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be the ones that promise to use the least resources to do the job.
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ABSTRACT | Market-based multirobot coordination ap-

proaches have received significant attention and are growing

in popularity within the robotics research community. They

have been successfully implemented in a variety of domains

ranging from mapping and exploration to robot soccer. The

research literature on market-based approaches to coordina-

tion has now reached a critical mass that warrants a survey and

analysis. This paper addresses this need for a survey of the

relevant literature by providing an introduction to market-

based multirobot coordination, a review and analysis of the

state of the art in the field, and a discussion of remaining

research challenges.
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I . INTRODUCTION

As robots become an integral part of human life, we charge

them with increasingly varied and difficult tasks including

planetary exploration, manufacturing and construction,
medical assistance, search and rescue, and port and

warehouse automation. Like humans, robots working in

challenging domains can potentially perform better by

working together in teams than by working alone. Ideally,

robots will coordinate to redistribute resources amongst

themselves in a way that enables them to accomplish their

mission efficiently and reliably. Coordination can lead to

faster task completion, increased robustness, higher

quality solutions, and the completion of tasks impossible

for single robots. However, these domains simultaneously
present many obstacles to effective coordination, such as

dynamic events, changing task demands, resource failures,

the presence of adversaries, and limited time, energy, com-

putation, communication, sensing, and mobility. Therefore,

coordinating a multirobot team requires overcoming many

formidable research challenges.

Humans have met these coordination challenges for

thousands of years with increasingly sophisticated market
economies. In these economies, self-interested individuals

and groups trade goods and services to maximize their own

profit; simultaneously, this redistribution results in an

efficient production of output for the system as a whole.

Researchers have recently applied the principles of market

economies to multirobot coordination. In market-based

multirobot systems, robots are designed as self-interested

agents that operate in a virtual economy. Both the tasks
that must be completed and the available resources are

commodities of measurable worth that can be traded. For

example, tasks can be assigned to robots via market

mechanisms such as auctions. When a robot completes a

task, it receives some payment in the form of virtual money

for providing a service to the team. However, the robot

must also pay for the resources it consumed to complete

the task. The essence of market-based approaches is that,
in a well-designed system, the process of robots trading

tasks and resources with one another to maximize

individual profit simultaneously improves the efficiency

of the team.

To illustrate this more concretely, consider a team of

robots performing a distributed sensing mission on Mars.

As illustrated in Fig. 1, the robots must gather data from

specific sites of interest to scientists while consuming the
least amount of energy. One important aspect of complet-

ing the mission is to determine which robot should visit

each site. We can solve this problem using a market-based
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approach in which robots compete in auctions for each

task of visiting a site. After estimating their resource usage

for an offered task and submitting bids based on those

expected costs, the robot with the best bid is awarded a

contract for that site.
Suppose that we offer a maximum reward of $50 for

each task and that robots incur a cost of $2 for each meter
of travel (since the resource of concern is energy con-
sumed). This $50 is a reserve price that essentially says that
the task should only be attempted if the site can be reached
by increasing one’s path length by less than 25 m. Further
suppose that a robot A is only 5 m from a site S. Since A
would have to spend $10 to complete the task, it bids $10.
Meanwhile, a robot B that is 10 m from the site bids $20. A
is awarded the contract because it can perform the task
more efficiently and for less than the reserve price.

This simple example illustrates the basic mechanism of
a market-based approach to coordination. As the problem
increases in complexity with the addition of more robots,
more resources (e.g., time, network bandwidth, computing
power, sensors, etc.), added constraints between the tasks,
dynamically changing tasks, and so forth, the coordination
approach requires added functionality to produce efficient
solutions. We use this distributed sensing scenario
throughout the remainder of the paper to illustrate the
complexities of coordination and the diversity of market-
based approaches.

The earliest examples of market-based multiagent
coordination appeared in the literature over 30 years ago
[1], [2] and have been modified and adopted for multirobot
coordination in more recent years. This paper is motivated
by the growing popularity of market-based approaches and
the lack of a comprehensive review of these approaches.
This paper makes three contributions to the robotics
literature. First, it provides a tutorial on market-based
approaches by discussing the motivating philosophy,
defining the requirements and tradeoffs inherent in such
approaches, analyzing their strengths and weaknesses, and
placing them appropriately in the context of the larger set

of approaches to multirobot coordination. Second, this
paper surveys and analyzes the relevant literature. Finally,
it inspires and directs future research on this topic through
a discussion of remaining challenges.

The scope of this paper is limited to market-based

approaches for coordinating teams that include robots.

Moreover, this review principally considers approaches

that actively reason about the existence of other agents
when coordinating the team, in contrast to approaches in

which agents coexist. Nevertheless, related publications

outside the stated scope of this paper are included as

necessary to augment the discussion.

The following section provides an introduction to

market-based mechanisms for readers less familiar with

the field. This overview is followed by a extensive review of

market-based multirobot coordination approaches to date,
categorized and analyzed across several relevant dimen-

sions: planning, solution quality, scalability, dynamic

events and environments, and heterogeneity. The paper

concludes with a summary of the survey and future

challenges in this research area.

II . OVERVIEW

In this section, we discuss key concepts that will provide a

foundation for the remainder of the paper, including a
definition of market-based approaches and an introduction

to auctions. We then place market-based approaches in the

larger spectrum of coordination approaches.

A. Definition of a Market-Based Approach
Most market-based multirobot and multiagent coordi-

nation approaches share a set of underlying elements.

Market theory provides precise definitions for several of
these elements. Borrowing from both bodies of literature,

we define a market-based multirobot coordination ap-

proach based on the following requirements.

• The team is given an objective that can be

decomposed into subcomponents achievable by

individuals or subteams. The team has access to a

limited set of resources with which to meet this

objective.
• A global objective function quantifies the system

designer’s preferences over all possible solutions.

• An individual utility function (or cost function)

specified for each robot quantifies that robot’s

preferences for its individual resource usage and

contributions towards the team objective given its

current state. Evaluating this function cannot

require global or perfect information about the
state of the team or team objective. Subteam

preferences can also be quantified through a

combination of individual utilities (or costs).

• A mapping is defined between the team objective

function and individual and subteam utilities (or

costs). This mapping addresses how the individual

Fig. 1. An illustration of three robots exploring Mars. The robots’ task

is to gather data around the four craters, which can be achieved by

visiting the highlighted target sites.
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production and consumption of resources and
individuals’ advancement of the team objective

affect the overall solution.

• Resources and individual or subteam objectives can

be redistributed using a mechanism such as an

auction. This mechanism accepts as input team-

mates’ bids, which are computed as a function of

their utilities (or costs), and determines an out-

come that maximizes the mechanism-controlling
agent’s utility (or minimizes the cost). In a well-

designed mechanism, maximizing the mechanism-

controlling agent’s utility (or minimizing cost)

results in improving the team objective function

value.

B. Auctions
Auctions are the most common mechanisms used in

market-based approaches. In an auction, a set of items is

offered by an auctioneer in an announcement phase, and

the participants can make an offer for these items by

submitting bids to the auctioneer. Once all bids are

received or a prespecified deadline has passed, the auction

is then cleared in the winner determination phase by the

auctioneer who decides which items to award and to

whom. In robotic applications, the items for sale are
typically tasks, roles, or resources. The bid prices reflect

the robots’ costs or utilities associated with completing a

task, satisfying a role, or utilizing a resource.

The simplest kind of auction is a single-item auction in

which only one item is offered. In such auctions, each

participant submits a bid, and the auctioneer awards the

item to the highest bidder.1 Alternatively, the auctioneer

retains the item if no bid beats the auctioneer’s price
(called a reserve price). Bids are usually submitted only to

the auctioneer; such sealed-bid auctions are in contrast to

open-cry auctions where bidders have the benefit of

overhearing the other bids as they are made. There are

two common approaches to determining the sale price of

the auctioned item. In a first-price auction, the sale price is

the same as the winning bid; in a Vickrey auction, the sale

price is the value of the second-highest bid and is intended
to motivate truthful bids from the participants. Some

multirobot systems have used Vickrey auctions (e.g., [3]),

though the resulting allocations are equivalent to first-

price auctions if the robots are designed to behave

truthfully. Wolfstetter provides an excellent introductory

survey into single-item auction theory [4].

Combinatorial auctions are more complex: multiple

items are offered and each participant can bid on any
combination of bundles (i.e., subsets) of these items. This

allows the bidder to explicitly express the synergies

between items. In the context of the Mars distributed

sensing scenario, a bidder can express the positive synergy

between two sites that are close together by bidding only
slightly higher for the bundle containing these tasks than

for either task individually. To express the negative

synergy between two tasks located far from one another,

the bid for the bundle would be much higher than the sum

of the individual costs of the tasks. In general, there are an

exponential number of bundles to consider which makes

bid valuation, communication, and auction clearing

intractable if all bundles are considered [5].
In between these two extremes are multi-item auctions

in which multiple items are offered but the participants

can win at most one item apiece. The maximum number of

awards per auction may also be limited. Multi-item

auctions are a special case of combinatorial auctions

where only bundles of cardinality one are considered;

bidding and clearing become tractable, but the resulting

solutions are generally much less efficient.

C. Costs, Utilities, and Valuation
The example scenario in Section I compares robots’

suitability for tasks in terms of cost. That is, the auction

allocates tasks to the robots with the lowest costs for

performing them and the overall goal is to minimize some

global cost function. As suggested in Section II-B, in some

systems bids are compared based on utilities, in which case
the highest bids win auctions and the system attempts to

maximize the global utility function. Utilities often encap-

sulate multiple factors, some representing the benefit or

expected quality of task execution and others representing

cost estimates. Cost estimates can also include diverse

factors such as the time taken to compute solutions and

the loss of efficiency caused by transitioning between tasks.

As an example of utility, Gerkey and Matarić [6] propose
taking the difference of quality and cost to calculate utility,

assuming the units of cost and quality are directly

comparable. Thus, utility and cost functions that combine

multiple factors often require finding a reasonable set of

weights between the different components considered.

The process of estimating costs for bid valuation can

also be difficult. Though participants in the market may

have well-defined cost or utility functions, these functions
still rely on having accurate models of the world state and

may require computationally expensive operations. For

example, the cost to complete the task of driving to a goal

site depends on having an accurate map of the environ-

ment; however, the robots may be working in an unknown,

partially known, or changing environment. When there are

multiple goal locations, determining the cost to perform

even one task can require solving multiple path planning
problems and an instance of the traveling salesman

problem (TSP), the latter being NP-hard. Thus, heuristics

and approximation algorithms are commonly used, imply-

ing that bid prices may not always be entirely accurate.

Inaccurate bids can result in tasks not being awarded to the

robots best able to complete them. In this case reauction-

ing tasks can often improve solution quality.

1We will assume utility maximization here; the case of cost
minimization is analogous, with awards going to the lowest cost bidders.
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D. The Range of Coordination Approaches
The goal in virtually all robotic application domains is to

generate optimal solutions in a timely manner. Unfortunate-

ly, many multirobot coordination problems are NP-hard.

The challenges are compounded by team considerations

that include operation in dynamic and uncertain environ-

ments, inconsistent information, unreliable and limited

communication, interaction with humans, and various

system and component failures. A spectrum of coordination
approaches has emerged to negotiate these demands.

At one end of the spectrum, fully centralized ap-

proaches employ a single agent to coordinate the entire

team. In theory, this agent can produce optimal solutions

by gathering all relevant information and planning

for the entire team. In reality, fully centralized

approaches are rarely tractable for large teams, can

suffer from a single point of failure, have high
communication demands, and are usually sluggish

to respond to local changes. Thus, centralized ap-

proaches are most suited for applications involving

small teams and static environments or easily

available global information.

At the other end of the spectrum, in fully

distributed systems, robots rely solely on local

knowledge. Such approaches are typically very fast,
flexible to change, and robust to failures, but can produce

highly suboptimal solutions, since good local solutions

may not necessarily aggregate to a good global solution.

Applications where large teams carry out relatively simple

tasks with no strict requirements for efficiency are best

served by fully distributed coordination schemes.

A vast majority of coordination approaches have

elements that are centralized and distributed and thus
reside in the middle of the spectrum. Market-based

approaches fall into this hybrid category, and, in some

instances, they can opportunistically adapt to dynamic

conditions to produce more centralized or more distrib-

uted solutions. Market mechanisms can distribute much of

the planning and execution over the team and thereby

retain the benefits of distributed approaches, including

robustness, flexibility, and speed [7], [8]. Auctions quickly
and concisely assemble team information in a single

location to make decisions about distributing resources;

in some cases they provide guarantees of solution quality

[5], [9]. Market-based approaches may also incorporate

methods of opportunistically coordinating subteams in a

centralized manner [10], [11]. Nevertheless, market-based

approaches are not without their weaknesses. In domains

where fully centralized approaches are feasible, market-
based approaches can be more complex to implement and

produce poorer solutions. In domains where fully dis-

tributed approaches suffice, market approaches can be

unnecessarily complex in design and have greater com-

munication and computation requirements.

The sections that follow discuss market-based multi-

robot coordination in greater detail along the dimensions

mentioned in the introduction. Each section introduces
the topic and its challenges, defines the goals and

appropriate evaluation metrics, reviews the relevant

literature, and identifies remaining research challenges.

III . PLANNING

In multirobot teams, planning can be required to

coordinate robots to accomplish the team mission.

Unfortunately, optimal planning problems for multirobot

systems are typically NP-hard [12]. The challenge then is

to have tractable planning that produces efficient solu-

tions. Market-based approaches manage this by distribut-

ing planning over the entire team to produce solutions

quickly. When required or when resources permit, markets

can behave in a more centralized fashion and plan over

larger portions of the team to improve solution quality.

Here, we consider different layers at which planning arises
in a multirobot system and how these planning problems

are handled by various market-based approaches.

A. Related Work

1) Planning and Task Allocation: Task allocation is the

problem of feasibly assigning a set of tasks to a team in a
way that optimizes a global objective function. Many

special cases of task allocation appear frequently in the

literature; here, we offer a general and formal definition

that allows us to discuss and compare them.

Definition 1: Given a set of robots R, let R :¼ 2R be the

set of all possible robot subteams. An allocation of a set T
of tasks to R is a function, A : T ! R, mapping each task to

a subset of robots responsible for completing it. Equiva-

lently, RT is the set of all possible allocations of the tasks T
to the team of robots R. Let TrðAÞ be the set of tasks
allocated to subteam r in allocation A.

Definition 2: The Multirobot Task Allocation Prob-

lem: Given a set of tasks T, a set of robots R, and a cost

function for each subset of robots r 2 R specifying the cost

of completing each subset of tasks, cr : 2T ! Rþ [ f1g,

find the allocation A� 2 RT that minimizes a global

objective function C : RT ! Rþ [ f1g.

Auctions quickly and concisely
assemble team information in a
single location to make decisions
about distributing resources;
in some cases they provide
guarantees of solution quality.
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Gerkey and Matarić [6] provide a taxonomy for some
variants of the task allocation problem, distinguishing

between: single-task (ST) and multitask (MT) robots;

single-robot (SR) and multirobot (MR) tasks; and instan-

taneous (IA) and time-extended (TA) assignment. In

instantaneous assignment robots do not plan for future

allocations and are only concerned with the one task they

are carrying out at the moment or for which they are

bidding. In time-extended assignment robots have more
information and can come up with longer term plans

involving task sequences or schedules. Definition 2

encompasses each of the types of task allocation in the

taxonomy, but in general describes TA task allocation. IA

allocation can be represented as a special case where all

cost functions map to infinity for any subsets of tasks with

cardinality greater than one. Further, if we allow the sets

of tasks T and robots R to be time dependent (i.e., TðtÞ,
RðtÞ) and require the objective function be minimized at

every instant of time or over the entire history, then the

definition also covers online and dynamic domains where

tasks and robots may be added or removed over time (see

Section VI). This definition also implies that task allo-

cation is NP-hard in general, as the multidepot traveling

salesman problem is a special case [12].

Market-based approaches distribute planning required
for task allocation through the auction process: each

robot or group of robots locally plans the achievement of

the offered tasks, computes its costs, and encapsulates the

costs in its bids. This process is illustrated in the

introduction of this paper for a distributed sensing task

on Mars: each robot determined its own cost of visiting

different sites. Most existing market-based approaches

fall into the SR-ST category in the task allocation taxon-
omy. Several assume instantaneous assignment (IA) [7],

[13]–[15], while others allow for time-extended assign-

ment (TA), introducing an additional layer of planning

whereby robots sequence [9], [16]–[20] or schedule

[21]–[23] a list of tasks and can therefore explicitly rea-

son about the dependencies between multiple tasks and

upcoming commitments. More recently, market-based

systems have addressed the allocation of multiple-robot
tasks (MR-ST) [24], [25], including human–robot tasks [26].

Market-based mechanisms for task allocation can also

be differentiated as centralized or distributed. Centralized

mechanisms have the ability to find optimal solutions (e.g.,

through combinatorial auctions [5], [16]) or provide

bounds on solution quality [9], but in general can require

an exponential amount of computation and communica-

tion [5]. Distributed mechanisms [17], [18] act as anytime
algorithms and require less computation and communica-

tion resources, but are not guaranteed to find optimal

solutions and have no known approximation bounds.

TraderBots [17] attempts to find a balance between these

two approaches by opportunistically allowing Bpockets[ of

centralized optimization to emerge within subgroups of

the team when resources permit. In our distributed

sensing example, for instance, the team might begin with
a suboptimal allocation of sites, perhaps caused by an

inaccurate map of the environment resulting in inaccurate

bids. At some point during execution (perhaps when map

information is more accurate), a robot might find a better

distribution of sites for some subset of its teammates. The

robot’s motivation for group optimization is that it can

pocket the cost difference as profit by winning the tasks

from the original holders and subcontracting them to the
new holders. Simultaneously, this results in a better team

solution. Solution quality and scalability aspects of these

different approaches are discussed in more detail in

Sections IV and V, respectively.

Related problems of allocating constrained subtasks

and roles can have additional planning requirements.

a) Allocating Constrained Subtasks: In many domains,

tasks are temporally constrained with respect to one
another. They may be partially ordered or may need to

start or finish within a common time frame. For instance,

consistency may be important in our Mars distributed

sensing task, so we might require that samples from

particular sites be collected at the same time. In the case of

partially ordered tasks, one can use a central allocator to

auction only those tasks whose predecessors have been

completed [27]. Alternatively, during assignment, robots
can incorporate the cost of meeting constraints into their

bids [28]. In terms of Definition 2, a violation of

constraints can be modeled as infinite values for local

cost functions or the global objective function. Constraints

can add another dimension to the bid valuation and

auction clearing processes and may thus increase compu-

tation requirements. Often, robots must also coordinate

during execution to reschedule and accommodate team
and task changes that have occurred since the initial

allocation [21], [22]. In these cases, robots must be able to

determine when and how the rescheduling should occur.

b) Allocating Roles and Instantaneous Assignment: In

team games one usually assigns positions such as Bprimary

offense[ or Bsupporting defense[ instead of tasks such as

Bshoot the ball[ or Bcapture a rebound.[ These positions

can be classified as roles. More generally a role defines a
collection of related actions or behaviors. Indeed, in many

domains it is more natural to think of teammates playing

roles than completing distinct tasks. In market-based ap-

proaches, role allocation can use the same auction–bid–
award protocol as task allocation. However, robots can

usually take on only one role at any given time (SR-ST-IA or

MR-ST-IA) and generate bids by evaluating a fitness

function that reflects how well its current state matches
the requirements of the role. Once allocated, a robot locally

plans the execution of actions and behaviors specified by its

role. Market-based role allocation has been demonstrated in

robot soccer [13], [15] and treasure hunt [29] domains.

Instantaneous assignment (IA) also arises in cases

where the tasks being allocated are short-term partial

actions that bring the team goal closer to being realized.
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Examples of instantaneous assignment include allocating
push actions in a box-pushing application [7] and assigning

waypoint locations (that do not necessarily have to be

reached) in an exploration scenario [14].

2) Planning and Task Decomposition: Although many

approaches to task allocation assume that a list of primitive

or simple tasks is input to the system, a complex mission is

often more naturally described at a higher level of

abstraction. For example, scientists desiring data about

Mars may only be concerned with the general regions from
which data is collected and not the precise sites. As

illustrated in Fig. 1, a mission might be phrased as Bcapture

images that collectively show 50% of crater regions A, B,

C, and D.[ In these cases, multirobot systems must also

decompose a mission into subtasks, often making use of

well-known planners [27], [30] or domain-specific decom-

position algorithms [31].

There are two common approaches to this planning
problem. In the decompose-then-allocate method, a single

agent recursively decomposes the task into simple subtasks

which are allocated to the team [30]. In the distributed

sensing scenario, this amounts to finding a fixed set of

observation sites for all crater regions and then allocating

these sites to the team. In the allocate-then-decompose
method, complex tasks are first allocated to robots then

each robot locally decomposes its awarded tasks [27]. This
corresponds to assigning entire crater regions to robots

and letting each robot choose the sites. It is also possible to

include instances of both techniques [21], [27].

By decoupling the decomposition and allocation

problems, these approaches do not consider the complete

solution space and may find highly inefficient solutions. In

general, one cannot decompose a task optimally without

knowing which robots will execute the subtasks, nor can
one allocate tasks efficiently without knowing how they

will be decomposed. One solution is to simultaneously

work on both problems by generalizing tasks to task trees
and trading these explicitly on the market [31]. By

incorporating bids at multiple levels of abstraction, both

the costs of allocations and plans can be compared in a

single auction mechanism. Experiments in complex task

domains demonstrate that using task tree auctions can
improve solution quality over two-stage approaches [31].

3) Planning and Task Execution: Many missions includ-

ing our example distributed-sensing mission on Mars

consist of single-robot (SR) tasks that can be completed

independently by individual robots. Such missions can

usually be achieved by a loosely coordinated team in

which robots coordinate during task decomposi-
tion and allocation but not during execution. Thus,

in these domains, planning the execution of tasks

can be done at an individual level without

consideration of teammates’ actions. The excep-

tion is when robots unexpectedly interfere with

each other during execution. Azarm and Schmidt

[32] address collision avoidance of independent

robots during execution using market-based tech-
niques.

However, another class of problems which

includes manipulating large objects (e.g., beams to

construct a structure) and moving in formation (e.g., to

safely travel between sites of interest) cannot easily be

decomposed into independent subtasks. These domains

require tightly coordinated teams in which members

continuously coordinate throughout execution. Tight
coordination is extremely challenging: teams must essen-

tially solve a tightly coupled multirobot planning problem,

but cannot easily take advantage of the distributed

planning and execution that make loose coordination

tractable.

Market-based approaches are not often used to plan

the interactions of tightly coordinating teammates. In

practice, these interactions are simple in many domains
and can be achieved with reactive or behavior-based ap-

proaches that forgo planning and are less expensive in

terms of design, computation, and communication. For

instance, Simmons et al. [33] use a team to perform large-

scale construction. They propose a market-based approach

to select robots for manipulation tasks that require tight

coordination, but execute the tight coordination using a

reactive approach.
However, some domains greatly benefit from and even

require advanced planning of the interactions between

robots. For example, we may want our Mars rovers to

always stay in communication contact with a base station;

doing so requires that they tightly coordinate over large

distances and plan paths to sites with each others’ actions

in mind. Reactive and behavior-based approaches cannot

provide such extensive planning; instead, market-based
approaches have recently been developed to address these

domains. The idea is to exploit small pockets of centralized

planning by having robots buy and sell tightly coupled joint

plans over the market rather than independent tasks [11].

These approaches have higher communication and com-

putational demands than most market-based approaches

designed for loosely coordinated teams.
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B. Future Challenges
Multirobot systems typically must incorporate multiple

types of planning for different aspects of the problems they

address. Market-based approaches are currently capable of

several types of planning, but several challenges remain.

First, there has been limited work in domains with many

complex constraints between tasks and domains requiring

tight coordination. Second, efficient replanning is crucial

to working in uncertain environments and relates closely
to issues raised in Section VI. Task reallocation can be

achieved by peer-to-peer trading and some progress has

been made in redecomposing complex tasks in market-

based systems [31], but significant work remains in re-

planning for tightly coordinated teams. A third important

and relevant area of research (for which some initial work

has been done [29]) is understanding the formation of

subteams and enabling their positive interaction using
market-based methods. Finally, market-based approaches

need better strategies for making use of multirobot plan-

ners and providing alternatives to combinatorial auctions

for vetting complex plans in the market.

IV. QUALITY OF SOLUTION

One of the greatest strengths of a market is its ability to

utilize the local information and preferences of its

participants and arrive at an efficient solution given

limited resources. As discussed in Section III, a funda-
mental optimization problem encountered in market-

based multirobot systems is the task allocation problem.

Since task allocation is NP-hard system designers face the

challenge of choosing market mechanisms that result in

the most efficient solutions within a reasonable amount of

time. Various global cost objectives (C in Definition 2)

appear in market-based systems depending on the ap-

plication. Most common are minimizing the sum of in-
dividual robots’ costs ðCðAÞ ¼

P
r2R crðTrðAÞÞÞ [16]–[18],

[34], [35] or minimizing the maximum individual cost

(makespan, CðAÞ ¼ max
r2R

crðTrðAÞÞÞ [19]; although others

are possible (e.g., minimizing the average overall time to

complete each task [36]). In the Mars distributed sensing

example, these global objectives correspond to finding the

allocation of sites to robots that results in the least amount

of fuel expended (sum of costs) or the task being done in
the least amount of time (makespan). While it has been

demonstrated that inaccuracies in cost models can affect

the quality of solutions obtained [37], the results

presented in this section are all developed under the

assumption that the robots’ cost or utility estimates are

accurate.

A. Related Work
As described in Section III, we distinguish between

instantaneous (IA) and time-extended (TA) task allocation.

The IA model often arises in cases where tasks require

time-indefinite exclusive commitments by robots (e.g.,
roles [13], [15]) or when the tasks being assigned are short-

lived partial actions that bring the team goal closer to being

realized [7], [14]. However, sometimes IA approaches are

used for simplicity in lieu of a TA approach; they are easier

to implement and do not need computationally expensive

task sequencing algorithms [6], [24], [30], [38]. In these

systems, if there are more tasks than robots, the remaining

tasks can be allocated once robots complete their previous
assignments. Ignoring dependencies between tasks by

using an IA approach should hypothetically result in

inferior solution quality, but we are not aware of any

explicit comparative study. When IA allocation is appro-

priate, it has been demonstrated that optimal allocation is

possible if there are more robots than tasks, although

several existing systems use a 2-approximate greedy

solution [6]. Additionally, performance guarantees are
not always equivalent for cost- and utility-based systems;

the greedy algorithm for the metric online variant of the IA

task allocation problem is 3-competitive for utility

maximization [6], [39] but scales exponentially with the

number of robots for cost minimization [39].

TA sequencing approaches have additional planning

and scheduling requirements, but, when appropriate,

model the problem more accurately and should produce
better results. For example, a combinatorial auction can

theoretically result in an optimal allocation if the robots

compute and submit bids on all possible combinations of

tasks (of which there are an exponential number) [5]. In

practice, performance guarantees are sacrificed in order to

reduce the computation and communication requirements

by considering only a relatively small number of task

bundles [16], [34], [40], [41] (details in Section V).
A simpler centralized mechanism is one in which

single tasks are iteratively allocated in multiple auctions

until all tasks are assigned. In general, these types of

auctions are not guaranteed to find the optimal solution;

however, because they require less computation and

communication than combinatorial auctions and are easier

to implement, they are more prevalent in the literature

[18]–[20], [27], [30], [35]. Tovey et al. [36] suggest a hill-
climbing heuristic for generating bidding rules for single-

task auctions with various global objective functions. This

method gives some justification for the typically utilized

bidding rules: for example, when globally minimizing total

cost, bidders should base their bids on the marginal costs

of the offered tasks [16]–[18], [34], [35]; for makespan

minimization, load balancing can be better achieved if

participants instead bid based on their total costs [19].
Experimentally, Tovey et al. found that the bidding rule

derived for each of three objective functions (total cost,

makespan, and average latency) results in better solu-

tions than the rules derived for the other objectives. By

modeling multirobot problems as vehicle routing prob-

lems [45]–[47], Lagoudakis et al. [9] provide a set of

approximation bounds for the same rules and objective
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functions. They prove that bids based on individual mar-
ginal costs when applied to a sum-of-costs objective

results in a 2-approximation, while bids based on indi-

vidual total costs applied to a makespan objective yields

an approximation algorithm that scales linearly with the
number of robots (which is a worst case result for any
makespan algorithm).

Task reallocation is also possible by introducing peer-

to-peer auctions [17], [18], [22], [35], [44]. In this case,

there is some initial allocation, and any robot on the team

is capable of holding auctions in order to reallocate tasks to

robots that are better suited to perform them. In static

environments, distributed trading can improve inefficient
initial allocations resulting from the use of faster but

suboptimal mechanisms. In unknown or partially known

environments where costs constantly change as new

observations are made, initial solutions may no longer

maintain optimality guarantees or even be reasonably effi-

cient; in such a case the use of peer-to-peer auctions can be

used to repair undesirable allocations. Peer-to-peer trading

can be viewed as a local search and thus is subject to local
optima. Sandholm proves that by using a sufficiently

expressive set of contract types (single-task, multitask,

swap, and multiparty), the global minimum can be reached

in a finite (but possibly large) number of steps [42], while

experiments by Andersson and Sandholm demonstrate

that more practical systems that include just single- and

multitask contracts (e.g., [41]) find the most efficient

solutions given a limited number of rounds [12]. Another
interesting result by Vidal [43] shows that by not requiring

agents to be purely selfish (i.e., some agents may be worse

off after some trades) the local search algorithm can

circumvent some local optima and in the long run find

better solutions. Dias et al. [44] look at how to initialize

the team allocation by holding central greedy multitask

auctions (multiple tasks can be awarded in each but at

most one task is awarded per robot per auction) before
distributed trading begins. They find that increasing the

number of tasks awarded per auction can have a negative

effect on the resulting solution quality but requires less

time (fewer auctions are held) to find a solution. Table 1

gives a summary of the results presented in this section.

B. Future Challenges
While some theoretical guarantees for simple auctions

are known, future work should address the more complex

mechanisms that are present in implemented systems

which can include online, multitask, peer-to-peer, simul-

taneous, and overlapping auctions as well as task and

scheduling constraints. Additionally, solution quality

depends on accurate cost and utility measures which

may be very challenging to aquire. Although some progress

has been made in methods for learning [23] and improving
[37] these estimates, further work is required.

V. SCALABILITY

Scalability is an important feature for any multirobot

coordination approach. In general, a system is scalable if it

can operate effectively even as the number of inputs or the

size of inputs increases arbitrarily. The scalability of a
multirobot coordination approach is typically evaluated by

its ability to produce efficient solutions as the team size or

the task complexity increase. For example, in the Mars

distributed sensing scenario, a scalable coordination

approach will continue to produce efficient task alloca-

tions as the number of robots in the team and the number

of sensing tasks assigned to the team increase. Scalability

in some market-based approaches may be limited by the
computation and communication needs that arise from

increasing auction frequency, bid complexity, and plan-

ning demands. However, market-based approaches can

scale well in applications where the team mission can be

decomposed into tasks that can be independently carried

out by small subteams. A scalability comparison of market-

based, behavior-based, and centralized approaches is

presented by Dias and Stentz [17] on a distributed sens-
ing task in which the goal is to visit the last observation

site in as little time as possible (i.e., a makespan

objective). Simulation experiments demonstrate that the

Table 1 Summary of Solution Quality Results
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market can provide significantly higher quality solutions
than behavior-based approaches while using significantly

less computation time than centralized approaches.

A. Related Work

1) Computation and Communication Considerations:
Section IV referred to tradeoffs between scalability and

solution quality in market-based systems. Here, we
elaborate on some of these tradeoffs with respect to

common auction types. Single-item auctions are usually

computationally feasible and light on communication, but

they produce suboptimal solutions. Combinatorial auc-

tions can produce optimal solutions, but require an

exponential amount of computation and communication.

Multi-item auctions are also computationally manageable,

but produce inferior solutions as compared to single-item
and combinatorial auctions. Their advantage is that more

items are awarded per auction so items can be allocated

quickly, since less auctions are required. When consider-

ing these tradeoffs, it is also important to consider the

problem domain: for highly uncertain or dynamic envir-

onments, it may not be worth spending the time to

compute an optimal solution if that solution will con-

stantly be changing as more information is gathered; or,
if there are hard real-time constraints, there may not be

enough time to compute an exact solution.

Table 2 summarizes the time complexities of the im-

portant phases of several auction types. For each protocol,

the table lists the maximum number of bid valuations, the

computation times of the best-known auction clearing

algorithms, and the number of auctions required to allo-

cate all items to the team (if the objective is to offload all
items from the initial auctioneerVthis may not be the aim

in peer-to-peer auctions as the auctioneer may retain some

items or some reserve prices may not be met). Table 3

similarly gives a summary of communication costs. Of

particular interest in these tables are the exponential

expressions for combinatorial auctions in the areas of bid

valuation, winner determination, and bid submission. As

discussed previously, in order to make combinatorial
auctions scalable, the common approach is to limit the

number of bundles that are considered during bid valua-

tion. This in turn reduces the number of bids that need to

be communicated and also allows the auction to be

cleared quickly in practice. Indeed, Sandholm’s optimal

clearing algorithm, CABOB [5], relies on a sparse bid set

in order to find solutions quickly (although the resulting

allocation is still likely to be suboptimal given that not all

item bundles are considered). The number of bundles can
be reduced either on the auctioneer’s side by offering only

certain combinations of items [40], or on the bidders’ side

by using heuristic item clustering algorithms [16], [41] or

by ignoring bundles greater than a certain size [16], [34].

Berhault et al. [16] compare four clustering algorithms for

goal point tasks and find that one based on repeated

graph cuts outperforms a nearest-neighbor algorithm and

two algorithms based on limiting cluster size.
Bid valuation itself may be computationally expensive.

That is, the expressions v and V in Table 2 may in reality

represent the running time of algorithms that must solve a

difficult or even NP-hard problem in order to estimate

costs [16]–[19], [35]. Additionally, expensive task decom-

positions may be required at the bidding stage [31].

Heuristics and approximation algorithms can help deal

with the NP-hard problems (e.g., TSP approximation
algorithms for task sequencing [10]), although when there

are many items to consider simultaneouslyVeither from

auctions offering many items [16]–[18], [22], [31], [34] or

from multiple robots holding auctions simultaneously [17],

[31]Vbidders can still be overburdened with valuation

problems. As a result, system designers must ensure that

bidders are able to meet auction deadlines and do not tax

their processors to the point of compromising real-time
requirements.

2) Opportunistic Centralization: Opportunistic centrali-

zation [11], [41] is a scalable way of incorporating the

benefits of centralized planning into large market-based

systems. In such approaches, centralized resource or task

allocation can be done over smaller subsets of tasks and

team members as and when computational resources
permit. This is a relatively new area in market-based

coordination; consequently, there are no theoretical for-

mulations and only a few experimental results.

B. Future Challenges
While much is known theoretically about the scal-

ability of various auction mechanisms, market-based

Table 3 Comparison of Communication Complexities of Various Auction

Types. Notation is the Same as in Table 2

Table 2 Comparison of Time Complexities of Various Auction Types. n is

the Number of Items, r is the Number of Bidders, b is the Number of Bids,

and m � r is the Maximum Number of Awards per Auction (for Multi-Item

Auctions). v and V Represent the (Domain-Dependent) Amount of Time

Required to Perform a Valuation for a Single Item ðvÞ or Set of Items ðVÞ
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approaches have yet to be implemented on teams of more
than a few robots. Further challenges exist in improving

opportunistically centralized approaches’ means of select-

ing task clusters and team members to reduce unnecessary

computation. The challenge of dealing with limited

computation when faced with an excess of solicited bid

valuations is also largely unaddressed.

VI. DYNAMIC EVENTS AND
ENVIRONMENTS

Operations in dynamic and uncertain environments pose a

variety of challenges to team coordination: ensuring

graceful degradation of solution quality with failures,

enabling team functionality despite imperfect and uncer-

tain information, maintaining effective response speed to

dynamic events, and accommodating evolving conditions
and constraints. Benchmarking the robustness of a

coordination approach requires evaluating the diversity

of failures the team can accommodate, the required

quantity and certainty in information available to the team,

the team’s response speed to dynamic events, the fluidity

of the team, and the overall solution quality produced by

the team in the face of dynamic events. In this section we

examine the different ways in which market-based multi-
robot coordination approaches to date deal with these

conditions.

A. Related Work

1) Robustness and Fluidity: Robotic systems are often

complex and their physical interactions with the environ-

ment make them highly prone to failures. Thus, a
successful coordination approach must gracefully degrade

solution quality when failures occur. For example, in the

Mars distributed sensing scenario, it is likely that one or

more of the rovers will suffer some form of failure. A rover

can wander outside the range of communication from

other rovers, damage a scientific instrument when

performing a sensing task, or become completely disabled

due to a rock slide. A successful coordination approach will
allow the team to accomplish the mission despite these

failures. Three principal categories of faults that coordi-

nation approaches must consider are communication fail-

ures, partial malfunctions, and robot death [8]. A variety of

strategies are employed by market-based approaches to

handle these failures.

Teams can often perform more effectively if teammates

can communicate [20]. However, communication failures
occur in a variety of domains and range from occasional

loss of messages to loss of all communication. In the

TraderBots approach, if the team is informed of a common

task, consequent disruptions in communication are

gracefully handled by using opportunistic auctioning

solely for improving solution quality [8], [20]. As with

communication disruptions, partial malfunctions limit a

robot’s capability but retain the robot’s planning ability.
TraderBots employs active reasoning about failed resources

to allow robots to reallocate tasks that they can no longer

complete due to malfunctions [8]. Similarly, MURDOCH

relies on monitoring progress in short-duration tasks to

detect and respond to faults [7]. In the case of robot death,

the affected robot cannot aid in the recovery process.

However, robots can monitor progress or heartbeats of

teammates and reauction tasks previously assigned to the
dead robot [7], [8]. A further improvement is to allow

repair of malfunctioning robots and enable their return to

the team. In order to accomplish this, a coordination ap-

proach must accommodate both the exit of malfunctioning

robots and the entrance of the repaired robots. Bererton

et al. demonstrate reasoning about assisting malfunction-

ing robots and towing of disabled robots to a base station

for repair [48], while Dias et al. [8], [10] and Gerkey and
Matarić [7] demonstrate reentry of repaired robots (or

entry of new robots) to the team. When dealing with

dynamic and uncertain conditions, coordination ap-

proaches must wrestle with several tradeoffs. For example,

if detecting robot death relies on monitoring a heartbeat, a

robot is presumed dead if its heartbeat is not received by

its teammates within a predetermined interval. However,

if this interval is too large, the time to detect and respond
to a failure is increased and the solution quality is thus

degraded. Instead, if the interval is too short, solution

quality can still degrade due to false positives that can

arise if the robot temporarily drops out of communication

range. Understanding these tradeoffs and their implica-

tions remains an open problem.

2) Online Tasks: In many dynamic application domains,
the demands on the robotic system can change during

operation. Operators of a multirobot system may submit

new tasks or alter or cancel existing tasks [10]. Alterna-

tively, robots may generate new tasks during execution as

they observe new information about their surroundings. In

the Mars scenario, a scientist may choose to add new sites

to explore or eliminate existing sites while reviewing

incoming data, or the robots themselves may have the
capacity to make such decisions. Market-based approaches

can often seamlessly incorporate online tasks by auction-

ing new tasks as they are introduced by an operator [17],

[26] or as they become available due to the completion of

preceding tasks [7], [14], [27], [30]. In some cases new

tasks can be generated by the robots themselves and

inserted into their plans to be executed or subsequently

traded [10], [20], [24].

3) Uncertainty: Most real-world multirobot applications

require operation with only partial or changing informa-

tion about the environment, the team, or the task.

Fortunately, market-based approaches have few a priori
information requirements and can accommodate new

information through frequent auctioning of tasks and
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resources. For instance, in the Mars example, it is likely
that the rovers will not have access to a complete detailed

map of their environment. The TraderBots approach dem-

onstrates that robots can execute tasks with no a priori map

information and dynamically reallocate tasks when new

map information is gathered [10], [20].

B. Future Challenges
While much can be done to improve the operation of

market-based approaches in dynamic environments, a few

key challenges are paramount. Effective information shar-

ing among team members in market-based approaches is

one necessary area of research. If a robot discovers a task is

expensive because of new environmental information it

has gathered, it can potentially allocate the task to another

robot that does not have that information. This robot will

then try to execute the task until it, too, perceives the new
information; then it tries to allocate the task to another

robot. This can continue until all robots have attempted to

perform the task, causing tremendous inefficiency.

Characterizing the ability of both the individual robots

and the team to respond quickly to dynamic conditions

using market-based coordination approaches is another

important challenge. The authors are not aware of any

study of individual or team response speed for any market-
based multirobot coordination approach. Other challenges

for improving robustness are developing more sophisticat-

ed methods for cooperative handling of partial malfunc-

tions and repairs, evaluating robustness to a variety of

failures, incorporating contract breaches with appropriate

penalties, and incorporating sliding autonomy into market-

based approaches to allow robots to request assistance

when appropriate.

VII. HETEROGENEOUS TEAMS

A team is heterogeneous if not all of its members

are equally capable of performing all the tasks (e.g.

, because of hardware or software differences) or if

its members play different roles (e.g., in team

games where robots play different positions). In
contrast, the members of a homogeneous team

have identical skills or are generalists that can

perform all necessary tasks. Heterogeneity is

highly advantageous for several reasons. First,

complex missions often have many different

functional requirements and can be achieved

more effectively by a team of specialists rather than by a

team of generalists that perhaps cannot perform any single
function very well. For example, in our Mars scenario we

may want high-resolution images taken, rock samples

collected, and core samples taken from the ground. A

complex mission such as this is often better achieved with

robots that specialize in particular tasks: some robots can

take samples from both rocks and the ground while others

only capture images. Second, it is often more practical to

design robots that specialize in only a small set of skills
than to design robots that are capable of all skills. Indeed,

in many domains, it may be infeasible to construct robots

that can do everything, for example because of limitations

in budget, form factor, or on-board power. Third, by being

able to coordinate heterogeneous teams, we can reuse

robots across multiple applications. Although heteroge-

neous team coordination is challenging, a successful

approach should accommodate any team composition.

A. Related Work
In a heterogeneous team, robots have different abilities

to perform different tasks. Task and role allocation in

heterogeneous teams becomes challenging because it

requires reasoning about and comparing different robots’

capabilities. Market-based approaches are well suited to

meet this challenge because auctions can simplify the
problem of reasoning about team skills. When a task or

role is auctioned, each robot’s bid encapsulates its ability

to complete the task in terms of resource usage or even

the opportunity cost of forgoing other tasks [23]. Addi-

tionally, robots can abstain from bidding on tasks for

which they do not have sufficient resources, thereby

reducing the computational burden for both bidder and

auctioneer [7], [40]. The auctioneer can award roles or
tasks to team members according to the best bid, without

requiring knowledge of individual capabilities. Thus,

market-based approaches only require each team member

to recognize its own skills and resources but not those of

teammates. However, auctions introduce a new difficulty:

it is not always clear how to compute and compare the

cost of performing a task between different types of robots

who may perform the task in very different ways. One idea
is to allow robots to swap tasks directly whenever such a

trade results in a mutually beneficial outcome [18]. This

circumvents the pricing problem but also severely restricts
the number of possible solutions.

Market-based coordination of heterogeneous teams has

been demonstrated on physical robots in several applica-

tions: in automated assembly using three robots with very

different physical configurations and capabilities [33]; in

box-pushing, where resource-addressed messaging allows

robots to determine in which auctions they should
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participate [17]; and in treasure hunt, with an auctioning
scheme in combination with predefined team strategies

(known as plays) to allow two very different types of robots

to operate as a cohesive team [26]. In simulation, market-

coordinated robots with different science instruments

characterize multiple rock types in a space application

similar to our Mars scenario [17], and market-based role

allocation mechanisms have appeared in heterogeneous

robot soccer teams [13], [49].

B. Future Challenges
Ultimately, coordination approaches must accommo-

date three levels of heterogeneity: heterogeneous robot

teams, human–robot teams, and highly heterogeneous

teams of humans, robots, and other agents. Future

research challenges include modeling human preferences

using appropriate reward functions, developing techniques
for consistently computing different robots’ costs for

completing tasks, enabling pickup teams, i.e., dynamically

formed heterogeneous teams where little may be known a
priori about the task, the robots, or the environments [29],

and addressing the challenges of human–robot teams

where tasks are understandable to humans and robots and

both participate in task allocation and execution [29].

VIII. CONCLUSION AND FUTURE
DIRECTIONS

The vision that drives research in multirobot systems is that

teams of robots will inevitably be an integral part of our

future. To realize this vision, robots must be capable of

executing complex tasks as a team. While many multirobot

coordination approaches have been proposed by the
research community, market-based approaches in particu-

lar have been proven effective; their resulting increase in

popularity over the past few years warrants a survey of the

field. We address this need by providing the first survey of

the state of the art in market-based multirobot coordination

approaches with three contributions to the multirobot

literature: a tutorial on market-based multirobot coordina-

tion approaches, a review and analysis of the relevant
literature, and a discussion of remaining challenges in this

research area. A more comprehensive version of this paper

is presented as a technical report by Kalra et al. [50].

The existing work in market-based multirobot coordi-

nation ranges from theoretical formulations to conceptual

design frameworks to implementations in simulation and

on physical robot teams. The chosen application domains

span a wide range and include distributed sensing, map-
ping, exploration, surveillance, perimeter sweeping, as-

sembly, box-pushing, reconnaissance, soccer, and treasure

hunt. However, this is still a relatively new area of research,

and hence many research challenges still remain. Here, we

discuss some of the overall challenges in the field.

A first important need is a clear conceptual under-

standing of market-based coordination approaches. Much

discussion is needed to further our understanding of how
components such as cost and reward functions, bidding

strategies, and auction clearing mechanisms can be

designed, implemented, and used effectively in different

multirobot application domains. Understanding the trade-

off between solution quality and scalability when design-

ing and implementing coordination mechanisms is also

important. Additionally, much work still remains in

defining a relevant set of benchmarks for effective com-
parison of different coordination approaches. Some of the

challenges in providing a comparative framework for

coordination approaches are explored by Gerkey and

Matarić [6] who provide an initial framework for

evaluating task allocation schemes in terms of complexity

and optimality, showing that market-based methods

perform favorably in terms of computation and commu-

nication requirements. Dias and Stentz [17] compare a
centralized optimal approach, a distributed behavioral

approach, and a market-based approach, evaluated in a

distributed sensing scenario. Simulation results compare

the three approaches in scalability and heterogenity, and

show that all three approaces perform well with hetero-

geneous teams, and the market method performs best

overall in scalability. Rabideau et al. [19] also conduct a

similar comparative study between a centralized planner
that does not guarantee optimality, a distributed planner,

and a single-task auction approach. They conclude that

the auction approach performs best but takes up the most

CPU cycles. Although market-based approaches have per-

formed well in comparative studies, these studies are

fairly limited and broader studies are in high demand.

A final challenge is to demonstrate long-term, reliable,

and robust operation of larger robot teams. One requisite
of this goal is the effective use of learning techniques. The

application of learning techniques in market-based coor-

dination is currently at a very early stage. One big debate is

whether learning should be applied at the team level, at

the individual level, or some combination of the two.

Oliveira et al. [51] present a detailed discussion of the

issues relevant to the application of learning in dynamic

markets. The role that learning can play in market-based
multirobot coordination is also discussed briefly by Stentz

and Dias [52]. The authors are unaware of any learning

techniques implemented on a team of physical robots

coordinated using a market-based approach. However,

publications are starting to emerge in the application of

learning techniques for market-based coordination of

simulated robot teams. Notably, learning techniques are

applied to learn bidding strategies in dynamic markets
[51], opportunity costs in a simulated distributed sensing

task [23], and role assignment [13] and bidding strategies

[53] in simulated robot soccer.

Despite the many challenges ahead, market-based

techniques are proving to be versatile and powerful coor-

dination schemes for groups of robots executing complex

tasks as part of a team. Different application requirements
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and tradeoffs in implementation make it difficult to
construct a single market-based approach that can be

successful in all domains. In fact, the authors are aware of

only two market-based approaches, MURDOCH [7] and

TraderBots [17], [20], [31], that have been demonstrated in

more than one application domain. Nevertheless, a well-

designed market-based approach with sufficient plug-and-

play options for manually or automatically altering

different tradeoffs can be successful in a wide range of
applications. And, with further research, market-based

approaches promise to significantly further our vision of
robots playing an integral role in human life. h
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