in-
serted letters (Van Assche & Grainger, 2006; Welvaert, Farioli,
& Grainger, 2008). Van Assche and Grainger (2006) and Wel-
vaert et al. (2008) reported several experiments investigating the
effects of letter insertion on form priming. As Welvaert et al.
(2008) noted, slightly different patterns can emerge from one
experiment to another, so it is advisable to combine data from
multiple experiments. To this end, they performed a meta-analysis
based on seven experiments (N � 248) that included seven-letter
word targets and primes that included between zero and three
inserted letters (zero inserted letters corresponds to identity prim-
ing). This analysis revealed a graded effect of letter insertion, in
which there was a cost of 11 ms per letter inserted; the linear
regression equation explained 62% of the variance in priming
effects.

The stimuli for Simulation 14 were constructed to parallel those
used in the experiments of Van Assche and Grainger (2006) and

Welvaert et al. (2008). The targets were a random set of 96
seven-letter words with no repeated letters. Primes were con-
structed by inserting zero, one, two, or three letters at either
Position 4 (e.g., abdomen, abdgomen, abdgcomen, abdgcxomen)
or Position 5 (acquire, acquhire, acquhjire, acquhmjire); in addi-
tion, a set of all-letter-different control primes was constructed.

As can be seen in Table 4, although the model underestimated
priming by around six cycles for each condition, it was quite
successful in capturing the linear relationship between number of
inserted letters and priming effects. According to the model, this
linear decrease in priming effects reflects the disruption of relative
position information as further letters are inserted. The slight
underestimation of priming may reflect the slight variation in
masked priming methodology used in these experiments. Specif-
ically, Van Assche and Grainger (2006) and Welvaert et al. (2008)
used four stimulus fields rather than three, with the prime followed
by a 16 ms backward mask that preceded the target stimulus; by
contrast, the simulation used the same procedure as in other
simulations; that is, there was no backward mask. The inclusion of
the intermediate mask in the experiment allows extra processing
time for the prime, which could increase masked priming effects.

Simulation 15: Superset priming (Van Assche & Grainger,
2006, Experiment 1). Having established that superset primes
can produce robust form priming effects, Van Assche and Grainger
(2006) proceeded to investigate whether the magnitude of these
effects was affected by whether the inserted letter was a repeated
letter (i.e., one that occurred already in the target) or a unique
letter. They compared two repeated letter conditions: one in which
the repeated letters were adjacent (e.g., cabinet–CABINET or
cabinet–CABINET) and another in which the repeated letters were
separated by two intervening letters (cabinbet–CABINET or
canbinet–CABINET). There were two versions of the unique letter
condition (e.g., cabinxet–CABINET and caxbinet–CABINET), to
control for possible letter position effects. Finally, identity and
unrelated prime conditions were included for comparison pur-
poses. The simulation included each of these eight conditions and
used the same targets as Simulation 14.

The match values computed by the spatial coding model are
equivalent for the two repeated letter conditions and also for the
unique letter condition (e.g., cabinxet–CABINET). This equiva-
lence reflects the model’s equivalent treatment of repeated and
unique letters. As can be seen in Table 4, the equivalent match
values across the repeat, repeat-displace, and unique (insert) letter
conditions translate to approximately equivalent predicted priming
effects. This pattern perfectly mirrors the pattern of the data.

It is worth noting that the equivalence of the displaced and
adjacent repeated letter conditions is not a necessary prediction of
all models. According to the discrete open-bigram coding scheme
described by Schoonbaert and Grainger (2004), the displaced
repeated letters should produce a better match than the adjacent
repeated letters (.93 vs. .87). The same prediction follows from the
current SERIOL model (Whitney, 2004), whereas the overlap
open-bigram coding model predicts the opposite pattern (.90 vs.
.96). Van Assche and Grainger (2006, p. 346) concluded that “in
terms of the influence of letter repetition on relative-position
priming effects, it appears that the SOLAR [i.e., spatial coding]
model generates superior predictions relative to the other models
examined.”
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E. Noncontiguous subset primes. Subset primes are formed
by deleting letters of the target. It is appropriate to distinguish
between two types of subset primes. The deletion of initial or final
letters results in contiguous subset primes (e.g., qual–quality);
these are considered in the next subsection. The deletion of internal
letters of the target results in noncontiguous subset primes. Like
superset primes, these primes modify absolute letter position while
maintaining letter order (e.g., consider the order of the common
letters in special and spcal). However, although order is main-
tained, the relative position is modified slightly by letter deletion
(e.g., the c in spcal is closer to the letter p than the c in special).
This disruption of letter contiguity results in a slight reduction in
the match value, as does the absence of one or more of the letters
of the template. The simulations reported in the present subsection
examine the effect of number of deleted letters, the effect of
deletions versus substitutions (Peressotti & Grainger, 1999), and
the importance of relative letter position in letter deletion primes
(Grainger et al., 2006; Peressotti & Grainger, 1995, 1999), as well
as the importance of whether the deleted letter occurs only once or
repeatedly in the target (Schoonbaert & Grainger, 2004).

Simulation 16: Deletion of repeated versus unique letters
(Schoonbaert & Grainger, 2004, Experiment 1). Schoonbaert
and Grainger (2004) tested subset priming effects for targets
containing repeated letters. Their prediction (based on open-
bigram coding) was that deleting a repeated letter (e.g., trival–
TRIVIAL) would result in greater priming than deleting an unre-
peated letter (e.g., trivil–TRIVIAL). Contrary to this prediction,
primes formed by deleting repeated letters were not more effective
than those formed by deleting unique letters. Schoonbaert and
Grainger (2004) noted that this result is consistent with a spatial
coding account because the spatial coding model treats repeated
letters in the same way as unique letters and incorporates a mech-
anism to prevent letters doing “double-duty”; that is, a single letter
cannot contribute to the overall match more than once (e.g., the i
in trival cannot count toward both is in trivial).

The English stimuli used in Simulation 16 were constructed in
the same way as in Schoonbaert and Grainger’s (2004; French)
experiment. The critical targets were 64 seven-letter words con-
taining repeated letters (where the repeated letters were not adja-
cent, and did not occur in initial or final positions). The primes
were constructed by deleting either the second occurrence of the
repeated letter, or an immediately adjacent letter. As in Schoon-
baert and Grainger’s (2004) experiment, possible letter position
effects were controlled for by testing an equal number of control
targets that contained no repeated letters and that were primed with
letter deletion primes constructed in the same way as for the targets
with repeated letters.

The results of the simulation are shown in Table 4. As in
Simulation 14, the model’s underestimation of the magnitude of
priming effects by around five cycles across each condition may
reflect the need to increase the prime duration in the simulation to
simulate the use of the intervening backward mask in the experi-
ment. Nevertheless, the overall pattern of the results demonstrates
an excellent fit to the experimental data. Subset primes were
extremely effective for both the repeated letter targets and the
control targets, and the size of the priming effect did not appre-
ciably differ as a function of whether the deleted letter was a
repeated letter or a unique letter. These results, combined with
those from Simulation 15, demonstrate that the method by which

the model handles repeated letters is consistent with a broad range
of priming data.

Simulation 17: Subset versus substitution priming (Peressotti
& Grainger, 1999, Experiment 2). Peressotti and Grainger
(1999) reported several experiments investigating various aspects
of relative position priming. They sought to extend work previ-
ously reported by Humphreys, Evett, and Quinlan (1990), who
found that the identification of target words could be primed by
subsets that shared common letters with the target in the same
relative position (e.g., exterior letters primed exterior letters and
interior letters primed interior letters). For example, identification
of targets like BLACK was facilitated both by substitution primes
like btvuk (relative to control primes like otvuf) and by deletion
primes like bvk (relative to control primes like ovf). Peressotti and
Grainger (1999) attempted a replication of Humphreys et al.’s
(1990) prime conditions, using the three-field masked priming
technique and the lexical decision task.

Experiment 2 of Peressotti and Grainger (1999) manipulated
prime relatedness and prime length to form the following four
priming conditions: (a) the subset prime 1346 (e.g., crtn–
CARTON), (b) the unrelated control prime dddd (e.g., vsfx–
CARTON), (c) the substitution prime 1d34d6 (e.g., czrtwn–
CARTON), and (d) the unrelated control prime dddddd (e.g.,
vzsfwx–CARTON). The description of primes in this and the fol-
lowing simulations adopts the common practice of using digits to
indicate letter position, for example, the notation 1346 indicates a
prime consisting of the letters from positions 1, 3, 4, and 6 of the
target. The letter d (as in 1d34d6) indicates a letter that is not
present in the target. Their results showed that subsets were effec-
tive form primes, relative to their controls, but that substitution
primes were not (relative to their controls). Peressotti and Grainger
(1999) concluded that the presence of nontarget letters in the
substitution primes exerted an inhibitory effect on target identifi-
cation.

Simulation 17 used stimuli that were constructed in the same
way as Peressotti and Grainger (1999)’s (their experiment used
French stimuli; hence, it was necessary to construct English stimuli
with the same characteristics). There were eighty six-letter targets,
each paired with four different primes. Table 4 shows the mean
priming effects predicted by the model. As can be seen, both the
subset primes and the substitution primes resulted in facilitatory
priming, but the priming effect was larger for subset primes. The
model slightly underestimates the 27 ms effect that Peressotti and
Grainger (1999) found for subset primes in their Experiment 1,
although these authors obtained smaller priming effects for this
condition in a subsequent experiment in the same series (see
below).

The magnitude of the predicted priming for substitution primes
was very close to the observed effect. The latter effect was not
statistically significant in Peressotti and Grainger’s (1999) data,
but other experiments suggest that there is a genuine priming effect
to be found for two-letter different primes and six-letter targets
(e.g., Perea & Lupker, 2004), as has also been observed for
two-letter different primes and seven-letter targets (Lupker &
Davis, 2009; see Simulation 4). Nevertheless, the critical aspect of
the results is that both the model and the data show greater priming
for subset primes than for substitution primes. This suggests that
the mismatch inhibition produced by substituted letters outweighs
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any beneficial effect these letters may have in helping to preserve
relative position information for the remaining letters.

Simulation 18: The relative position priming effect (Peressotti
& Grainger, 1999, Experiment 3). A second issue explored by
Peressotti and Grainger (1999; again following on from earlier
work reported by Humphreys et al., 1990, on the perceptual
identification of primed targets) concerns the flexibility of letter
position coding as revealed by subset priming. As discussed in
detail already, there is considerable evidence for facilitatory prim-
ing from primes that transpose two adjacent letters of a target
stimulus (e.g., catron–CARTON). One might therefore anticipate
that subset primes that incorporate adjacent letter transposition
would result in some form priming (e.g., that ctrn–CARTON would
result in a priming effect not too much smaller than that for
crtn–CARTON). However, this expectation is violated by the re-
sults of Peressotti and Grainger’s (1999) Experiment 3 (see Table
4), which replicated the facilitatory effect of subset primes but
showed no priming for subset primes in which the order of the two
interior letters was transposed (i.e., 1436 primes like ctrn–
CARTON) or in which the order of the two exterior letters was
transposed (i.e., 6341 primes like nrtc–CARTON).

Simulation 18 had the same 80 word targets as Simulation 17.
The 1346 and dddd prime conditions were also identical to those
of Simulation 14, and the new conditions of 1436 and 6341 were
included. Table 4 shows the mean priming effects predicted by the
model. As can be seen, the 1346 subset primes showed a facilita-
tory priming effect of the same size as that effect observed by
Peressotti and Grainger (1999); this correspondence suggests that
the slight underestimation of subset priming observed in Simula-
tion 14 is not problematic for the model. The model also correctly
predicts a weaker priming effect for the 1436 subset primes,
although there is evidence of some facilitatory priming (cf. Stinch-
combe, Lupker, & Davis, 2010). Finally, the model predicts no
priming for the 6341 primes, consistent with the nonsignificant
priming effect reported by Peressotti and Grainger (1999). Thus,
the model provides a good account of relative position priming.

F. Primes that involve letter string displacement. A key
claim of the spatial coding model is that the recognition of letter
strings is position invariant. The assumption of end-letter marking
introduces a slight degree of position specificity (in the sense that
the model computes larger match values when two strings share
their initial and final letters), but it is nevertheless the case that the
model predicts that a familiar letter string that ordinarily occurs in
serial Positions 1–4 can be recognized even when it occurs in
Positions 4 through 7. To date, researchers have examined such
manipulations, in which letter strings are shifted rather than trans-
posed or reversed, in very few masked priming experiments. These
experiments have produced somewhat mixed results. On the one
hand, Grainger et al. (2006) observed significant priming effects
when substrings of the target word were shifted by as many as four
letter positions. For example, in one experiment Grainger et al.
(2006) found that priming nine-letter target words was equivalent
for 12345 primes (e.g., labyr–LABYRINTH) and 56789 primes
(e.g., rinth–LABYRINTH), despite the fact that the letters of the
prime in the latter condition are shifted by four positions (forward)
relative to the positions of the corresponding letters in the target.
This result is consistent with position-invariant identification and
poses a strong challenge to position-specific models.

On the other hand, Kinoshita and Norris (2008) have recently
reported a masked priming experiment in which priming effects
were not obtained for position-shifted primes. The targets in this
experiment were eight-letter words and nonwords, and the critical
primes were of the form 56781234; that is, the first half of the
target was shifted forward by four positions, whereas the second
half was shifted backward by four positions. This manipulation
resulted in no priming, relative to an unrelated baseline condition.
In Simulations 19 and 20, I investigate whether the spatial coding
model can accommodate the dual (and potentially conflicting)
constraints imposed by these two sets of results.

Simulation 19: Shifted-halves (Kinoshita & Norris, 2008).
As noted above, Kinoshita and Norris (2008) have recently re-
ported a masked priming experiment which, on the surface at least,
appears to conflict with the findings of Grainger et al. (2006). As
in the 56789 prime condition of the latter experiment, the primes
consisted of substrings of the target that had been shifted from
their normal position by four letter positions (although the targets
were eight letter long rather than nine letters long). This substring
was then concatenated with a substring corresponding to the initial
four letters of the target. The resulting primes, of the form
56781234, showed no priming relative to an unrelated baseline
condition.

From an empirical perspective, the absence of 56781234 prim-
ing is noteworthy. The results of Grainger et al. (2006) suggest that
5678 should be an effective prime for an eight-letter target, so it
may be somewhat surprising that the addition of four further target
letters should eliminate this effect. More important, from a theo-
retical perspective, the absence of 56781234 priming may appear
to pose a strong challenge to position-invariant recognition. This
challenge is especially profound in the case of models that attempt
to achieve position-invariant recognition through matching of
small sublexical chunks. For example, the overlap open-bigram
model (Grainger et al., 2006) predicts a match of .85 between a
target and a shifted-halves prime (e.g., drenchil–CHILDREN), and
high match values are also produced by the discrete open-bigram
and SERIOL models. These high values reflect the fact that dren-
chil and children share most of their local context, e.g., c is
followed by h, d is followed by r, and so on.

However, from the perspective of the spatial coding model,
Kinoshita and Norris’s (2008) result is not so problematic because
match values in this model are based on the whole string, and not
just the similarity of the sublexical components. That is, drenchil
and children share common substrings (1234 and 5678), but their
whole-word match is not as good. The addition of the 1234
component will not increase the priming that can be generated by
the 5678 substring because these additional letters are too far away
from the expected position that is implied by the remaining letters.
This point is most easily illustrated graphically. Figure 8 shows the
signal-weight difference functions computed by the children word
node when the input stimulus is drenchil. As can be seen, the node
is in some sense sensitive to the overlap with both halves of the
stimulus. The d, r, e, and n functions are perfectly aligned with
each other, so that the node can “recognize” that the substring dren
matches part of the template. Likewise, the c, h, i, and l functions
are perfectly aligned with each other, so that the node can recog-
nize that the substring chil matches part of the template. However,
the signal-weight difference functions for these components are
not aligned with each other (rather, they are quite distant), and so

744 DAVIS



there is not a complete (or even a particular close) match between
the stimulus and the template. Effectively, when faced with a
56781234 prime, the word node must choose between two partial
matches: one in which the stimulus has been shifted forward by
four positions or one in which it has been shifted backward by four
positions (the same stimulus cannot simultaneously have been
shifted in both directions). Thus, with a spatial coding model, there
is no reason to expect that a 56781234 prime will be more effective
than a 5678 prime. As noted below, the same is not true of other
current models.

Furthermore, the spatial coding model offers a couple of reasons
to expect that a 56781234 prime will be less effective than a 5678
prime. The first reason relates to end-letter marking. Consider the
target INTERVAL, and the primes rval versus rvalinte. In addition
to the common substring rval, rval and interval share the property
that their final letter is l (resulting in a match of (4 � 1)/(8 � 2) �
.5). This is not the case for rvalinte and interval, which have
different initial and final letters (resulting in a match of (4 �
0)/(8 � 2) � .4). Thus, the addition of the 1234 letters (i.e., inte)
actually decreases the match. The second, more important reason
to expect that a 56781234 prime will be less effective than a 5678
prime is that the additional 1234 letters will frequently result in a
better match between the prime and other words. For example,
rvalinte produces a closer match to eight-letter words like reliance,

relative, radiance, validate, and so on, as well as to shorter words
like ravine, reliant, and recline than it does to interval. Even
though none of these matches is especially close, they may be
sufficient to prevent rvalinte from functioning as an effective
prime for the target INTERVAL.

In Simulation 19, I aimed to test this lexical competition account
of the absence of masked priming for shifted-halves primes. The
simulation had the same (eight-letter) primes and targets as Ki-
noshita and Norris (2009). As can be seen in Table 4, there was no
indication of a difference between the shifted halves (56781234)
prime condition and the control (all-letter-different) prime condi-
tion. This result is in accordance with the findings of Kinoshita and
Norris (2009).

Simulation 20: Position-invariant priming (Grainger et al.,
2006). The most dramatic examples of position-invariant prim-
ing presented to date come from Experiments 2 and 3 of Grainger
et al. (2006). These experiments showed large subset priming
effects for both initial subsets (e.g., 12345–1234567) and final
subsets (34567–1234567). Although there was some indication of
larger priming effects for initial-overlap subsets, the large priming
effects for final-overlap subsets (37 ms for 34567 primes and 12
ms for 4567 primes) are difficult to reconcile with a position-
specific letter coding model, even one that incorporates letter
position uncertainty (e.g., Gomez et al., 2008).

Figure 8. Superposition matching for shifted-halves stimuli (in this case, the input drenchil and the template
CHILDREN).
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In Simulation 20, I attempted to simulate these effects. The
stimulus set for this simulation was formed by randomly selecting
a set of 60 seven-letter word targets, subject to the constraint that
targets contained no repeated letters. Each of these targets was
paired with eight different primes, which were of the form (a)
12345, for example, plast–PLASTIC; (b) 34567, for example,
astic–PLASTIC; (c) 13457, for example, pastc–PLASTIC; (d)
ddddd, for example, qmbtu–PLASTIC, (e) 1234, for example,
plas–PLASTIC; (f) 4567, for example, stic–PLASTIC; (g) 1357, for
example, patc–PLASTIC; or (h) dddd, for example, qmbt–
PLASTIC.

The results of this simulation show some similarities with the
empirical data, as well as some differences. As in the data, there
were (numerical) priming effects for all six related prime condi-
tions. In particular, the model correctly predicts that priming
should be obtained for both initial subsets (12345, 1234) and final
subsets (34567, 4567); that is, priming was not specific to absolute
serial position. The model also correctly predicted a similarly sized
priming effect for noncontiguous subsets (13457, 1357). Overall,
however, the predicted subset priming effects tended to be smaller
in magnitude than the empirical effects, especially for initial over-
lap primes. I return to this discrepancy below. It is important to
note, though, that the same model predicts priming for final
subsets like 4567 (in this simulation) but not for shifted-halves
primes like 56781234 (in Simulation 19). This pattern suggests
that it is possible to resolve the apparent conflict between the
results of Grainger et al. (2006) and Kinoshita and Norris (2008).

Summary of simulation results. Figure 9 plots the relation
between the model’s predicted priming effects and the empirically
observed effects. The line of best fit (dashed line) has a slope of
.98 and intercepts the y-axis at 1.76; the proximity to the origin and
a slope of 1 indicates that the parameter choices were successful in
achieving a good correspondence between the units of millisec-
onds in which the observed priming effects are measured and the
units of processing cycles in which the predicted priming effects
are measured. The plot illustrates the remarkably close fit between

theory and data (r � .95, root-mean-square error � 5.72), across
the full range of prime manipulations and observed priming effects
(from �34 ms/�35 cycles up to �55 ms/�58 cycles). Overall, the
model (assuming a fixed set of parameters) is able to account for
90% of the variance in 61 mean priming effects derived from a set
of over 25 form priming experiments that span the entire range of
letter string manipulations. In view of the typical variability asso-
ciated with empirical priming effects, the obtained fit is likely to be
close to the limits of observation.

Figure 9 also shows a few outliers, in which the model’s
predicted priming effect overestimates or underestimates the ob-
served effect size (the most extreme outliers are highlighted in the
third column of Table 5). The model overestimated neighbor
priming effects for high frequency targets in Simulation 1; on the
other hand, the model tended to underestimate neighbor priming
effects for the low frequency targets in Simulations 1 and 2. It is
possible that these outliers reflect spurious noise, but the model’s
account of neighbor priming as a function of target frequency may
warrant closer scrutiny.

The most noteworthy outliers relate to the model’s underesti-
mation of priming effects for five-letter contiguous subset primes
(Grainger et al., 2006) in Simulation 20. The observed priming
effects are extremely large, considering that the prime omits two of
the letters of the target. Indeed, the priming effect of 45 ms for
12345 primes is of a similar magnitude to the effect size that the
model predicts for identity primes with these targets. The magni-
tude of the observed effects suggests that these subset primes may
invoke processes that are beyond form priming. One possibility is
that the first five letters of the target word is sufficient to provoke
some form of expectancy (see Forster, 1998, for a discussion of
this possibility). Although the model incorporates expectancy in
the form of its top-down feedback, it may be that this feedback is
insufficiently strong or that the implementation of feedback is
incorrect. Another possibility is that the observed priming effects
for contiguous subsets includes a morphological priming compo-
nent, which would be outside the scope of the present model.

Figure 9. A plot of model predictions versus experimental data. Each point represents a priming effect modeled
in the simulations.
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Although the experiments modeled here focused on the issues of
orthographic representations and processes, there was every op-
portunity for other types of representations and processes (i.e.,
phonological, morphological, or semantic) to influence the pattern
of empirical results. Needless to say, the model would underesti-
mate masked priming effects that are due to nonorthographic
processes; for example, the present model would fail to predict
associative priming effects such as those observed for prime–target
pairs like judge–COURT (e.g., Perea & Gotor, 1997). Neverthe-
less, the fact that a purely orthographic model can provide such a
good account of this large data set is of interest and appears to
validate the general approach of seeking to study the workings of
the orthographic lexicon in isolation. This approach clearly ne-
glects important aspects of reading but nevertheless it appears that
it can offer a fairly good characterization of early visual word
identification processes.

Comparison of the Spatial Coding Model With Other
Models

The spatial coding model differs in several ways from the
original IA model, and thus it is not immediately apparent which
of these differences might result in it offering a better account of
the empirical database. In this section, I first demonstrate that the
spatial coding model does indeed provide a better account of the
data than does the IA model. I then consider a set of nine models,
each of which differs from the spatial coding model with respect to
one critical difference. Each model is tested on the same 20
simulations reported above, and their performance is compared
with the model already tested. This approach makes it possible to
assess the relative contribution of each of the differences of the
spatial coding model from the original IA model. In the final part
of this section, I turn to consideration of two alternatives to the
standard approach that have been proposed in recent years: the
overlap model (Gomez et al., 2008) and open-bigram coding
models (e.g., Grainger & Whitney, 2004). Although both of these
approaches are able to explain an impressive number of empirical
observations, I conclude that neither is able to explain all of the
results simulated here.

Original IA model. In order to conduct the same simulations
that were reported above with the original IA model, a different
parameterization of the spatial coding model was used, as de-
scribed in the Appendix (where it is shown that this parameteriza-
tion results in identical performance for the four-letter vocabulary
used in the original IA model). Not surprisingly, the model failed
to identify a large proportion of the stimuli, as the result of
competition between words of different length, and this resulted in
a rather poor correlation between the model’s predicted priming
effects and the empirical data (r � .17). To try to provide a fairer
test of the model, I then ran each of the simulations using vocab-
ularies of a fixed length that corresponded to the target words in
that simulation. The model then succeeded in identifying the target
stimuli, although it frequently made errors on the lexical decision
task because its identifications were too slow. As a compromise, I
set the nletter parameter to .0, so that yes decisions could be made
whenever the model succeeded in identifying the stimulus. This
enabled the model to achieve a correlation between its predictions
and the empirical data of .63 (see Table 5). Although the model
was reasonably successful in predicting priming effects for letter

substitution primes, it systematically underestimated priming ef-
fects for TL primes. For example, the model predicted no facili-
tatory priming for internal transposition primes in Simulation 21,
compared with the 30 ms priming effect observed by Perea and
Lupker (2003a). Likewise, the model systematically underesti-
mated priming effects for other primes that disrupted absolute
letter position, including inserted letter primes, deleted letter
primes, reversed string primes (when sandwich primed), and
primes involving letter string displacement. These difficulties are
consistent with the problems with the original IA model that have
been discussed elsewhere (e.g., Davis, 1999, 2006).

Next, I compare different parameterizations of the spatial coding
model in order to assess the relative contribution made by different
aspects of the model.

Model without position uncertainty. Most of the incorrect
predictions of the original IA model stem from its lack of position
uncertainty; for example, the above-mentioned underestimate of
TL priming would presumably be corrected if the model incorpo-
rated some position uncertainty. One way to evaluate the impor-
tance of position uncertainty is to set � equal to 0 in the spatial
coding model, thereby eliminating letter position uncertainty. Pre-
dictably, the resulting model does rather poorly on the full set of
20 simulations (see Table 5). The correlation between model and
data (r � .73) is still somewhat higher than the IA model, chiefly
due to the model’s superior predictions for identity priming and
sandwich priming. Clearly, however, the assumption of position
uncertainty is a prerequisite for explaining the empirical data.

A further question concerning position uncertainty relates to the
spatial coding model’s assumption that � varies as a function of
stimulus length. How critical is this assumption? To answer this
question, I tested the model with a fixed value of � (�0 � 2, �� �
0); results are shown in Table 5. As can be seen, this model
performs very well overall, with a correlation between theory and
data of .93. However, this value of � is too small for long stimuli.
This is evident in the sandwich priming simulations with eight-
letter stimuli, where the model greatly underestimates the priming
for reversed-string primes. The problem is even more apparent in
the simulation examining the effect of parametric letter insertion.
Whereas the spatial coding model predicts priming effects close to
those reported in Welvaert et al.’s (2008) meta-analysis, the model
with a fixed � predicts no priming at all for primes involving the
insertion of three letters (row 41 in Tables 4 and 5). The reason is
that the insertion of three medial letters causes the remaining
letters on either side to be separated by too great a distance to
mutually contribute to a lexical match (e.g., the bal and cony in
balxyzcony are too far apart to both support the activation of the
target BALCONY; compare the example shown in Figure 4C and
the accompanying description). This does not cause a problem for
the model with variable �, as letter insertions also increase the
degree of position uncertainty, so that the distance of three letters
is not too far to enable the signal-weight differences from both
halves of the word to contribute to the target match. In the model
with fixed �, a higher setting of � results in a better fit to the letter
insertion data but reduces the goodness of the fit to other experi-
ments (e.g., the model predicts too much priming for T-all primes
in Simulation 9 and too small a difference between neighbor and
neighbor-once-removed primes in Simulation 7). Thus, the quali-
tative fit to the data is superior if � is assumed to vary with
stimulus length.

747SPATIAL CODING MODEL



Table 5
Summary of the Results of the 20 Simulations for the Spatial Coding Model and 10 Other Models

Index Data SCM IAM � � 0 � � 2.0 No PI No MMI No ELM No MF No LMI IA decay No TDF

1 �34 �35 �33 �36 �35 �35 �32 �49 �32 �32 �49 �35
2 26 20 29 23 19 21 21 11 16 16 25 20
3 �13 �21 �13 �21 �21 �21 �20 �27 �21 �19 �24 �21
4 11 23 31 25 22 23 23 17 20 21 25 23
5 12 7 1 8 7 8 7 4 4 6 9 7
6 28 20 26 20 19 20 21 13 17 19 22 20
7 1 2 9 3 2 2 �1 �1 �3 1 1 2
8 �3 0 5 2 �1 0 2 1 �4 �1 �1 0
9 3 1 11 2 1 1 0 0 �1 0 1 1

10 22 32 24 32 32 33 31 29 30 34 33 32
11 17 13 16 14 13 15 18 5 6 12 14 13
12 1 3 7 3 3 4 8 3 1 3 3 3
13 4 2 3 3 2 2 2 2 2 2 2 2
14 �7 1 2 1 1 1 0 1 1 1 1 1
15 57 58 29 58 58 58 59 55 58 59 51 58
16 33 43 23 43 43 43 48 38 43 45 36 43
17 27 28 14 28 27 28 39 20 27 29 23 27
18 8 15 6 15 15 15 31 6 16 16 13 15
19 7 5 4 5 5 5 20 1 5 5 7 5
20 47 53 35 53 53 53 51 51 52 51 58 53
21 30 31 �2 0 35 31 22 23 31 31 32 32
22 13 12 1 �1 15 12 7 22 6 6 15 12
23 30 28 27 29 28 29 29 20 24 28 33 28
24 31 29 27 29 29 29 30 20 26 29 33 29
25 19 21 12 6 22 21 19 10 15 19 26 21
26 18 21 12 6 23 21 19 10 16 20 26 21
27 38 30 27 31 30 31 30 24 26 29 33 30
28 24 24 16 8 25 25 15 15 21 23 28 24
29 7 9 17 11 9 10 14 4 5 5 13 9
30 26 30 4 2 25 31 25 29 31 31 33 31
31 �1 5 2 2 4 10 2 13 5 3 9 5
32 9 5 2 2 4 10 2 13 5 3 9 5
33 40 30 �1 4 26 35 28 42 30 30 28 30
34 �1 3 2 1 3 4 2 4 3 2 5 3
35 5 3 0 0 1 3 0 2 2 2 3 3
36 9 6 �1 1 4 6 8 14 6 5 15 6
37 23 21 0 0 11 22 27 10 22 22 7 21
38 55 50 35 50 50 50 46 49 49 49 50 50
39 44 38 3 2 35 37 32 35 37 40 39 38
40 33 26 3 2 18 23 19 18 23 26 28 26
41 22 18 2 2 15 9 7 12 17 21 18
42 50 50 35 50 50 50 46 49 49 49 50 50
43 41 42 7 10 39 38 36 39 41 44 42 42
44 39 42 7 10 39 36 36 39 41 38 42 42
45 39 42 7 10 40 37 37 40 42 44 43 42
46 42 33 18 16 33 34 27 28 30 34 34 30
47 35 31 18 19 31 32 25 30 29 32 32 28
48 37 33 15 14 33 34 26 28 29 32 35 29
49 36 32 16 18 31 33 25 25 29 31 32 29
50 27 21 2 2 22 14 14 10 20 21 23 15
51 12 13 15 13 13 13 18 4 14 13 15 13
52 20 21 2 2 22 14 14 10 20 21 13 15
53 5 12 3 2 13 13 1 2 10 8 15 6
54 7 1 0 1 1 1 0 1 1 1 1 1
55 7 1 0 1 1 �1 0 �1 0 0 1 1
56 45 28 21 28 28 29 21 35 26 23 28 13
57 37 27 0 27 27 2 19 29 21 23 28 11
58 29 23 1 3 23 17 17 19 24 25 26 18
59 23 13 18 13 13 15 2 21 5 7 20 5
60 12 8 0 8 8 1 1 12 2 4 11 4
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Model without position invariance. A critical difference be-
tween the spatial coding model and the standard approach to
orthographic input coding is the assumption of position-invariant
coding in spatial coding as compared with the position-specific
coding assumed in the standard approach. The formulation of the
equations underlying the spatial coding model enables the impor-
tance of this difference to be tested by varying a single parameter
(see Equation A1 in Appendix). This parameter change effectively
transforms the position-invariant spatial coding model into a
position-specific coding model. Simulation results for this model
are shown in Table 5. Overall, the model performs quite well, with
a correlation between model and data of .91. Indeed, in many
cases, this model makes identical predictions to those of the spatial
coding model. However, there are a number of priming effects that
are greatly underestimated by the position-specific model. Each of
these priming effects involves subset priming. The most striking
differences are for the final-overlap subset primes (e.g., lcony–
BALCONY and cony–BALCONY) tested in Grainger et al. (2006).
The data show priming effects of 37 ms and 12 ms for these two
conditions. Although the position-invariant spatial coding model
underestimates priming in the first case, it nevertheless predicts
substantial priming in both of these conditions (of 24 cycles and
seven cycles, respectively). By contrast, the position-specific
model predicts no priming for either of these conditions (predicted
effects of two cycles and one cycle). This failure to predict
position-invariant priming is exactly as would be expected for the
position-specific coding model. Although the set of experiments
simulated here includes only one experiment that illustrates
position-invariant priming, the same phenomenon was shown re-
peatedly in four separate experiments reported by Grainger et al.
(2006). Position-invariant priming has also been observed in sev-
eral morphological priming experiments (e.g., Crepaldi, Rastle,
Davis, & Lupker, 2010; Duñabeitia, Laka, Perea, & Carreiras,
2009).

The other priming effects that are greatly underestimated by the
position-specific model are the noncontiguous subset primes 1346
and 13457, tested by Peressotti and Grainger (1999) and Grainger
et al. (2006), respectively. Although these primes share their first
letter with the target, the deletion of the second letter means that
the absolute position match is greatly disrupted. In the position-
invariant spatial coding model, the resonating difference for these
primes is �1; that is, the model is sensitive to the fact that the best
relative position match is observed by the letters that occur one
position earlier in the prime than in the target. The position-

specific coding model cannot capture this aspect of the similarity
between the prime and the target, and hence, it systematically
underestimates priming for noncontiguous subset primes like
1d34d6 and 1d345d7. Thus, despite the model’s quite good quan-
titative fit with the full data set, the failure of the position-specific
coding model to explain priming for final overlap and noncontig-
uous subset primes is a critical flaw.

Model without mismatch inhibition. Another important re-
spect in which the spatial coding model differs from the standard
approach to orthographic input coding is its replacement of letter-
word inhibition with nonspecific mismatch inhibition. To investi-
gate the importance of this mismatch mechanism, the same set of
20 simulations was tested with a model in which the 
LW param-
eter was set to 0; that is, mismatch inhibition was switched off.
This model performed fairly well overall, with a correlation be-
tween theory and data of .87 (see Table 5). However, there are a
few phenomena where this model does worse than the model with
mismatch inhibition. One of these phenomena, perhaps surpris-
ingly, is TL priming, where the model without mismatch inhibition
predicts smaller priming effects than observed in the data (e.g., see
rows 21 and 28). The match between theory and data could be
improved by increasing �. The more interesting aspect of this
comparison, though, is that it reveals that one component of the TL
priming effect seen in Simulations 6 and 8 is based on the fact that
the TLs are not incompatible with the target, unlike the replace-
ment letters in the orthographic control.

Although the model without mismatch inhibition can readily be
adjusted to provide a good account of TL priming, there are two
other phenomena that may not be so easy to accommodate. The
first is the sandwich priming effects for primes that differ from the
target by several letters. As can be seen in rows 16 through 19, the
model without mismatch inhibition greatly overestimates the mag-
nitude of priming for primes that differ from the target by 2, 3, 4,
or 5 letters. By contrast, the model with mismatch inhibition is able
to provide a good account of the observed priming effects, by
virtue of the fact that increases in the number of replaced letters
lead to increased levels of inhibition to the target node.

The other critical challenge for the model without mismatch
inhibition is how to explain Peressotti and Grainger’s (1999)
finding that subset primes (1346) are (numerically, at least) more
effective primes than double replacement primes (1d34d6). This
model predicts a small difference in the opposite direction because
the only effect of the replacement letters on the match value is a
positive one: These letters ensure that the remaining letters (1346)

Table 5 (continued)

Index Data SCM IAM � � 0 � � 2.0 No PI No MMI No ELM No MF No LMI IA decay No TDF

61 8 6 1 1 5 3 1 9 9 5 13 5

r 0.950 0.632 0.728 0.931 0.912 0.870 0.918 0.931 0.937 0.937 0.906

Note. Index refers to indices shown in Table 4. The column labeled Data shows the observed priming effects. Values in the column labeled Data are in
bold because all of the (model) values in the other columns are intended to be compared to these (data) values. Cases in which there is a large discrepancy
between the model value and the corresponding data value are in bold, to highlight data points where the various models appear not to provide a good fit
to the data. SCM � spatial coding model; IAM � the original interactive activation model; � � 0 refers to the model with no letter position uncertainty;
� � 2.0 is the model that assumes a fixed value of � for all stimulus lengths; No PI is the model without position invariance; No MMI is the model without
mismatch inhibition; No ELM is the model without end-letter marking; No TDF is the model without top-down feedback; No LMI is the model without
length-mismatch inhibition; No MF is the model without the masking field parameter; and IA decay is the model that uses the original IA-style node decay
equation and parameters.
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are in the correct positions relative to each other (i.e., letter
contiguity is preserved over the prime and target stimuli in
1d34d6–123456 but not in 1346–123456). By contrast, the model
with mismatch inhibition correctly predicts greater priming for
1346 than for 1d34d6, as a consequence of the inhibition that the
two mismatching letters contribute to the target in the latter case.
The difference between the 1346 and 1d34d6 priming effects was
not statistically significant in Peressotti and Grainger’s (1999)
experiment, and thus further investigation of this difference would
be desirable. Nevertheless, initial indications are that the mecha-
nism of mismatch inhibition may play a critical role in explaining
orthographic similarity data.

Model without end-letter marking. A final important respect
in which the spatial coding model differs from the standard ap-
proach is in its introduction of end-letter marking. To investigate
the importance of this aspect of the model, I tested an alternative
model in which the weights from the two exterior letter banks were
zeroed. Once again, this model performed quite well with respect
to its overall fit to the data (r � .92, see Table 5). However, closer
inspection of the results reveals that this model overestimates
priming effects for primes that differ from targets with respect to
their exterior letters. For example, the model fails to capture the
difference in the magnitude of priming for TL-final primes relative
to internal transpositions (Perea & Lupker, 2003a). Likewise, the
model overestimates priming for the T-all and RH primes of
Guerrera and Forster (2008; see also Lupker & Davis, 2009).
Furthermore, the model without end-letter marking underestimates
priming effects for primes and targets that shared the same exterior
letters, as in the reversed interior primes of Davis and Lupker
(2009), the deleted letter primes of Peressotti and Grainger (1999)
and Schoonbaert and Grainger (2004), the inserted letter primes of
Van Assche and Grainger (2006) and Welvaert et al. (2008), and
the displaced letter string primes of Grainger et al. (2006). Al-
though these results need not imply that the specific mechanism of
dynamic end-letter marking is the correct way to capture the
special status of exterior letters, it seems clear that some general
mechanism of this sort is required to account for the empirical
database on masked form priming effects.

Model without masking field parameters. The spatial cod-
ing model includes two mechanisms designed to facilitate compe-
tition between words of different lengths: masking field interac-
tions and length-mismatch inhibition. According to masking field
principles, nodes that code longer words have a competitive ad-
vantage over nodes that code shorter words (e.g., Grossberg,
1978). The magnitude of this advantage depends on the parameter
mf. To examine the impact of masking field principles on the
model’s performance, I tested the 20 simulations with a model in
which mf was set at 0. This model performed very similarly to the
masking field model (r � .98), but the latter model typically
resulted in a slightly closer fit to the data (the correlation between
model and data for the nonmasking field model was .93). One
difference between the two models that is not apparent from the
lexical decision latencies was that the nonmasking field model
occasionally made identification errors in which a low-frequency
target word was misidentified as a high-frequency shorter word
(e.g., on the trial wenve–WEAVE, the target was misidentified as
“we”). A related phenomenon is the model’s underestimation of
priming effects for subset primes that are several letters shorter
than the target, particularly if the prime is itself a word (e.g.,

fort–FORTUNE; see rows 59 and 60). This reflects the fact that in
the nonmasking field model, nodes that code seven-letter words
have greater difficulty in suppressing shorter words.

Model without length-mismatch inhibition. Similar com-
ments apply to the model’s assumption of length-mismatch inhi-
bition. A model with no length-mismatch inhibition (i.e., 
len � 0;
see Table 5) performed very similarly to the model with length-
mismatch inhibition, with the exception that it did slightly worse
with respect to its predictions for the contiguous subset primes in
Grainger et al. (2006). In summary, the assumptions of masking
field principles and length-mismatch inhibition are helpful for the
network’s lexical selection mechanism, in that they help the best-
matching lexical candidate to inhibit subset and superset compet-
itors. However, neither of these assumptions is critical for explain-
ing the orthographic similarity data simulated here.

Model without match-dependent decay. The spatial coding
model incorporates a slightly different form of activity decay than
does the original IA model. Specifically, it is assumed that the rate
of decay is modulated by the match between the bottom-up input
and the template. This assumption (in slightly different form) was
originally proposed by Lupker and Davis (2009) to simulate sand-
wich priming effects. They observed that the exponential decay
assumed by the original IA model caused the activity triggered by
the initial sandwich prime to dissipate quite rapidly, making it
difficult to account for the magnitude of sandwich priming effects.
The assumption of match-dependent decay implies that a node that
has been activated by the initial sandwich prime can maintain its
activation if the critical prime is similar to the template but will
decay rapidly for primes that are dissimilar to the template (as will
be the case for control primes).

To test the impact of this modification to the model, the original
form of decay was simulated by setting the DecayCutoff parameter
equal to 1 and the DecayRate parameter equal to .07; in addition,
the FreqBias parameter was set equal to 1.0 (otherwise the model
often responds no to low frequency words). As can be seen in
Table 5, the resulting model provides quite a good account of the
data (r � .94). Future modeling is required to determine whether
the proposed match-dependent decay has any advantage over the
original form of activity-dependent decay.

Model without top-down feedback. The final variant of the
model that I consider is one in which there is no top-down
feedback (i.e., �WL � 0). The performance of this model is
virtually identical to the model with top-down feedback, with the
exception of the models’ predictions for the contiguous subset
primes of Grainger et al. (2006). Here, the model without top-
down feedback predicts priming effects that are typically around
10 cycles smaller than the model with top-down feedback. Given
that the latter model is already underestimating the magnitude of
the observed effects, this difference implies that the model without
top-down feedback greatly underestimates contiguous subset prim-
ing effects.

On the one hand, the above result could be interpreted as strong
support for the role of top-down feedback in visual word identi-
fication. Indeed, perhaps the spatial coding model could do an
even better job of fitting the data if its top-down feedback was
greater or implemented slightly differently. If top-down feedback
is very strong (e.g., �WL � 10), the model predicts considerably
stronger priming effects for the subset primes of Grainger et al.
(2006), thereby reducing (although not altogether eliminating) the
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underestimation of priming for these data points. The reason for
this is that top-down feedback causes the model to “fill in” the
missing letters of the target, for example, the prime balco activates
the BALCONY word node, which in turn activates the “missing”
letters N and Y at the end of the stimulus.

On the other hand, there are grounds for being somewhat cau-
tious regarding the role of top-down feedback. Although the model
with strong top-down feedback does a better job of fitting the
Grainger et al. (2006) data, the means by which it achieves this
better performance is directly activating the missing letters (e.g.,
the stimulus bayon leads to the activation of the bayonet word
node, which in turn leads to the activation of the final letters e and
t). This is exactly the form of “hallucination” that Norris, McQueen,
& Cutler (2000) cite as a reason not to include top-down feedback in
models of perception. The problem is not that the model strongly
activates a superset of the stimulus—it is that top-down feedback
overwrites the trace left by the stimulus, such that the veridical record
of the input is replaced by an expectation. The system then has no
means of recovering from its error, that is, the nonword bayon is liable
to be consistently read as bayonet. It may be that a more appropriate
form of top-down feedback mechanism is possible. For example,
top-down feedback could influence receiver nodes rather than
letter nodes, so that the model retains some trace of the original
input against which categorizations can be verified. This is an area
for future investigation, and the study of subset priming may be
fertile territory for the continuing debate between interactive and
noninteractive models of perception (e.g., Bowers & Davis, 2004;
McClelland, Mirman, & Holt, 2006; Norris et al., 2000).

Comparison of the model with other alternatives to the
standard approach. The foregoing discussion has focused on
the respects in which the spatial coding model improves on the
standard approach, as exemplified by the IA model and other
well-known computational models of visual word recognition.
However, the spatial coding model is not the only alternative to the
standard approach, and to conclude this section I directly compare
the spatial coding model with other, newer models, specifically, (a)
the overlap model (Gomez et al., 2008) and (b) the open-bigram
models (e.g., Grainger & van Heuven, 2003; Whitney, 2001).

The overlap model. The overlap model (Gomez et al., 2008) is
a noisy version of position-specific coding, in which the represen-
tation of a letter extends into adjacent positions. The model as-
sumes a separate position-uncertainty Gaussian-distribution func-
tion for each letter of the stimulus and each letter of the template.
Gomez et al. (2008) showed that the model could provide a very
good fit to forced-choice perceptual identification data.

The overlap model has much in common with the spatial coding
model. Both models assume that letters (rather than letter pairs or
triples, for example) are the fundamental perceptual units in the
matching process, and both models assume letter-position-
uncertainty functions. The models vary with respect to the number
of parameters they use to model position uncertainty—the spatial
coding model uses only a single position uncertainty parameter,
whereas the overlap model assumes one parameter for each letter
position, to capture variations in letter position uncertainty across
the stimulus (in particular, the first letter is associated with a much
narrower uncertainty distribution than other letters, a characteristic
that the spatial coding model captures through the use of end-letter
marking). Nevertheless, Gomez et al. (2008) showed that a sim-
plified version of the overlap model that assumes only two

position-uncertainty parameters was also able to achieve a good fit
to forced-choice perceptual identification data.

The key difference between the overlap model and the spatial
coding model is the assumption of position-specific letter repre-
sentations versus position-invariant letter representations, respec-
tively. This difference is critical when the stimulus and the tem-
plate overlap at different absolute positions, as in examples like
wildcat and cat. It would be impossible for the overlap model to
detect the cat in wildcat, whereas the position-invariant recogni-
tion of the spatial coding model makes it straightforward to detect
embedded words like this. Another set of priming effects that are
likely to be underestimated by the overlap model are those involv-
ing noncontiguous subset primes, as in the experiments reported by
Peressotti and Grainger (1999) and Grainger et al. (2006).

One way to think about the spatial coding model is as a sliding
overlap model. That is, the superposition matching algorithm
implements a version of the overlap model in which the overlap-
ping Gaussian functions representing the input are allowed to slide
laterally across those representing the template until the maximum
match is obtained. For example, in the wildcat example, the CAT
word node computes three signal-weight differences of four. The
peak in the superposition function at this point can be interpreted
as reflecting the idea that the overlapping Gaussian functions
representing the input have shifted four positions across the spatial
code for the word CAT to “find” the point at which there is a
maximum (in this case, perfect) overlap between the stimulus and
the template. In the case of inputs that do not require any shifting
to find the maximal overlap, the two models make quite similar
predictions. Indeed, the spatial coding model could fit data such as
those collected by Gomez et al. (2008) at least as well as the
overlap model if it were given the same number of parameters (i.e.,
separate values of � for each letter position). However, in the case
of inputs that require shifting to find the maximal overlap (e.g., the
masked form primes tested by Grainger et al., 2006), the spatial
coding model can capture data that are beyond the scope of the
overlap model.

The position specificity of the overlap model must be regarded
as a critical weakness of this approach, not simply from the
perspective of explaining form priming data but, more important,
from the perspective of explaining morphological processing.
Skilled readers are (indeed, must be) able to recognize the com-
monality of the morpheme cat across familiar words like cat,
catburglar, and wildcat, as well as unfamiliar forms like cathole,
blackcatday, and supercat. There are strong grounds for rejecting
any approach to coding letter position that is fundamentally unable
to support such position-invariant recognition.

A theoretical approach to orthographic input coding that is very
similar to the overlap model has been adopted in the Bayesian
reader model (Norris, 2006; Norris & Kinoshita, 2008). The
Bayesian reader is a stimulus sampling model that assumes that
readers are (approximately) optimal Bayesian decision makers.
Unlike the overlap model, this model incorporates a lexical selec-
tion mechanism and has been extended to simulate masked prim-
ing (Norris & Kinoshita, 2008). The model integrates evidence
over time from the prime and the target so as to make an optimal
decision (i.e., in the case of lexical decision, is the stimulus a
word?). Thus, the Bayesian reader model is not restricted to
making predictions about match values and is capable of simulat-
ing masked priming (though to date the only masked priming
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result from the lexical decision task that the model has been shown
to simulate is a null effect of prime congruency observed by Norris
& Kinoshita, 2008).

The lexical selection mechanism of the Bayesian reader is quite
different from the lexical competition process of the IA, SOLAR,
and related competitive network models. One important conse-
quence of this difference is that the Bayesian reader cannot readily
accommodate lexical competition effects in masked priming (cf.
Bowers, in press) and thus is unable to account for the inhibitory
priming effects of Davis and Lupker (2006) that were modeled in
Simulation 1. Furthermore, the absence of lexical competition
within the model makes it difficult to see how the Bayesian reader
could accommodate other masked form priming phenomena that
bear the hallmarks of lexical competition, such as the shared
neighborhood effect (van Heuven et al., 2001), the multiple-letter
replacement constraint (e.g., Schoonbaert & Grainger, 2004), and
sandwich priming effects (Davis & Lupker, 2009; Lupker &
Davis, 2009). (See Simulations 2, 3, 4, 5, 10, and 13 of the present
article.) Thus, it seems likely that the present version of the
Bayesian reader faces considerable challenges, although simula-
tions of the model are required to properly evaluate its fit to the
data.

Open-bigram models. A popular approach in recent attempts
to solve the problem of letter position coding involves the assump-
tion of open bigrams (e.g., Dehaene et al., 2005; Grainger & van
Heuven, 2003; Grainger & Whitney, 2004; Schoonbaert &
Grainger, 2004; Whitney, 2001, 2004). An open bigram refers to
an ordered pair of letters that is not necessarily contiguous in the
input stimulus; for example, the word cat includes the open bigram
ct. A number of different versions of open-bigram coding have
been proposed; these versions vary with respect to (a) their sensi-
tivity to letter contiguity, (b) the maximal distance between the
letters in an open bigram, and (c) their coding of exterior letters. I
focus here on the general characteristics of open-bigram coding
models (for detailed descriptions of the different versions, see
Davis & Bowers, 2006; Grainger & van Heuven, 2003; Whitney,
2004).

There are some similarities between open-bigram coding mod-
els and spatial coding. Both approaches result in relatively flexible
letter position coding, enabling the explanation of phenomena such
as TL similarity. Furthermore, both models can support (approx-
imately) position-invariant identification. For example, open-
bigram models can explain the capacity to detect cat in wildcat
because both letter strings contain the open bigrams ca, ct, and at.

An obvious difference between open-bigram coding models and
spatial coding is the fundamental unit of matching. One conse-
quence of this difference that is worth noting relates to the nature
of the matching process. In spatial coding, the letters of the input
stimulus are directly matched against the whole template, whereas
in open-bigram coding, the letters of the input stimulus are
matched against open bigrams, and then these units are matched
against the template. It follows that open-bigram coding can match
multiple different subcomponents of a word even when these
subcomponents are positioned differently, relative to each other, in
the stimulus and the template. For example, when open-bigram
coding is assumed, the stimulus pondfish is an excellent match for
the word fishpond because the components fish and pond maintain
their local context (e.g., the bigrams fi, fs, and fh are present in both
fishpond and pondfish). This prediction about orthographic simi-

larity runs into problems when attempting to explain both masked
priming data (Kinoshita & Norris, 2008; cf. Simulation 19) and
data from unprimed lexical decision (Crepaldi et al., 2010). Spatial
coding, by contrast, handles these data well because the stimulus
pondfish is a relatively poor match for the word fishpond: for
example, in terms of the sliding overlap idea discussed earlier in
this section, pondfish must be shifted four positions to the right to
find the overlap in the word fish, but this shifts the constituent
pond even further from its correct position.

Another key difference between spatial coding and open-bigram
coding concerns the directionality inherent in the latter model. As
noted, open bigrams are ordered letter pairs, and these units are not
activated when the order of the letters is reversed. For example, the
anagrams ward and draw do not share any open bigrams. Recently,
in a number of experiments researchers have sought to test the
strong predictions about the effects of letter string reversal that
follow from open-bigram coding (Davis & Lupker, 2009; Whitney
& Grainger, 2008; see Simulations 11 through 13). These exper-
iments indicate that when a suitably sensitive methodology is used,
the perceptual similarity of pairs of reversed letter strings is clearly
apparent. Such data pose critical problems for open-bigram cod-
ing.

In addition to the empirical problems with open-bigram coding,
there are also some important theoretical objections to this method
of coding letter position (I focus here on general problems with
open-bigram coding; for a discussion of problems with a specific
open-bigram model, the SERIOL model, see Davis, in press). One
objection relates to the plausibility of the notion of open bigrams
that entail the visual system discarding intermediate letters. An-
other objection concerns the lack of generality of the open-bigram
solution to encoding position, given that this solution is not helpful
for converting spelling to sound. In view of the fact that a different
type of letter position code is required to accomplish this mapping
(one that is capable of encoding position-invariant relationships
between graphemes and phonemes), it is not clear what is gained
by assuming a less versatile position code for lexical matching.
This lack of generality also extends to other aspects of position
coding. Although it has not generally been recognized (though see
Davis, 1999), the problem of coding the relative order of mor-
phemes gives rise to more or less the same issues as coding letter
position. Here, however, an open-bigram type solution seems
unsatisfactory. Representing all possible letter pairs in English
requires 26 � 26 open bigrams, a number that does not seem
unfeasible for representing letter order. By contrast, representing
all possible morpheme pairs would require a highly implausible
number of units. Rather, the ability to encode novel compounds, as
well as to distinguish reversible compounds like overtake and
takeover, must rely on a capacity to dynamically assign order
information to individual constituents, as in the spatial coding
scheme. In summary, although open-bigram coding models make
many similar predictions to spatial coding, the open-bigram ap-
proach faces some critical empirical and theoretical challenges.

Summary and Conclusions

This articles has described the spatial coding model of letter posi-
tion coding and lexical matching. I have previously argued (Davis,
2006; Davis & Bowers, 2006) that this is the only existing model that
can satisfactorily account for critical phenomena related to ortho-
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graphic input coding and lexical matching. I have further argued that
the key aspect of this model that enables it to succeed (and that
differentiates it from other current models of input coding and lexical
matching) is its commitment to position and context-independent
representations. Spatial coding solves the problem of how letter po-
sition can be conveyed with such codes and also necessitates an
approach to lexical matching that is rather different from the dot-
product matching approach used in other models. Elsewhere (Davis,
2001, 2004, in press), I have discussed how this model of lexical
matching could be implemented, based on the phase coding hypoth-
esis, and the way in which phase coding can represent uncertainty
regarding letter position and letter identity.

A number of core principles underlie the spatial coding model,
including the principles of abstraction (which commits the model
to context-independent representations); invariance (according to
which letter position should be coded in a way that preserves
information about letter contiguity and the distance between let-
ters); selectivity (according to which word nodes only receive
input from relevant letter nodes); translation (which is imple-
mented through the computation of signal-weight differences);
harmony (according to which the critical feature of translated letter
signals is their congruence; this principle is achieved through the
use of superposition matching); clone-equivalence; and one-letter,
one-match (the latter two are critical to the model’s account of how
repeated letters are encoded). Arguments for most of these prin-
ciples can be made on the basis of general considerations derived
from thought experiments. Nevertheless, they can also be sub-
jected to empirical scrutiny. The invariance principle that is im-
plemented here is a slightly modified version of that described by
Grossberg (1978; it differs only in that the arithmetic difference
between adjacent elements of the spatial code is held to be invari-
ant rather than the ratio of adjacent elements, as in Grossberg’s,
1978, version). This principle has been directly challenged by
open-bigram coding schemes that dispense with information about
the distance between letters (e.g., Grainger & van Heuven, 2003;
Grainger & Whitney, 2004; Whitney, 2001). However, as Davis
and Bowers (2006) showed, experimental data reinforce the im-
portance of encoding information about letter contiguity. An in-
teresting question for future research concerns the relevance of the
above principles for understanding other aspects of cognition that
require encoding the serial order of component stimuli, including
spoken word identification and short-term memory.

There is now a large body of data on the topic of orthographic
input coding. Successfully modeling all of these data is a difficult
problem for any model. However, the simulations presented here
demonstrate that the spatial coding model does an excellent job of
capturing existing data. The model is successful because it ad-
dresses each of the three critical processes listed in the introduc-
tion: encoding of letter identity and position, lexical matching, and
lexical selection. In particular, the model’s incorporation of lexical
competition as a means of lexical selection elucidates the mechan-
ics of masked priming and helps to illustrate the limitations of
conventional methods for studying the processes of encoding and
matching, as well as guiding the development of new methodolo-
gies to overcome these limitations (Lupker & Davis, 2009).

The spatial coding model shares many features with the SOLAR
model of visual word recognition (Davis, 1999). Following a nested
modeling approach, future articles will describe other aspects of this
model: the model’s chunking mechanism, the means by which the

model self-organizes, the way in which it learns about word fre-
quency, the way that this biases the identification process, and the way
in which the model implements competitive processes to achieve
identification of familiar words and learning of new words.
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Appendix

Simulating the IA Model as a Special Case of the Spatial Coding Model

To specify the original IA model as a special case of the spatial
coding model, I replaced Equations 8, 26, and 36a with slightly
more complex forms. Thus, Equation 8 is replaced by

resPhase i�t� � �p� such that Si� p�, t� � max�Si� p, t�	,
if PI � true

0 otherwise.
(A1)

The condition in (A1) is designed to allow position-specific coding
models such as the original IA model to be treated as special cases of
the spatial coding model. The default setting of the position invariance
(PI) switch in the spatial coding model is true. When the PI switch is
set to be false, the resonating phase is always zero, which implies that
letters signals only contribute to the match to the extent they occur in
the expected serial position (where the clause to the extent allows for
the possibility of some position uncertainty). For example, in Fig-
ure 4, the resonating phase is zero in examples A, C, D, E, and F,
whether the switch PI is set to be true or false. However, in example
B, the resonating phase differs for the position-invariant and position-
specific versions. For the position-specific model, PI is false, and
combining Equations A1 and 15 implies that resPhasei(t) � 0 (rather
than 3) and matchi(t) � 0 (rather than 1).

Equation 26 is replaced by

mismatch i�t� � max�leni,�c�j
�actcj�t�	�LWI

�

� �b
�Rbi�resPhasei, t�	LWI. (A2)

When LWI � 0, Equation A2 is equivalent to Equation 26. When
LWI � 1, Equation A2 implements IA-style letter-word inhibition,
subject to the condition that letter activities grow at the same rate in
each channel, which is approximately true in the original IA model.

Equation 36a is replaced by

wordLetterInputcji�t� � aWL�acti�t�	�/��j featureLettercj

� .001�TDM. (A3)

The parameter TDM acts as a switch. The default value is TDM �
1, so that top-down feedback is modulated by bottom-up input, as
in Equation 36a. However, the setting TDM � 0 (so that the
strength of top-down feedback is �WL[acti(t)]

�, independent of
bottom-up input) results in top-down feedback signals that are
identical in magnitude to the original IA model.

Thus, to specify the original IA model as a special case of the
spatial coding model, the switch PI should be set to false, the
letter-word inhibition switch should be set to true (LWI � 1), the
top-down feedback modulation switch should be set to false
(TDM � 0), end-letter marking should be eliminated by setting
wji

initial � wji
final � 0, and the remaining parameter settings should

be as shown in the relevant column of Table 3.
As noted earlier, the IA-style letter-word inhibition imple-

mented in Equation A2 is not exactly equal to the letter-word
inhibition of the original IA model because it relies on the assump-
tion that letter activity grows at the same rate in each letter
channel. To test the approximation in A2, the identification laten-
cies for the full set of 1,178 words in the original IA vocabulary

(Appendix continues)
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were compared for the original model and the version of the spatial
coding model with the above IA parameter settings. The identifi-
cation threshold � was set at .68 (as in all other simulations), and
the temporal scaling parameter dt was set at .1. The average
identification latency was 181.4 cycles for both models. The
correlation between the two sets of decision latencies was .999,
and the absolute difference in the two latencies for a given word

never exceeded one cycle. Thus, the above parameterization is
essentially equivalent to the original IA model.
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