
SBCL User Manual
SBCL version 2.4.8

2024-08

This manual is part of the SBCL software system. See the README file for more information.

This manual is largely derived from the manual for the CMUCL system, which was produced
at Carnegie Mellon University and later released into the public domain. This manual is in the
public domain and is provided with absolutely no warranty. See the COPYING and CREDITS files
for more information.

i

Table of Contents

1 Getting Support and Reporting Bugs . 1
1.1 Volunteer Support . 1
1.2 Commercial Support . 1
1.3 Reporting Bugs . 1

1.3.1 How to Report Bugs Effectively . 1
1.3.2 Signal Related Bugs . 2

2 Introduction . 3
2.1 ANSI Conformance . 3

2.1.1 Exceptions . 3
2.2 Extensions . 3
2.3 Idiosyncrasies . 4

2.3.1 Declarations . 4
2.3.2 FASL Format . 4
2.3.3 Compiler-only Implementation . 5
2.3.4 Defining Constants . 5
2.3.5 Style Warnings . 5

2.4 Development Tools . 6
2.4.1 Editor Integration . 6
2.4.2 Language Reference . 6
2.4.3 Generating Executables . 6

2.5 More SBCL Information . 6
2.5.1 SBCL Homepage . 6
2.5.2 Online Documentation . 6
2.5.3 Additional Documentation Files . 6
2.5.4 Internals Documentation . 7

2.6 More Common Lisp Information . 7
2.6.1 Internet Community . 7
2.6.2 Third-party Libraries . 7
2.6.3 Common Lisp Books . 7

2.7 History and Implementation of SBCL . 8

3 Starting and Stopping . 9
3.1 Starting SBCL . 9

3.1.1 From Shell to Lisp . 9
3.1.2 Running from Emacs . 9
3.1.3 Shebang Scripts . 9

3.2 Stopping SBCL . 9
3.2.1 Exit . 9
3.2.2 End of File . 10
3.2.3 Saving a Core Image . 10
3.2.4 Exit on Errors . 12

3.3 Command Line Options . 12
3.3.1 Runtime Options . 12
3.3.2 Toplevel Options . 13

3.4 Initialization Files . 14
3.5 Initialization and Exit Hooks . 14

4 Compiler . 15
4.1 Diagnostic Messages . 15

4.1.1 Controlling Verbosity . 15
4.1.2 Diagnostic Severity . 16

ii

4.1.3 Understanding Compile Diagnostics . 16
4.1.3.1 The Parts of a Compiler Diagnostic . 16
4.1.3.2 The Original and Actual Source . 18
4.1.3.3 The Processing Path . 18

4.2 Handling of Types . 19
4.2.1 Declarations as Assertions . 19
4.2.2 Precise Type Checking . 19
4.2.3 Getting Existing Programs to Run . 20
4.2.4 Implementation Limitations . 21

4.3 Compiler Policy . 21
4.4 Compiler Errors . 23

4.4.1 Type Errors at Compile Time . 23
4.4.2 Errors During Macroexpansion . 24
4.4.3 Read Errors . 24

4.5 Open Coding and Inline Expansion . 24
4.6 Interpreter . 25
4.7 Advanced Compiler Use and Efficiency Hints . 25

5 Debugger . 26
5.1 Debugger Entry . 26

5.1.1 Debugger Banner . 26
5.1.2 Debugger Invocation . 26

5.2 Debugger Command Loop . 26
5.3 Stack Frames . 27

5.3.1 Stack Motion . 27
5.3.2 How Arguments are Printed . 27
5.3.3 Function Names . 28

5.3.3.1 Entry Point Details . 28
5.3.4 Debug Tail Recursion . 28
5.3.5 Unknown Locations and Interrupts . 29

5.4 Variable Access . 29
5.4.1 Variable Value Availability . 30
5.4.2 Note On Lexical Variable Access . 30

5.5 Source Location Printing . 31
5.5.1 How the Source is Found . 31
5.5.2 Source Location Availability . 32

5.6 Debugger Policy Control . 32
5.7 Exiting Commands . 33
5.8 Information Commands . 34
5.9 Function Tracing . 34
5.10 Single Stepping . 36
5.11 Enabling and Disabling the Debugger . 36

6 Efficiency . 37
6.1 Slot access . 37

6.1.1 Structure object slot access . 37
6.1.2 Standard object slot access . 37

6.2 Stack allocation . 37
6.3 Modular arithmetic . 39
6.4 Global and Always-Bound variables . 40
6.5 Miscellaneous Efficiency Issues . 40

iii

7 Beyond the ANSI Standard . 42
7.1 Reader Extensions . 42

7.1.1 Extended Package Prefix Syntax . 42
7.1.2 Symbol Name Normalization . 42
7.1.3 Decimal Syntax for Rationals . 42

7.2 Package-Local Nicknames . 42
7.3 Package Variance . 43
7.4 Garbage Collection . 44

7.4.1 Finalization . 44
7.4.2 Weak Pointers . 45
7.4.3 Introspection and Tuning . 45
7.4.4 Tracing Live Objects Back to Roots . 46

7.5 Generic Function Dispatch . 47
7.6 Slot Access . 47
7.7 Metaobject Protocol . 48

7.7.1 AMOP Compatibility of Metaobject Protocol . 48
7.7.2 Metaobject Protocol Extensions . 49

7.8 Extensible Sequences . 50
7.8.1 Iterator Protocol . 52
7.8.2 Simple Iterator Protocol . 53

7.9 Support For Unix . 53
7.9.1 Command-line arguments . 53
7.9.2 Querying the process environment . 54
7.9.3 Running external programs . 54

7.10 Unicode Support . 56
7.10.1 Unicode property access . 56
7.10.2 String operations . 58
7.10.3 Breaking strings . 59

7.11 Customization Hooks for Users . 59
7.12 Tools To Help Developers . 60
7.13 Resolution of Name Conflicts . 60
7.14 Hash Table Extensions . 60
7.15 Random Number Generation . 62
7.16 Timeouts and Deadlines . 63

7.16.1 Timeout Parameters . 64
7.16.2 Synchronous Timeouts (Deadlines) . 64
7.16.3 Asynchronous Timeouts . 65
7.16.4 Operations Supporting Timeouts and Deadlines . 65

7.17 Miscellaneous Extensions . 65
7.18 Stale Extensions . 66
7.19 Efficiency Hacks . 66

8 External Formats . 68
8.1 The Default External Format . 68
8.2 External Format Designators . 68
8.3 Character Coding Conditions . 68
8.4 Converting between Strings and Octet Vectors . 69
8.5 Supported External Formats . 69

9 Foreign Function Interface . 70
9.1 Introduction to the Foreign Function Interface . 70
9.2 Foreign Types . 70

9.2.1 Defining Foreign Types . 70
9.2.2 Foreign Types and Lisp Types . 71
9.2.3 Foreign Type Specifiers . 71

9.3 Operations On Foreign Values . 73
9.3.1 Accessing Foreign Values . 73

iv

9.3.1.1 Untyped memory . 73
9.3.2 Coercing Foreign Values . 73
9.3.3 Foreign Dynamic Allocation . 74

9.4 Foreign Variables . 74
9.4.1 Local Foreign Variables . 74
9.4.2 External Foreign Variables . 75

9.5 Foreign Data Structure Examples . 75
9.6 Loading Shared Object Files . 76
9.7 Foreign Function Calls . 77

9.7.1 The alien-funcall Primitive . 77
9.7.2 The define-alien-routine Macro . 77
9.7.3 define-alien-routine Example . 78

9.8 Calling Lisp From C . 78
9.8.1 Lisp as a Shared Library . 79

9.9 Step-By-Step Example of the Foreign Function Interface . 79

10 Pathnames . 82
10.1 Lisp Pathnames . 82

10.1.1 Home Directory Specifiers . 82
10.1.2 The SYS Logical Pathname Host . 82

10.2 Native Filenames . 82

11 Streams . 84
11.1 Stream External Formats . 84
11.2 Bivalent Streams . 84
11.3 Gray Streams . 84

11.3.1 Gray Streams classes . 84
11.3.2 Methods common to all streams . 85
11.3.3 Input stream methods . 85
11.3.4 Character input stream methods . 86
11.3.5 Output stream methods . 86
11.3.6 Character output stream methods . 86
11.3.7 Binary stream methods . 87
11.3.8 Gray Streams examples . 87

11.3.8.1 Character counting input stream . 87
11.3.8.2 Output prefixing character stream . 89

11.4 Simple Streams . 90

12 Package Locks . 91
12.1 Package Lock Concepts . 91

12.1.1 Package Locking Overview . 91
12.1.2 Implementation Packages . 91
12.1.3 Package Lock Violations . 91

12.1.3.1 Lexical Bindings and Declarations . 91
12.1.3.2 Other Operations . 91

12.1.4 Package Locks in Compiled Code . 92
12.1.4.1 Interned Symbols . 92
12.1.4.2 Other Limitations on Compiled Code . 92

12.1.5 Operations Violating Package Locks . 92
12.1.5.1 Operations on Packages . 92
12.1.5.2 Operations on Symbols . 92

12.2 Package Lock Dictionary . 93

v

13 Threading . 95
13.1 Threading basics . 95

13.1.1 Thread Objects . 95
13.1.2 Making, Returning From, Joining, and Yielding Threads . 95
13.1.3 Asynchronous Operations . 96
13.1.4 Miscellaneous Operations . 97
13.1.5 Error Conditions . 97

13.2 Special Variables . 98
13.3 Atomic Operations . 98

CAS Protocol . 100
13.4 Mutex Support . 100
13.5 Semaphores . 102
13.6 Waitqueue/condition variables . 102
13.7 Barriers . 104
13.8 Sessions/Debugging . 105
13.9 Foreign threads . 105
13.10 Implementation (Linux x86/x86-64) . 105

14 Timers . 107
14.1 Timer Dictionary . 107

15 Networking . 109
15.1 Sockets Overview . 109
15.2 General Sockets . 109
15.3 Socket Options . 111
15.4 INET Domain Sockets . 111
15.5 Local (Unix) Domain Sockets . 112
15.6 Name Service . 112

16 Profiling . 113
16.1 Deterministic Profiler . 113
16.2 Statistical Profiler . 113

16.2.1 Example Usage . 113
16.2.2 Output . 114
16.2.3 Platform support . 115
16.2.4 Macros . 115
16.2.5 Functions . 116
16.2.6 Variables . 117
16.2.7 Credits . 117

17 Contributed Modules . 118
17.1 sb-aclrepl . 119

17.1.1 Usage . 119
17.1.2 Customization . 119
17.1.3 Example Initialization . 119
17.1.4 Credits . 119

17.2 sb-concurrency . 120
17.2.1 Queue . 121
17.2.2 Mailbox (lock-free) . 122
17.2.3 Gates . 123
17.2.4 Frlocks, aka Fast Read Locks . 124

17.3 sb-cover . 126
17.3.1 Example Usage . 126
17.3.2 Functions . 126

17.4 sb-grovel . 128
17.4.1 Using sb-grovel in your own ASDF system . 128

vi

17.4.2 Contents of a grovel-constants-file . 128
17.4.3 Programming with sb-grovel’s structure types . 129

17.4.3.1 Traps and Pitfalls . 130
17.5 sb-md5 . 131

17.5.1 Credits . 131
17.6 sb-posix . 132

17.6.1 Lisp names for C names . 132
17.6.2 Types . 132

17.6.2.1 File-descriptors . 132
17.6.2.2 Filenames . 132

17.6.3 Function Parameters . 133
17.6.4 Function Return Values . 133
17.6.5 Lisp objects and C structures . 133
17.6.6 Functions with idiosyncratic bindings . 136
17.6.7 Extensions to POSIX . 136

17.7 sb-queue . 138
17.8 sb-rotate-byte . 139
17.9 sb-simd . 140

17.9.1 Data Types . 140
17.9.2 Casts . 140
17.9.3 Constructors . 140
17.9.4 Unpackers . 140
17.9.5 Reinterpret Casts . 140
17.9.6 Associatives . 140
17.9.7 Reducers . 141
17.9.8 Rounding . 141
17.9.9 Comparisons . 141
17.9.10 Conditionals . 141
17.9.11 Loads and Stores . 141
17.9.12 Specialized Scalar Operations . 142
17.9.13 Instruction Set Dispatch . 142

18 Deprecation . 143
18.1 Why Deprecate? . 143
18.2 The Deprecation Pipeline . 143
18.3 Deprecation Conditions . 144
18.4 Introspecting Deprecation Information . 145
18.5 Deprecation Declaration . 145
18.6 Deprecation Examples . 145
18.7 Deprecated Interfaces in SBCL . 146

18.7.1 List of Deprecated Interfaces . 146
18.7.1.1 Early Deprecation . 146
18.7.1.2 Late Deprecation . 147
18.7.1.3 Final Deprecation . 148

18.7.2 Historical Interfaces . 148

Appendix A Concept Index . 149

Appendix B Function Index . 151

Appendix C Variable Index . 156

Appendix D Type Index . 157

Colophon . 159

1

1 Getting Support and Reporting Bugs

1.1 Volunteer Support

Your primary source of SBCL support should probably be the mailing list sbcl-help: in addition to other
users SBCL developers monitor this list and are available for advice. As an anti-spam measure subscription
is required for posting:

https://lists.sourceforge.net/lists/listinfo/sbcl-help

Remember that the people answering your question are volunteers, so you stand a much better chance
of getting a good answer if you ask a good question.

Before sending mail, check the list archives at either

http://sourceforge.net/mailarchive/forum.php?forum_name=sbcl-help

or

http://news.gmane.org/gmane.lisp.steel-bank.general

to see if your question has been answered already. Checking the bug database is also worth it See
Section 1.3 [Reporting Bugs], page 1, to see if the issue is already known.

For general advice on asking good questions, see

http://www.catb.org/~esr/faqs/smart-questions.html.

1.2 Commercial Support

There is no formal organization developing SBCL, but if you need a paid support arrangement or custom
SBCL development, we maintain the list of companies and consultants below. Use it to identify service
providers with appropriate skills and interests, and contact them directly.

The SBCL project cannot verify the accuracy of the information or the competence of the people listed,
and they have provided their own blurbs below: you must make your own judgement of suitability from the
available information - refer to the links they provide, the CREDITS file, mailing list archives, CVS commit
messages, and so on. Please feel free to ask for advice on the sbcl-help list.

(At present, no companies or consultants wish to advertise paid support or custom SBCL development
in this manual).

1.3 Reporting Bugs

SBCL uses Launchpad to track bugs. The bug database is available at

https://bugs.launchpad.net/sbcl

Reporting bugs there requires registering at Launchpad. However, bugs can also be reported on the
mailing list sbcl-bugs, which is moderated but does not require subscribing.

Simply send email to sbcl-bugs@lists.sourceforge.net and the bug will be checked and added to
Launchpad by SBCL maintainers.

1.3.1 How to Report Bugs Effectively

Please include enough information in a bug report that someone reading it can reproduce the problem, i.e.
don’t write

Subject: apparent bug in PRINT-OBJECT (or *PRINT-LENGTH*?)

PRINT-OBJECT doesn’t seem to work with *PRINT-LENGTH*. Is this a bug?

but instead

Subject: apparent bug in PRINT-OBJECT (or *PRINT-LENGTH*?)

In sbcl-1.2.3 running under OpenBSD 4.5 on my Alpha box, when

I compile and load the file

(DEFSTRUCT (FOO (:PRINT-OBJECT (LAMBDA (X Y)

(LET ((*PRINT-LENGTH* 4))

(PRINT X Y)))))

X Y)

then at the command line type

(MAKE-FOO)

https://lists.sourceforge.net/lists/listinfo/sbcl-help
http://sourceforge.net/mailarchive/forum.php?forum_name=sbcl-help
http://news.gmane.org/gmane.lisp.steel-bank.general
http://www.catb.org/~esr/faqs/smart-questions.html
https://bugs.launchpad.net/sbcl
mailto:sbcl-bugs@lists.sourceforge.net

Chapter 1: Getting Support and Reporting Bugs 2

the program loops endlessly instead of printing the object.

A more in-depth discussion on reporting bugs effectively can be found at

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html.

1.3.2 Signal Related Bugs

If you run into a signal related bug, you are getting fatal errors such as signal N is [un]blocked or just
hangs, and you want to send a useful bug report then:

1. Compile SBCL with ldb enabled (feature :sb-ldb, see base-target-features.lisp-expr).

2. Isolate a smallish test case, run it.

3. If it just hangs kill it with sigabrt: kill -ABRT <pidof sbcl>.

4. Print the backtrace from ldb by typing ba.

5. Attach gdb: gdb -p <pidof sbcl> and get backtraces for all threads: thread apply all ba.

6. If multiple threads are in play then still in gdb, try to get Lisp backtrace for all threads: thread apply

all call backtrace_from_fp($ebp, 100, 0). Substitute $ebp with $rbp on x86-64. The backtraces
will appear in the stdout of the SBCL process.

7. Send a report with the backtraces and the output (both stdout and stderr) produced by SBCL.

8. Don’t forget to include OS and SBCL version.

9. If available, include information on outcome of the same test with other versions of SBCL, OS, ...

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

3

2 Introduction

SBCL is a mostly-conforming implementation of the ANSI Common Lisp standard. This manual focuses
on behavior which is specific to SBCL, not on behavior which is common to all implementations of ANSI
Common Lisp.

2.1 ANSI Conformance

Essentially every type of non-conformance is considered a bug. (The exceptions involve internal inconsisten-
cies in the standard.) See Section 1.3 [Reporting Bugs], page 1.

2.1.1 Exceptions

• prog2 returns the primary value of its second form, as specified in the Arguments and Values section
of the specification for that operator, not that of its first form, as specified in the Description.

• The string type is considered to be the union of all types (array c (size)) for all non-nil subtypes
c of character, excluding arrays specialized to the empty type.

• The :order long form option in define-method-combinationmethod group specifiers accepts the value
nil as well as :most-specific-first and :most-specific-last, in order to allow programmers to
declare that the order of methods playing that role in the method combination does not matter.

2.2 Extensions

SBCL comes with numerous extensions, some in core and some in modules loadable with require. Unfor-
tunately, not all of these extensions have proper documentation yet.

System Definition Tool
asdf is a flexible and popular protocol-oriented system definition tool by Daniel Barlow. See
Info file asdf, node ‘Top’, for more information.

Foreign Function Interface
sb-alien package allows interfacing with C-code, loading shared object files, etc. See Chapter 9
[Foreign Function Interface], page 70.

sb-grovel can be used to partially automate generation of foreign function interface definitions.
See Section 17.4 [sb-grovel], page 128.

Recursive Event Loop
SBCL provides a recursive event loop (serve-event) for doing non-blocking IO on multiple
streams without using threads.

Timeouts and Deadlines
SBCL allows restricting the execution time of individual operations or parts of a computation
using :timeout arguments to certain blocking operations, synchronous timeouts and asyn-
chronous timeouts. The latter two affect operations without explicit timeout support (such as
standard functions and macros). See Section 7.16 [Timeouts and Deadlines], page 63.

Metaobject Protocol
sb-mop package provides a metaobject protocol for the Common Lisp Object System as de-
scribed in Art of Metaobject Protocol.

Extensible Sequences
SBCL allows users to define subclasses of the sequence class. See Section 7.8 [Extensible
Sequences], page 50.

Native Threads
SBCL has native threads on x86/Linux, capable of taking advantage of SMP on multiprocessor
machines. See Chapter 13 [Threading], page 95.

Network Interface
sb-bsd-sockets is a low-level networking interface, providing both TCP and UDP sockets.
See Chapter 15 [Networking], page 109.

Chapter 2: Introduction 4

Introspective Facilities
sb-introspect module offers numerous introspective extensions, including access to function
lambda-lists and a cross referencing facility.

Operating System Interface
sb-ext contains a number of functions for running external processes, accessing environment
variables, etc.

sb-posix module provides a lispy interface to standard POSIX facilities.

Extensible Streams
sb-gray is an implementation of Gray Streams. See Section 11.3 [Gray Streams], page 84.

sb-simple-streams is an implementation of the simple streams API proposed by Franz Inc.
See Section 11.4 [Simple Streams], page 90.

Profiling sb-profile is a exact per-function profiler. See Section 16.1 [Deterministic Profiler], page 113.

sb-sprof is a statistical profiler, capable of call-graph generation and instruction level profiling,
which also supports allocation profiling. See Section 16.2 [Statistical Profiler], page 113.

Customization Hooks
SBCL contains a number of extra-standard customization hooks that can be used to tweak the
behaviour of the system. See Section 7.11 [Customization Hooks for Users], page 59.

sb-aclrepl provides an Allegro CL -style toplevel for SBCL, as an alternative to the classic
CMUCL-style one. See Section 17.1 [sb-aclrepl], page 119.

CLTL2 Compatibility Layer
sb-cltl2 module provides compiler-let and environment access functionality described in
Common Lisp The Language, 2nd Edition which were removed from the language during the
ANSI standardization process.

Executable Delivery
The :executable argument to [Function sb-ext save-lisp-and-die], page 10, can produce a
‘standalone’ executable containing both an image of the current Lisp session and an SBCL
runtime.

Bitwise Rotation
sb-rotate-byte provides an efficient primitive for bitwise rotation of integers, an operation
required by e.g. numerous cryptographic algorithms, but not available as a primitive in ANSI
Common Lisp. See Section 17.8 [sb-rotate-byte], page 139.

Test Harness
sb-rt module is a simple yet attractive regression and unit-test framework.

MD5 Sums sb-md5 is an implementation of the MD5 message digest algorithm for Common Lisp, using
the modular arithmetic optimizations provided by SBCL. See Section 17.5 [sb-md5], page 131.

2.3 Idiosyncrasies

The information in this section describes some of the ways that SBCL deals with choices that the ANSI
standard leaves to the implementation.

2.3.1 Declarations

Declarations are generally treated as assertions. This general principle, and its implications, and the bugs
which still keep the compiler from quite satisfying this principle, are discussed in Section 4.2.1 [Declarations
as Assertions], page 19.

2.3.2 FASL Format

SBCL fasl-format is binary compatible only with the exact SBCL version it was generated with. While this
is obviously suboptimal, it has proven more robust than trying to maintain fasl compatibility across versions:
accidentally breaking things is far too easy, and can lead to hard to diagnose bugs.

Chapter 2: Introduction 5

The following snippet handles fasl recompilation automatically for ASDF-based systems, and makes a
good candidate for inclusion in the user or system initialization file (see Section 3.4 [Initialization Files],
page 14.)

(require :asdf)

;;; If a fasl was stale, try to recompile and load (once).

(defmethod asdf:perform :around ((o asdf:load-op)

(c asdf:cl-source-file))

(handler-case (call-next-method o c)

;; If a fasl was stale, try to recompile and load (once).

(sb-ext:invalid-fasl ()

(asdf:perform (make-instance ’asdf:compile-op) c)

(call-next-method))))

2.3.3 Compiler-only Implementation

SBCL is essentially a compiler-only implementation of Common Lisp. That is, for all but a few special cases,
eval creates a lambda expression, calls compile on the lambda expression to create a compiled function,
and then calls funcall on the resulting function object. A more traditional interpreter is also available on
default builds; it is usually only called internally. This is explicitly allowed by the ANSI standard, but leads
to some oddities; e.g. at default settings, functionp and compiled-function-p are equivalent, and they
collapse into the same function when SBCL is built without the interpreter.

2.3.4 Defining Constants

SBCL is quite strict about ANSI’s definition of defconstant. ANSI says that doing defconstant of the
same symbol more than once is undefined unless the new value is eql to the old value. Conforming to this
specification is a nuisance when the “constant” value is only constant under some weaker test like string=

or equal.

It’s especially annoying because, in SBCL, defconstant takes effect not only at load time but also at
compile time, so that just compiling and loading reasonable code like

(defconstant +foobyte+ ’(1 4))

runs into this undefined behavior. Many implementations of Common Lisp try to help the programmer
around this annoyance by silently accepting the undefined code and trying to do what the programmer
probably meant.

SBCL instead treats the undefined behavior as an error. Often such code can be rewritten in portable
ANSI Common Lisp which has the desired behavior. E.g., the code above can be given an exactly defined
meaning by replacing defconstant either with defparameter or with a customized macro which does the
right thing, e.g.

(defmacro define-constant (name value &optional doc)

‘(defconstant ,name (if (boundp ’,name) (symbol-value ’,name) ,value)

,@(when doc (list doc))))

or possibly along the lines of the defconstant-eqx macro used internally in the implementation of
SBCL itself. In circumstances where this is not appropriate, the programmer can handle the condition type
sb-ext:defconstant-uneql, and choose either the continue or abort restart as appropriate.

2.3.5 Style Warnings

SBCL gives style warnings about various kinds of perfectly legal code, e.g.

• multiple defuns of the same symbol in different units;

• special variables not named in the conventional *foo* style, and lexical variables unconventionally
named in the *foo* style

This causes friction with people who point out that other ways of organizing code (especially avoiding the
use of defgeneric) are just as aesthetically stylish. However, these warnings should be read not as “warning,
bad aesthetics detected, you have no style” but “warning, this style keeps the compiler from understanding
the code as well as you might like.” That is, unless the compiler warns about such conditions, there’s no
way for the compiler to warn about some programming errors which would otherwise be easy to overlook.
(Related bug: The warning about multiple defuns is pointlessly annoying when you compile and then load

Chapter 2: Introduction 6

a function containing defun wrapped in eval-when, and ideally should be suppressed in that case, but still
isn’t as of SBCL 0.7.6.)

2.4 Development Tools

2.4.1 Editor Integration

Though SBCL can be used running “bare”, the recommended mode of development is with an editor con-
nected to SBCL, supporting not only basic lisp editing (paren-matching, etc), but providing among other
features an integrated debugger, interactive compilation, and automated documentation lookup.

Currently SLIME1 (Superior Lisp Interaction Mode for Emacs) together with Emacs is recommended
for use with SBCL, though other options exist as well.

SLIME can be downloaded from http://www.common-lisp.net/project/slime/.

2.4.2 Language Reference

CLHS (Common Lisp Hyperspec) is a hypertext version of the ANSI standard, made freely available by
LispWorks – an invaluable reference.

See: http://www.lispworks.com/reference/HyperSpec/index.html

2.4.3 Generating Executables

SBCL can generate stand-alone executables. The generated executables include the SBCL runtime itself, so
no restrictions are placed on program functionality. For example, a deployed program can call compile and
load, which requires the compiler to be present in the executable. For further information, See [Function
sb-ext save-lisp-and-die], page 10.

2.5 More SBCL Information

2.5.1 SBCL Homepage

The SBCL website at http://www.sbcl.org/ has some general information, plus links to mailing lists
devoted to SBCL, and to archives of these mailing lists. Subscribing to the mailing lists sbcl-help and sbcl-
announce is recommended: both are fairly low-volume, and help you keep abreast with SBCL development.

2.5.2 Online Documentation

Documentation for non-ANSI extensions for various commands is available online from the SBCL executable
itself. The extensions for functions which have their own command prompts (e.g. the debugger, and inspect)
are documented in text available by typing help at their command prompts. The extensions for functions
which don’t have their own command prompt (such as trace) are described in their documentation strings,
unless your SBCL was compiled with an option not to include documentation strings, in which case the
documentation strings are only readable in the source code.

2.5.3 Additional Documentation Files

Besides this user manual both SBCL source and binary distributions include some other SBCL-specific
documentation files, which should be installed along with this manual on your system, e.g. in
/usr/local/share/doc/sbcl/.

COPYING Licence and copyright summary.

CREDITS Authorship information on various parts of SBCL.

INSTALL Covers installing SBCL from both source and binary distributions on your system, and also
has some installation related troubleshooting information.

NEWS Summarizes changes between various SBCL versions.

1 Historically, the ILISP package at http://ilisp.cons.org/ provided similar functionality, but it does not support
modern SBCL versions.

http://www.common-lisp.net/project/slime/
http://www.lispworks.com/reference/HyperSpec/index.html
http://www.sbcl.org/
http://ilisp.cons.org/

Chapter 2: Introduction 7

2.5.4 Internals Documentation

If you’re interested in the development of the SBCL system itself, then subscribing to sbcl-devel is a good
idea.

SBCL internals documentation – besides comments in the source – is currently maintained as a wiki-like
website: http://sbcl-internals.cliki.net/.

Some low-level information describing the programming details of the conversion from CMUCL to SBCL
is available in the doc/FOR-CMUCL-DEVELOPERS file in the SBCL distribution, though it is not installed by
default.

2.6 More Common Lisp Information

2.6.1 Internet Community

The Common Lisp internet community is fairly diverse: news://comp.lang.lisp is fairly high volume
newsgroup, but has a rather poor signal/noise ratio. Various special interest mailing lists and IRC tend to
provide more content and less flames. http://www.lisp.org and http://www.cliki.net contain numerous
pointers places in the net where lispers talks shop.

2.6.2 Third-party Libraries

For a wealth of information about free Common Lisp libraries and tools we recommend checking out CLiki :
http://www.cliki.net/.

2.6.3 Common Lisp Books

If you’re not a programmer and you’re trying to learn, many introductory Lisp books are available. However,
we don’t have any standout favorites. If you can’t decide, try checking the Usenet news://comp.lang.lisp
FAQ for recent recommendations.

If you are an experienced programmer in other languages but need to learn about Common Lisp, some
books stand out:

Practical Common Lisp, by Peter Seibel
An excellent introduction to the language, covering both the basics and “advanced topics” like
macros, CLOS, and packages. Available both in print format and on the web: http://www.

gigamonkeys.com/book/.

Paradigms Of Artificial Intelligence Programming, by Peter Norvig
Good information on general Common Lisp programming, and many nontrivial examples.
Whether or not your work is AI, it’s a very good book to look at.

On Lisp, by Paul Graham
An in-depth treatment of macros, but not recommended as a first Common Lisp book, since
it is slightly pre-ANSI so you need to be on your guard against non-standard usages, and
since it doesn’t really even try to cover the language as a whole, focusing solely on macros.
Downloadable from http://www.paulgraham.com/onlisp.html.

Object-Oriented Programming In Common Lisp, by Sonya Keene
With the exception of Practical Common Lisp most introductory books don’t emphasize CLOS.
This one does. Even if you’re very knowledgeable about object oriented programming in the
abstract, it’s worth looking at this book if you want to do any OO in Common Lisp. Some
abstractions in CLOS (especially multiple dispatch) go beyond anything you’ll see in most OO
systems, and there are a number of lesser differences as well. This book tends to help with the
culture shock.

Art Of Metaobject Programming, by Gregor Kiczales et al.
Currently the prime source of information on the Common Lisp Metaobject Protocol, which is
supported by SBCL. Section 2 (Chapters 5 and 6) are freely available at http://mop.lisp.
se/www.alu.org/mop/.

http://sbcl-internals.cliki.net/
news://comp.lang.lisp
http://www.lisp.org
http://www.cliki.net
http://www.cliki.net/
news://comp.lang.lisp
http://www.gigamonkeys.com/book/
http://www.gigamonkeys.com/book/
http://www.paulgraham.com/onlisp.html
http://mop.lisp.se/www.alu.org/mop/
http://mop.lisp.se/www.alu.org/mop/

Chapter 2: Introduction 8

2.7 History and Implementation of SBCL

You can work productively with SBCL without knowing or understanding anything about where it came
from, how it is implemented, or how it extends the ANSI Common Lisp standard. However, a little knowledge
can be helpful in order to understand error messages, to troubleshoot problems, to understand why some
parts of the system are better debugged than others, and to anticipate which known bugs, known performance
problems, and missing extensions are likely to be fixed, tuned, or added.

SBCL is descended from CMUCL, which is itself descended from Spice Lisp, including early implemen-
tations for the Mach operating system on the IBM RT, back in the 1980s. Some design decisions from that
time are still reflected in the current implementation:

• The system expects to be loaded into a fixed-at-compile-time location in virtual memory, and also
expects the location of all of its heap storage to be specified at compile time.

• The system overcommits memory, allocating large amounts of address space from the system (often
more than the amount of virtual memory available) and then failing if ends up using too much of the
allocated storage.

• The system is implemented as a C program which is responsible for supplying low-level services and
loading a Lisp .core file.

SBCL also inherited some newer architectural features from CMUCL. The most important is that on
some architectures it has a generational garbage collector (“GC”), which has various implications (mostly
good) for performance. These are discussed in another chapter, Chapter 6 [Efficiency], page 37.

SBCL has diverged from CMUCL in that SBCL is now essentially a “compiler-only implementation”
of Common Lisp. This is a change in implementation strategy, taking advantage of the freedom “any of
these facilities might share the same execution strategy” guaranteed in the ANSI specification section 3.1
(“Evaluation”). It does not mean SBCL can’t be used interactively, and in fact the change is largely invisible
to the casual user, since SBCL still can and does execute code interactively by compiling it on the fly. (It
is visible if you know how to look, like using compiled-function-p; and it is visible in the way that SBCL
doesn’t have many bugs which behave differently in interpreted code than in compiled code.) What it means
is that in SBCL, the eval function only truly “interprets” a few easy kinds of forms, such as symbols which
are boundp. More complicated forms are evaluated by calling compile and then calling funcall on the
returned result.

The direct ancestor of SBCL is the x86 port of CMUCL. This port was in some ways the most cobbled-
together of all the CMUCL ports, since a number of strange changes had to be made to support the
register-poor x86 architecture. Some things (like tracing and debugging) do not work particularly well there.
SBCL should be able to improve in these areas (and has already improved in some other areas), but it takes
a while.

On the x86 SBCL – like the x86 port of CMUCL – uses a conservative GC. This means that it doesn’t
maintain a strict separation between tagged and untagged data, instead treating some untagged data (e.g.
raw floating point numbers) as possibly-tagged data and so not collecting any Lisp objects that they point
to. This has some negative consequences for average time efficiency (though possibly no worse than the
negative consequences of trying to implement an exact GC on a processor architecture as register-poor as
the X86) and also has potentially unlimited consequences for worst-case memory efficiency. In practice,
conservative garbage collectors work reasonably well, not getting anywhere near the worst case. But they
can occasionally cause odd patterns of memory usage.

The fork from CMUCL was based on a major rewrite of the system bootstrap process. CMUCL has for
many years tolerated a very unusual “build” procedure which doesn’t actually build the complete system
from scratch, but instead progressively overwrites parts of a running system with new versions. This quasi-
build procedure can cause various bizarre bootstrapping hangups, especially when a major change is made
to the system. It also makes the connection between the current source code and the current executable
more tenuous than in other software systems – it’s easy to accidentally “build” a CMUCL system containing
characteristics not reflected in the current version of the source code.

Other major changes since the fork from CMUCL include

• SBCL has removed many CMUCL extensions, (e.g. IP networking, remote procedure call, Unix system
interface, and X11 interface) from the core system. Most of these are available as contributed modules
(distributed with SBCL) or third-party modules instead.

• SBCL has deleted or deprecated some nonstandard features and code complexity which helped efficiency
at the price of maintainability. For example, the SBCL compiler no longer implements memory pooling
internally (and so is simpler and more maintainable, but generates more garbage and runs more slowly).

9

3 Starting and Stopping

3.1 Starting SBCL

3.1.1 From Shell to Lisp

To run SBCL type sbcl at the command line.

You should end up in the toplevel REPL (read, eval, print -loop), where you can interact with SBCL by
typing expressions.

$ sbcl

This is SBCL 0.8.13.60, an implementation of ANSI Common Lisp.

More information about SBCL is available at <http://www.sbcl.org/>.

SBCL is free software, provided as is, with absolutely no warranty.

It is mostly in the public domain; some portions are provided under

BSD-style licenses. See the CREDITS and COPYING files in the

distribution for more information.

* (+ 2 2)

4

* (exit)

$

See also Section 3.3 [Command Line Options], page 12, and Section 3.2 [Stopping SBCL], page 9.

3.1.2 Running from Emacs

To run SBCL as an inferior-lisp from Emacs in your .emacs do something like:

;;; The SBCL binary and command-line arguments

(setq inferior-lisp-program "/usr/local/bin/sbcl --noinform")

For more information on using SBCL with Emacs, see Section 2.4.1 [Editor Integration], page 6.

3.1.3 Shebang Scripts

Standard Unix tools that are interpreters follow a common command line protocol that is necessary to work
with “shebang scripts”. SBCL supports this via the --script command line option.

Example file (hello.lisp):

#!/usr/local/bin/sbcl --script

(write-line "Hello, World!")

Usage examples:
$./hello.lisp

Hello, World!

$ sbcl --script hello.lisp

Hello, World!

3.2 Stopping SBCL

3.2.1 Exit

SBCL can be stopped at any time by calling sb-ext:exit, optionally returning a specified numeric value
to the calling process. See Chapter 13 [Threading], page 95, for information about terminating individual
threads.

[Function]sb-ext:exit &key code abort timeout
Terminates the process, causing sbcl to exit with code. code defaults to 0 when abort is false, and 1
when it is true.

When abort is false (the default), current thread is first unwound, *exit-hooks* are run, other threads
are terminated, and standard output streams are flushed before sbcl calls exit(3) -- at which point
atexit(3) functions will run. If multiple threads call exit with abort being false, the first one to call it
will complete the protocol.

Chapter 3: Starting and Stopping 10

When abort is true, sbcl exits immediately by calling exit(2) without unwinding stack, or calling exit
hooks. Note that exit(2) does not call atexit(3) functions unlike exit(3).

Recursive calls to exit cause exit to behave as if abort was true.

timeout controls waiting for other threads to terminate when abort is nil. Once current thread has been
unwound and *exit-hooks* have been run, spawning new threads is prevented and all other threads
are terminated by calling terminate-thread on them. The system then waits for them to finish using
join-thread, waiting at most a total timeout seconds for all threads to join. Those threads that do not
finish in time are simply ignored while the exit protocol continues. timeout defaults to *exit-timeout*,
which in turn defaults to 60. timeout nil means to wait indefinitely.

Note that timeout applies only to join-thread, not *exit-hooks*. Since terminate-thread is asyn-
chronous, getting multithreaded application termination with complex cleanups right using it can be
tricky. To perform an orderly synchronous shutdown use an exit hook instead of relying on implicit
thread termination.

Consequences are unspecified if serious conditions occur during exit excepting errors from *exit-hooks*,
which cause warnings and stop execution of the hook that signaled, but otherwise allow the exit process
to continue normally.

3.2.2 End of File

By default SBCL also exits on end of input, caused either by user pressing Control-D on an attached
terminal, or end of input when using SBCL as part of a shell pipeline.

3.2.3 Saving a Core Image

SBCL has the ability to save its state as a file for later execution. This functionality is important for its
bootstrapping process, and is also provided as an extension to the user.

[Function]sb-ext:save-lisp-and-die core-file-name &key toplevel executable
save-runtime-options callable-exports purify root-structures environment-name
compression

Save a "core image", i.e. enough information to restart a Lisp process later in the same state, in the file
of the specified name. Only global state is preserved: the stack is unwound in the process.

The following &key arguments are defined:

:toplevel The function to run when the created core file is resumed. The default function handles
command line toplevel option processing and runs the top level read-eval-print loop. This
function returning is equivalent to (sb-ext:exit :code 0) being called.

toplevel functions should always provide an abort restart: otherwise code they call will
run without one.

:executable

If true, arrange to combine the sbcl runtime and the core image to create a standalone exe-
cutable. If false (the default), the core image will not be executable on its own. Executable
images always behave as if they were passed the –noinform runtime option.

:save-runtime-options

If true, values of runtime options –dynamic-space-size and –control-stack-size that were used
to start sbcl are stored in the standalone executable, and restored when the executable
is run. This also inhibits normal runtime option processing, causing all command line
arguments to be passed to the toplevel. Meaningless if :executable is nil.

:callable-exports

This should be a list of symbols to be initialized to the appropriate alien callables on startup.
All exported symbols should be present as global symbols in the symbol table of the runtime
before the saved core is loaded. When this list is non-empty, the :toplevel argument cannot
be supplied.

:purify If true (the default), then some objects in the restarted core will be memory-mapped as
read-only. Among those objects are numeric vectors that were determined to be compile-
time constants, and any immutable values according to the language specification such as
symbol names.

Chapter 3: Starting and Stopping 11

:root-structures

This should be a list of the main entry points in any newly loaded systems. This need
not be supplied, but locality and/or gc performance may be better if they are. This has
two different but related meanings: If :purify is true - and only for cheneygc - the root
structures are those which anchor the set of objects moved into static space. On gencgc -

and only on platforms supporting immobile code - these are the functions and/or function-
names which commence a depth-first scan of code when reordering based on the statically
observable call chain. The complete set of reachable objects is not affected per se. This
argument is meaningless if neither enabling precondition holds.

:environment-name

This has no purpose; it is accepted only for legacy compatibility.

:compression

This is only meaningful if the runtime was built with the :sb-core-compression feature
enabled. If nil (the default), saves to uncompressed core files. If :sb-core-compression
was enabled at build-time, the argument may also be an integer from -7 to 22, corresponding
to zstd compression levels, or t (which is equivalent to the default compression level, 9).

:application-type

Present only on Windows and is meaningful only with :executable t. Specifies the sub-
system of the executable, :console or :gui. The notable difference is that :gui doesn’t
automatically create a console window. The default is :console.

The save/load process changes the values of some global variables:

standard-output, *debug-io*, etc.
Everything related to open streams is necessarily changed, since the os won’t let us preserve
a stream across save and load.

default-pathname-defaults

This is reinitialized to reflect the working directory where the saved core is loaded.

save-lisp-and-die interacts with sb-alien:load-shared-object: see its documentation for details.

On threaded platforms only a single thread may remain running after sb-ext:*save-hooks* have run.
Applications using multiple threads can be save-lisp-and-die friendly by registering a save-hook that
quits any additional threads, and an init-hook that restarts them.

This implementation is not as polished and painless as you might like:

• It corrupts the current Lisp image enough that the current process needs to be killed afterwards.
This can be worked around by forking another process that saves the core.

• There is absolutely no binary compatibility of core images between different runtime support pro-
grams. Even runtimes built from the same sources at different times are treated as incompatible for
this purpose.

This isn’t because we like it this way, but just because there don’t seem to be good quick fixes for either
limitation and no one has been sufficiently motivated to do lengthy fixes.

[Variable]sb-ext:*save-hooks*
A list of function designators which are called in an unspecified order before creating a saved core image.

Unused by sbcl itself: reserved for user and applications.

In cases where the standard initialization files have already been loaded into the saved core, and alter-
native ones should be used (or none at all), SBCL allows customizing the initfile pathname computation.

[Variable]sb-ext:*sysinit-pathname-function*
Designator for a function of zero arguments called to obtain a pathname designator for the default sysinit
file, or nil. If the function returns nil, no sysinit file is used unless one has been specified on the
command-line.

[Variable]sb-ext:*userinit-pathname-function*
Designator for a function of zero arguments called to obtain a pathname designator or a stream for the
default userinit file, or nil. If the function returns nil, no userinit file is used unless one has been
specified on the command-line.

Chapter 3: Starting and Stopping 12

To facilitate distribution of SBCL applications using external resources, the filesystem location of the
SBCL core file being used is available from Lisp.

[Variable]sb-ext:*core-pathname*
The absolute pathname of the running sbcl core.

3.2.4 Exit on Errors

SBCL can also be configured to exit if an unhandled error occurs, which is mainly useful for acting as part of
a shell pipeline; doing so under most other circumstances would mean giving up large parts of the flexibility
and robustness of Common Lisp. See Section 5.1 [Debugger Entry], page 26.

3.3 Command Line Options

Command line options can be considered an advanced topic; for ordinary interactive use, no command line
arguments should be necessary.

In order to understand the command line argument syntax for SBCL, it is helpful to understand that
the SBCL system is implemented as two components, a low-level runtime environment written in C and a
higher-level system written in Common Lisp itself. Some command line arguments are processed during the
initialization of the low-level runtime environment, some command line arguments are processed during the
initialization of the Common Lisp system, and any remaining command line arguments are passed on to user
code.

The full, unambiguous syntax for invoking SBCL at the command line is:

sbcl runtime-option* --end-runtime-options toplevel-option* --end-toplevel-options

user-options*

For convenience, the --end-runtime-options and --end-toplevel-options elements can be omitted.
Omitting these elements can be convenient when you are running the program interactively, and you can see
that no ambiguities are possible with the option values you are using. Omitting these elements is probably
a bad idea for any batch file where any of the options are under user control, since it makes it impossible for
SBCL to detect erroneous command line input, so that erroneous command line arguments will be passed
on to the user program even if they was intended for the runtime system or the Lisp system.

3.3.1 Runtime Options

--core corefilename

Run the specified Lisp core file instead of the default. Note that if the Lisp core file is a
user-created core file, it may run a nonstandard toplevel which does not recognize the standard
toplevel options.

--dynamic-space-size megabytes

Size of the dynamic space reserved on startup in megabytes. Default value is platform depen-
dent.

--control-stack-size megabytes

Size of control stack reserved for each thread in megabytes. Default value is 2.

--noinform

Suppress the printing of any banner or other informational message at startup. This makes it
easier to write Lisp programs which work cleanly in Unix pipelines. See also the --noprint

and --disable-debugger options.

--disable-ldb

Disable the low-level debugger. Only effective if SBCL is compiled with LDB.

--lose-on-corruption

There are some dangerous low level errors (for instance, control stack exhausted, memory
fault) that (or whose handlers) can corrupt the image. By default SBCL prints a warning, then
tries to continue and handle the error in Lisp, but this will not always work and SBCL may
malfunction or even hang. With this option, upon encountering such an error SBCL will invoke
ldb (if present and enabled) or else exit.

Chapter 3: Starting and Stopping 13

--script filename

As a runtime option this is equivalent to --noinform --disable-ldb --lose-on-corruption

--end-runtime-options --script filename. See the description of --script as a toplevel
option below. If there are no other command line arguments following --script, the filename
argument can be omitted.

--merge-core-pages

When platform support is present, provide hints to the operating system that identical pages
may be shared between processes until they are written to. This can be useful to reduce the
memory usage on systems with multiple SBCL processes started from similar but differently-
named core files, or from compressed cores. Without platform support, do nothing. By default
only compressed cores trigger hinting.

--no-merge-core-pages

Ensures that no sharing hint is provided to the operating system.

--help Print some basic information about SBCL, then exit.

--version Print SBCL’s version information, then exit.

In the future, runtime options may be added to control behaviour such as lazy allocation of memory.

Runtime options, including any –end-runtime-options option, are stripped out of the command line before
the Lisp toplevel logic gets a chance to see it.

3.3.2 Toplevel Options

--sysinit filename

Load filename instead of the default system initialization file (see Section 3.4 [Initialization
Files], page 14.)

--no-sysinit

Don’t load a system-wide initialization file. If this option is given, the --sysinit option is
ignored.

--userinit filename

Load filename instead of the default user initialization file (see Section 3.4 [Initialization Files],
page 14.)

--no-userinit

Don’t load a user initialization file. If this option is given, the --userinit option is ignored.

--eval command

After executing any initialization file, but before starting the read-eval-print loop on standard
input, read and evaluate the command given. More than one --eval option can be used, and
all will be read and executed, in the order they appear on the command line.

--load filename

This is equivalent to --eval ’(load "filename")’. The special syntax is intended to reduce
quoting headaches when invoking SBCL from shell scripts.

--noprint When ordinarily the toplevel "read-eval-print loop" would be executed, execute a "read-eval
loop" instead, i.e. don’t print a prompt and don’t echo results. Combined with the --noinform
runtime option, this makes it easier to write Lisp "scripts" which work cleanly in Unix pipelines.

--disable-debugger

By default when SBCL encounters an error, it enters the builtin debugger, allowing interactive
diagnosis and possible intercession. This option disables the debugger, causing errors to print
a backtrace and exit with status 1 instead. When given, this option takes effect before loading
of initialization files or processing --eval and --load options. See sb-ext:disable-debugger
for details. See Section 5.1 [Debugger Entry], page 26.

--script filename

Implies --no-userinit --no-sysinit --disable-debugger --end-toplevel-options.

Causes the system to load the specified file instead of entering the read-eval-print-loop, and
exit afterwards. If the file begins with a shebang line, it is ignored.

Chapter 3: Starting and Stopping 14

If there are no other command line arguments following, the filename can be omitted: this
causes the script to be loaded from standard input instead. Shebang lines in standard input
script are currently not ignored.

In either case, if there is an unhandled error (e.g. end of file, or a broken pipe) on either
standard input, standard output, or standard error, the script silently exits with code 0. This
allows e.g. safely piping output from SBCL to head -n1 or similar.

Additionally, the option sets *compile-verbose* and *load-verbose* to nil while loading
the file to avoid potentially verbose diagnostic messages printed on the standard output.

3.4 Initialization Files

SBCL processes initialization files with read and eval, not load; hence initialization files can be used to set
startup *package* and *readtable*, and for proclaiming a global optimization policy.

System Initialization File
Defaults to $SBCL_HOME/sbclrc, or if that doesn’t exist to /etc/sbclrc. Can be overrid-
den with the command line option --sysinit or --no-sysinit (see Section 3.3.2 [Toplevel
Options], page 13).

The system initialization file is intended for system administrators and software packagers to
configure locations of installed third party modules, etc.

User Initialization File
Defaults to $HOME/.sbclrc. Can be overridden with the command line option --userinit or
--no-userinit (see Section 3.3.2 [Toplevel Options], page 13).

The user initialization file is intended for personal customizations, such as loading certain
modules at startup, defining convenience functions to use in the REPL, handling automatic
recompilation of FASLs (see Section 2.3.2 [FASL Format], page 4), etc.

Neither initialization file is required.

3.5 Initialization and Exit Hooks

SBCL provides hooks into the system initialization and exit.

[Variable]sb-ext:*init-hooks*
A list of function designators which are called in an unspecified order when a saved core image starts up,
after the system itself has been initialized, but before non-user threads such as the finalizer thread have
been started.

Unused by sbcl itself: reserved for user and applications.

[Variable]sb-ext:*exit-hooks*
A list of function designators which are called in an unspecified order when sbcl process exits.

Unused by sbcl itself: reserved for user and applications.

Using (sb-ext:exit :abort t), or calling exit(3) directly circumvents these hooks.

15

4 Compiler

This chapter will discuss most compiler issues other than efficiency, including compiler error messages, the
SBCL compiler’s unusual approach to type safety in the presence of type declarations, the effects of various
compiler optimization policies, and the way that inlining and open coding may cause optimized code to
differ from a naive translation. Efficiency issues are sufficiently varied and separate that they have their own
chapter, Chapter 6 [Efficiency], page 37.

4.1 Diagnostic Messages

4.1.1 Controlling Verbosity

The compiler can be quite verbose in its diagnostic reporting, rather more then some users would prefer –
the amount of noise emitted can be controlled, however.

To control emission of compiler diagnostics (of any severity other than error: see Section 4.1.2 [Di-
agnostic Severity], page 16) use the sb-ext:muffle-conditions and sb-ext:unmuffle-conditions dec-
larations, specifying the type of condition that is to be muffled (the muffling is done using an associated
muffle-warning restart).

Global control:

;;; Muffle compiler-notes globally

(declaim (sb-ext:muffle-conditions sb-ext:compiler-note))

Local control:

;;; Muffle compiler-notes based on lexical scope

(defun foo (x)

(declare (optimize speed) (fixnum x)

(sb-ext:muffle-conditions sb-ext:compiler-note))

(values (* x 5) ; no compiler note from this

(locally

(declare (sb-ext:unmuffle-conditions sb-ext:compiler-note))

;; this one gives a compiler note

(* x -5))))

[Declaration]sb-ext:muffle-conditions
Syntax: type*

Muffles the diagnostic messages that would be caused by compile-time signals of given types.

[Declaration]sb-ext:unmuffle-conditions
Syntax: type*

Cancels the effect of a previous sb-ext:muffle-conditions declaration.

Various details of how the compiler messages are printed can be controlled via the alist
sb-ext:*compiler-print-variable-alist*.

[Variable]sb-ext:*compiler-print-variable-alist*
an association list describing new bindings for special variables to be used by the compiler for error-
reporting, etc. Eg.

((*PRINT-LENGTH* . 10) (*PRINT-LEVEL* . 6) (*PRINT-PRETTY* . NIL))

The variables in the car positions are bound to the values in the cdr during the execution of some debug
commands. When evaluating arbitrary expressions in the debugger, the normal values of the printer
control variables are in effect.

Initially empty, *compiler-print-variable-alist* is Typically used to specify bindings for printer
control variables.

For information about muffling warnings signaled outside of the compiler, see Section 7.11 [Customization
Hooks for Users], page 59.

Chapter 4: Compiler 16

4.1.2 Diagnostic Severity

There are four levels of compiler diagnostic severity:

1. error

2. warning

3. style warning

4. note

The first three levels correspond to condition classes which are defined in the ANSI standard for Common
Lisp and which have special significance to the compile and compile-file functions. These levels of compiler
error severity occur when the compiler handles conditions of these classes.

The fourth level of compiler error severity, note, corresponds to the sb-ext:compiler-note, and is used
for problems which are too mild for the standard condition classes, typically hints about how efficiency
might be improved. The sb-ext:code-deletion-note, a subtype of compiler-note, is signalled when the
compiler deletes user-supplied code after proving that the code in question is unreachable.

Future work for SBCL includes expanding this hierarchy of types to allow more fine-grained control over
emission of diagnostic messages.

[Condition]sb-ext:compiler-note
Class precedence list: compiler-note, condition, t

Root of the hierarchy of conditions representing information discovered by the compiler that the user
might wish to know, but which does not merit a style-warning (or any more serious condition).

[Condition]sb-ext:code-deletion-note
Class precedence list: code-deletion-note, compiler-note, condition, t

A condition type signalled when the compiler deletes code that the user has written, having proved that
it is unreachable.

4.1.3 Understanding Compile Diagnostics

The messages emitted by the compiler contain a lot of detail in a terse format, so they may be confusing at
first. The messages will be illustrated using this example program:

(defmacro zoq (x)

‘(roq (ploq (+ ,x 3))))

(defun foo (y)

(declare (symbol y))

(zoq y))

The main problem with this program is that it is trying to add 3 to a symbol. Note also that the functions
roq and ploq aren’t defined anywhere.

4.1.3.1 The Parts of a Compiler Diagnostic

When processing this program, the compiler will produce this warning:

; file: /tmp/foo.lisp

; in: DEFUN FOO

; (ZOQ Y)

; --> ROQ PLOQ

; ==>

; (+ Y 3)

;

; caught WARNING:

; Asserted type NUMBER conflicts with derived type (VALUES SYMBOL &OPTIONAL).

In this example we see each of the six possible parts of a compiler diagnostic:

1. ‘file: /tmp/foo.lisp’ This is the name of the file that the compiler read the relevant code from.
The file name is displayed because it may not be immediately obvious when there is an error during
compilation of a large system, especially when with-compilation-unit is used to delay undefined
warnings.

Chapter 4: Compiler 17

2. ‘in: DEFUN FOO’ This is the definition top level form responsible for the diagnostic. It is obtained by
taking the first two elements of the enclosing form whose first element is a symbol beginning with
“‘def’”. If there is no such enclosing “‘def’” form, then the outermost form is used. If there are
multiple ‘def’ forms, then they are all printed from the outside in, separated by ‘=>’’s. In this example,
the problem was in the defun for foo.

3. ‘(ZOQ Y)’ This is the original source form responsible for the diagnostic. Original source means that
the form directly appeared in the original input to the compiler, i.e. in the lambda passed to compile

or in the top level form read from the source file. In this example, the expansion of the zoq macro was
responsible for the message.

4. ‘--> ROQ PLOQ’ This is the processing path that the compiler used to produce the code that caused
the message to be emitted. The processing path is a representation of the evaluated forms enclosing
the actual source that the compiler encountered when processing the original source. The path is the
first element of each form, or the form itself if the form is not a list. These forms result from the
expansion of macros or source-to-source transformation done by the compiler. In this example, the
enclosing evaluated forms are the calls to roq and ploq. These calls resulted from the expansion of the
zoq macro.

5. ‘==> (+ Y 3)’ This is the actual source responsible for the diagnostic. If the actual source appears in
the explanation, then we print the next enclosing evaluated form, instead of printing the actual source
twice. (This is the form that would otherwise have been the last form of the processing path.) In this
example, the problem is with the evaluation of the reference to the variable y.

6. ‘caught WARNING: Asserted type NUMBER conflicts with derived type (VALUES SYMBOL

&OPTIONAL).’ This is the explanation of the problem. In this example, the problem is that, while
the call to + requires that its arguments are all of type number, the compiler has derived that y will
evaluate to a symbol. Note that ‘(VALUES SYMBOL &OPTIONAL)’ expresses that y evaluates to precisely
one value.

Note that each part of the message is distinctively marked:

• ‘file:’ and ‘in:’ mark the file and definition, respectively.

• The original source is an indented form with no prefix.

• Each line of the processing path is prefixed with ‘-->’

• The actual source form is indented like the original source, but is marked by a preceding ‘==>’ line.

• The explanation is prefixed with the diagnostic severity, which can be ‘caught ERROR:’, ‘caught
WARNING:’, ‘caught STYLE-WARNING:’, or ‘note:’.

Each part of the message is more specific than the preceding one. If consecutive messages are for nearby
locations, then the front part of the messages would be the same. In this case, the compiler omits as much
of the second message as in common with the first. For example:

; file: /tmp/foo.lisp

; in: DEFUN FOO

; (ZOQ Y)

; --> ROQ

; ==>

; (PLOQ (+ Y 3))

;

; caught STYLE-WARNING:

; undefined function: PLOQ

; ==>

; (ROQ (PLOQ (+ Y 3)))

;

; caught STYLE-WARNING:

; undefined function: ROQ

In this example, the file, definition and original source are identical for the two messages, so the compiler
omits them in the second message. If consecutive messages are entirely identical, then the compiler prints
only the first message, followed by: ‘[Last message occurs repeats times]’ where repeats is the number
of times the message was given.

Chapter 4: Compiler 18

If the source was not from a file, then no file line is printed. If the actual source is the same as the
original source, then the processing path and actual source will be omitted. If no forms intervene between
the original source and the actual source, then the processing path will also be omitted.

4.1.3.2 The Original and Actual Source

The original source displayed will almost always be a list. If the actual source for an message is a symbol,
the original source will be the immediately enclosing evaluated list form. So even if the offending symbol
does appear in the original source, the compiler will print the enclosing list and then print the symbol as
the actual source (as though the symbol were introduced by a macro.)

When the actual source is displayed (and is not a symbol), it will always be code that resulted from the
expansion of a macro or a source-to-source compiler optimization. This is code that did not appear in the
original source program; it was introduced by the compiler.

Keep in mind that when the compiler displays a source form in an diagnostic message, it always displays
the most specific (innermost) responsible form. For example, compiling this function

(defun bar (x)

(let (a)

(declare (fixnum a))

(setq a (foo x))

a))

gives this error message

; file: /tmp/foo.lisp

; in: DEFUN BAR

; (LET (A)

; (DECLARE (FIXNUM A))

; (SETQ A (FOO X))

; A)

;

; caught WARNING:

; Asserted type FIXNUM conflicts with derived type (VALUES NULL &OPTIONAL).

This message is not saying “there is a problem somewhere in this let” – it is saying that there is a
problem with the let itself. In this example, the problem is that a’s nil initial value is not a fixnum.

4.1.3.3 The Processing Path

The processing path is mainly useful for debugging macros, so if you don’t write macros, you can probably
ignore it. Consider this example:

(defun foo (n)

(dotimes (i n *undefined*)))

Compiling results in this error message:

; in: DEFUN FOO

; (DOTIMES (I N *UNDEFINED*))

; --> DO BLOCK LET TAGBODY RETURN-FROM

; ==>

; (PROGN *UNDEFINED*)

;

; caught WARNING:

; undefined variable: *UNDEFINED*

Note that do appears in the processing path. This is because dotimes expands into:

(do ((i 0 (1+ i)) (#:g1 n))

((>= i #:g1) *undefined*)

(declare (type unsigned-byte i)))

The rest of the processing path results from the expansion of do:

(block nil

(let ((i 0) (#:g1 n))

(declare (type unsigned-byte i))

(tagbody (go #:g3)

#:g2 (psetq i (1+ i))

Chapter 4: Compiler 19

#:g3 (unless (>= i #:g1) (go #:g2))

(return-from nil (progn *undefined*)))))

In this example, the compiler descended into the block, let, tagbody and return-from to reach the
progn printed as the actual source. This is a place where the “actual source appears in explanation” rule
was applied. The innermost actual source form was the symbol *undefined* itself, but that also appeared
in the explanation, so the compiler backed out one level.

4.2 Handling of Types

One of the most important features of the SBCL compiler (similar to the original CMUCL compiler, also
known as Python) is its fairly sophisticated understanding of the Common Lisp type system and its conser-
vative approach to the implementation of type declarations.

These two features reward the use of type declarations throughout development, even when high per-
formance is not a concern. Also, as discussed in the chapter on performance (see Chapter 6 [Efficiency],
page 37), the use of appropriate type declarations can be very important for performance as well.

The SBCL compiler also has a greater knowledge of the Common Lisp type system than other compilers.
Support is incomplete only for types involving the satisfies type specifier.

4.2.1 Declarations as Assertions

The SBCL compiler treats type declarations differently from most other Lisp compilers. Under default
compilation policy the compiler doesn’t blindly believe type declarations, but considers them assertions
about the program that should be checked: all type declarations that have not been proven to always hold
are asserted at runtime.

Remaining bugs in the compiler’s handling of types unfortunately provide some exceptions to
this rule, see Section 4.2.4 [Implementation Limitations], page 21.

CLOS slot types form a notable exception. Types declared using the :type slot option in defclass are
asserted if and only if the class was defined in safe code and the slot access location is in safe code as well.
This laxness does not pose any internal consistency issues, as the CLOS slot types are not available for the
type inferencer, nor do CLOS slot types provide any efficiency benefits.

There are three type checking policies available in SBCL, selectable via optimize declarations.

Full Type Checks
All declarations are considered assertions to be checked at runtime, and all type checks are
precise. The default compilation policy provides full type checks.

Used when (or (>= safety 2) (>= safety speed 1)).

Weak Type Checks
Declared types may be simplified into faster to check supertypes: for example, (or (integer

-17 -7) (integer 7 17)) is simplified into (integer -17 17).

Note: it is relatively easy to corrupt the heap when weak type checks are used if the program
contains type-errors.

Used when (and (< safety 2) (< safety speed))

No Type Checks
All declarations are believed without assertions. Also disables argument count and array bounds
checking.

Note: any type errors in code where type checks are not performed are liable to corrupt the
heap.

Used when (= safety 0).

4.2.2 Precise Type Checking

Precise checking means that the check is done as though typep had been called with the exact type specifier
that appeared in the declaration.

If a variable is declared to be (integer 3 17) then its value must always be an integer between 3 and
17. If multiple type declarations apply to a single variable, then all the declarations must be correct; it is as
though all the types were intersected producing a single and type specifier.

Chapter 4: Compiler 20

To gain maximum benefit from the compiler’s type checking, you should always declare the types of
function arguments and structure slots as precisely as possible. This often involves the use of or, member,
and other list-style type specifiers.

4.2.3 Getting Existing Programs to Run

Since SBCL’s compiler does much more comprehensive type checking than most Lisp compilers, SBCL may
detect type errors in programs that have been debugged using other compilers. These errors are mostly
incorrect declarations, although compile-time type errors can find actual bugs if parts of the program have
never been tested.

Some incorrect declarations can only be detected by run-time type checking. It is very important to
initially compile a program with full type checks (high safety optimization) and then test this safe version.
After the checking version has been tested, then you can consider weakening or eliminating type checks. This
applies even to previously debugged programs, because the SBCL compiler does much more type inference
than other Common Lisp compilers, so an incorrect declaration can do more damage.

The most common problem is with variables whose constant initial value doesn’t match the type decla-
ration. Incorrect constant initial values will always be flagged by a compile-time type error, and they are
simple to fix once located. Consider this code fragment:

(prog (foo)

(declare (fixnum foo))

(setq foo ...)

...)

Here foo is given an initial value of nil, but is declared to be a fixnum. Even if it is never read, the
initial value of a variable must match the declared type. There are two ways to fix this problem. Change
the declaration

(prog (foo)

(declare (type (or fixnum null) foo))

(setq foo ...)

...)

or change the initial value

(prog ((foo 0))

(declare (fixnum foo))

(setq foo ...)

...)

It is generally preferable to change to a legal initial value rather than to weaken the declaration, but
sometimes it is simpler to weaken the declaration than to try to make an initial value of the appropriate
type.

Another declaration problem occasionally encountered is incorrect declarations on defmacro arguments.
This can happen when a function is converted into a macro. Consider this macro:

(defmacro my-1+ (x)

(declare (fixnum x))

‘(the fixnum (1+ ,x)))

Although legal and well-defined Common Lisp code, this meaning of this definition is almost certainly
not what the writer intended. For example, this call is illegal:

(my-1+ (+ 4 5))

This call is illegal because the argument to the macro is (+ 4 5), which is a list, not a fixnum. Because
of macro semantics, it is hardly ever useful to declare the types of macro arguments. If you really want
to assert something about the type of the result of evaluating a macro argument, then put a the in the
expansion:

(defmacro my-1+ (x)

‘(the fixnum (1+ (the fixnum ,x))))

In this case, it would be stylistically preferable to change this macro back to a function and declare it
inline.

Some more subtle problems are caused by incorrect declarations that can’t be detected at compile time.
Consider this code:

(do ((pos 0 (position #\a string :start (1+ pos))))

((null pos))

Chapter 4: Compiler 21

(declare (fixnum pos))

...)

Although pos is almost always a fixnum, it is nil at the end of the loop. If this example is compiled
with full type checks (the default), then running it will signal a type error at the end of the loop. If compiled
without type checks, the program will go into an infinite loop (or perhaps position will complain because
(1+ nil) isn’t a sensible start.) Why? Because if you compile without type checks, the compiler just quietly
believes the type declaration. Since the compiler believes that pos is always a fixnum, it believes that pos is
never nil, so (null pos) is never true, and the loop exit test is optimized away. Such errors are sometimes
flagged by unreachable code notes, but it is still important to initially compile and test any system with full
type checks, even if the system works fine when compiled using other compilers.

In this case, the fix is to weaken the type declaration to (or fixnum null)1.

Note that there is usually little performance penalty for weakening a declaration in this way. Any
numeric operations in the body can still assume that the variable is a fixnum, since nil is not a legal
numeric argument. Another possible fix would be to say:

(do ((pos 0 (position #\a string :start (1+ pos))))

((null pos))

(let ((pos pos))

(declare (fixnum pos))

...))

This would be preferable in some circumstances, since it would allow a non-standard representation to
be used for the local pos variable in the loop body.

4.2.4 Implementation Limitations

Ideally, the compiler would consider all type declarations to be assertions, so that adding type declarations
to a program, no matter how incorrect they might be, would never cause undefined behavior. However, the
compiler is known to fall short of this goal in two areas:

• Proclaimed constraints on argument and result types of a function are supposed to be checked by the
function. If the function type is proclaimed before function definition, type checks are inserted by
the compiler, but the standard allows the reversed order, in which case the compiler will trust the
declaration.

• The compiler cannot check types of an unknown number of values; if the number of generated values is
unknown, but the number of consumed is known, only consumed values are checked.

For example,

(defun foo (x)

(the integer (bar x)))

causes the following compiler diagnostic to be emitted:

; note: type assertion too complex to check:

; (VALUES INTEGER &REST T).

A partial workaround is instead write:

(defun foo (x)

(the (values integer &optional) (bar x)))

These are important issues, but are not necessarily easy to fix, so they may, alas, remain in the system
for a while.

4.3 Compiler Policy

Compiler policy is controlled by the optimize declaration, supporting all ANSI optimization qualities (debug,
safety, space, and speed).2

For effects of various optimization qualities on type-safety and debuggability see Section 4.2.1 [Declara-
tions as Assertions], page 19, and Section 5.6 [Debugger Policy Control], page 32.

1 Actually, this declaration is unnecessary in SBCL, since it already knows that position returns a non-negative
fixnum or nil.

2 A deprecated extension sb-ext:inhibit-warnings is still supported, but liable to go away at any time.

Chapter 4: Compiler 22

Ordinarily, when the speed quality is high, the compiler emits notes to notify the programmer about its
inability to apply various optimizations. For selective muffling of these notes See Section 4.1.1 [Controlling
Verbosity], page 15.

The value of space mostly influences the compiler’s decision whether to inline operations, which tend
to increase the size of programs. Use the value 0 with caution, since it can cause the compiler to inline
operations so indiscriminately that the net effect is to slow the program by causing cache misses or even
swapping.

[Function]sb-ext:describe-compiler-policy &optional spec
Print all global optimization settings, augmented by spec.

[Function]sb-ext:restrict-compiler-policy &optional quality min max
Assign a minimum value to an optimization quality. quality is the name of the optimization quality to
restrict, min (defaulting to zero) is the minimum allowed value, and max (defaults to 3) is the maximum.

Returns the alist describing the current policy restrictions.

If quality is nil or not given, nothing is done.

Otherwise, if min is zero or max is 3 or neither are given, any existing restrictions of quality are removed.

See also :policy option in with-compilation-unit.

[Macro]cl:with-compilation-unit options &body body
Affects compilations that take place within its dynamic extent. It is intended to be eg. wrapped around
the compilation of all files in the same system.

Following options are defined:

:override Boolean-Form
One of the effects of this form is to delay undefined warnings until the end of the form,
instead of giving them at the end of each compilation. If override is nil (the default),
then the outermost with-compilation-unit form grabs the undefined warnings. Specifying
override true causes that form to grab any enclosed warnings, even if it is enclosed by
another with-compilation-unit.

:policy Optimize-Declaration-Form
Provides dynamic scoping for global compiler optimization qualities and restrictions, limiting
effects of subsequent optimize proclamations and calls to sb-ext:restrict-compiler-

policy to the dynamic scope of body.

If override is false, specified policy is merged with current global policy. If override is
true, current global policy, including any restrictions, is discarded in favor of the specified
policy.

Supplying policy nil is equivalent to the option not being supplied at all, ie. dynamic
scoping of policy does not take place.

This option is an SBCL-specific experimental extension: Interface subject to change.

:source-namestring Namestring-Form
Attaches the value returned by the Namestring-Form to the internal debug-source infor-
mation as the namestring of the source file. Normally the namestring of the input-file
for compile-file is used: this option can be used to provide source-file information for
functions compiled using compile, or to override the input-file of compile-file.

If both an outer and an inner with-compilation-unit provide a source-namestring, the
inner one takes precedence. Unaffected by :override.

This is an SBCL-specific extension.

:source-plist Plist-Form
Attaches the value returned by the Plist-Form to internal debug-source information of func-
tions compiled in within the dynamic extent of body.

Primarily for use by development environments, in order to eg. associate function definitions
with editor-buffers. Can be accessed using sb-introspect:definition-source-plist.

If an outer with-compilation-unit form also provide a source-plist, it is appended to
the end of the provided source-plist. Unaffected by :override.

This is an SBCL-specific extension.

Chapter 4: Compiler 23

Examples:

;; Prevent proclamations from the file leaking, and restrict

;; SAFETY to 3 -- otherwise uses the current global policy.

(with-compilation-unit (:policy ’(optimize))

(restrict-compiler-policy ’safety 3)

(load "foo.lisp"))

;; Using default policy instead of the current global one,

;; except for DEBUG 3.

(with-compilation-unit (:policy ’(optimize debug)

:override t)

(load "foo.lisp"))

;; Same as if :POLICY had not been specified at all: SAFETY 3

;; proclamation leaks out from WITH-COMPILATION-UNIT.

(with-compilation-unit (:policy nil)

(declaim (optimize safety))

(load "foo.lisp"))

4.4 Compiler Errors

4.4.1 Type Errors at Compile Time

If the compiler can prove at compile time that some portion of the program cannot be executed without a
type error, then it will give a warning at compile time.

It is possible that the offending code would never actually be executed at run-time due to some higher
level consistency constraint unknown to the compiler, so a type warning doesn’t always indicate an incorrect
program.

For example, consider this code fragment:

(defun raz (foo)

(let ((x (case foo

(:this 13)

(:that 9)

(:the-other 42))))

(declare (fixnum x))

(foo x)))

Compilation produces this warning:

; in: DEFUN RAZ

; (CASE FOO (:THIS 13) (:THAT 9) (:THE-OTHER 42))

; --> LET COND IF COND IF COND IF

; ==>

; (COND)

;

; caught WARNING:

; This is not a FIXNUM:

; NIL

In this case, the warning means that if foo isn’t any of :this, :that or :the-other, then x will be
initialized to nil, which the fixnum declaration makes illegal. The warning will go away if ecase is used
instead of case, or if :the-other is changed to t.

This sort of spurious type warning happens moderately often in the expansion of complex macros and in
inline functions. In such cases, there may be dead code that is impossible to correctly execute. The compiler
can’t always prove this code is dead (could never be executed), so it compiles the erroneous code (which will
always signal an error if it is executed) and gives a warning.

Chapter 4: Compiler 24

4.4.2 Errors During Macroexpansion

The compiler handles errors that happen during macroexpansion, turning them into compiler errors. If you
want to debug the error (to debug a macro), you can set *break-on-signals* to error. For example, this
definition:

(defun foo (e l)

(do ((current l (cdr current))

((atom current) nil))

(when (eq (car current) e) (return current))))

gives this error:

; in: DEFUN FOO

; (DO ((CURRENT L (CDR CURRENT))

; ((ATOM CURRENT) NIL))

; (WHEN (EQ (CAR CURRENT) E) (RETURN CURRENT)))

;

; caught ERROR:

; (in macroexpansion of (DO # #))

; (hint: For more precise location, try *BREAK-ON-SIGNALS*.)

; DO step variable is not a symbol: (ATOM CURRENT)

4.4.3 Read Errors

SBCL’s compiler does not attempt to recover from read errors when reading a source file, but instead just
reports the offending character position and gives up on the entire source file.

4.5 Open Coding and Inline Expansion

Since Common Lisp forbids the redefinition of standard functions, the compiler can have special knowledge
of these standard functions embedded in it. This special knowledge is used in various ways (open coding,
inline expansion, source transformation), but the implications to the user are basically the same:

• Attempts to redefine standard functions may be frustrated, since the function may never be called.
Although it is technically illegal to redefine standard functions, users sometimes want to implicitly
redefine these functions when they are debugging using the trace macro. Special-casing of standard
functions can be inhibited using the notinline declaration, but even then some phases of analysis such
as type inferencing are applied by the compiler.

• The compiler can have multiple alternate implementations of standard functions that implement dif-
ferent trade-offs of speed, space and safety. This selection is based on the compiler policy, Section 4.3
[Compiler Policy], page 21.

When a function call is open coded, inline code whose effect is equivalent to the function call is substituted
for that function call. When a function call is closed coded, it is usually left as is, although it might be turned
into a call to a different function with different arguments. As an example, if nthcdr were to be open coded,
then

(nthcdr 4 foobar)

might turn into

(cdr (cdr (cdr (cdr foobar))))

or even

(do ((i 0 (1+ i))

(list foobar (cdr foobar)))

((= i 4) list))

If nth is closed coded, then

(nth x l)

might stay the same, or turn into something like

(car (nthcdr x l))

In general, open coding sacrifices space for speed, but some functions (such as car) are so simple that
they are always open-coded. Even when not open-coded, a call to a standard function may be transformed
into a different function call (as in the last example) or compiled as static call. Static function call uses a
more efficient calling convention that forbids redefinition.

Chapter 4: Compiler 25

4.6 Interpreter

By default SBCL implements eval by calling the native code compiler.

SBCL also includes an interpreter for use in special cases where using the compiler is undesirable, for
example due to compilation overhead. Unlike in some other Lisp implementations, in SBCL interpreted code
is not safer or more debuggable than compiled code.

[Variable]sb-ext:*evaluator-mode*
Toggle between different evaluator implementations. If set to :compile, an implementation of eval that
calls the compiler will be used. If set to :interpret, an interpreter will be used.

4.7 Advanced Compiler Use and Efficiency Hints

For more advanced usages of the compiler, please see the chapter of the same name in the CMUCL manual.
Many aspects of the compiler have stayed exactly the same, and there is a much more detailed explanation of
the compiler’s behavior and how to maximally optimize code in their manual. In particular, while SBCL no
longer supports byte-code compilation, it does support CMUCL’s block compilation facility allowing whole
program optimization and increased use of the local call convention.

Unlike CMUCL, SBCL is able to open-code forward-referenced type tests while block compiling. This
helps for mutually referential defstructs in particular.

26

5 Debugger

This chapter documents the debugging facilities of SBCL, including the debugger, single-stepper and trace,
and the effect of (optimize debug) declarations.

5.1 Debugger Entry

5.1.1 Debugger Banner

When you enter the debugger, it looks something like this:

debugger invoked on a TYPE-ERROR in thread 11184:

The value 3 is not of type LIST.

You can type HELP for debugger help, or (SB-EXT:QUIT) to exit from SBCL.

restarts (invokable by number or by possibly-abbreviated name):

0: [ABORT] Reduce debugger level (leaving debugger, returning to toplevel).

1: [TOPLEVEL] Restart at toplevel READ/EVAL/PRINT loop.

(CAR 1 3)

0]

The first group of lines describe what the error was that put us in the debugger. In this case car was
called on 3, causing a type-error.

This is followed by the “beginner help line”, which appears only if sb-debug:*debug-beginner-help-p*
is true (default).

Next comes a listing of the active restart names, along with their descriptions – the ways we can restart
execution after this error. In this case, both options return to top-level. Restarts can be selected by entering
the corresponding number or name.

The current frame appears right underneath the restarts, immediately followed by the debugger prompt.

5.1.2 Debugger Invocation

The debugger is invoked when:

• error is called, and the condition it signals is not handled.

• break is called, or signal is called with a condition that matches the current *break-on-signals*.

• the debugger is explicitly entered with the invoke-debugger function.

When the debugger is invoked by a condition, ANSI mandates that the value of *debugger-hook*, if any,
be called with two arguments: the condition that caused the debugger to be invoked and the previous value
of *debugger-hook*. When this happens, *debugger-hook* is bound to NIL to prevent recursive errors.
However, ANSI also mandates that *debugger-hook* not be invoked when the debugger is to be entered by
the break function. For users who wish to provide an alternate debugger interface (and thus catch break

entries into the debugger), SBCL provides sb-ext:*invoke-debugger-hook*, which is invoked during any
entry into the debugger.

[Variable]sb-ext:*invoke-debugger-hook*
This is either nil or a designator for a function of two arguments, to be run when the debugger is about
to be entered. The function is run with *invoke-debugger-hook* bound to nil to minimize recursive
errors, and receives as arguments the condition that triggered debugger entry and the previous value of
invoke-debugger-hook

This mechanism is an sbcl extension similar to the standard *debugger-hook*. In contrast to
debugger-hook, it is observed by invoke-debugger even when called by break.

5.2 Debugger Command Loop

The debugger is an interactive read-eval-print loop much like the normal top level, but some symbols are
interpreted as debugger commands instead of being evaluated. A debugger command starts with the symbol
name of the command, possibly followed by some arguments on the same line. Some commands prompt for

Chapter 5: Debugger 27

additional input. Debugger commands can be abbreviated by any unambiguous prefix: help can be typed
as ‘h’, ‘he’, etc.

The package is not significant in debugger commands; any symbol with the name of a debugger command
will work. If you want to show the value of a variable that happens also to be the name of a debugger
command you can wrap the variable in a progn to hide it from the command loop.

The debugger prompt is “frame]”, where frame is the number of the current frame. Frames are numbered
starting from zero at the top (most recent call), increasing down to the bottom. The current frame is the
frame that commands refer to.

It is possible to override the normal printing behaviour in the debugger by using the sb-ext:*debug-

print-variable-alist*.

[Variable]sb-ext:*debug-print-variable-alist*
an association list describing new bindings for special variables to be used within the debugger. Eg.

((*PRINT-LENGTH* . 10) (*PRINT-LEVEL* . 6) (*PRINT-PRETTY* . NIL))

The variables in the car positions are bound to the values in the cdr during the execution of some debug
commands. When evaluating arbitrary expressions in the debugger, the normal values of the printer
control variables are in effect.

Initially empty, *debug-print-variable-alist* is typically used to provide bindings for printer control
variables.

5.3 Stack Frames

A stack frame is the run-time representation of a call to a function; the frame stores the state that a function
needs to remember what it is doing. Frames have:

• variables (see Section 5.4 [Variable Access], page 29), which are the values being operated on.

• arguments to the call (which are really just particularly interesting variables).

• a current source location (see Section 5.5 [Source Location Printing], page 31), which is the place in
the program where the function was running when it stopped to call another function, or because of an
interrupt or error.

5.3.1 Stack Motion

These commands move to a new stack frame and print the name of the function and the values of its
arguments in the style of a Lisp function call:

[Debugger Command]up
Move up to the next higher frame. More recent function calls are considered to be higher on the stack.

[Debugger Command]down
Move down to the next lower frame.

[Debugger Command]top
Move to the highest frame, that is, the frame where the debugger was entered.

[Debugger Command]bottom
Move to the lowest frame.

[Debugger Command]frame [n]
Move to the frame with the specified number. Prompts for the number if not supplied. The frame with
number 0 is the frame where the debugger was entered.

5.3.2 How Arguments are Printed

A frame is printed to look like a function call, but with the actual argument values in the argument positions.
So the frame for this call in the source:

(myfun (+ 3 4) ’a)

would look like this:

(MYFUN 7 A)

All keyword and optional arguments are displayed with their actual values; if the corresponding argument
was not supplied, the value will be the default. So this call:

(subseq "foo" 1)

Chapter 5: Debugger 28

would look like this:

(SUBSEQ "foo" 1 3)

And this call:

(string-upcase "test case")

would look like this:

(STRING-UPCASE "test case" :START 0 :END NIL)

The arguments to a function call are displayed by accessing the argument variables. Although those
variables are initialized to the actual argument values, they can be set inside the function; in this case the
new value will be displayed.

&rest arguments are handled somewhat differently. The value of the rest argument variable is displayed
as the spread-out arguments to the call, so:

(format t "~A is a ~A." "This" ’test)

would look like this:

(FORMAT T "~A is a ~A." "This" ’TEST)

Rest arguments cause an exception to the normal display of keyword arguments in functions that have
both &rest and &key arguments. In this case, the keyword argument variables are not displayed at all; the
rest arg is displayed instead. So for these functions, only the keywords actually supplied will be shown, and
the values displayed will be the argument values, not values of the (possibly modified) variables.

If the variable for an argument is never referenced by the function, it will be deleted. The variable value
is then unavailable, so the debugger prints ‘#<unused-arg>’ instead of the value. Similarly, if for any of
a number of reasons the value of the variable is unavailable or not known to be available (see Section 5.4
[Variable Access], page 29), then ‘#<unavailable-arg>’ will be printed instead of the argument value.

Note that inline expansion and open-coding affect what frames are present in the debugger, see Section 5.6
[Debugger Policy Control], page 32.

5.3.3 Function Names

If a function is defined by defun it will appear in backtrace by that name. Functions defined by labels

and flet will appear as (FLET name) and (LABELS name) respectively. Anonymous lambdas will appear as
(LAMBDA lambda-list).

5.3.3.1 Entry Point Details

Sometimes the compiler introduces new functions that are used to implement a user function, but are not
directly specified in the source. This is mostly done for argument type and count checking.

With recursive or block compiled functions, an additional external frame may appear before the frame
representing the first call to the recursive function or entry to the compiled block. This is a consequence
of the way the compiler works: there is nothing odd with your program. You may also see cleanup frames
during the execution of unwind-protect cleanup code, and optional for variable argument entry points.

5.3.4 Debug Tail Recursion

The compiler is “properly tail recursive.” If a function call is in a tail-recursive position, the stack frame
will be deallocated at the time of the call, rather than after the call returns. Consider this backtrace:

(BAR ...)

(FOO ...)

Because of tail recursion, it is not necessarily the case that FOO directly called BAR. It may be that FOO
called some other function FOO2 which then called BAR tail-recursively, as in this example:

(defun foo ()

...

(foo2 ...)

...)

(defun foo2 (...)

...

(bar ...))

(defun bar (...)

Chapter 5: Debugger 29

...)

Usually the elimination of tail-recursive frames makes debugging more pleasant, since these frames are
mostly uninformative. If there is any doubt about how one function called another, it can usually be
eliminated by finding the source location in the calling frame. See Section 5.5 [Source Location Printing],
page 31.

The elimination of tail-recursive frames can be prevented by disabling tail-recursion optimization, which
happens when the debug optimization quality is greater than 2. See Section 5.6 [Debugger Policy Control],
page 32.

5.3.5 Unknown Locations and Interrupts

The debugger operates using special debugging information attached to the compiled code. This debug
information tells the debugger what it needs to know about the locations in the code where the debugger
can be invoked. If the debugger somehow encounters a location not described in the debug information,
then it is said to be unknown. If the code location for a frame is unknown, then some variables may be
inaccessible, and the source location cannot be precisely displayed.

There are three reasons why a code location could be unknown:

• There is inadequate debug information due to the value of the debug optimization quality. See
Section 5.6 [Debugger Policy Control], page 32.

• The debugger was entered because of an interrupt such as C-c.

• A hardware error such as “‘bus error’” occurred in code that was compiled unsafely due to the value
of the safety optimization quality.

In the last two cases, the values of argument variables are accessible, but may be incorrect. For more
details on when variable values are accessible, see Section 5.4.1 [Variable Value Availability], page 30.

It is possible for an interrupt to happen when a function call or return is in progress. The debugger may
then flame out with some obscure error or insist that the bottom of the stack has been reached, when the
real problem is that the current stack frame can’t be located. If this happens, return from the interrupt and
try again.

5.4 Variable Access

There are two ways to access the current frame’s local variables in the debugger: list-locals and
sb-debug:var.

The debugger doesn’t really understand lexical scoping; it has just one namespace for all the variables
in the current stack frame. If a symbol is the name of multiple variables in the same function, then the
reference appears ambiguous, even though lexical scoping specifies which value is visible at any given source
location. If the scopes of the two variables are not nested, then the debugger can resolve the ambiguity by
observing that only one variable is accessible.

When there are ambiguous variables, the evaluator assigns each one a small integer identifier. The
sb-debug:var function uses this identifier to distinguish between ambiguous variables. The list-locals

command prints the identifier. In the following example, there are two variables named X. The first one has
identifier 0 (which is not printed), the second one has identifier 1.

X = 1

X#1 = 2

[Debugger Command]list-locals [prefix]
This command prints the name and value of all variables in the current frame whose name has the
specified prefix. prefix may be a string or a symbol. If no prefix is given, then all available variables are
printed. If a variable has a potentially ambiguous name, then the name is printed with a “#identifier”
suffix, where identifier is the small integer used to make the name unique.

[Function]sb-debug:var name &optional identifier
This function returns the value of the variable in the current frame with the specified name. If supplied,
identifier determines which value to return when there are ambiguous variables.

When name is a symbol, it is interpreted as the symbol name of the variable, i.e. the package is significant.
If name is an uninterned symbol (gensym), then return the value of the uninterned variable with the
same name. If name is a string, sb-debug:var interprets it as the prefix of a variable name that must
unambiguously complete to the name of a valid variable.

Chapter 5: Debugger 30

identifier is used to disambiguate the variable name; use list-locals to find out the identifiers.

5.4.1 Variable Value Availability

The value of a variable may be unavailable to the debugger in portions of the program where Lisp says that
the variable is defined. If a variable value is not available, the debugger will not let you read or write that
variable. With one exception, the debugger will never display an incorrect value for a variable. Rather than
displaying incorrect values, the debugger tells you the value is unavailable.

The one exception is this: if you interrupt (e.g., with C-c) or if there is an unexpected hardware error
such as “‘bus error’” (which should only happen in unsafe code), then the values displayed for arguments
to the interrupted frame might be incorrect.1 This exception applies only to the interrupted frame: any
frame farther down the stack will be fine.

The value of a variable may be unavailable for these reasons:

• The value of the debug optimization quality may have omitted debug information needed to determine
whether the variable is available. Unless a variable is an argument, its value will only be available when
debug is at least 2.

• The compiler did lifetime analysis and determined that the value was no longer needed, even though
its scope had not been exited. Lifetime analysis is inhibited when the debug optimization quality is 3.

• The variable’s name is an uninterned symbol (gensym). To save space, the compiler only dumps debug
information about uninterned variables when the debug optimization quality is 3.

• The frame’s location is unknown (see Section 5.3.5 [Unknown Locations and Interrupts], page 29)
because the debugger was entered due to an interrupt or unexpected hardware error. Under these
conditions the values of arguments will be available, but might be incorrect. This is the exception
mentioned above.

• The variable (or the code referencing it) was optimized out of existence. Variables with no reads are
always optimized away. The degree to which the compiler deletes variables will depend on the value of
the compilation-speed optimization quality, but most source-level optimizations are done under all
compilation policies.

• The variable is never set and its definition looks like

(LET ((var1 var2))

...)

In this case, var1 is substituted with var2.

• The variable is never set and is referenced exactly once. In this case, the reference is substituted with
the variable initial value.

Since it is especially useful to be able to get the arguments to a function, argument variables are treated
specially when the speed optimization quality is less than 3 and the debug quality is at least 1. With this
compilation policy, the values of argument variables are almost always available everywhere in the function,
even at unknown locations. For non-argument variables, debug must be at least 2 for values to be available,
and even then, values are only available at known locations.

5.4.2 Note On Lexical Variable Access

When the debugger command loop establishes variable bindings for available variables, these variable bind-
ings have lexical scope and dynamic extent.2 You can close over them, but such closures can’t be used as
upward function arguments.

You can also set local variables using setq, but if the variable was closed over in the original source and
never set, then setting the variable in the debugger may not change the value in all the functions the variable
is defined in. Another risk of setting variables is that you may assign a value of a type that the compiler
proved the variable could never take on. This may result in bad things happening.

1 Since the location of an interrupt or hardware error will always be an unknown location, non-argument variable
values will never be available in the interrupted frame. See Section 5.3.5 [Unknown Locations and Interrupts],
page 29.

2 The variable bindings are actually created using the Lisp symbol-macrolet special form.

Chapter 5: Debugger 31

5.5 Source Location Printing

One of the debugger’s capabilities is source level debugging of compiled code. These commands display the
source location for the current frame:

[Debugger Command]source [context]
This command displays the file that the current frame’s function was defined from (if it was defined from
a file), and then the source form responsible for generating the code that the current frame was executing.
If context is specified, then it is an integer specifying the number of enclosing levels of list structure to
print.

The source form for a location in the code is the innermost list present in the original source that encloses
the form responsible for generating that code. If the actual source form is not a list, then some enclosing list
will be printed. For example, if the source form was a reference to the variable *some-random-special*,
then the innermost enclosing evaluated form will be printed. Here are some possible enclosing forms:

(let ((a *some-random-special*))

...)

(+ *some-random-special* ...)

If the code at a location was generated from the expansion of a macro or a source-level compiler opti-
mization, then the form in the original source that expanded into that code will be printed. Suppose the file
/usr/me/mystuff.lisp looked like this:

(defmacro mymac ()

’(myfun))

(defun foo ()

(mymac)

...)

If foo has called myfun, and is waiting for it to return, then the source command would print:

; File: /usr/me/mystuff.lisp

(MYMAC)

Note that the macro use was printed, not the actual function call form, (myfun).

If enclosing source is printed by giving an argument to source or vsource, then the actual source form
is marked by wrapping it in a list whose first element is ‘#:***HERE***’. In the previous example, source
1 would print:

; File: /usr/me/mystuff.lisp

(DEFUN FOO ()

(#:***HERE***

(MYMAC))

...)

5.5.1 How the Source is Found

If the code was defined from Lisp by compile or eval, then the source can always be reliably located. If
the code was defined from a fasl file created by compile-file, then the debugger gets the source forms it
prints by reading them from the original source file. This is a potential problem, since the source file might
have moved or changed since the time it was compiled.

The source file is opened using the truename of the source file pathname originally given to the compiler.
This is an absolute pathname with all logical names and symbolic links expanded. If the file can’t be located
using this name, then the debugger gives up and signals an error.

If the source file can be found, but has been modified since the time it was compiled, the debugger prints
this warning:

; File has been modified since compilation:

; filename

; Using form offset instead of character position.

where filename is the name of the source file. It then proceeds using a robust but not foolproof heuristic
for locating the source. This heuristic works if:

Chapter 5: Debugger 32

• No top-level forms before the top-level form containing the source have been added or deleted, and

• The top-level form containing the source has not been modified much. (More precisely, none of the list
forms beginning before the source form have been added or deleted.)

If the heuristic doesn’t work, the displayed source will be wrong, but will probably be near the actual
source. If the “shape” of the top-level form in the source file is too different from the original form, then an
error will be signaled. When the heuristic is used, the source location commands are noticeably slowed.

Source location printing can also be confused if (after the source was compiled) a read-macro you used in
the code was redefined to expand into something different, or if a read-macro ever returns the same eq list
twice. If you don’t define read macros and don’t use ## in perverted ways, you don’t need to worry about
this.

5.5.2 Source Location Availability

Source location information is only available when the debug optimization quality is at least 2. If source
location information is unavailable, the source commands will give an error message.

If source location information is available, but the source location is unknown because of an interrupt
or unexpected hardware error (see Section 5.3.5 [Unknown Locations and Interrupts], page 29), then the
command will print:

Unknown location: using block start.

and then proceed to print the source location for the start of the basic block enclosing the code location.
It’s a bit complicated to explain exactly what a basic block is, but here are some properties of the block
start location:

• The block start location may be the same as the true location.

• The block start location will never be later in the program’s flow of control than the true location.

• No conditional control structures (such as if, cond, or) will intervene between the block start and the
true location (but note that some conditionals present in the original source could be optimized away.)
Function calls do not end basic blocks.

• The head of a loop will be the start of a block.

• The programming language concept of “block structure” and the Lisp block special form are totally
unrelated to the compiler’s basic block.

In other words, the true location lies between the printed location and the next conditional (but watch
out because the compiler may have changed the program on you.)

5.6 Debugger Policy Control

The compilation policy specified by optimize declarations affects the behavior seen in the debugger. The
debug quality directly affects the debugger by controlling the amount of debugger information dumped.
Other optimization qualities have indirect but observable effects due to changes in the way compilation is
done.

Unlike the other optimization qualities (which are compared in relative value to evaluate tradeoffs), the
debug optimization quality is directly translated to a level of debug information. This absolute interpretation
allows the user to count on a particular amount of debug information being available even when the values of
the other qualities are changed during compilation. These are the levels of debug information that correspond
to the values of the debug quality:

0 Only the function name and enough information to allow the stack to be parsed.

> 0 Any level greater than 0 gives level 0 plus all argument variables. Values will only be accessible
if the argument variable is never set and speed is not 3. SBCL allows any real value for
optimization qualities. It may be useful to specify 0.5 to get backtrace argument display
without argument documentation.

1 Level 1 provides argument documentation (printed argument lists) and derived argument/result
type information. This makes describe more informative, and allows the compiler to do
compile-time argument count and type checking for any calls compiled at run-time. This is the
default.

Chapter 5: Debugger 33

2 Level 1 plus all interned local variables, source location information, and lifetime information
that tells the debugger when arguments are available (even when speed is 3 or the argument
is set).

> 2 Any level greater than 2 gives level 2 and in addition disables tail-call optimization, so that
the backtrace will contain frames for all invoked functions, even those in tail positions.

3 Level 2 plus all uninterned variables. In addition, lifetime analysis is disabled (even when speed

is 3), ensuring that all variable values are available at any known location within the scope of
the binding. This has a speed penalty in addition to the obvious space penalty.

Inlining of local functions is inhibited so that they may be traced.

> (max speed space)

If debug is greater than both speed and space, the command return can be used to continue
execution by returning a value from the current stack frame.

> (max speed space compilation-speed)

If debug is greater than all of speed, space and compilation-speed the code will be steppable
(see Section 5.10 [Single Stepping], page 36).

As you can see, if the speed quality is 3, debugger performance is degraded. This effect comes from
the elimination of argument variable special-casing (see Section 5.4.1 [Variable Value Availability], page 30).
Some degree of speed/debuggability tradeoff is unavoidable, but the effect is not too drastic when debug is
at least 2.

In addition to inline and notinline declarations, the relative values of the speed and space qualities
also change whether functions are inline expanded. If a function is inline expanded, then there will be no
frame to represent the call, and the arguments will be treated like any other local variable. Functions may
also be “semi-inline”, in which case there is a frame to represent the call, but the call is to an optimized
local version of the function, not to the original function.

5.7 Exiting Commands

These commands get you out of the debugger.

[Debugger Command]toplevel
Throw to top level.

[Debugger Command]restart [n]
Invokes the nth restart case as displayed by the error command. If n is not specified, the available
restart cases are reported.

[Debugger Command]continue
Calls continue on the condition given to debug. If there is no restart case named continue, then an error
is signaled.

[Debugger Command]abort
Calls abort on the condition given to debug. This is useful for popping debug command loop levels or
aborting to top level, as the case may be.

[Debugger Command]return value
Returns value from the current stack frame. This command is available when the debug optimization
quality is greater than both speed and space. Care must be taken that the value is of the same type as
SBCL expects the stack frame to return.

[Debugger Command]restart-frame
Restarts execution of the current stack frame. This command is available when the debug optimization
quality is greater than both speed and space and when the frame is for a global function. If the function
is redefined in the debugger before the frame is restarted, the new function will be used.

Chapter 5: Debugger 34

5.8 Information Commands

Most of these commands print information about the current frame or function, but a few show general
information.

[Debugger Command]help
[Debugger Command]?

Displays a synopsis of debugger commands.

[Debugger Command]describe
Calls describe on the current function and displays the number of local variables.

[Debugger Command]print
Displays the current function call as it would be displayed by moving to this frame.

[Debugger Command]error
Prints the condition given to invoke-debugger and the active proceed cases.

[Debugger Command]backtrace [n]
Displays all the frames from the current to the bottom. Only shows n frames if specified. The printing
is controlled by *debug-print-variable-alist*.

5.9 Function Tracing

The tracer causes selected functions to print their arguments and their results whenever they are called.
Options allow conditional printing of the trace information and conditional breakpoints on function entry
or exit.

[Macro]cl:trace &rest specs
trace {Option Global-Value}* {Name {Option Value}*}*
trace is a debugging tool that provides information when specified functions are called. In its simplest
form:

(TRACE NAME-1 NAME-2 ...)

The NAMEs are not evaluated. Each may be one of the following:

• symbol, denoting a function or macro.

• fname, a valid function name, denoting a function.

• (method fname qualifiers* (specializers*)) denoting a method.

• (compiler-macro symbol) denoting a compiler macro.

• (labels fname :in outer-name) or (flet fname :in outer-name) denoting a local function where
outer-name may be any of the previous names for functions, macros, methods or compiler macros.
Tracing local functions may require debug policy 3 to inhibit inlining.

• string denoting all functions fbound to symbols whose home package is the package with the given
name.

Options allow modification of the default behavior. Each option is a pair of an option keyword and a
value form. Global options are specified before the first name, and affect all functions traced by a given
use of trace. Options may also be interspersed with function names, in which case they act as local
options, only affecting tracing of the immediately preceding function name. Local options override global
options.

By default, trace causes a printout on *trace-output* each time that one of the named functions is
entered or returns. (This is the basic, ansi Common Lisp behavior of trace.)

The following options are defined:

:report Report-Type
If Report-Type is trace (the default) then information is reported by printing immediately.
If Report-Type is nil, then the only effect of the trace is to execute other options (e.g.
print or break). Otherwise, Report-Type is treated as a function designator and, for each
trace event, funcalled with 5 arguments: trace depth (a non-negative integer), a function
name or a function object, a keyword (:enter, :exit or :non-local-exit), a stack frame,
and a list of values (arguments or return values).

Chapter 5: Debugger 35

:condition Form
:condition-after Form
:condition-all Form

If :condition is specified, then trace does nothing unless Form evaluates to true at the
time of the call. :condition-after is similar, but suppresses the initial printout, and is
tested when the function returns. :condition-all tries both before and after.

:break Form
:break-after Form
:break-all Form

If specified, and Form evaluates to true, then the debugger is invoked at the start of the
function, at the end of the function, or both, according to the respective option.

:print Form
:print-after Form
:print-all Form

In addition to the usual printout, the result of evaluating Form is printed at the start of the
function, at the end of the function, or both, according to the respective option. Multiple
print options cause multiple values to be printed.

:wherein Names
If specified, Names is a function name or list of names. trace does nothing unless a call to
one of those functions encloses the call to this function (i.e. it would appear in a backtrace.)
Anonymous functions have string names like "DEFUN FOO".

:encapsulate {:DEFAULT | t | NIL}
If t, the default, tracing is done via encapsulation (redefining the function name) rather than
by modifying the function. :default is not the default, but means to use encapsulation for
interpreted functions and funcallable instances, breakpoints otherwise. When encapsulation
is used, forms are *not* evaluated in the function’s lexical environment, but sb-debug:arg
can still be used.

:methods {T | NIL}
If t, any function argument naming a generic function will have its methods traced in
addition to the generic function itself.

:function Function-Form
This is a not really an option, but rather another way of specifying what function to trace.
The Function-Form is evaluated immediately, and the resulting function is traced.

:condition, :break and :print forms are evaluated in a context which mocks up the lexical environment
of the called function, so that sb-debug:var and sb-debug:arg can be used. The -after and -all forms
can use also use sb-debug:arg. In forms which are evaluated after the function call, (sb-debug:arg n)
returns the N-th value returned by the function.

[Macro]cl:untrace &rest specs
Remove tracing from the specified functions. Untraces all functions when called with no arguments.

[Variable]sb-debug:*trace-indentation-step*
the increase in trace indentation at each call level

[Variable]sb-debug:*max-trace-indentation*
If the trace indentation exceeds this value, then indentation restarts at 0.

[Variable]sb-debug:*trace-encapsulate-default*
the default value for the :encapsulate option to trace

[Variable]sb-debug:*trace-report-default*
the default value for the :report option to trace

Chapter 5: Debugger 36

5.10 Single Stepping

SBCL includes an instrumentation based single-stepper for compiled code, that can be invoked via the step
macro, or from within the debugger. See Section 5.6 [Debugger Policy Control], page 32, for details on
enabling stepping for compiled code.

The following debugger commands are used for controlling single stepping.

[Debugger Command]start
Selects the continue restart if one exists and starts single stepping. None of the other single stepping
commands can be used before stepping has been started either by using start or by using the standard
step macro.

[Debugger Command]step
Steps into the current form. Stepping will be resumed when the next form that has been compiled with
stepper instrumentation is evaluated.

[Debugger Command]next
Steps over the current form. Stepping will be disabled until evaluation of the form is complete.

[Debugger Command]out
Steps out of the current frame. Stepping will be disabled until the topmost stack frame that had been
stepped into returns.

[Debugger Command]stop
Stops the single stepper and resumes normal execution.

[Macro]cl:step form
The form is evaluated with single stepping enabled. Function calls outside the lexical scope of the form
can be stepped into only if the functions in question have been compiled with sufficient debug policy to
be at least partially steppable.

5.11 Enabling and Disabling the Debugger

In certain contexts (e.g., non-interactive applications), it may be desirable to turn off the SBCL debugger
(and possibly re-enable it). The functions here control the debugger.

[Function]sb-ext:disable-debugger
When invoked, this function will turn off both the sbcl debugger and ldb (the low-level debugger). See
also enable-debugger.

[Function]sb-ext:enable-debugger
Restore the debugger if it has been turned off by disable-debugger.

37

6 Efficiency

6.1 Slot access

6.1.1 Structure object slot access

Structure slot accessors are efficient only if the compiler is able to open code them: compiling a call to a
structure slot accessor before the structure is defined, declaring one notinline, or passing it as a functional
argument to another function causes severe performance degradation.

6.1.2 Standard object slot access

The most efficient way to access a slot of a standard-object is by using slot-value with a constant slot
name argument inside a defmethod body, where the variable holding the instance is a specializer parameter
of the method and is never assigned to. The cost is roughly 1.6 times that of an open coded structure slot
accessor.

Second most efficient way is to use a CLOS slot accessor, or slot-value with a constant slot name
argument, but in circumstances other than specified above. This may be up to 3 times as slow as the
method described above.

Example:

(defclass foo () ((bar)))

;; Fast: specializer and never assigned to

(defmethod quux ((foo foo) new)

(let ((old (slot-value foo ’bar)))

(setf (slot-value foo ’bar) new)

old))

;; Slow: not a specializer

(defmethod quux ((foo foo) new)

(let* ((temp foo)

(old (slot-value temp ’bar)))

(setf (slot-value temp ’bar) new)

old))

;; Slow: assignment to FOO

(defmethod quux ((foo foo) new)

(let ((old (slot-value foo ’bar)))

(setf (slot-value foo ’bar) new)

(setf foo new)

old))

Note that when profiling code such as this, the first few calls to the generic function are not representative,
as the dispatch mechanism is lazily set up during those calls.

6.2 Stack allocation

SBCL has fairly extensive support for performing allocations on the stack when a variable or function is
declared dynamic-extent. The dynamic-extent declarations are not verified, but are simply trusted as
long as sb-ext:*stack-allocate-dynamic-extent* is true.

[Variable]sb-ext:*stack-allocate-dynamic-extent*
If true (the default), the compiler believes dynamic-extent declarations and stack allocates otherwise
inaccessible parts of the object whenever possible.

SBCL recognizes any value which a variable declared dynamic-extent can take on as having dynamic
extent. This means that, in addition to the value a variable is bound to initially, a value assigned to a
variable by setq is also recognized as having dynamic extent when the variable is declared dynamic-extent.
Users can thus build complex structures on the stack using iteration and setq.

Chapter 6: Efficiency 38

At present, SBCL implements stack allocation for the following kinds of values when they are recognized
as having dynamic extent:

• &rest lists

• the results of cons, list, list*, and vector

• the result of simple forms of make-array: stack allocation is possible only if the resulting array is known
to be both simple and one-dimensional, and has a constant :element-type.

Note: stack space is limited, so allocation of a large vector may cause stack overflow. Stack overflow
checks are done except in zero safety policies.

• closures defined with flet or labels with a bound dynamic-extent declaration.

• anonymous closures defined with lambda

• user-defined structures when the structure constructor defined using defstruct has been declared
inline

Note: structures with “raw” slots can currently be stack-allocated only on x86 and x86-64. A “raw”
slot is one whose declared type is a subtype of exactly one of: double-float, single-float, (complex
double-float), (complex single-float), or sb-ext:word; but as an exception to the preceding, any
subtype of fixnum is not stored as raw despite also being a subtype of sb-ext:word.

• otherwise-inaccessible parts of objects recognized to be dynamic extent. The support for detecting
when this applies is very sophisticated. The compiler can do this detection when any value form for a
variable contains conditional allocations, function calls, inlined functions, anonymous closures, or even
other variables. This allows stack allocation of complex structures.

Examples:

;;; Declaiming a structure constructor inline before definition makes

;;; stack allocation possible.

(declaim (inline make-thing))

(defstruct thing obj next)

;;; Stack allocation of various objects bound to DYNAMIC-EXTENT

;;; variables.

(let* ((list (list 1 2 3))

(nested (cons (list 1 2) (list* 3 4 (list 5))))

(vector (make-array 3 :element-type ’single-float))

(thing (make-thing :obj list

:next (make-thing :obj (make-array 3))))

(closure (let ((y ...)) (lambda () y))))

(declare (dynamic-extent list nested vector thing closure))

...)

;;; Stack allocation of objects assigned to DYNAMIC-EXTENT variables.

(let ((x nil))

(declare (dynamic-extent x))

(setq x (list 1 2 3))

(dotimes (i 10)

(setq x (cons i x)))

...)

;;; Stack allocation of arguments to a local function is equivalent

;;; to stack allocation of local variable values.

(flet ((f (x)

(declare (dynamic-extent x))

...))

...

(f (list 1 2 3))

(f (cons (cons 1 2) (cons 3 4)))

...)

Chapter 6: Efficiency 39

;;; Stack allocation of &REST lists

(defun foo (&rest args)

(declare (dynamic-extent args))

...)

As a notable exception to recognizing otherwise inaccessible parts of other recognized dynamic extent
values, SBCL does not as of 1.0.48.21 propagate dynamic-extentness through &rest arguments – but another
conforming implementation might, so portable code should not rely on this.

(declaim (inline foo))

(defun foo (fun &rest arguments)

(declare (dynamic-extent arguments))

(apply fun arguments))

(defun bar (a)

;; SBCL will heap allocate the result of (LIST A), and stack allocate

;; only the spine of the &rest list -- so this is safe, but unportable.

;;

;; Another implementation, including earlier versions of SBCL might consider

;; (LIST A) to be otherwise inaccessible and stack-allocate it as well!

(foo #’car (list a)))

If dynamic extent constraints specified in the Common Lisp standard are violated, the best that can
happen is for the program to have garbage in variables and return values; more commonly, the system will
crash.

In particular, it is important to realize that this can interact in suprising ways with the otherwise
inaccessible parts criterion:

(let* ((a (list 1 2 3))

(b (cons a a)))

(declare (dynamic-extent b))

;; Unless A is accessed elsewhere as well, SBCL will consider

;; it to be otherwise inaccessible -- it can only be accessed

;; through B, after all -- and stack allocate it as well.

;;

;; Hence returning (CAR B) here is unsafe.

...)

6.3 Modular arithmetic

Some numeric functions have a property: N lower bits of the result depend only on N lower bits of (all
or some) arguments. If the compiler sees an expression of form (logand exp mask), where exp is a tree of
such “good” functions and mask is known to be of type (unsigned-byte w), where w is a “good” width, all
intermediate results will be cut to w bits (but it is not done for variables and constants!). This often results
in an ability to use simple machine instructions for the functions.

Consider an example.

(defun i (x y)

(declare (type (unsigned-byte 32) x y))

(ldb (byte 32 0) (logxor x (lognot y))))

The result of (lognot y) will be negative and of type (signed-byte 33), so a naive implementation on
a 32-bit platform is unable to use 32-bit arithmetic here. But modular arithmetic optimizer is able to do it:
because the result is cut down to 32 bits, the compiler will replace logxor and lognot with versions cutting
results to 32 bits, and because terminals (here—expressions x and y) are also of type (unsigned-byte 32),
32-bit machine arithmetic can be used.

As of SBCL 0.8.5 “good” functions are +, -; logand, logior, logxor, lognot and their combinations;
and ash with the positive second argument. “Good” widths are 32 on 32-bit CPUs and 64 on 64-bit CPUs.
While it is possible to support smaller widths as well, currently this is not implemented.

Chapter 6: Efficiency 40

6.4 Global and Always-Bound variables

[Macro]sb-ext:defglobal name value &optional doc
Defines name as a global variable that is always bound. value is evaluated and assigned to name both at
compile- and load-time, but only if name is not already bound.

Global variables share their values between all threads, and cannot be locally bound, declared special,
defined as constants, and neither bound nor defined as symbol macros.

See also the declarations sb-ext:global and sb-ext:always-bound.

[Declaration]sb-ext:global
Syntax: (sb-ext:global symbol*)

Only valid as a global proclamation.

Specifies that the named symbols cannot be proclaimed or locally declared special. Proclaiming an
already special or constant variable name as global signal an error. Allows more efficient value lookup
in threaded environments in addition to expressing programmer intention.

[Declaration]sb-ext:always-bound
Syntax: (sb-ext:always-bound symbol*)

Only valid as a global proclamation.

Specifies that the named symbols are always bound. Inhibits makunbound of the named symbols. Pro-
claiming an unbound symbol as always-bound signals an error. Allows the compiler to elide boundness
checks from value lookups.

6.5 Miscellaneous Efficiency Issues

FIXME: The material in the CMUCL manual about getting good performance from the compiler should
be reviewed, reformatted in Texinfo, lightly edited for SBCL, and substituted into this manual. In the
meantime, the original CMUCL manual is still 95+% correct for the SBCL version of the Python compiler.
See the sections

• Advanced Compiler Use and Efficiency Hints

• Advanced Compiler Introduction

• More About Types in Python

• Type Inference

• Source Optimization

• Tail Recursion

• Local Call

• Block Compilation

• Inline Expansion

• Object Representation

• Numbers

• General Efficiency Hints

• Efficiency Notes

Besides this information from the CMUCL manual, there are a few other points to keep in mind.

• The CMUCL manual doesn’t seem to state it explicitly, but Python has a mental block about type
inference when assignment is involved. Python is very aggressive and clever about inferring the types
of values bound with let, let*, inline function call, and so forth. However, it’s much more passive and
dumb about inferring the types of values assigned with setq, setf, and friends. It would be nice to fix
this, but in the meantime don’t expect that just because it’s very smart about types in most respects
it will be smart about types involved in assignments. (This doesn’t affect its ability to benefit from
explicit type declarations involving the assigned variables, only its ability to get by without explicit
type declarations.)

• Since the time the CMUCL manual was written, CMUCL (and thus SBCL) has gotten a generational
garbage collector. This means that there are some efficiency implications of various patterns of memory
usage which aren’t discussed in the CMUCL manual. (Some new material should be written about
this.)

Chapter 6: Efficiency 41

• SBCL has some important known efficiency problems. Perhaps the most important are

− The garbage collector is not particularly efficient, at least on platforms without the generational
collector (as of SBCL 0.8.9, all except x86).

− Various aspects of the PCL implementation of CLOS are more inefficient than necessary.

Finally, note that Common Lisp defines many constructs which, in the infamous phrase, “could be
compiled efficiently by a sufficiently smart compiler”. The phrase is infamous because making a compiler
which actually is sufficiently smart to find all these optimizations systematically is well beyond the state of
the art of current compiler technology. Instead, they’re optimized on a case-by-case basis by hand-written
code, or not optimized at all if the appropriate case hasn’t been hand-coded. Some cases where no such
hand-coding has been done as of SBCL version 0.6.3 include

• (reduce #’f x) where the type of x is known at compile time

• various bit vector operations, e.g. (position 0 some-bit-vector)

• specialized sequence idioms, e.g. (remove item list :count 1)

• cases where local compilation policy does not require excessive type checking, e.g. (locally (declare

(safety 1)) (assoc item list)) (which currently performs safe endp checking internal to assoc).

If your system’s performance is suffering because of some construct which could in principle be compiled
efficiently, but which the SBCL compiler can’t in practice compile efficiently, consider writing a patch to the
compiler and submitting it for inclusion in the main sources. Such code is often reasonably straightforward
to write; search the sources for the string “deftransform” to find many examples (some straightforward,
some less so).

42

7 Beyond the ANSI Standard

SBCL is derived from CMUCL, which implements many extensions to the ANSI standard. SBCL doesn’t
support as many extensions as CMUCL, but it still has quite a few. See Chapter 17 [Contributed Modules],
page 118.

7.1 Reader Extensions

7.1.1 Extended Package Prefix Syntax

SBCL supports extended package prefix syntax, which allows specifying an alternate package instead of
package for the reader to use as the default package for interning symbols:

package-name::form-with-interning-into-package

Example:

’foo::(bar quux zot) == ’(foo::bar foo::quux foo::zot)

package is not rebound during the course of reading a form with extended package prefix syntax; if
foo::bar would cause a read-time package lock violation, so does foo::(bar).

7.1.2 Symbol Name Normalization

SBCL also extends the reader to normalize all symbols to Normalization Form KC in builds with Unicode
enabled. Whether symbols are normalized is controlled by

[Function]sb-ext:readtable-normalization readtable
Returns t if readtable normalizes symbols to nfkc, and nil otherwise. The readtable-normalization
of the standard readtable is t.

Symbols created by intern and similar functions are not affected by this setting. If sb-ext:readtable-
normalization is t, symbols that are not normalized are escaped during printing.

7.1.3 Decimal Syntax for Rationals

SBCL supports a decimal syntax for rationals, modelled after the standard syntax for floating-point numbers.
If a number with floating-point syntax has an exponent marker of r or R (rather than one of the standard
exponent markers), it is read as the rational with the exact value of the decimal number expressed as a float.

In addition, setting or binding the value of *read-default-float-format* to rational around a call
to read or read-from-string has the effect that floating-point numbers without exponent markers are read
as rational numbers, as if there had been an explicit r or R marker.

Floating point numbers of all types are printed with an exponent marker while the value of
read-default-float-format is rational; however, rational numbers are printed in their standard
syntax, irrespective of the value of *read-default-float-format*.

7.2 Package-Local Nicknames

SBCL allows giving packages local nicknames: they allow short and easy-to-use names to be used without
fear of name conflict associated with normal nicknames.

A local nickname is valid only when inside the package for which it has been specified. Different packages
can use same local nickname for different global names, or different local nickname for same global name.

Symbol :package-local-nicknames in *features* denotes the support for this feature.

[Macro]cl:defpackage name [[option]]* ⇒ package
Options are extended to include

• :local-nicknames (local-nickname actual-package-name)*

The package has the specified local nicknames for the corresponding actual packages.

Example:

(defpackage :bar (:intern "X"))

(defpackage :foo (:intern "X"))

(defpackage :quux (:use :cl) (:local-nicknames (:bar :foo) (:foo :bar)))

Chapter 7: Beyond the ANSI Standard 43

(find-symbol "X" :foo) ; => FOO::X

(find-symbol "X" :bar) ; => BAR::X

(let ((*package* (find-package :quux)))

(find-symbol "X" :foo)) ; => BAR::X

(let ((*package* (find-package :quux)))

(find-symbol "X" :bar)) ; => FOO::X

[Function]sb-ext:package-local-nicknames package-designator
Returns an alist of (local-nickname . actual-package) describing the nicknames local to the designated
package.

When in the designated package, calls to find-package with the any of the local-nicknames will return
the corresponding actual-package instead. This also affects all implied calls to find-package, including
those performed by the reader.

When printing a package prefix for a symbol with a package local nickname, the local nickname is used
instead of the real name in order to preserve print-read consistency.

See also: add-package-local-nickname, package-locally-nicknamed-by-list, remove-package-

local-nickname, and the defpackage option :local-nicknames.

Experimental: interface subject to change.

[Function]sb-ext:package-locally-nicknamed-by-list package-designator
Returns a list of packages which have a local nickname for the designated package.

See also: add-package-local-nickname, package-local-nicknames, remove-package-local-

nickname, and the defpackage option :local-nicknames.

Experimental: interface subject to change.

[Function]sb-ext:add-package-local-nickname local-nickname actual-package &optional
package-designator

Adds local-nickname for actual-package in the designated package, defaulting to current package.
local-nickname must be a string designator, and actual-package must be a package designator.

Returns the designated package.

Signals a continuable error if local-nickname is already a package local nickname for a different package,
or if local-nickname is one of "CL", "COMMON-LISP", or, "KEYWORD", or if local-nickname is a
global name or nickname for the package to which the nickname would be added.

When in the designated package, calls to find-package with the local-nickname will return the package
the designated actual-package instead. This also affects all implied calls to find-package, including
those performed by the reader.

When printing a package prefix for a symbol with a package local nickname, local nickname is used
instead of the real name in order to preserve print-read consistency.

See also: package-local-nicknames, package-locally-nicknamed-by-list, remove-package-local-
nickname, and the defpackage option :local-nicknames.

Experimental: interface subject to change.

[Function]sb-ext:remove-package-local-nickname old-nickname &optional
package-designator

If the designated package had old-nickname as a local nickname for another package, it is removed.
Returns true if the nickname existed and was removed, and nil otherwise.

See also: add-package-local-nickname, package-local-nicknames, package-locally-nicknamed-

by-list, and the defpackage option :local-nicknames.

Experimental: interface subject to change.

7.3 Package Variance

Common Lisp standard specifies that “If the new definition is at variance with the current state of that
package, the consequences are undefined;” SBCL by default signals a full warning and retains as much of
the package state as possible.

This can be adjusted using sb-ext:*on-package-variance*:

Chapter 7: Beyond the ANSI Standard 44

[Variable]sb-ext:*on-package-variance*
Specifies behavior when redefining a package using defpackage and the definition is in variance with the
current state of the package.

The value should be of the form:

(:WARN [T | packages-names] :ERROR [T | package-names])

specifying which packages get which behaviour -- with t signifying the default unless otherwise specified.
If default is not specified, :warn is used.

:warn keeps as much state as possible and causes sbcl to signal a full warning.

:error causes sbcl to signal an error when the variant defpackage form is executed, with restarts
provided for user to specify what action should be taken.

Example:

(setf *on-package-variance* ’(:warn (:swank :swank-backend) :error t))

specifies to signal a warning if swank package is in variance, and an error otherwise.

7.4 Garbage Collection

SBCL provides additional garbage collection functionality not specified by ANSI.

[Variable]sb-ext:*after-gc-hooks*
Called after each garbage collection, except for garbage collections triggered during thread exits. In a
multithreaded environment these hooks may run in any thread.

[Function]sb-ext:gc &key full gen &allow-other-keys
Initiate a garbage collection.

The default is to initiate a nursery collection, which may in turn trigger a collection of one or more older
generations as well. If full is true, all generations are collected. If gen is provided, it can be used to
specify the oldest generation guaranteed to be collected.

7.4.1 Finalization

Finalization allows code to be executed after an object has been garbage collected. This is useful for example
for releasing foreign memory associated with a Lisp object.

[Function]sb-ext:finalize object function &key dont-save
Arrange for the designated function to be called when there are no more references to object, including
references in function itself.

If dont-save is true, the finalizer will be cancelled when save-lisp-and-die is called: this is useful
for finalizers deallocating system memory, which might otherwise be called with addresses from the old
image.

In a multithreaded environment function may be called in any thread. In both single and multithreaded
environments function may be called in any dynamic scope: consequences are unspecified if function
is not fully re-entrant.

Errors from function are handled and cause a warning to be signalled in whichever thread the function
was called in.

Examples:

;;; GOOD, assuming RELEASE-HANDLE is re-entrant.

(let* ((handle (get-handle))

(object (make-object handle)))

(finalize object (lambda () (release-handle handle)))

object)

;;; BAD, finalizer refers to object being finalized, causing

;;; it to be retained indefinitely!

(let* ((handle (get-handle))

(object (make-object handle)))

(finalize object

(lambda ()

(release-handle (object-handle object)))))

Chapter 7: Beyond the ANSI Standard 45

;;; BAD, not re-entrant!

(defvar *rec* nil)

(defun oops ()

(when *rec*

(error "recursive OOPS"))

(let ((*rec* t))

(gc))) ; or just cons enough to cause one

(progn

(finalize "oops" #’oops)

(oops)) ; GC causes re-entry to #’oops due to the finalizer

; -> ERROR, caught, WARNING signalled

[Function]sb-ext:cancel-finalization object
Cancel all finalizations for object, returning t if it had a finalizer.

7.4.2 Weak Pointers

Weak pointers allow references to objects to be maintained without keeping them from being garbage col-
lected: useful for building caches among other things.

Hash tables can also have weak keys and values: see Section 7.14 [Hash Table Extensions], page 60.

[Function]sb-ext:make-weak-pointer object
Allocate and return a weak pointer which points to object.

[Function]sb-ext:weak-pointer-value weak-pointer
If weak-pointer is valid, return the value of weak-pointer and t. If the referent of weak-pointer has
been garbage collected, returns the values nil and nil.

7.4.3 Introspection and Tuning

[Variable]sb-ext:*gc-run-time*
Total cpu time spent doing garbage collection (as reported by get-internal-run-time.) Initialized to
zero on startup. It is safe to bind this to zero in order to measure gc time inside a certain section of
code, but doing so may interfere with results reported by eg. time.

[Function]sb-ext:bytes-consed-between-gcs
The amount of memory that will be allocated before the next garbage collection is initiated. This can be
set with setf.

On gencgc platforms this is the nursery size, and defaults to 5% of dynamic space size.

Note: currently changes to this value are lost when saving core.

[Function]sb-ext:dynamic-space-size
Size of the dynamic space in bytes.

[Function]sb-ext:get-bytes-consed
Return the number of bytes consed since the program began. Typically this result will be a consed bignum,
so if you have an application (e.g. profiling) which can’t tolerate the overhead of consing bignums, you’ll
probably want either to hack in at a lower level (as the code in the sb-profile package does), or to
design a more microefficient interface and submit it as a patch.

[Function]sb-ext:gc-logfile
Return the pathname used to log garbage collections. Can be setf. Default is nil, meaning collections
are not logged. If non-null, the designated file is opened before and after each collection, and generation
statistics are appended to it.

[Function]sb-ext:generation-average-age generation
Average age of memory allocated to generation: average number of times objects allocated to the
generation have seen younger objects promoted to it. Available on gencgc platforms only.

Experimental: interface subject to change.

Chapter 7: Beyond the ANSI Standard 46

[Function]sb-ext:generation-bytes-allocated generation
Number of bytes allocated to generation currently. Available on gencgc platforms only.

Experimental: interface subject to change.

[Function]sb-ext:generation-bytes-consed-between-gcs generation
Number of bytes that can be allocated to generation before that generation is considered for garbage
collection. This value is meaningless for generation 0 (the nursery): see bytes-consed-between-gcs

instead. Default is 5% of the dynamic space size divided by the number of non-nursery generations. Can
be assigned to using setf. Available on gencgc platforms only.

Experimental: interface subject to change.

[Function]sb-ext:generation-minimum-age-before-gc generation
Minimum average age of objects allocated to generation before that generation is may be garbage
collected. Default is 0.75. See also generation-average-age. Can be assigned to using setf. Available
on gencgc platforms only.

Experimental: interface subject to change.

[Function]sb-ext:generation-number-of-gcs-before-promotion generation
Number of times garbage collection is done on generation before automatic promotion to the next
generation is triggered. Default is 1. Can be assigned to using setf. Available on gencgc platforms only.

Experimental: interface subject to change.

[Function]sb-ext:generation-number-of-gcs generation
Number of times garbage collection has been done on generation without promotion. Available on
gencgc platforms only.

Experimental: interface subject to change.

7.4.4 Tracing Live Objects Back to Roots

note: This feature is intended to help expert users diagnose rare low-level issues and should
not be needed during normal usage. On top of that, the interface and implementation are
experimental and may change at any time without further notice.

It is sometimes important to understand why a given object is retained in the Lisp image instead of
being garbage collected. To help with this problem, SBCL provides a mechanism that searches through the
different memory spaces, builds a path of references from a root to the object in question and finally reports
this paths:

[Function]sb-ext:search-roots weak-pointers &key criterion ignore print
Find roots keeping the targets of weak-pointers alive.

weak-pointers must be a single sb-ext:weak-pointer or a list of those, pointing to objects for which
roots should be searched.

criterion determines just how rooty (how deep) a root must be in order to be considered. Possible
values are:

:oldest This says we can stop upon seeing an object in the oldest gen to gc, or older. This is the
easiest test to satisfy.

:pseudo-static

This is usually the same as :oldest, unless the oldest gen to gc has been decreased.

:static To find a root of an image-backed object, you want to stop only at a truly :static object.

ignore is a list of objects to treat as if nonexistent in the heap. It can often be useful for finding a path
to an interned symbol other than through its package by specifying the package as an ignored object.

print controls whether discovered paths should be returned or printed. Possible values are

:verbose Return no values. Print discovered paths using a verbose format with each node of each
path on a separate line.

true (other than :verbose)
Return no values. Print discovered paths using a compact format with all nodes of each
path on a single line.

Chapter 7: Beyond the ANSI Standard 47

nil Do not print any output. Instead return the discovered paths as a list of lists. Each list has
the form

(target . (root node*))

where target is one of the target of one of the weak-pointers.

root is a description of the root at which the path starts and has one of the following forms:

:static If the root of the path is a non-collectible heap object.

:pinned If an unknown thread stack pins the root of the path.

((thread-name | thread-object) symbol currentp) If the path begins at a special binding
of symbol in a thread. currentp is a boolean indicating whether the value is current or
shadowed by another binding.

((thread-name | thread-object) guessed-pc) If the path begins at a lexical variable in
the function whose code contains guessed-pc.

Each node in the remainder of the path is a cons (object . slot) indicating that the slot
at index slot in object references the next path node.

Experimental: subject to change without prior notice.

An example of using this could look like this:

* (defvar *my-string* (list 1 2 "my string"))

MY-STRING

* (sb-ext:search-roots (sb-ext:make-weak-pointer (third *my-string*)))

-> ((SIMPLE-VECTOR 3)) #x10004E9EAF[2] -> (SYMBOL) #x5044100F[1] -> (CONS) #x100181FAE7[1] -> (CONS) #x100181FAF7[1] -> (CONS) #x100181FB07[0] -> #x100181F9AF

The single line of output on cl:*standard-output* shows the path from a root to "my string": the path
starts with SBCL’s internal package system data structures followed by the symbol (cl-user:*my-string*)
followed the three cons cells of the list.

The :print :verbose argument produces similar behavior but describe the path elements in more detail:

* (sb-ext:search-roots (sb-ext:make-weak-pointer (third *my-string*)) :print :verbose)

Path to "my string":

6 10004E9EAF [2] a (simple-vector 3)

0 5044100F [1] COMMON-LISP-USER::*MY-STRING*

0 100181FAE7 [1] a cons

0 100181FAF7 [1] a cons

0 100181FB07 [0] a cons

The :print nil argument is a bit different:

* (sb-ext:search-roots (sb-ext:make-weak-pointer (third *my-string*)) :print nil)

(("my string" :STATIC (#(*MY-STRING* 0 0) . 2) (*MY-STRING* . 1)

((1 2 "my string") . 1) ((2 "my string") . 1) (("my string") . 0)))

There is no output on cl:*standard-output* and the return value is a single path for the target object
"my string". As before, the path shows the symbol and the three cons cells.

7.5 Generic Function Dispatch

If a generic function with standard or short method combination is called, and the set of applicable methods
does not include any primary methods, then the generic function no-primary-method will be invoked, with
the arguments to no-primary-method being the invoked generic function and its arguments, similar to
the standard function no-applicable-method. As with no-applicable-method, the default method on
no-primary-method signals an error; programmers may define methods on it.

7.6 Slot Access

The slot access functions slot-value, (setf slot-value), slot-boundp and slot-makunbound are de-
fined to function as expected on conditions (of metaclass condition-class) and, with some limitations, on
structures (of metaclass structure-class).

For structures:

• The name of a slot for the purposes of the slot access functions is the symbol used as the slot-name in
the slot-description in the defstruct form;

Chapter 7: Beyond the ANSI Standard 48

• slot-value and slot-boundp function as expected, including (for slot-value) calling and respecting
the return value of slot-unbound if the slot is unbound;

• (setf slot-value) functions as expected, including performing type checks to verify that the new
value is of an appropriate type for the slot;

• slot-makunbound makes the slot be unbound only when the slot corresponds to an &aux argument with
no default in a by-order-of-arguments (BOA) constructor. In all other cases calling slot-makunbound

on a structure signals an error.

• If any of the slot access functions is called with a structure instance which does not have a slot of the
given name, slot-missing is called and the return value of the effective method, if any, is respected.

7.7 Metaobject Protocol

7.7.1 AMOP Compatibility of Metaobject Protocol

SBCL supports a metaobject protocol which is intended to be compatible with AMOP; present exceptions
to this (as distinct from current bugs) are:

• compute-effective-method only returns one value, not two.

There is no record of what the second return value was meant to indicate, and apparently no clients for
it.

• The direct superclasses of funcallable-standard-object are (function standard-object), not
(standard-object function).

This is to ensure that the standard-object class is the last of the standardized classes before t appear-
ing in the class precedence list of generic-function and standard-generic-function, as required
by section 1.4.4.5 of the ANSI specification.

• the arguments :declare and :declarations to ensure-generic-function are both accepted, with
the leftmost argument defining the declarations to be stored and returned by generic-function-

declarations.

Where AMOP specifies :declarations as the keyword argument to ensure-generic-function, the
Common Lisp standard specifies :declare. Portable code should use :declare.

• although SBCL obeys the requirement in AMOP that validate-superclass should treat
standard-class and funcallable-standard-class as compatible metaclasses, we impose an
additional requirement at class finalization time: a class of metaclass funcallable-standard-class

must have function in its superclasses, and a class of metaclass standard-class must not.

After a class has been finalized, it is associated with a class prototype which is accessible by a standard
mop function class-prototype. The user can then ask whether this object is a function or not in
several different ways: whether it is a function according to typep; whether its class-of is subtypep
function, or whether function appears in the superclasses of the class. The additional consistency
requirement comes from the desire to make all of these answers the same.

The following class definitions are bad, and will lead to errors either immediately or if an instance is
created:

(defclass bad-object (funcallable-standard-object)

()

(:metaclass standard-class))

(defclass bad-funcallable-object (standard-object)

()

(:metaclass funcallable-standard-class))

The following definition is acceptable:

(defclass mixin ()

((slot :initarg slot)))

(defclass funcallable-object (funcallable-standard-object mixin)

()

(:metaclass funcallable-standard-class))

and leads to a class whose instances are funcallable and have one slot.

Chapter 7: Beyond the ANSI Standard 49

Note that this requirement also applies to the class funcallable-standard-object, which has meta-
class funcallable-standard-class rather than standard-class as AMOP specifies.

• the requirement that “No portable class Cp may inherit, by virtue of being a direct or indirect subclass
of a specified class, any slot for which the name is a symbol accessible in the common-lisp-user package
or exported by any package defined in the ANSI Common Lisp standard.” is interpreted to mean that
the standardized classes themselves should not have slots named by external symbols of public packages.

The rationale behind the restriction is likely to be similar to the ANSI Common Lisp restriction on
defining functions, variables and types named by symbols in the Common Lisp package: preventing two
independent pieces of software from colliding with each other.

• specializations of the new-value argument to (setf slot-value-using-class) are not allowed: all
user-defined methods must have a specializer of the class t.

This prohibition is motivated by a separation of layers: the slot-value-using-class family of func-
tions is intended for use in implementing different and new slot allocation strategies, rather than
in performing application-level dispatching. Additionally, with this requirement, there is a one-to-
one mapping between metaclass, class and slot-definition-class tuples and effective methods of (setf
slot-value-using-class), which permits optimization of (setf slot-value-using-class)’s dis-
criminating function in the same manner as for slot-value-using-class and slot-boundp-using-

class.

Note that application code may specialize on the new-value argument of slot accessors.

• the class named by the name argument to ensure-class, if any, is only redefined if it is the proper
name of that class; otherwise, a new class is created.

This is consistent with the description of ensure-class in AMOP as the functional version of defclass,
which has this behaviour; however, it is not consistent with the weaker requirement in AMOP, which
states that any class found by find-class, no matter what its class-name, is redefined.

• an error is not signaled in the case of the :name initialization argument for slot-definition objects
being a constant, when the slot definition is of type structure-slot-definition (i.e. it is associated
with a class of type structure-class).

This allows code which uses constant names for structure slots to continue working as specified in ANSI,
while enforcing the constraint for all other types of slot.

• the class named t is not an instance of the built-in-class metaclass.

AMOP specifies, in the “Inheritance Structure of Metaobject Classes” section, that the class named t

should be an instance of built-in-class. However, it also specifies that validate-superclass should
return true (indicating that a direct superclass relationship is permissible) if the second argument is the
class named t. Also, ANSI specifies that classes with metaclass built-in-class may not be subclassed
using defclass, and also that the class named t is the universal superclass, inconsistent with it being
a built-in-class.

• uses of change-class and redefinitions of classes with defclass (or the functional interfaces
ensure-class or ensure-class-using-class) must ensure that for each slot with allocation
:instance or :class, the set of applicable methods on the slot-value-using-class family of
generic functions is the same before and after the change.

This is required for correct operation of the protocol to update instances for the new or redefined class,
and can be seen as part of the contract of the :instance or :class allocations.

• Metaobject protocol users may wish to override compute-discriminating-function for their own
generic function classes. Overriding implementations of compute-discriminating-function must, in
order to participate in the no-applicable-method and no-primary-method protocols, perform ap-
propriate checks on the return value of compute-applicable-methods before processing the effective
method; the standard effective method contains error-invoking forms, but those forms have no access
to the generic function invocation’s arguments.

7.7.2 Metaobject Protocol Extensions

In addition, SBCL supports extensions to the Metaobject protocol from AMOP; at present, they are:

• compile-time support for generating specializer metaobjects from specializer names in defmethod forms
is provided by the make-method-specializers-form function, which returns a form which, when evalu-
ated in the lexical environment of the defmethod, returns a list of specializer metaobjects. This operator

Chapter 7: Beyond the ANSI Standard 50

suffers from similar restrictions to those affecting make-method-lambda, namely that the generic func-
tion must be defined when the defmethod form is expanded, so that the correct method of make-method-
specializers-form is invoked. The system-provided method on make-method-specializers-form

generates a call to find-class for each symbol specializer name, and a call to intern-eql-specializer
for each (eql x) specializer name.

• run-time support for converting between specializer names and specializer metaobjects, mostly
for the purposes of find-method, is provided by parse-specializer-using-class and
unparse-specializer-using-class, which dispatch on their first argument, the generic function
associated with a method with the given specializer. The system-provided methods on those methods
convert between classes and proper names and between lists of the form (eql x) and interned eql
specializer objects.

• distinguishing unbound instance allocated slots from bound ones when using standard-instance-

access and funcallable-standard-instance-access is possible by comparison to the symbol-macro
+slot-unbound+.

7.8 Extensible Sequences

ANSI Common Lisp has a class sequence with subclasses list and vector on which the “sequence functions”
like find, subseq, etc. operate. As an extension to the ANSI specification, SBCL allows additional subclasses
of sequence to be defined1.

Users of this extension just make instances of sequence subclasses and transparently operate on them
using sequence functions:

(coerce (subseq (make-instance ’my-sequence) 5 10) ’list)

From this perspective, no distinction between builtin and user-defined sequence subclasses should be
necessary.

Providers of the extension, that is of user-defined sequence subclasses, have to adhere to a “sequence
protocol” which consists of a set of generic functions in the sequence package.

A minimal sequence subclass has to specify standard-object and sequence as its superclasses and has
to be the specializer of the sequence parameter of methods on at least the following generic functions:

[Generic Function]sb-sequence:length sequence
Returns the length of sequence or signals a protocol-unimplemented error if the sequence protocol is
not implemented for the class of sequence.

[Generic Function]sb-sequence:elt sequence index
Returns the element at position index of sequence or signals a protocol-unimplemented error if the
sequence protocol is not implemented for the class of sequence.

[Generic Function](setf sb-sequence:elt)
Replaces the element at position index of sequence with new-value and returns new-value or signals
a protocol-unimplemented error if the sequence protocol is not implemented for the class of sequence.

[Generic Function]sb-sequence:adjust-sequence sequence length &key initial-element
initial-contents

Return destructively modified sequence or a freshly allocated sequence of the same class as sequence

of length length. Elements of the returned sequence are initialized to initial-element, if supplied,
initialized to initial-contents if supplied, or identical to the elements of sequence if neither is supplied.
Signals a protocol-unimplemented error if the sequence protocol is not implemented for the class of
sequence.

[Generic Function]sb-sequence:make-sequence-like sequence length &key initial-element
initial-contents

Returns a freshly allocated sequence of length length and of the same class as sequence. Elements of the
new sequence are initialized to initial-element, if supplied, initialized to initial-contents if supplied,
or identical to the elements of sequence if neither is supplied. Signals a protocol-unimplemented error
if the sequence protocol is not implemented for the class of sequence.

1 A motivation, rationale and additional examples for the design of this extension can be found in the paper Rhodes,
Christophe (2007): User-extensible sequences in Common Lisp available for download at http://www.doc.gold.
ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf.

http://www.doc.gold.ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf
http://www.doc.gold.ac.uk/~mas01cr/papers/ilc2007/sequences-20070301.pdf

Chapter 7: Beyond the ANSI Standard 51

make-sequence-like is needed for functions returning freshly-allocated sequences such as subseq or
copy-seq. adjust-sequence is needed for functions which destructively modify their arguments such as
delete. In fact, all other sequence functions can be implemented in terms of the above functions and
actually are, if no additional methods are defined. However, relying on these generic implementations, in
particular not implementing the iterator protocol can incur a high performance penalty See Section 7.8.1
[Iterator Protocol], page 52.

When the sequence protocol is only partially implemented for a given sequence subclass, an attempt to
apply one of the missing operations to instances of that class signals the following condition:

[Condition]sb-sequence:protocol-unimplemented
Class precedence list: protocol-unimplemented, type-error, error, serious-condition,
condition, t

This error is signaled if a sequence operation is applied to an instance of a sequence class that does not
support the operation.

In addition to the mandatory functions above, methods on the sequence functions listed below can be
defined.

There are two noteworthy irregularities:

• The function sb-sequence:emptyp does not have a counterpart in the cl package. It is intended to be
used instead of length when working with lazy or infinite sequences.

• The functions map, concatenate and merge receive a type designator specifying the type of
the constructed sequence as their first argument. However, the corresponding generic functions
sb-sequence:map, sb-sequence:concatenate and sb-sequence:merge receive a prototype instance
of the requested sequence subclass instead.

[Generic Function]sb-sequence:emptyp sequence
Returns t if sequence is an empty sequence and nil otherwise. Signals an error if sequence is not a
sequence.

• sb-sequence:count, sb-sequence:count-if, sb-sequence:count-if-not

• sb-sequence:find, sb-sequence:find-if, sb-sequence:find-if-not

• sb-sequence:position, sb-sequence:position-if, sb-sequence:position-if-not

• sb-sequence:subseq

• sb-sequence:copy-seq

• sb-sequence:fill

•

[Generic Function]sb-sequence:map result-prototype function sequence &rest sequences
Implements cl:map for extended sequences.

result-prototype corresponds to the result-type of cl:map but receives a prototype instance
of an extended sequence class instead of a type specifier. By dispatching on result-prototype,
methods on this generic function specify how extended sequence classes act when they are specified
as the result type in a cl:map call. result-prototype may not be fully initialized and thus should
only be used for dispatch and to determine its class.

Another difference to cl:map is that function is a function, not a function designator.

• sb-sequence:nsubstitute, sb-sequence:nsubstitute-if, sb-sequence:nsubstitute-if-not,
sb-sequence:substitute, sb-sequence:substitute-if, sb-sequence:substitute-if-not

• sb-sequence:replace

• sb-sequence:nreverse, sb-sequence:reverse

•

[Generic Function]sb-sequence:concatenate result-prototype &rest sequences
Implements cl:concatenate for extended sequences.

result-prototype corresponds to the result-type of cl:concatenate but receives a proto-
type instance of an extended sequence class instead of a type specifier. By dispatching on
result-prototype, methods on this generic function specify how extended sequence classes act
when they are specified as the result type in a cl:concatenate call. result-prototype may not
be fully initialized and thus should only be used for dispatch and to determine its class.

Chapter 7: Beyond the ANSI Standard 52

• sb-sequence:reduce

• sb-sequence:mismatch

• sb-sequence:search

• sb-sequence:delete, sb-sequence:delete-if, sb-sequence:delete-if-not,
sb-sequence:remove, sb-sequence:remove-if, sb-sequence:remove-if-not,

• sb-sequence:delete-duplicates, sb-sequence:remove-duplicates

• sb-sequence:sort, sb-sequence:stable-sort

•

[Generic Function]sb-sequence:merge result-prototype sequence1 sequence2 predicate &key
key

Implements cl:merge for extended sequences.

result-prototype corresponds to the result-type of cl:merge but receives a prototype instance
of an extended sequence class instead of a type specifier. By dispatching on result-prototype,
methods on this generic function specify how extended sequence classes act when they are specified
as the result type in a cl:merge call. result-prototype may not be fully initialized and thus
should only be used for dispatch and to determine its class.

Another difference to cl:merge is that predicate is a function, not a function designator.

In the spirit of dolist, generic sequences can be traversed using the macro

[Macro]sb-sequence:dosequence (element sequence &optional return) &body body
Executes body with element subsequently bound to each element of sequence, then returns return.

7.8.1 Iterator Protocol

The iterator protocol allows subsequently accessing some or all elements of a sequence in forward or reverse
direction. Users first call make-sequence-iterator to create an iteration state and receive functions to query
and mutate it. These functions allow, among other things, moving to, retrieving or modifying elements of
the sequence. An iteration state consists of a state object, a limit object, a from-end indicator and the
following six functions to query or mutate this state:

[Function]step function sequence iterator from-end
Moves the iterator one position forward or backward in the associated sequence depending on the iteration
direction.

[Function]endp function sequence iterator limit from-end
Returns non-nil when the iterator has reached the end of the associated sequence with respect to the
iteration direction.

[Function]element function sequence iterator
Returns the sequence element associated to the current position of the iteration.

[Function]setf element function new-value sequence iterator
Destructively modifies the associates sequence by replacing the sequence element associated to the current
iteration position with a new value.

[Function]index function sequence iterator
Returns the position of the iteration in the associated sequence.

[Function]copy function sequence iterator
Returns a copy of the iteration state which can be mutated independently of the copied iteration state.

An iterator is created by calling:

[Generic Function]sb-sequence:make-sequence-iterator sequence &key from-end start end
Returns a sequence iterator for sequence or, if start and/or end are supplied, the subsequence bounded
by start and end as nine values:

1. iterator state 2. limit 3. from-end 4. step function 5. endp function 6. element function 7. setf
element function 8. index function 9. copy state function

If from-end is nil, the constructed iterator visits the specified elements in the order in which they appear
in sequence. Otherwise, the elements are visited in the opposite order.

Chapter 7: Beyond the ANSI Standard 53

Note that make-sequence-iterator calls make-simple-sequence-iterator when there is no special-
ized method for a particular sequence subclass. See Section 7.8.2 [Simple Iterator Protocol], page 53.

The following convenience macros simplify traversing sequences using iterators:

[Macro]sb-sequence:with-sequence-iterator (&optional iterator limit from-end-p step endp
element set-element index copy) (sequence &key from-end start end) &body body

Executes body with the elements of vars bound to the iteration state returned by make-sequence-

iterator for sequence and args. Elements of vars may be nil in which case the corresponding value
returned by make-sequence-iterator is ignored.

[Macro]sb-sequence:with-sequence-iterator-functions (&optional step endp elt setf index
copy) (sequence &rest args &key from-end start end) &body body

Executes body with the names step, endp, elt, setf, index and copy bound to local functions which
execute the iteration state query and mutation functions returned by make-sequence-iterator for
sequence and args. When some names are not supplied or nil is supplied for a given name, no local
functions are established for those names. The functions established for step, endp, elt, setf, index
and copy have dynamic extent.

7.8.2 Simple Iterator Protocol

For cases in which the full flexibility and performance of the general sequence iterator protocol is not required,
there is a simplified sequence iterator protocol consisting of a few generic functions which can be specialized
for iterator classes:

[Generic Function]sb-sequence:iterator-step sequence iterator from-end
Moves iterator one position forward or backward in sequence depending on the iteration direction
encoded in from-end.

[Generic Function]sb-sequence:iterator-endp sequence iterator limit from-end
Returns non-NIL when iterator has reached limit (which may correspond to the end of sequence)
with respect to the iteration direction encoded in from-end.

[Generic Function]sb-sequence:iterator-element sequence iterator
Returns the element of sequence associated to the position of iterator.

[Generic Function](setf sb-sequence:iterator-element)
Destructively modifies sequence by replacing the sequence element associated to position of iterator
with new-value.

[Generic Function]sb-sequence:iterator-index sequence iterator
Returns the position of iterator in sequence.

[Generic Function]sb-sequence:iterator-copy sequence iterator
Returns a copy of iterator which also traverses sequence but can be mutated independently of
iterator.

Iterator objects implementing the above simple iteration protocol are created by calling the following
generic function:

[Generic Function]sb-sequence:make-simple-sequence-iterator sequence &key from-end start
end

Returns a sequence iterator for sequence, start, end and from-end as three values:

1. iterator state 2. limit 3. from-end

The returned iterator can be used with the generic iterator functions iterator-step, iterator-endp,
iterator-element, (setf iterator-element), iterator-index and iterator-copy.

7.9 Support For Unix

7.9.1 Command-line arguments

The UNIX command line can be read from the variable sb-ext:*posix-argv*.

Chapter 7: Beyond the ANSI Standard 54

7.9.2 Querying the process environment

The UNIX environment can be queried with the sb-ext:posix-getenv function.

[Function]sb-ext:posix-getenv name
Return the "value" part of the environment string "name=value" which corresponds to name, or nil if
there is none.

7.9.3 Running external programs

External programs can be run with sb-ext:run-program.2

[Function]sb-ext:run-program program args &key env environment wait search pty input
if-input-does-not-exist output if-output-exists error if-error-exists status-hook
external-format directory preserve-fds use-posix-spawn

run-program creates a new process specified by program. args is a list of strings to be passed literally to
the new program. In posix environments, this list becomes the array supplied as the second parameter
to the execv() or execvp() system call, each list element becoming one array element. The strings should
not contain shell escaping, as there is no shell involvement. Further note that while conventionally the
process receives its own pathname in argv[0], that is automatic, and the 0th string should not be present
in args.

The program arguments and the environment are encoded using the default external format for streams.

run-program will return a process structure. See the cmu Common Lisp Users Manual for details about
the process structure.

Notes about Unix environments (as in the :environment and :env args):

• The sbcl implementation of run-program, like Perl and many other programs, but unlike the
original cmu cl implementation, copies the Unix environment by default.

• Running Unix programs from a setuid process, or in any other situation where the Unix environment
is under the control of someone else, is a mother lode of security problems. If you are contemplating
doing this, read about it first. (The Perl community has a lot of good documentation about this
and other security issues in script-like programs.)

The &key arguments have the following meanings:
:environment

a list of STRINGs describing the new Unix environment (as in "man environ"). The default
is to copy the environment of the current process.

:env an alternative lossy representation of the new Unix environment, for compatibility with cmu

cl

:search Look for program in each of the directories in the child’s $PATH environment variable.
Otherwise an absolute pathname is required.

:wait If non-NIL (default), wait until the created process finishes. If nil, continue running Lisp
until the program finishes.

:pty (not supported on win32)
Either t, nil, or a stream. Unless nil, the subprocess is established under a pty. If :pty
is a stream, all output to this pty is sent to this stream, otherwise the process-pty slot is
filled in with a stream connected to pty that can read output and write input.

:input Either t, nil, a pathname, a stream, or :stream. t: the standard input for the current
process is inherited. nil: /dev/null (nul on win32) is used. pathname: the specified file is
used. stream: all the input is read from that stream and sent to the subprocess. :stream:
the process-input slot is filled in with a stream that sends its output to the process.
Defaults to nil.

2 In SBCL versions prior to 1.0.13, sb-ext:run-program searched for executables in a manner somewhat incom-
patible with other languages. As of this version, SBCL uses the system library routine execvp(3), and no longer
contains the function, find-executable-in-search-path, which implemented the old search. Users who need this
function may find it in run-program.lisp versions 1.67 and earlier in SBCL’s CVS repository here http://sbcl.
cvs.sourceforge.net/sbcl/sbcl/src/code/run-program.lisp?view=log. However, we caution such users that
this search routine finds executables that system library routines do not.

http://sbcl.cvs.sourceforge.net/sbcl/sbcl/src/code/run-program.lisp?view=log
http://sbcl.cvs.sourceforge.net/sbcl/sbcl/src/code/run-program.lisp?view=log

Chapter 7: Beyond the ANSI Standard 55

:if-input-does-not-exist (when :input is the name of a file)
can be one of: :error to generate an error :create to create an empty file nil (the default)
to return nil from run-program

:output Either t, nil, a pathname, a stream, or :stream. t: the standard output for the current
process is inherited. nil: /dev/null (nul on win32) is used. pathname: the specified file
is used. stream: all the output from the process is written to this stream. :stream: the
process-output slot is filled in with a stream that can be read to get the output. Defaults
to nil.

:error Same as :output, additionally accepts :output, making all error output routed to the same
place as normal output. Defaults to :output.

:if-output-exists (when :output is the name of a file)
can be one of: :error (the default) to generate an error :supersede to supersede the file
with output from the program :append to append output from the program to the file nil
to return nil from run-program, without doing anything

:if-error-exists

Same as :if-output-exists, controlling :error output to files. Ignored when :error

:output. Defaults to :error.

:status-hook

This is a function the system calls whenever the status of the process changes. The function
takes the process as an argument.

:external-format

The external-format to use for :input, :output, and :error :STREAMs.

:directory

Specifies the directory in which the program should be run. nil (the default) means the
directory is unchanged.

:preserve-fds

A sequence of file descriptors which should remain open in the child process.

Windows specific options:
:escape-arguments (default t)

Controls escaping of the arguments passed to CreateProcess.

:window (default nil)
When nil, the subprocess decides how it will display its window. The following
options control how the subprocess window should be displayed: :hide, :show-normal,
:show-maximized, :show-minimized, :show-no-activate, :show-min-no-active,
:show-na. Note: console application subprocesses may or may not display a console
window depending on whether the sbcl runtime is itself a console or gui application.
Invoke cmd /C start to consistently display a console window or use the :window :hide

option to consistently hide the console window.

When sb-ext:run-program is called with wait equal to NIL, an instance of class sb-ext:process is
returned. The following functions are available for use with processes:

[Function]sb-ext:process-p object
t if object is a process, nil otherwise.

[Function]sb-ext:process-input instance
The input stream of the process or nil.

[Function]sb-ext:process-output instance
The output stream of the process or nil.

[Function]sb-ext:process-error instance
The error stream of the process or nil.

[Function]sb-ext:process-alive-p process
Return t if process is still alive, nil otherwise.

Chapter 7: Beyond the ANSI Standard 56

[Function]sb-ext:process-status process
Return the current status of process. The result is one of :running, :stopped, :exited, or :signaled.

[Function]sb-ext:process-wait process &optional check-for-stopped
Wait for process to quit running for some reason. When check-for-stopped is t, also returns when
process is stopped. Returns process.

[Function]sb-ext:process-exit-code process
The exit code or the signal of a stopped process.

[Function]sb-ext:process-core-dumped instance
t if a core image was dumped by the process.

[Function]sb-ext:process-close process
Close all streams connected to process and stop maintaining the status slot.

[Function]sb-ext:process-kill process signal &optional whom
Hand signal to process. If whom is :pid, use the kill Unix system call. If whom is :process-group,
use the killpg Unix system call. If whom is :pty-process-group deliver the signal to whichever process
group is currently in the foreground. Returns t if successful, otherwise returns nil and error number
(two values).

7.10 Unicode Support

SBCL provides support for working with Unicode text and querying the standard Unicode database for
information about individual codepoints. Unicode-related functions are located in the sb-unicode package.

SBCL also extends ANSI character literal syntax to support Unicode codepoints. You can either specify a
character by its Unicode name, with spaces replaced by underscores, if a unique name exists3 or by giving its
hexadecimal codepoint preceded by a “U”, an optional “+”, and an arbitrary number of leading zeros. You
may also input the character directly into your source code if it can be encoded in your file. If a character
had an assigned name in Unicode 1.0 that was distinct from its current name, you may also use that name
(with spaces replaced by underscores) to specify the character, unless the name is already associated with a
codepoint in the latest Unicode standard (such as “BELL”).

For example, you can specify the codepoint U+00E1 (“Latin Small Letter A With Acute”) as

• #\LATIN_SMALL_LETTER_A_WITH_ACUTE

• #\LATIN_SMALL_LETTER_A_ACUTE

• #\á assuming a Unicode source file

• #\U00E1

• #\UE1

• #\U+00E1

7.10.1 Unicode property access

The following functions can be used to find information about a Unicode codepoint.

[Function]sb-unicode:general-category character
Returns the general category of character as it appears in UnicodeData.txt

[Function]sb-unicode:bidi-class character
Returns the bidirectional class of character

[Function]sb-unicode:combining-class character
Returns the canonical combining class (ccc) of character

[Function]sb-unicode:decimal-value character
Returns the decimal digit value associated with character or nil if there is no such value.

The only characters in Unicode with a decimal digit value are those that are part of a range of characters
that encode the digits 0-9. Because of this, ‘(decimal-digit c) <=> (digit-char-p c 10)‘ in #+sb-unicode
builds

3 Please note that the codepoint U+1F5CF (PAGE) introduced in Unicode 7.0 is named UNICODE_PAGE, since the
name “Page” is required to be assigned to form-feed (U+0C) by the ANSI standard.

Chapter 7: Beyond the ANSI Standard 57

[Function]sb-unicode:digit-value character
Returns the Unicode digit value of character or nil if it doesn’t exist.

Digit values are guaranteed to be integers between 0 and 9 inclusive. All characters with decimal digit
values have the same digit value, but there are characters (such as digits of number systems without a 0
value) that have a digit value but no decimal digit value

[Function]sb-unicode:numeric-value character
Returns the numeric value of character or nil if there is no such value. Numeric value is the most
general of the Unicode numeric properties. The only constraint on the numeric value is that it be a
rational number.

[Function]sb-unicode:mirrored-p character
Returns t if character needs to be mirrored in bidirectional text. Otherwise, returns nil.

[Function]sb-unicode:bidi-mirroring-glyph character
Returns the mirror image of character if it exists. Otherwise, returns nil.

[Function]sb-unicode:age character
Returns the version of Unicode in which character was assigned as a pair of values, both integers,
representing the major and minor version respectively. If character is not assigned in Unicode, returns
nil for both values.

[Function]sb-unicode:hangul-syllable-type character
Returns the Hangul syllable type of character. The syllable type can be one of :l, :v, :t, :lv, or :lvt.
If the character is not a Hangul syllable or Jamo, returns nil

[Function]sb-unicode:east-asian-width character
Returns the East Asian Width property of character as one of the keywords :n (Narrow), :a (Ambigu-
ous), :h (Halfwidth), :w (Wide), :f (Fullwidth), or :na (Not applicable)

[Function]sb-unicode:script character
Returns the Script property of character as a keyword. If character does not have a known script,
returns :unknown

[Function]sb-unicode:char-block character
Returns the Unicode block in which character resides as a keyword. If character does not have a
known block, returns :no-block

[Function]sb-unicode:unicode-1-name character
Returns the name assigned to character in Unicode 1.0 if it is distinct from the name currently assigned
to character. Otherwise, returns nil. This property has been officially obsoleted by the Unicode
standard, and is only included for backwards compatibility.

[Function]sb-unicode:proplist-p character property
Returns t if character has the specified property. property is a keyword representing one of the
properties from PropList.txt, with underscores replaced by dashes.

[Function]sb-unicode:uppercase-p character
Returns t if character has the Unicode property Uppercase and nil otherwise

[Function]sb-unicode:lowercase-p character
Returns t if character has the Unicode property Lowercase and nil otherwise

[Function]sb-unicode:cased-p character
Returns t if character has a (Unicode) case, and nil otherwise

[Function]sb-unicode:case-ignorable-p character
Returns t if character is Case Ignorable as defined in Unicode 6.3, Chapter 3

[Function]sb-unicode:alphabetic-p character
Returns t if character is Alphabetic according to the Unicode standard and nil otherwise

[Function]sb-unicode:ideographic-p character
Returns t if character has the Unicode property Ideographic, which loosely corresponds to the set of
"Chinese characters"

Chapter 7: Beyond the ANSI Standard 58

[Function]sb-unicode:math-p character
Returns t if character is a mathematical symbol according to Unicode and nil otherwise

[Function]sb-unicode:whitespace-p character
Returns t if character is whitespace according to Unicode and nil otherwise

[Function]sb-unicode:soft-dotted-p character
Returns t if character has a soft dot (such as the dots on i and j) which disappears when accents are
placed on top of it. and nil otherwise

[Function]sb-unicode:hex-digit-p character &key ascii
Returns t if character is a hexadecimal digit and nil otherwise. If :ascii is non-NIL, fullwidth
equivalents of the Latin letters A through f are excluded.

[Function]sb-unicode:default-ignorable-p character
Returns t if character is a Default Ignorable Code Point

[Function]sb-unicode:grapheme-break-class char
Returns the grapheme breaking class of character, as specified in uax #29.

[Function]sb-unicode:word-break-class char
Returns the word breaking class of character, as specified in uax #29.

[Function]sb-unicode:sentence-break-class char
Returns the sentence breaking class of character, as specified in uax #29.

[Function]sb-unicode:line-break-class character &key resolve
Returns the line breaking class of character, as specified in uax #14. If :resolve is nil, returns
the character class found in the property file. If :resolve is non-NIL, certain line-breaking classes
will be mapped to other classes as specified in the applicable standards. Additionally, if :resolve is
:east-asian, Ambigious (class :ai) characters will be mapped to the Ideographic (:id) class instead of
Alphabetic (:al).

7.10.2 String operations

SBCL can normalize strings using:

[Function]sb-unicode:normalize-string string &optional form filter
Normalize string to the Unicode normalization form form. Acceptable values for form are :nfd, :nfc,
:nfkd, and :nfkc. If filter is a function it is called on each decomposed character and only characters
for which it returns t are collected.

[Function]sb-unicode:normalized-p string &optional form
Tests if string is normalized to form

SBCL implements the full range of Unicode case operations with the functions

[Function]sb-unicode:uppercase string &key locale
Returns the full uppercase of string according to the Unicode standard. The result is not guaranteed
to have the same length as the input. If :locale is nil, no language-specific case transformations are
applied. If :locale is a keyword representing a two-letter iso country code, the case transforms of that
locale are used. If :locale is t, the user’s current locale is used (Unix and Win32 only).

[Function]sb-unicode:lowercase string &key locale
Returns the full lowercase of string according to the Unicode standard. The result is not guaranteed
to have the same length as the input. :locale has the same semantics as the :locale argument to
uppercase.

[Function]sb-unicode:titlecase string &key locale
Returns the titlecase of string. The resulting string can be longer than the input. :locale has the
same semantics as the :locale argument to uppercase.

[Function]sb-unicode:casefold string
Returns the full casefolding of string according to the Unicode standard. Casefolding removes case
information in a way that allows the results to be used for case-insensitive comparisons. The result is not
guaranteed to have the same length as the input.

Chapter 7: Beyond the ANSI Standard 59

It also extends standard Common Lisp case functions such as string-upcase and string-downcase to
support a subset of Unicode’s casing behavior. Specifically, a character is both-case-p if its case mapping
in Unicode is one-to-one and invertable.

The sb-unicode package also provides functions for collating/sorting strings according to the Unicode
Collation Algorithm.

[Function]sb-unicode:unicode< string1 string2 &key start1 end1 start2 end2
Determines whether STRING1 sorts before STRING2 using the Unicode Collation Algorithm. The
function uses an untailored Default Unicode Collation Element Table to produce the sort keys. The
function uses the Shifted method for dealing with variable-weight characters, as described in uts #10

[Function]sb-unicode:unicode= string1 string2 &key start1 end1 start2 end2 strict
Determines whether STRING1 and STRING2 are canonically equivalent according to Unicode. The
start and end arguments behave like the arguments to STRING=. If :strict is nil, UNICODE= tests
compatibility equavalence instead.

[Function]sb-unicode:unicode-equal string1 string2 &key start1 end1 start2 end2 strict
Determines whether STRING1 and STRING2 are canonically equivalent after casefolding (that is, ignor-
ing case differences) according to Unicode. The start and end arguments behave like the arguments to
STRING=. If :strict is nil, UNICODE= tests compatibility equavalence instead.

[Function]sb-unicode:unicode<= string1 string2 &key start1 end1 start2 end2
Tests if STRING1 and STRING2 are either UNICODE< or UNICODE=

[Function]sb-unicode:unicode> string1 string2 &key start1 end1 start2 end2
Tests if STRING2 is UNICODE< STRING1.

[Function]sb-unicode:unicode>= string1 string2 &key start1 end1 start2 end2
Tests if STRING1 and STRING2 are either UNICODE= or UNICODE>

The following functions are provided for detecting visually confusable strings:

[Function]sb-unicode:confusable-p string1 string2 &key start1 end1 start2 end2
Determines whether STRING1 and STRING2 could be visually confusable according to the idna con-
fusableSummary.txt table

7.10.3 Breaking strings

The sb-unicode package includes several functions for breaking a Unicode string into useful parts.

[Function]sb-unicode:graphemes string
Breaks string into graphemes according to the default grapheme breaking rules specified in uax #29,
returning a list of strings.

[Function]sb-unicode:words string
Breaks string into words according to the default word breaking rules specified in uax #29. Returns a
list of strings

[Function]sb-unicode:sentences string
Breaks string into sentences according to the default sentence breaking rules specified in uax #29

[Function]sb-unicode:lines string &key margin
Breaks string into lines that are no wider than :margin according to the line breaking rules outlined in
uax #14. Combining marks will always be kept together with their base characters, and spaces (but not
other types of whitespace) will be removed from the end of lines. If :margin is unspecified, it defaults to
80 characters

7.11 Customization Hooks for Users

The toplevel repl prompt may be customized, and the function that reads user input may be replaced
completely.

The behaviour of require when called with only one argument is implementation-defined. In SBCL,
require behaves in the following way:

Chapter 7: Beyond the ANSI Standard 60

[Function]cl:require module-name &optional pathnames
Loads a module, unless it already has been loaded. pathnames, if supplied, is a designator for a list of
pathnames to be loaded if the module needs to be. If pathnames is not supplied, functions from the list
module-provider-functions are called in order with module-name as an argument, until one of them
returns non-NIL. User code is responsible for calling provide to indicate a successful load of the module.

[Variable]sb-ext:*module-provider-functions*
See function documentation for require.

Although SBCL does not provide a resident editor, the ed function can be customized to hook into
user-provided editing mechanisms as follows:

[Function]cl:ed &optional x
Starts the editor (on a file or a function if named). Functions from the list *ed-functions* are called
in order with x as an argument until one of them returns non-NIL; these functions are responsible for
signalling a file-error to indicate failure to perform an operation on the file system.

[Variable]sb-ext:*ed-functions*
See function documentation for ed.

Conditions of type warning and style-warning are sometimes signaled at runtime, especially during
execution of Common Lisp defining forms such as defun, defmethod, etc. To muffle these warnings at
runtime, SBCL provides a variable sb-ext:*muffled-warnings*:

[Variable]sb-ext:*muffled-warnings*
A type that ought to specify a subtype of warning. Whenever a warning is signaled, if the warning is of
this type and is not handled by any other handler, it will be muffled.

7.12 Tools To Help Developers

SBCL provides a profiler and other extensions to the ANSI trace facility. For more information, see [Macro
common-lisp trace], page 34.

The debugger supports a number of options. Its documentation is accessed by typing help at the debugger
prompt. See Chapter 5 [Debugger], page 26.

Documentation for inspect is accessed by typing help at the inspect prompt.

7.13 Resolution of Name Conflicts

The ANSI standard (section 11.1.1.2.5) requires that name conflicts in packages be resolvable in favour of
any of the conflicting symbols. In the interactive debugger, this is achieved by prompting for the symbol in
whose favour the conflict should be resolved; for programmatic use, the sb-ext:resolve-conflict restart
should be invoked with one argument, which should be a member of the list returned by the condition
accessor sb-ext:name-conflict-symbols.

7.14 Hash Table Extensions

Hash table extensions supported by SBCL are all controlled by keyword arguments to make-hash-table.

[Function]cl:make-hash-table &key test size rehash-size rehash-threshold
hash-function weakness synchronized

Create and return a new hash table. The keywords are as follows:

:test Determines how keys are compared. Must a designator for one of the standard hash table
tests, or a hash table test defined using sb-ext:define-hash-table-test. Additionally,
when an explicit hash-function is provided (see below), any two argument equivalence
predicate can be used as the test.

:size A hint as to how many elements will be put in this hash table.

:rehash-size

Indicates how to expand the table when it fills up. If an integer, add space for that many
elements. If a floating point number (which must be greater than 1.0), multiply the size by
that amount.

Chapter 7: Beyond the ANSI Standard 61

:rehash-threshold

Indicates how dense the table can become before forcing a rehash. Can be any positive
number <=1, with density approaching zero as the threshold approaches 0. Density 1 means
an average of one entry per bucket.

:hash-function

If unsupplied, a hash function based on the test argument is used, which then must be one
of the standardized hash table test functions, or one for which a default hash function has
been defined using sb-ext:define-hash-table-test. If hash-function is specified, the
test argument can be any two argument predicate consistent with it. The hash-function
is expected to return a non-negative fixnum hash code. If test is neither standard nor
defined by define-hash-table-test, then the hash-function must be specified.

:weakness When :weakness is not nil, garbage collection may remove entries from the hash table. The
value of :weakness specifies how the presence of a key or value in the hash table preserves
their entries from garbage collection.

Valid values are:

:key means that the key of an entry must be live to guarantee that the entry is preserved.

:valuemeans that the value of an entry must be live to guarantee that the entry is preserved.

:key-and-value means that both the key and the value must be live to guarantee that the
entry is preserved.

:key-or-value means that either the key or the value must be live to guarantee that the
entry is preserved.

nil (the default) means that entries are always preserved.

:synchronized

If nil (the default), the hash-table may have multiple concurrent readers, but results are
undefined if a thread writes to the hash-table concurrently with another reader or writer. If
t, all concurrent accesses are safe, but note that clhs 3.6 (Traversal Rules and Side Effects)
remains in force. See also: sb-ext:with-locked-hash-table.

[Macro]sb-ext:define-hash-table-test name hash-function
Defines name as a new kind of hash table test for use with the :test argument to make-hash-table, and
associates a default hash-function with it.

name must be a symbol naming a global two argument equivalence predicate. Afterwards both ’name

and #’name can be used with :test argument. In both cases hash-table-test will return the symbol
name.

hash-function must be a symbol naming a global hash function consistent with the predicate, or be
a lambda form implementing one in the current lexical environment. The hash function must compute
the same hash code for any two objects for which name returns true, and subsequent calls with already
hashed objects must always return the same hash code.

Note: The :hash-function keyword argument to make-hash-table can be used to override the specified
default hash-function.

Attempting to define name in a locked package as hash-table test causes a package lock violation.

Examples:

;;; 1.

;; We want to use objects of type FOO as keys (by their

;; names.) EQUALP would work, but would make the names

;; case-insensitive -- which we don’t want.

(defstruct foo (name nil :type (or null string)))

;; Define an equivalence test function and a hash function.

(defun foo-name= (f1 f2) (equal (foo-name f1) (foo-name f2)))

(defun sxhash-foo-name (f) (sxhash (foo-name f)))

(define-hash-table-test foo-name= sxhash-foo-name)

Chapter 7: Beyond the ANSI Standard 62

;; #’foo-name would work too.

(defun make-foo-table () (make-hash-table :test ’foo-name=))

;;; 2.

(defun == (x y) (= x y))

(define-hash-table-test ==

(lambda (x)

;; Hash codes must be consistent with test, so

;; not (SXHASH X), since

;; (= 1 1.0) => T

;; (= (SXHASH 1) (SXHASH 1.0)) => NIL

;; Note: this doesn’t deal with complex numbers or

;; bignums too large to represent as double floats.

(sxhash (coerce x ’double-float))))

;; #’== would work too

(defun make-number-table () (make-hash-table :test ’==))

[Macro]sb-ext:with-locked-hash-table (hash-table) &body body
Limits concurrent accesses to hash-table for the duration of body. If hash-table is synchronized, body
will execute with exclusive ownership of the table. If hash-table is not synchronized, body will execute
with other with-locked-hash-table bodies excluded -- exclusion of hash-table accesses not surrounded
by with-locked-hash-table is unspecified.

[Function]sb-ext:hash-table-synchronized-p ht
Returns t if hash-table is synchronized.

[Function]sb-ext:hash-table-weakness ht
Return the weakness of hash-table which is one of nil, :key, :value, :key-and-value, :key-or-
value.

7.15 Random Number Generation

The initial value of *random-state* is the same each time SBCL is started. This makes it possible for
user code to obtain repeatable pseudo random numbers using only standard-provided functionality. See
seed-random-state below for an SBCL extension that allows to seed the random number generator from
given data for an additional possibility to achieve this. Non-repeatable random numbers can always be
obtained using (make-random-state t).

The sequence of numbers produced by repeated calls to random starting with the same random state and
using the same sequence of limit arguments is guaranteed to be reproducible only in the same version of
SBCL on the same platform, using the same code under the same evaluator mode and compiler optimization
qualities. Just two examples of differences that may occur otherwise: calls to random can be compiled
differently depending on how much is known about the limit argument at compile time, yielding different
results even if called with the same argument at run time, and the results can differ depending on the
machine’s word size, for example for limits that are fixnums under 64-bit word size but bignums under 32-bit
word size.

[Function]sb-ext:seed-random-state &optional state
Make a random state object. The optional state argument specifies a seed for deterministic pseudo-
random number generation.

As per the Common Lisp standard for make-random-state,

• If state is nil or not supplied, return a copy of the default *random-state*.

• If state is a random state, return a copy of it.

• If state is t, return a randomly initialized state (using operating-system provided randomness where
available, otherwise a poor substitute based on internal time and pid).

As a supported sbcl extension, we also support receiving as a seed an object of the following types:

Chapter 7: Beyond the ANSI Standard 63

• (simple-array (unsigned-byte 8) (*))

• unsigned-byte

While we support arguments of any size and will mix the provided bits into the random state, it is
probably overkill to provide more than 256 bits worth of actual information.

This particular sbcl version also accepts an argument of the following type: (simple-array
(unsigned-byte 32) (*))

This particular sbcl version uses the popular MT19937 prng algorithm, and its internal state only
effectively contains about 19937 bits of information. http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/emt.html

Some notes on random floats: The standard doesn’t prescribe a specific method of generating random
floats. The following paragraph describes SBCL’s current implementation and should be taken as purely
informational, that is, user code should not depend on any of its specific properties. The method used has
been chosen because it is common, conceptually simple and fast.

To generate random floats, SBCL evaluates code that has an equivalent effect as

(* limit

(float (/ (random (expt 2 23)) (expt 2 23)) 1.0f0))

(for single-floats) and correspondingly (with 52 and 1.0d0 instead of 23 and 1.0f0) for double-floats.
Note especially that this means that zero is a possible return value occurring with probability (expt 2 -23)

respectively (expt 2 -52). Also note that there exist twice as many equidistant floats between 0 and 1 as
are generated. For example, the largest number that (random 1.0f0) ever returns is (float (/ (1- (expt

2 23)) (expt 2 23)) 1.0f0) while (float (/ (1- (expt 2 24)) (expt 2 24)) 1.0f0) is the largest single-
float less than 1. This is a side effect of the fact that the implementation uses the fastest possible conversion
from bits to floats.

SBCL currently uses the Mersenne Twister as its random number generator, specifically the 32-bit version
under both 32- and 64-bit word size. The seeding algorithm has been improved several times by the authors of
the Mersenne Twister; SBCL uses the third version (from 2002) which is still the most recent as of June 2012.
The implementation has been tested to provide output identical to the recommended C implementation.

While the Mersenne Twister generates random numbers of much better statistical quality than other
widely used generators, it uses only linear operations modulo 2 and thus fails some statistical tests4. For ex-
ample, the distribution of ranks of (sufficiently large) random binary matrices is much distorted compared to
the theoretically expected one when the matrices are generated by the Mersenne Twister. Thus, applications
that are sensitive to this aspect should use a different type of generator.

7.16 Timeouts and Deadlines

SBCL supports three different ways of restricting the execution time available to individual operations or
parts of computations:

Timeout Parameters
Some operations such as thread synchronization primitives accept a :timeout parameter. See
Section 7.16.1 [Timeout Parameters], page 64.

Synchronous Timeouts (Deadlines)
Certain operations that may suspend execution for extended periods of time such as cl:sleep,
thread synchronization primitives, IO and waiting for external processes respect deadlines es-
tablished for a part of a computation. See Section 7.16.2 [Synchronous Timeouts (Deadlines)],
page 64.

Asynchronous Timeouts
Asynchronous timeouts can interrupt most computations at (almost) any point. Thus, this
kind of timeouts is the most versatile but it is also somewhat unsafe. See Section 7.16.3
[Asynchronous Timeouts], page 65.

4 See chapter 7 "Testing widely used RNGs" in TestU01: A C Library for Empirical Testing of Random Number
Generators by Pierre L’Ecuyer and Richard Simard, ACM Transactions on Mathematical Software, Vol. 33,
article 22, 2007.

Chapter 7: Beyond the ANSI Standard 64

7.16.1 Timeout Parameters

Certain operations accept :timeout keyword arguments. These only affect the specific operation and must
be specified at each call site by passing a :timeout keyword argument and a corresponding timeout value
to the respective operation. Expiration of the timeout before the operation completes results in either a
normal return with a return value indicating the timeout or in the signaling of a specialized condition such
as sb-thread:join-thread-error.

Example:

(defun join-thread-within-5-seconds (thread)

(multiple-value-bind (value result)

(sb-thread:join-thread thread :default nil :timeout 5)

(when (eq result :timeout)

(error "Could not join ~A within 5 seconds" thread))

value))

The above code attempts to join the specified thread for up to five seconds, returning its value in case of
success. If the thread is still running after the five seconds have elapsed, sb-thread:join-thread indicates
the timeout in its second return value. If a :default value was not provided, sb-thread:join-thread
would signal a sb-thread:join-thread-error instead.

To wait for an arbitrary condition, optionally with a timeout, the sb-ext:wait-for macro can be used:

[Macro]sb-ext:wait-for test-form &key timeout
Wait until test-form evaluates to true, then return its primary value. If timeout is provided, waits at
most approximately timeout seconds before returning nil.

If with-deadline has been used to provide a global deadline, signals a deadline-timeout if test-form
doesn’t evaluate to true before the deadline.

Experimental: subject to change without prior notice.

7.16.2 Synchronous Timeouts (Deadlines)

Deadlines, in contrast to timeout parameters, are established for a dynamic scope using the sb-sys:with-

deadline macro and indirectly affect operations within that scope. In case of nested uses, the effective
deadline is the one that expires first unless an inner use explicitly overrides outer deadlines.

[Macro]sb-sys:with-deadline (&key seconds override) &body body
Arranges for a timeout condition to be signalled if an operation respecting deadlines occurs either after
the deadline has passed, or would take longer than the time left to complete.

Currently only sleep, blocking io operations, get-mutex, and condition-wait respect deadlines, but
this includes their implicit uses inside sbcl itself.

Unless override is true, existing deadlines can only be restricted, not extended. Deadlines are per thread:
children are unaffected by their parent’s deadlines.

Experimental.

Expiration of deadlines set up this way only has an effect when it happens before or during the execution of
a deadline-aware operation (see Section 7.16.4 [Operations Supporting Timeouts and Deadlines], page 65).
In this case, a sb-sys:deadline-timeout is signaled. A handler for this condition type may use the
sb-sys:defer-deadline or sb-sys:cancel-deadline restarts to defer or cancel the deadline respectively
and resume execution of the interrupted operation.

[Condition]sb-sys:deadline-timeout
Class precedence list: deadline-timeout, timeout, serious-condition, condition, t

Signaled when an operation in the context of a deadline takes longer than permitted by the deadline.

When a thread is executing the debugger, signaling of sb-sys:deadline-timeout conditions for that
thread is deferred until it exits the debugger.

Example:

(defun read-input ()

(list (read-line) (read-line)))

(defun do-it ()

(sb-sys:with-deadline (:seconds 5))

Chapter 7: Beyond the ANSI Standard 65

(read-input)

(sleep 2)

(sb-ext:run-program "my-program"))

The above code establishes a deadline of five seconds within which the body of the do-it function should
execute. All calls of deadline-aware functions in the dynamic scope, in this case two read-line calls, a sleep
call and a sb-ext:run-program call, are affected by the deadline. If, for example, the first read-line call
completes in one second and the second read-line call completes in three seconds, a sb-sys:deadline-

timeout condition will be signaled after the sleep call has been executing for one second.

7.16.3 Asynchronous Timeouts

Asynchronous timeouts are established for a dynamic scope using the sb-sys:with-timeout macro:

[Macro]sb-ext:with-timeout expires &body body
Execute the body, asynchronously interrupting it and signalling a timeout condition after at least
expires seconds have passed.

Note that it is never safe to unwind from an asynchronous condition. Consider:

(defun call-with-foo (function)

(let (foo)

(unwind-protect

(progn

(setf foo (get-foo))

(funcall function foo))

(when foo

(release-foo foo)))))

If timeout occurs after get-foo has executed, but before the assignment, then release-foo will be
missed. While individual sites like this can be made proof against asynchronous unwinds, this doesn’t
solve the fundamental issue, as all the frames potentially unwound through need to be proofed, which
includes both system and application code -- and in essence proofing everything will make the system
uninterruptible.

Expiration of the timeout will cause the operation being executed at that moment to be interrupted by an
asynchronously signaled sb-ext:timeout condition, (almost) irregardless of the operation and its context.

[Condition]sb-ext:timeout
Class precedence list: timeout, serious-condition, condition, t

Signaled when an operation does not complete within an allotted time budget.

7.16.4 Operations Supporting Timeouts and Deadlines

Operation Timeout Parameter Affected by Deadlines
cl:sleep - since SBCL 1.4.3
cl:read-line, etc. no yes
[wait-for], page 64 yes yes
[process-wait], page 56 no yes
[grab-mutex], page 101 yes yes
[condition-wait], page 103 yes yes
[wait-on-semaphore], page 102 yes yes
[join-thread], page 96 yes yes
[receive-message], page 122 yes yes?
[wait-on-gate], page 123 yes yes?
[frlock-write], page 124 yes yes?
[grab-frlock-write-lock], page 125 yes yes?

7.17 Miscellaneous Extensions

[Function]sb-ext:array-storage-vector array
Returns the underlying storage vector of array, which must be a non-displaced array.

Chapter 7: Beyond the ANSI Standard 66

In sbcl, if array is a of type (simple-array * (*)), it is its own storage vector. Multidimensional
arrays, arrays with fill pointers, and adjustable arrays have an underlying storage vector with the same
array-element-type as array, which this function returns.

Important note: the underlying vector is an implementation detail. Even though this function exposes
it, changes in the implementation may cause this function to be removed without further warning.

[Function]sb-ext:delete-directory pathspec &key recursive
Deletes the directory designated by pathspec (a pathname designator). Returns the truename of the
directory deleted.

If recursive is false (the default), signals an error unless the directory is empty. If recursive is true,
first deletes all files and subdirectories. If recursive is true and the directory contains symbolic links,
the links are deleted, not the files and directories they point to.

Signals an error if pathspec designates a file or a symbolic link instead of a directory, or if the directory
could not be deleted for any reason.

Both

(DELETE-DIRECTORY "/tmp/foo")

(DELETE-DIRECTORY "/tmp/foo/")

delete the "foo" subdirectory of "/tmp", or signal an error if it does not exist or if is a file or a symbolic
link.

[Function]sb-ext:get-time-of-day
Return the number of seconds and microseconds since the beginning of the unix epoch (January 1st
1970.)

[Function]sb-ext:assert-version->= &rest subversions
Asserts that the current sbcl is of version equal to or greater than the version specified in the arguments.
A continuable error is signaled otherwise.

The arguments specify a sequence of subversion numbers in big endian order. They are compared lexico-
graphically with the runtime version, and versions are treated as though trailed by an unbounded number
of 0s.

For example, (assert-version->= 1 1 4) asserts that the current sbcl is version 1.1.4[.0.0...] or greater,
and (assert-version->= 1) that it is version 1[.0.0...] or greater.

7.18 Stale Extensions

SBCL has inherited from CMUCL various hooks to allow the user to tweak and monitor the garbage collection
process. These are somewhat stale code, and their interface might need to be cleaned up. If you have urgent
need of them, look at the code in src/code/gc.lisp and bring it up on the developers’ mailing list.

SBCL has various hooks inherited from CMUCL, like sb-ext:float-denormalized-p, to allow a pro-
gram to take advantage of IEEE floating point arithmetic properties which aren’t conveniently or efficiently
expressible using the ANSI standard. These look good, and their interface looks good, but IEEE support is
slightly broken due to a stupid decision to remove some support for infinities (because it wasn’t in the ANSI
spec and it didn’t occur to me that it was in the IEEE spec). If you need this stuff, take a look at the code
and bring it up on the developers’ mailing list.

7.19 Efficiency Hacks

The sb-ext:purify function causes SBCL first to collect all garbage, then to mark all uncollected objects as
permanent, never again attempting to collect them as garbage. This can cause a large increase in efficiency
when using a primitive garbage collector, or a more moderate increase in efficiency when using a more
sophisticated garbage collector which is well suited to the program’s memory usage pattern. It also allows
permanent code to be frozen at fixed addresses, a precondition for using copy-on-write to share code between
multiple Lisp processes. This is less important with modern generational garbage collectors, but not all SBCL
platforms use such a garbage collector.

The sb-ext:truly-the special form declares the type of the result of the operations, producing its
argument; the declaration is not checked. In short: don’t use it.

Chapter 7: Beyond the ANSI Standard 67

[Special Operator]sb-ext:truly-the value-type form
Specifies that the values returned by form conform to the value-type, and causes the compiler to trust
this information unconditionally.

Consequences are undefined if any result is not of the declared type -- typical symptoms including
memory corruptions. Use with great care.

The sb-ext:freeze-type declaration declares that a type will never change, which can make type testing
(typep, etc.) more efficient for structure types.

68

8 External Formats

External formats determine the coding of characters from/to sequences of octets when exchanging data with
the outside world. Examples of such exchanges are:

1. Character streams associated with files, sockets and process input/output (See Section 11.1 [Stream
External Formats], page 84, and Section 7.9.3 [Running external programs], page 54)

2. Names of files

3. Foreign strings (See Section 9.2.2 [Foreign Types and Lisp Types], page 71)

4. Posix interface (See Section 17.6 [sb-posix], page 132)

5. Hostname- and protocol-related functions of the BSD-socket interface (See Chapter 15 [Networking],
page 109)

Technically, external formats in SBCL are named objects describing coding of characters as well as policies
in case de- or encoding is not possible. Each external format has a canonical name and zero or more aliases.
User code mostly interacts with external formats by supplying external format designators to functions that
use external formats internally.

8.1 The Default External Format

Most functions interacting with external formats use a default external format if none is explicitly specified.
In some cases, the default external format is used unconditionally.

The default external format is UTF-8. It can be changed via

sb-ext:*default-external-format* and sb-ext:*default-c-string-external-format*

8.2 External Format Designators

In situations where an external format designator is required, such as the :external-format argument in
calls to open or with-open-file, users may supply the name of an encoding to denote the external format
which is applying that encoding to Lisp characters.

In addition to the basic encoding for an external format, options controlling various special cases may
be passed, by using a list (whose first element must be an encoding name and whose rest is a plist) as an
external file format designator.

More specifically, external format designators can take the following forms:

:default Designates the current default external format (See Section 8.1 [The Default External Format],
page 68).

keyword Designates the supported external format that has keyword as one of its names. (See Section 8.5
[Supported External Formats], page 69).

(keyword :replacement replacement)

Designates an external format that is like the one designated by keyword but does not signal
an error in case a character or octet sequence cannot be en- or decoded. Instead, it inserts
replacement at the position in question. replacement has to be a string designator, that is a
character or string.

For example:

(with-open-file (stream pathname :external-format ’(:utf-8 :replacement #\?))

(read-line stream))

will read the first line of pathname, replacing any octet sequence that is not valid in the UTF-8
external format with a question mark character.

8.3 Character Coding Conditions

De- or encoding characters using a given external format is not always possible:

• Decoding an octet vector using a given external format can fail if it contains an octet or sequence of
octets that does not have an interpretation as a character according to the external format.

• Conversely, a string may contain characters that a given external format cannot encode. For example,
the ASCII external format cannot encode the character #\ö.

Chapter 8: External Formats 69

Unless the external format governing the coding uses the :replacement keyword, SBCL will signal
(continuable) errors under the above circumstances. The types of the condition signaled are not currently
exported or documented but will be in future SBCL versions.

8.4 Converting between Strings and Octet Vectors

To encode Lisp strings as octet vectors and decode octet vectors as Lisp strings, the following SBCL-specific
functions can be used:

[Function]sb-ext:string-to-octets string &key external-format start end null-terminate
Return an octet vector that is string encoded according to external-format.

If external-format is given, it must designate an external format.

If given, start and end must be bounding index designators and designate a subsequence of string that
should be encoded.

If null-terminate is true, the returned octet vector ends with an additional 0 element that does not
correspond to any part of string.

If some of the characters of string (or the subsequence bounded by start and end) cannot be encoded
by external-format an error of a subtype of sb-int:character-encoding-error is signaled.

Note that for some values of external-format and null-terminate the length of the returned vector
may be different from the length of string (or the subsequence bounded by start and end).

[Function]sb-ext:octets-to-string vector &key external-format start end
Return a string obtained by decoding vector according to external-format.

If external-format is given, it must designate an external format.

If given, start and end must be bounding index designators and designate a subsequence of vector that
should be decoded.

If some of the octets of vector (or the subsequence bounded by start and end) cannot be decoded by
external-format an error of a subtype of sb-int:character-decoding-error is signaled.

Note that for some values of external-format the length of the returned string may be different from
the length of vector (or the subsequence bounded by start and end).

8.5 Supported External Formats

The following table lists the external formats supported by SBCL in the form of the respective canonical
name followed by the list of aliases:

:EUC-JP :EUCJP, :|eucJP|

:GBK :CP936

:SHIFT_JIS

:SJIS, :|Shift_JIS|, :CP932

:UCS-2BE :UCS2BE

:UCS-2LE :UCS2LE

:UCS-4BE :UCS4BE

:UCS-4LE :UCS4LE

:UTF-16BE :UTF16BE

:UTF-16LE :UTF16LE

:UTF-32BE :UTF32BE

:UTF-32LE :UTF32LE

70

9 Foreign Function Interface

This chapter describes SBCL’s interface to C programs and libraries (and, since C interfaces are a sort of
lingua franca of the Unix world, to other programs and libraries in general.)

Note: In the modern Lisp world, the usual term for this functionality is Foreign Function
Interface, or FFI, where despite the mention of “function” in this term, FFI also refers to direct
manipulation of C data structures as well as functions. The traditional CMUCL terminology
is Alien Interface, and while that older terminology is no longer used much in the system
documentation, it still reflected in names in the implementation, notably in the name of the
SB-ALIEN package.

9.1 Introduction to the Foreign Function Interface

Because of Lisp’s emphasis on dynamic memory allocation and garbage collection, Lisp implementations use
non-C-like memory representations for objects. This representation mismatch creates friction when a Lisp
program must share objects with programs which expect C data. There are three common approaches to
establishing communication:

• The burden can be placed on the foreign program (and programmer) by requiring the knowledge and
use of the representations used internally by the Lisp implementation. This can require a considerable
amount of “glue” code on the C side, and that code tends to be sensitively dependent on the internal
implementation details of the Lisp system.

• The Lisp system can automatically convert objects back and forth between the Lisp and foreign repre-
sentations. This is convenient, but translation becomes prohibitively slow when large or complex data
structures must be shared. This approach is supported by the SBCL FFI, and used automatically when
passing integers and strings.

• The Lisp program can directly manipulate foreign objects through the use of extensions to the Lisp
language.

SBCL, like CMUCL before it, relies primarily on the automatic conversion and direct manipulation
approaches. The SB-ALIEN package provides a facility wherein foreign values of simple scalar types are auto-
matically converted and complex types are directly manipulated in their foreign representation. Additionally
the lower-level System Area Pointers (or SAPs) can be used where necessary to provide untyped access to
foreign memory.

Any foreign objects that can’t automatically be converted into Lisp values are represented by objects
of type alien-value. Since Lisp is a dynamically typed language, even foreign objects must have a run-
time type; this type information is provided by encapsulating the raw pointer to the foreign data within an
alien-value object.

The type language and operations on foreign types are intentionally similar to those of the C language.

9.2 Foreign Types

Alien types have a description language based on nested list structure. For example the C type

struct foo {

int a;

struct foo *b[100];

};

has the corresponding SBCL FFI type

(struct foo

(a int)

(b (array (* (struct foo)) 100)))

9.2.1 Defining Foreign Types

Types may be either named or anonymous. With structure and union types, the name is part of the type
specifier, allowing recursively defined types such as:

(struct foo (a (* (struct foo))))

An anonymous structure or union type is specified by using the name nil. The with-alien macro
defines a local scope which “captures” any named type definitions. Other types are not inherently named,
but can be given named abbreviations using the define-alien-type macro.

Chapter 9: Foreign Function Interface 71

9.2.2 Foreign Types and Lisp Types

The foreign types form a subsystem of the SBCL type system. An alien type specifier provides a way to
use any foreign type as a Lisp type specifier. For example,

(typep foo ’(alien (* int)))

can be used to determine whether foo is a pointer to a foreign int. alien type specifiers can be used
in the same ways as ordinary Lisp type specifiers (like string.) Alien type declarations are subject to the
same precise type checking as any other declaration. See Section 4.2.2 [Precise Type Checking], page 19.

Note that the type identifiers used in the foreign type system overlap with native Lisp type specifiers
in some cases. For example, the type specifier (alien single-float) is identical to single-float, since
foreign floats are automatically converted to Lisp floats. When type-of is called on an alien value that is
not automatically converted to a Lisp value, then it will return an alien type specifier.

9.2.3 Foreign Type Specifiers

Note: All foreign type names are exported from the sb-alien package. Some foreign type names are also
symbols in the common-lisp package, in which case they are reexported from the sb-alien package, so that
e.g. it is legal to refer to sb-alien:single-float.

These are the basic foreign type specifiers:

• The foreign type specifier (* foo) describes a pointer to an object of type foo. A pointed-to type foo
of t indicates a pointer to anything, similar to void * in ANSI C. A null alien pointer can be detected
with the sb-alien:null-alien function.

• The foreign type specifier (array foo &rest dimensions) describes array of the specified dimensions,
holding elements of type foo. Note that (unlike in C) (* foo) and (array foo) are considered to be
different types when type checking is done. If equivalence of pointer and array types is desired, it may
be explicitly coerced using sb-alien:cast.

Arrays are accessed using sb-alien:deref, passing the indices as additional arguments. Elements
are stored in column-major order (as in C), so the first dimension determines only the size of the
memory block, and not the layout of the higher dimensions. An array whose first dimension is variable
may be specified by using nil as the first dimension. Fixed-size arrays can be allocated as array
elements, structure slots or sb-alien:with-alien variables. Dynamic arrays can only be allocated
using sb-alien:make-alien.

• The foreign type specifier (sb-alien:struct name &rest fields) describes a structure type with the
specified name and fields. Fields are allocated at the same offsets used by the implementation’s C
compiler, as guessed by the SBCL internals. An optional :alignment keyword argument can be spec-
ified for each field to explicitly control the alignment of a field. If name is nil then the structure is
anonymous.

If a named foreign struct specifier is passed to define-alien-type or with-alien, then this defines,
respectively, a new global or local foreign structure type. If no fields are specified, then the fields are
taken from the current (local or global) alien structure type definition of name.

• The foreign type specifier (sb-alien:union name &rest fields) is similar to sb-alien:struct, but
describes a union type. All fields are allocated at the same offset, and the size of the union is the size
of the largest field. The programmer must determine which field is active from context.

• The foreign type specifier (sb-alien:enum name &rest specs) describes an enumeration type that
maps between integer values and symbols. If name is nil, then the type is anonymous. Each element
of the specs list is either a Lisp symbol, or a list (symbol value). value is an integer. If value is not
supplied, then it defaults to one greater than the value for the preceding spec (or to zero if it is the first
spec).

• The foreign type specifier (sb-alien:signed &optional bits) specifies a signed integer with the spec-
ified number of bits precision. The upper limit on integer precision is determined by the machine’s word
size. If bits is not specified, the maximum size will be used.

• The foreign type specifier (integer &optional bits) is equivalent to the corresponding type specifier
using sb-alien:signed instead of integer.

• The foreign type specifier (sb-alien:unsigned &optional bits) is like corresponding type specifier
using sb-alien:signed except that the variable is treated as an unsigned integer.

Chapter 9: Foreign Function Interface 72

• The foreign type specifier (boolean &optional bits) is similar to an enumeration type, but maps from
Lisp nil and t to C 0 and 1 respectively. bits determines the amount of storage allocated to hold the
truth value.

• The foreign type specifier single-float describes a floating-point number in IEEE single-precision
format.

• The foreign type specifier double-float describes a floating-point number in IEEE double-precision
format.

• The foreign type specifier (function result-type &rest arg-types) describes a foreign function that
takes arguments of the specified arg-types and returns a result of type result-type. Note that the only
context where a foreign function type is directly specified is in the argument to sb-alien:alien-

funcall. In all other contexts, foreign functions are represented by foreign function pointer types: (*
(function ...)).

• The foreign type specifier sb-alien:system-area-pointer describes a pointer which is represented in
Lisp as a system-area-pointer object. SBCL exports this type from sb-alien because CMUCL did,
but tentatively (as of the first draft of this section of the manual, SBCL 0.7.6) it is deprecated, since it
doesn’t seem to be required by user code.

• The foreign type specifier sb-alien:void is used in function types to declare that no useful value is
returned. Using alien-funcall to call a void foreign function will return zero values.

• The foreign type specifier (sb-alien:c-string &key external-format element-type not-null) is
similar to (* char), but is interpreted as a null-terminated string, and is automatically converted into
a Lisp string when accessed; or if the pointer is C NULL or 0, then accessing it gives Lisp nil unless
not-null is true, in which case a type-error is signalled.

External format conversion is automatically done when Lisp strings are passed to foreign code, or when
foreign strings are passed to Lisp code. If the type specifier has an explicit external-format, that
external format will be used. Otherwise a default external format that has been determined at SBCL
startup time based on the current locale settings will be used. For example, when the following alien
routine is called, the Lisp string given as argument is converted to an ebcdic octet representation.

(define-alien-routine test int (str (c-string :external-format :ebcdic-us)))

Lisp strings of type base-string are stored with a trailing NUL termination, so no copying (either
by the user or the implementation) is necessary when passing them to foreign code, assuming that
the external-format and element-type of the c-string type are compatible with the internal rep-
resentation of the string. For an SBCL built with Unicode support that means an external-format

of :ascii and an element-type of base-char. Without Unicode support the external-format can
also be :iso-8859-1, and the element-type can also be character. If the external-format or
element-type is not compatible, or the string is a (simple-array character (*)), this data is copied
by the implementation as required.

Assigning a Lisp string to a c-string structure field or variable stores the contents of the string to the
memory already pointed to by that variable. When a foreign object of type (* char) is assigned to a
c-string, then the c-string pointer is assigned to. This allows c-string pointers to be initialized.
For example:

(cl:in-package "CL-USER") ; which USEs package "SB-ALIEN"

(define-alien-type nil (struct foo (str c-string)))

(defun make-foo (str)

(let ((my-foo (make-alien (struct foo))))

(setf (slot my-foo ’str) (make-alien char (length str))

(slot my-foo ’str) str)

my-foo))

Storing Lisp NIL in a c-string writes C NULL to the variable.

• sb-alien also exports translations of these C type specifiers as foreign type specifiers: char, short,
int, long, unsigned-char, unsigned-short, unsigned-int, unsigned-long, float, double, size-t,
and off-t.

Chapter 9: Foreign Function Interface 73

9.3 Operations On Foreign Values

This section describes how to read foreign values as Lisp values, how to coerce foreign values to different
kinds of foreign values, and how to dynamically allocate and free foreign variables.

9.3.1 Accessing Foreign Values

[Function]sb-alien:deref pointer-or-array &rest indices
The sb-alien:deref function returns the value pointed to by a foreign pointer, or the value of a foreign
array element. When dereferencing a pointer, an optional single index can be specified to give the equiv-
alent of C pointer arithmetic; this index is scaled by the size of the type pointed to. When dereferencing
an array, the number of indices must be the same as the number of dimensions in the array type. deref
can be set with setf to assign a new value.

[Function]sb-alien:slot struct-or-union slot-name
The sb-alien:slot function extracts the value of the slot named slot-name from a foreign struct or
union. If struct-or-union is a pointer to a structure or union, then it is automatically dereferenced.
sb-alien:slot can be set with setf to assign a new value. Note that slot-name is evaluated, and need
not be a compile-time constant (but only constant slot accesses are efficiently compiled).

9.3.1.1 Untyped memory

As noted at the beginning of the chapter, the System Area Pointer facilities allow untyped access to foreign
memory. SAPs can be converted to and from the usual typed foreign values using sap-alien and alien-sap

(described elsewhere), and also to and from integers - raw machine addresses. They should thus be used
with caution; corrupting the Lisp heap or other memory with SAPs is trivial.

[Function]sb-sys:int-sap machine-address
Creates a SAP pointing at the virtual address machine-address.

[Function]sb-sys:sap-ref-32 sap offset
Access the value of the memory location at offset bytes from sap. This form may also be used with setf

to alter the memory at that location.

[Function]sb-sys:sap= sap1 sap2
Compare sap1 and sap2 for equality.

Similarly named functions exist for accessing other sizes of word, other comparisons, and other conver-
sions. The reader is invited to use apropos and describe for more details

(apropos "sap" :sb-sys)

9.3.2 Coercing Foreign Values

[Macro]sb-alien:addr alien-expr
The sb-alien:addrmacro returns a pointer to the location specified by alien-expr, which must be either a
foreign variable, a use of sb-alien:deref, a use of sb-alien:slot, or a use of sb-alien:extern-alien.

[Macro]sb-alien:cast foreign-value new-type
The sb-alien:cast macro converts foreign-value to a new foreign value with the specified new-type.
Both types, old and new, must be foreign pointer, array or function types. Note that the resulting Lisp
foreign variable object is not eq to the argument, but it does refer to the same foreign data bits.

[Macro]sb-alien:sap-alien sap type
The sb-alien:sap-alien macro converts sap (a system area pointer) to a foreign value with the specified
type. type is not evaluated.

The type must be some foreign pointer, array, or record type.

[Function]sb-alien:alien-sap foreign-value
The sb-alien:alien-sap function returns the SAP which points to alien-value’s data.

The foreign-value must be of some foreign pointer, array, or record type.

Chapter 9: Foreign Function Interface 74

9.3.3 Foreign Dynamic Allocation

Lisp code can call the C standard library functions malloc and free to dynamically allocate and deallocate
foreign variables. The Lisp code shares the same allocator with foreign C code, so it’s OK for foreign code
to call free on the result of Lisp sb-alien:make-alien, or for Lisp code to call sb-alien:free-alien on
foreign objects allocated by C code.

[Macro]sb-alien:make-alien type &optional size
Allocate an alien of type type in foreign heap, and return an alien pointer to it. The allocated memory
is not initialized, and may contain garbage. The memory is allocated using malloc(3), so it can be passed
to foreign functions which use free(3), or released using free-alien.

For alien stack allocation, see macro with-alien.

The type argument is not evaluated. If size is supplied, how it is interpreted depends on type:

• When type is a foreign array type, an array of that type is allocated, and a pointer to it is returned.
Note that you must use deref to first access the array through the pointer.

If supplied, size is used as the first dimension for the array.

• When type is any other foreign type, then an object for that type is allocated, and a pointer to it
is returned. So (make-alien int) returns a (* int).

If size is specified, then a block of that many objects is allocated, with the result pointing to the
first one.

Examples:

(defvar *foo* (make-alien (array char 10)))

(type-of *foo*) ; => (alien (* (array (signed 8) 10)))

(setf (deref (deref *foo*) 0) 10) ; => 10

(make-alien char 12) ; => (alien (* (signed 8)))

[Function]sb-alien:make-alien-string string &rest rest &key start end external-format
null-terminate

Copy part of string delimited by start and end into freshly allocated foreign memory, freeable using
free(3) or free-alien. Returns the allocated string as a (* char) alien, and the number of bytes allocated
as secondary value.

The string is encoded using external-format. If null-terminate is true (the default), the alien string
is terminated by an additional null byte.

[Function]sb-alien:free-alien alien
Dispose of the storage pointed to by alien. The alien must have been allocated by make-alien,
make-alien-string or malloc(3).

9.4 Foreign Variables

Both local (stack allocated) and external (C global) foreign variables are supported.

9.4.1 Local Foreign Variables

[Macro]sb-alien:with-alien var-definitions &body body
The with-alien macro establishes local foreign variables with the specified alien types and names. This
form is analogous to defining a local variable in C: additional storage is allocated, and the initial value is
copied. This form is less analogous to LET-allocated Lisp variables, since the variables can’t be captured
in closures: they live only for the dynamic extent of the body, and referring to them outside is a gruesome
error.

The var-definitions argument is a list of variable definitions, each of the form

(name type &optional initial-value)

The names of the variables are established as symbol-macros; the bindings have lexical scope, and may
be assigned with setq or setf.

The with-alien macro also establishes a new scope for named structures and unions. Any type specified
for a variable may contain named structure or union types with the slots specified. Within the lexical
scope of the binding specifiers and body, a locally defined foreign structure type foo can be referenced by
its name using (struct foo).

Chapter 9: Foreign Function Interface 75

9.4.2 External Foreign Variables

External foreign names are strings, and Lisp names are symbols. When an external foreign value is repre-
sented using a Lisp variable, there must be a way to convert from one name syntax into the other. The
macros extern-alien, define-alien-variable and define-alien-routine use this conversion heuristic:

• Alien names are converted to Lisp names by uppercasing and replacing underscores with hyphens.

• Conversely, Lisp names are converted to alien names by lowercasing and replacing hyphens with under-
scores.

• Both the Lisp symbol and alien string names may be separately specified by using a list of the form

(alien-string lisp-symbol)

[Macro]sb-alien:define-alien-variable name type
The define-alien-variable macro defines name as an external foreign variable of the specified foreign
type. name and type are not evaluated. The Lisp name of the variable (see above) becomes a global alien
variable. Global alien variables are effectively “global symbol macros”; a reference to the variable fetches
the contents of the external variable. Similarly, setting the variable stores new contents – the new contents
must be of the declared type. Someday, they may well be implemented using the ANSI define-symbol-

macro mechanism, but as of SBCL 0.7.5, they are still implemented using an older more-or-less parallel
mechanism inherited from CMUCL.

For example, to access a C-level counter foo, one could write

(define-alien-variable "foo" int)

;; Now it is possible to get the value of the C variable foo simply by

;; referencing that Lisp variable:

(print foo)

(setf foo 14)

(incf foo)

[Function]sb-alien:get-errno
Since in modern C libraries, the errno “variable” is typically no longer a variable, but some bizarre
artificial construct which behaves superficially like a variable within a given thread, it can no longer
reliably be accessed through the ordinary define-alien-variable mechanism. Instead, SBCL provides
the operator sb-alien:get-errno to allow Lisp code to read it.

[Macro]sb-alien:extern-alien name type
The extern-alien macro returns an alien with the specified type which points to an externally defined
value. name is not evaluated, and may be either a string or a symbol. type is an unevaluated alien type
specifier.

9.5 Foreign Data Structure Examples

Now that we have alien types, operations and variables, we can manipulate foreign data structures. This C
declaration

struct foo {

int a;

struct foo *b[100];

};

can be translated into the following alien type:

(define-alien-type nil

(struct foo

(a int)

(b (array (* (struct foo)) 100))))

Once the foo alien type has been defined as above, the C expression

struct foo f;

f.b[7].a;

can be translated in this way:

(with-alien ((f (struct foo)))

(slot (deref (slot f ’b) 7) ’a)

;;

Chapter 9: Foreign Function Interface 76

;; Do something with f...

)

Or consider this example of an external C variable and some accesses:

struct c_struct {

short x, y;

char a, b;

int z;

c_struct *n;

};

extern struct c_struct *my_struct;

my_struct->x++;

my_struct->a = 5;

my_struct = my_struct->n;

which can be manipulated in Lisp like this:

(define-alien-type nil

(struct c-struct

(x short)

(y short)

(a char)

(b char)

(z int)

(n (* c-struct))))

(define-alien-variable "my_struct" (* c-struct))

(incf (slot my-struct ’x))

(setf (slot my-struct ’a) 5)

(setq my-struct (slot my-struct ’n))

9.6 Loading Shared Object Files

Foreign object files can be loaded into the running Lisp process by calling load-shared-object.

[Function]sb-alien:load-shared-object pathname &key dont-save
Load a shared library / dynamic shared object file / similar foreign container specified by designated
pathname, such as a .so on an elf platform.

Locating the shared object follows standard rules of the platform, consult the manual page for dlopen(3)
for details. Typically paths specified by environment variables such as LD LIBRARY PATH are searched
if the pathname has no directory, but on some systems (eg. Mac os x) search may happen even if pathname
is absolute. (On Windows LoadLibrary is used instead of dlopen(3).)

On non-Windows platforms calling load-shared-object again with a pathname equal to the designated
pathname of a previous call will replace the old definitions; if a symbol was previously referenced through
the object and is not present in the reloaded version an error will be signalled. Reloading may not work
as expected if user or library-code has called dlopen(3) on the same shared object or running on a system
where dlclose(3) is a noop.

load-shared-object interacts with sb-ext:save-lisp-and-die:

1. If dont-save is true (default is nil), the shared object will be dropped when save-lisp-and-die is
called -- otherwise shared objects are reloaded automatically when a saved core starts up. Specifying
dont-save can be useful when the location of the shared object on startup is uncertain.

2. On most platforms references in compiled code to foreign symbols in shared objects (such as those
generated by define-alien-routine) remain valid across save-lisp-and-die. On those platforms
where this is not supported, a warning will be signalled when the core is saved -- this is orthogonal from
dont-save.

[Function]sb-alien:unload-shared-object pathname
Unloads the shared object loaded earlier using the designated pathname with load-shared-object, to
the degree supported on the platform.

Experimental.

Chapter 9: Foreign Function Interface 77

9.7 Foreign Function Calls

The foreign function call interface allows a Lisp program to call many functions written in languages that
use the C calling convention.

Lisp sets up various signal handling routines and other environment information when it first starts
up, and expects these to be in place at all times. The C functions called by Lisp should not change the
environment, especially the signal handlers: the signal handlers installed by Lisp typically have interesting
flags set (e.g to request machine context information, or for signal delivery on an alternate stack) which the
Lisp runtime relies on for correct operation. Precise details of how this works may change without notice
between versions; the source, or the brain of a friendly SBCL developer, is the only documentation. Users of
a Lisp built with the :sb-thread feature should also read the section about threads, Chapter 13 [Threading],
page 95.

9.7.1 The alien-funcall Primitive

[Function]sb-alien:alien-funcall alien-function &rest arguments
The alien-funcall function is the foreign function call primitive: alien-function is called with the
supplied arguments and its C return value is returned as a Lisp value. The alien-function is an ar-
bitrary run-time expression; to refer to a constant function, use extern-alien or a value defined by
define-alien-routine.

The type of alien-function must be (alien (function ...)) or (alien (* (function ...))). The
function type is used to determine how to call the function (as though it was declared with a proto-
type.) The type need not be known at compile time, but only known-type calls are efficiently compiled.
Limitations:

• Structure type return values are not implemented.

• Passing of structures by value is not implemented.

Here is an example which allocates a (struct foo), calls a foreign function to initialize it, then returns
a Lisp vector of all the (* (struct foo)) objects filled in by the foreign call:

;; Allocate a foo on the stack.

(with-alien ((f (struct foo)))

;; Call some C function to fill in foo fields.

(alien-funcall (extern-alien "mangle_foo" (function void (* foo)))

(addr f))

;; Find how many foos to use by getting the A field.

(let* ((num (slot f ’a))

(result (make-array num)))

;; Get a pointer to the array so that we don’t have to keep extracting it:

(with-alien ((a (* (array (* (struct foo)) 100)) (addr (slot f ’b))))

;; Loop over the first N elements and stash them in the result vector.

(dotimes (i num)

(setf (svref result i) (deref (deref a) i)))

;; Voila.

result)))

9.7.2 The define-alien-routine Macro

[Macro]sb-alien:define-alien-routine name result-type &rest arg-specifiers
The define-alien-routinemacro is a convenience for automatically generating Lisp interfaces to simple
foreign functions. The primary feature is the parameter style specification, which translates the C pass-
by-reference idiom into additional return values.

name is usually a string external symbol, but may also be a symbol Lisp name or a list of the foreign name
and the Lisp name. If only one name is specified, the other is automatically derived as for extern-alien.
result-type is the alien type of the return value.

Each element of the arg-specifiers list specifies an argument to the foreign function, and is of the form

(aname atype &optional style)

aname is the symbol name of the argument to the constructed function (for documentation). atype is
the alien type of corresponding foreign argument. The semantics of the actual call are the same as for

Chapter 9: Foreign Function Interface 78

alien-funcall. style specifies how this argument should be handled at call and return time, and should
be one of the following:

• :in specifies that the argument is passed by value. This is the default. :in arguments have no
corresponding return value from the Lisp function.

• :copy is similar to :in, but the argument is copied to a pre-allocated object and a pointer to this
object is passed to the foreign routine.

• :out specifies a pass-by-reference output value. The type of the argument must be a pointer to
a fixed-sized object (such as an integer or pointer). :out and :in-out style cannot be used with
pointers to arrays, records or functions. An object of the correct size is allocated on the stack, and
its address is passed to the foreign function. When the function returns, the contents of this location
are returned as one of the values of the Lisp function (and the location is automatically deallocated).

• :in-out is a combination of :copy and :out. The argument is copied to a pre-allocated object and
a pointer to this object is passed to the foreign routine. On return, the contents of this location is
returned as an additional value.

Note: Any efficiency-critical foreign interface function should be inline expanded, which can
be done by preceding the define-alien-routine call with:

(declaim (inline lisp-name))

In addition to avoiding the Lisp call overhead, this allows pointers, word-integers and floats
to be passed using non-descriptor representations, avoiding consing.)

9.7.3 define-alien-routine Example

Consider the C function cfoo with the following calling convention:

void

cfoo (str, a, i)

char *str;

char *a; /* update */

int *i; /* out */

{

/* body of cfoo(...) */

}

This can be described by the following call to define-alien-routine:

(define-alien-routine "cfoo" void

(str c-string)

(a char :in-out)

(i int :out))

The Lisp function cfoo will have two arguments (str and a) and two return values (a and i).

9.8 Calling Lisp From C

SBCL supports the calling of Lisp functions using the C calling convention. This is useful for both defining
callbacks and for creating an interface for calling into Lisp as a shared library directly from C.

The define-alien-callable macro wraps Lisp code and creates a C foreign function which can be
called with the C calling convention.

[Macro]sb-alien:define-alien-callable name result-type typed-lambda-list &body body
Define an alien callable function in the alien callable namespace with result type result-type and with
lambda list specifying the alien types of the arguments.

The alien-callable-function function returns the foreign callable value associated with any name
defined by define-alien-callable, so that we can, for example, pass the callable value to C as a callback.

[Function]sb-alien:alien-callable-function name
Return the alien callable function associated with name.

Note that the garbage collector moves objects, and won’t be able to fix up any references in C variables.
There are three mechanisms for coping with this:

Chapter 9: Foreign Function Interface 79

1. The sb-ext:purify moves all live Lisp data into static or read-only areas such that it will never be
moved (or freed) again in the life of the Lisp session

2. sb-sys:with-pinned-objects is a macro which arranges for some set of objects to be pinned in memory
for the dynamic extent of its body forms. On ports which use the generational garbage collector (most,
as of this writing) this affects exactly the specified objects. On other ports it is implemented by turning
off GC for the duration (so could be said to have a whole-world granularity).

3. Disable GC, using the without-gcing macro.

9.8.1 Lisp as a Shared Library

SBCL supports the use of Lisp as a shared library that can be used by C programs using the define-alien-
callable interface. See the :callable-exports keyword to save-lisp-and-die for how to save the Lisp
image in a way that allows a C program to initialize the Lisp runtime and the exported symbols. When
SBCL is built as a library, it exposes the symbol initialize_lisp which can be used in conjunction with
a core initializing global symbols to foreign callables as function pointers and with object code allocating
those symbols to initialize the runtime properly. The arguments to initialize_lisp are the same as the
arguments to the main sbcl program.

Note: There is currently no way to run exit hooks or otherwise undo Lisp initialization gracefully from
C.

9.9 Step-By-Step Example of the Foreign Function Interface

This section presents a complete example of an interface to a somewhat complicated C function.

Suppose you have the following C function which you want to be able to call from Lisp in the file test.c

struct c_struct

{

int x;

char *s;

};

struct c_struct *c_function (i, s, r, a)

int i;

char *s;

struct c_struct *r;

int a[10];

{

int j;

struct c_struct *r2;

printf("i = %d\n", i);

printf("s = %s\n", s);

printf("r->x = %d\n", r->x);

printf("r->s = %s\n", r->s);

for (j = 0; j < 10; j++) printf("a[%d] = %d.\n", j, a[j]);

r2 = (struct c_struct *) malloc (sizeof(struct c_struct));

r2->x = i + 5;

r2->s = "a C string";

return(r2);

};

It is possible to call this C function from Lisp using the file test.lisp containing

(cl:defpackage "TEST-C-CALL" (:use "CL" "SB-ALIEN" "SB-C-CALL"))

(cl:in-package "TEST-C-CALL")

;;; Define the record C-STRUCT in Lisp.

(define-alien-type nil

(struct c-struct

(x int)

(s c-string)))

Chapter 9: Foreign Function Interface 80

;;; Define the Lisp function interface to the C routine. It returns a

;;; pointer to a record of type C-STRUCT. It accepts four parameters:

;;; I, an int; S, a pointer to a string; R, a pointer to a C-STRUCT

;;; record; and A, a pointer to the array of 10 ints.

;;;

;;; The INLINE declaration eliminates some efficiency notes about heap

;;; allocation of alien values.

(declaim (inline c-function))

(define-alien-routine c-function

(* (struct c-struct))

(i int)

(s c-string)

(r (* (struct c-struct)))

(a (array int 10)))

;;; a function which sets up the parameters to the C function and

;;; actually calls it

(defun call-cfun ()

(with-alien ((ar (array int 10))

(c-struct (struct c-struct)))

(dotimes (i 10) ; Fill array.

(setf (deref ar i) i))

(setf (slot c-struct ’x) 20)

(setf (slot c-struct ’s) "a Lisp string")

(with-alien ((res (* (struct c-struct))

(c-function 5 "another Lisp string" (addr c-struct) ar)))

(format t "~&back from C function~%")

(multiple-value-prog1

(values (slot res ’x)

(slot res ’s))

;; Deallocate result. (after we are done referring to it:

;; "Pillage, *then* burn.")

(free-alien res)))))

To execute the above example, it is necessary to compile the C routine, e.g.: ‘cc -c test.c && ld -shared

-o test.so test.o’ (In order to enable incremental loading with some linkers, you may need to say ‘cc -G

0 -c test.c’)

Once the C code has been compiled, you can start up Lisp and load it in: ‘sbcl’. Lisp should start up
with its normal prompt.

Within Lisp, compile the Lisp file. (This step can be done separately. You don’t have to recompile every
time.) ‘(compile-file "test.lisp")’

Within Lisp, load the foreign object file to define the necessary symbols: ‘(load-shared-object
"test.so")’.

Now you can load the compiled Lisp (“fasl”) file into Lisp: ‘(load "test.fasl")’ And once the
Lisp file is loaded, you can call the Lisp routine that sets up the parameters and calls the C function:
‘(test-c-call::call-cfun)’

The C routine should print the following information to standard output:

i = 5

s = another Lisp string

r->x = 20

r->s = a Lisp string

a[0] = 0.

a[1] = 1.

a[2] = 2.

a[3] = 3.

Chapter 9: Foreign Function Interface 81

a[4] = 4.

a[5] = 5.

a[6] = 6.

a[7] = 7.

a[8] = 8.

a[9] = 9.

After return from the C function, the Lisp wrapper function should print the following output:

back from C function

And upon return from the Lisp wrapper function, before the next prompt is printed, the Lisp read-eval-
print loop should print the following return values:

10

"a C string"

82

10 Pathnames

10.1 Lisp Pathnames

There are many aspects of ANSI Common Lisp’s pathname support which are implementation-defined and
so need documentation.

10.1.1 Home Directory Specifiers

SBCL accepts the keyword :home and a list of the form (:home "username") as a directory component
immediately following :absolute.

:home is represented in namestrings by ~/ and (:home "username" by ~username/ at the start of the
namestring. Tilde-characters elsewhere in namestrings represent themselves.

Home directory specifiers are resolved to home directory of the current or specified user by
native-namestring, which is used by the implementation to translate pathnames before passing them on
to operating system specific routines.

Using (:home "user") form on Windows signals an error.

10.1.2 The SYS Logical Pathname Host

The logical pathname host named by "SYS" exists in SBCL. Its logical-pathname-translations may be
set by the site or the user applicable to point to the locations of the system’s sources; in particular, the
core system’s source files match the logical pathname "SYS:SRC;**;*.*.*", and the contributed modules’
source files match "SYS:CONTRIB;**;*.*.*".

[Function]sb-ext:set-sbcl-source-location pathname
Initialize the sys logical host based on pathname, which should be the top-level directory of the
sbcl sources. This will replace any existing translations for "SYS:SRC;", "SYS:CONTRIB;", and
"SYS:OUTPUT;". Other "SYS:" translations are preserved.

10.2 Native Filenames

In some circumstances, what is wanted is a Lisp pathname object which corresponds to a string produced
by the Operating System. In this case, some of the default parsing rules are inappropriate: most filesystems
do not have a native understanding of wild pathnames; such functionality is often provided by shells above
the OS, often in mutually-incompatible ways.

To allow the user to deal with this, the following functions are provided: parse-native-namestring

and native-pathname return the closest equivalent Lisp pathname to a given string (appropriate for the
Operating System), while native-namestring converts a non-wild pathname designator to the equivalent
native namestring, if possible. Some Lisp pathname concepts (such as the :back directory component) have
no direct equivalents in most Operating Systems; the behaviour of native-namestring is unspecified if an
inappropriate pathname designator is passed to it. Additionally, note that conversion from pathname to
native filename and back to pathname should not be expected to preserve equivalence under equal.

[Function]sb-ext:parse-native-namestring thing &optional host defaults &key start end
junk-allowed as-directory

Convert thing into a pathname, using the native conventions appropriate for the pathname host host,
or if not specified the host of defaults. If thing is a string, the parse is bounded by start and end,
and error behaviour is controlled by junk-allowed, as with parse-namestring. For file systems whose
native conventions allow directories to be indicated as files, if as-directory is true, return a pathname
denoting thing as a directory.

[Function]sb-ext:native-pathname pathspec
Convert pathspec (a pathname designator) into a pathname, assuming the operating system native
pathname conventions.

[Function]sb-ext:native-namestring pathname &key as-file
Construct the full native (name)string form of pathname. For file systems whose native conventions allow
directories to be indicated as files, if as-file is true and the name, type, and version components of
pathname are all nil or :unspecific, construct a string that names the directory according to the file
system’s syntax for files.

Chapter 10: Pathnames 83

Because some file systems permit the names of directories to be expressed in multiple ways, it is occa-
sionally necessary to parse a native file name “as a directory name” or to produce a native file name that
names a directory “as a file”. For these cases, parse-native-namestring accepts the keyword argument
as-directory to force a filename to parse as a directory, and native-namestring accepts the keyword
argument as-file to force a pathname to unparse as a file. For example,

; On Unix, the directory "/tmp/" can be denoted by "/tmp/" or "/tmp".

; Under the default rules for native filenames, these parse and

; unparse differently.

(defvar *p*)

(setf *p* (parse-native-namestring "/tmp/")) ⇒ #P"/tmp/"

(pathname-name *p*) ⇒ NIL

(pathname-directory *p*) ⇒ (:ABSOLUTE "tmp")

(native-namestring *p*) ⇒ "/tmp/"

(setf *p* (parse-native-namestring "/tmp")) ⇒ #P"/tmp"

(pathname-name *p*) ⇒ "tmp"

(pathname-directory *p*) ⇒ (:ABSOLUTE)

(native-namestring *p*) ⇒ "/tmp"

; A non-NIL AS-DIRECTORY argument to PARSE-NATIVE-NAMESTRING forces

; both the second string to parse the way the first does.

(setf *p* (parse-native-namestring "/tmp"

nil *default-pathname-defaults*

:as-directory t)) ⇒ #P"/tmp/"

(pathname-name *p*) ⇒ NIL

(pathname-directory *p*) ⇒ (:ABSOLUTE "tmp")

; A non-NIL AS-FILE argument to NATIVE-NAMESTRING forces the pathname

; parsed from the first string to unparse as the second string.

(setf *p* (parse-native-namestring "/tmp/")) ⇒ #P"/tmp/"

(native-namestring *p* :as-file t) ⇒ "/tmp"

84

11 Streams

Streams which read or write Lisp character data from or to the outside world – files, sockets or other external
entities – require the specification of a conversion between the external, binary data and the Lisp characters.
In ANSI Common Lisp, this is done by specifying the :external-format argument when the stream is
created. The major information required is an encoding, specified by a keyword naming that encoding;
however, it is also possible to specify refinements to that encoding as additional options to the external
format designator.

In addition, SBCL supports various extensions of ANSI Common Lisp streams:

Bivalent Streams
A type of stream that can read and write both character and (unsigned-byte 8) values.

Gray Streams
User-overloadable CLOS classes whose instances can be used as Lisp streams (e.g. passed as
the first argument to format).

Simple Streams
The bundled contrib module sb-simple-streams implements a subset of the Franz Allegro simple-
streams proposal.

11.1 Stream External Formats

The function stream-external-format returns the canonical name of the external format (See Chapter 8
[External Formats], page 68) used by the stream for character-based input and/or output.

When constructing file streams, for example using open or with-open-file, the external format to use is
specified via the :external-format argument which accepts an external format designator (See Section 8.2
[External Format Designators], page 68).

11.2 Bivalent Streams

A bivalent stream can be used to read and write both character and (unsigned-byte 8) values. A bivalent
stream is created by calling open with the argument :element-type :default. On such a stream, both
binary and character data can be read and written with the usual input and output functions.

Streams are not created bivalent by default for performance reasons. Bivalent streams are
incompatible with fast-read-char, an internal optimization in SBCL’s stream machinery
that bulk-converts octets to characters and implements a fast path through read-char.

11.3 Gray Streams

The Gray Streams interface is a widely supported extension that provides for definition of CLOS-extensible
stream classes. Gray stream classes are implemented by adding methods to generic functions analogous to
Common Lisp’s standard I/O functions. Instances of Gray stream classes may be used with any I/O operation
where a non-Gray stream can, provided that all required methods have been implemented suitably.

11.3.1 Gray Streams classes

The defined Gray Stream classes are these:

[Class]sb-gray:fundamental-stream
Class precedence list: fundamental-stream, standard-object, stream, t

Base class for all Gray streams.

[Class]sb-gray:fundamental-input-stream
Class precedence list: fundamental-input-stream, fundamental-stream, standard-object, stream,
t

Superclass of all Gray input streams.

The function input-stream-p will return true of any generalized instance of fundamental-input-stream.

Chapter 11: Streams 85

[Class]sb-gray:fundamental-output-stream
Class precedence list: fundamental-output-stream, fundamental-stream, standard-object, stream,
t

Superclass of all Gray output streams.

The function output-stream-p will return true of any generalized instance of fundamental-output-stream.

[Class]sb-gray:fundamental-binary-stream
Class precedence list: fundamental-binary-stream, fundamental-stream, standard-object, stream,
t

Superclass of all Gray streams whose element-type is a subtype of unsigned-byte or signed-byte.

Note that instantiable subclasses of fundamental-binary-stream should provide (or inherit) an applicable
method for the generic function stream-element-type.

[Class]sb-gray:fundamental-character-stream
Class precedence list: fundamental-character-stream, fundamental-stream, standard-object,
stream, t

Superclass of all Gray streams whose element-type is a subtype of character.

[Class]sb-gray:fundamental-binary-input-stream
Class precedence list: fundamental-binary-input-stream, fundamental-input-stream,
fundamental-binary-stream, fundamental-stream, standard-object, stream, t

Superclass of all Gray input streams whose element-type is a subtype of unsigned-byte or signed-byte.

[Class]sb-gray:fundamental-binary-output-stream
Class precedence list: fundamental-binary-output-stream, fundamental-output-stream,
fundamental-binary-stream, fundamental-stream, standard-object, stream, t

Superclass of all Gray output streams whose element-type is a subtype of unsigned-byte or signed-byte.

[Class]sb-gray:fundamental-character-input-stream
Class precedence list: fundamental-character-input-stream, fundamental-input-stream,
fundamental-character-stream, fundamental-stream, standard-object, stream, t

Superclass of all Gray input streams whose element-type is a subtype of character.

[Class]sb-gray:fundamental-character-output-stream
Class precedence list: fundamental-character-output-stream, fundamental-output-stream,
fundamental-character-stream, fundamental-stream, standard-object, stream, t

Superclass of all Gray output streams whose element-type is a subtype of character.

11.3.2 Methods common to all streams

These generic functions can be specialized on any generalized instance of fundamental-stream.

[Generic Function]cl:stream-element-type stream
Return a type specifier for the kind of object returned by the stream. The class fundamental-character-
stream provides a default method which returns character.

[Generic Function]cl:close stream &key abort
Close the given stream. No more I/O may be performed, but inquiries may still be made. If :abort is
true, an attempt is made to clean up the side effects of having created the stream.

[Generic Function]sb-gray:stream-file-position stream &optional position-spec
Used by file-position. Returns or changes the current position within stream.

11.3.3 Input stream methods

These generic functions may be specialized on any generalized instance of fundamental-input-stream.

[Generic Function]sb-gray:stream-clear-input stream
This is like cl:clear-input, but for Gray streams, returning nil. The default method does nothing.

[Generic Function]sb-gray:stream-read-sequence stream seq &optional start end
This is like cl:read-sequence, but for Gray streams.

Chapter 11: Streams 86

11.3.4 Character input stream methods

These generic functions are used to implement subclasses of fundamental-input-stream:

[Generic Function]sb-gray:stream-peek-char stream
This is used to implement peek-char; this corresponds to peek-type of nil. It returns either a character
or :eof. The default method calls stream-read-char and stream-unread-char.

[Generic Function]sb-gray:stream-read-char-no-hang stream
This is used to implement read-char-no-hang. It returns either a character, or nil if no input is currently
available, or :eof if end-of-file is reached. The default method provided by fundamental-character-

input-stream simply calls stream-read-char; this is sufficient for file streams, but interactive streams
should define their own method.

[Generic Function]sb-gray:stream-read-char stream
Read one character from the stream. Return either a character object, or the symbol :eof if the stream
is at end-of-file. Every subclass of fundamental-character-input-stream must define a method for
this function.

[Generic Function]sb-gray:stream-read-line stream
This is used by read-line. A string is returned as the first value. The second value is true if the string
was terminated by end-of-file instead of the end of a line. The default method uses repeated calls to
stream-read-char.

[Generic Function]sb-gray:stream-listen stream
This is used by listen. It returns true or false. The default method uses stream-read-char-no-hang
and stream-unread-char. Most streams should define their own method since it will usually be trivial
and will always be more efficient than the default method.

[Generic Function]sb-gray:stream-unread-char stream character
Undo the last call to stream-read-char, as in unread-char. Return nil. Every subclass of
fundamental-character-input-stream must define a method for this function.

11.3.5 Output stream methods

These generic functions are used to implement subclasses of fundamental-output-stream:

[Generic Function]sb-gray:stream-clear-output stream
This is like cl:clear-output, but for Gray streams: clear the given output stream. The default method
does nothing.

[Generic Function]sb-gray:stream-finish-output stream
Attempts to ensure that all output sent to the Stream has reached its destination, and only then returns
false. Implements finish-output. The default method does nothing.

[Generic Function]sb-gray:stream-force-output stream
Attempts to force any buffered output to be sent. Implements force-output. The default method does
nothing.

[Generic Function]sb-gray:stream-write-sequence stream seq &optional start end
This is like cl:write-sequence, but for Gray streams.

11.3.6 Character output stream methods

These generic functions are used to implement subclasses of fundamental-character-output-stream:

[Generic Function]sb-gray:stream-advance-to-column stream column
Write enough blank space so that the next character will be written at the specified column. Returns
true if the operation is successful, or nil if it is not supported for this stream. This is intended for
use by by pprint and format ~T. The default method uses stream-line-column and repeated calls to
stream-write-char with a #space character; it returns nil if stream-line-column returns nil.

[Generic Function]sb-gray:stream-fresh-line stream
Outputs a new line to the Stream if it is not positioned at the beginning of a line. Returns t if it output
a new line, nil otherwise. Used by fresh-line. The default method uses stream-start-line-p and
stream-terpri.

Chapter 11: Streams 87

[Generic Function]sb-gray:stream-line-column stream
Return the column number where the next character will be written, or nil if that is not meaningful for
this stream. The first column on a line is numbered 0. This function is used in the implementation of
pprint and the format ~T directive. For every character output stream class that is defined, a method
must be defined for this function, although it is permissible for it to always return nil.

[Generic Function]sb-gray:stream-line-length stream
Return the stream line length or nil.

[Generic Function]sb-gray:stream-start-line-p stream
Is stream known to be positioned at the beginning of a line? It is permissible for an implementation to
always return nil. This is used in the implementation of fresh-line. Note that while a value of 0 from
stream-line-column also indicates the beginning of a line, there are cases where stream-start-line-p
can be meaningfully implemented although stream-line-column can’t be. For example, for a window us-
ing variable-width characters, the column number isn’t very meaningful, but the beginning of the line does
have a clear meaning. The default method for stream-start-line-p on class fundamental-character-
output-stream uses stream-line-column, so if that is defined to return nil, then a method should be
provided for either stream-start-line-p or stream-fresh-line.

[Generic Function]sb-gray:stream-terpri stream
Writes an end of line, as for terpri. Returns nil. The default method does (stream-write-char stream
#newline).

[Generic Function]sb-gray:stream-write-char stream character
Write character to stream and return character. Every subclass of fundamental-character-output-
stream must have a method defined for this function.

[Generic Function]sb-gray:stream-write-string stream string &optional start end
This is used by write-string. It writes the string to the stream, optionally delimited by start and
end, which default to 0 and nil. The string argument is returned. The default method provided by
fundamental-character-output-stream uses repeated calls to stream-write-char.

11.3.7 Binary stream methods

The following generic functions are available for subclasses of fundamental-binary-stream:

[Generic Function]sb-gray:stream-read-byte stream
Used by read-byte; returns either an integer, or the symbol :eof if the stream is at end-of-file.

[Generic Function]sb-gray:stream-write-byte stream integer
Implements write-byte; writes the integer to the stream and returns the integer as the result.

11.3.8 Gray Streams examples

Below are two classes of stream that can be conveniently defined as wrappers for Common Lisp streams.
These are meant to serve as examples of minimal implementations of the protocols that must be followed
when defining Gray streams. Realistic uses of the Gray Streams API would implement the various methods
that can do I/O in batches, such as stream-read-line, stream-write-string, stream-read-sequence,
and stream-write-sequence.

11.3.8.1 Character counting input stream

It is occasionally handy for programs that process input files to count the number of characters and lines
seen so far, and the number of characters seen on the current line, so that useful messages may be reported
in case of parsing errors, etc. Here is a character input stream class that keeps track of these counts. Note
that all character input streams must implement stream-read-char and stream-unread-char.

(defclass wrapped-stream (fundamental-stream)

((stream :initarg :stream :reader stream-of)))

(defmethod stream-element-type ((stream wrapped-stream))

(stream-element-type (stream-of stream)))

(defmethod close ((stream wrapped-stream) &key abort)

(close (stream-of stream) :abort abort))

Chapter 11: Streams 88

(defclass wrapped-character-input-stream

(wrapped-stream fundamental-character-input-stream)

())

(defmethod stream-read-char ((stream wrapped-character-input-stream))

(read-char (stream-of stream) nil :eof))

(defmethod stream-unread-char ((stream wrapped-character-input-stream)

char)

(unread-char char (stream-of stream)))

(defclass counting-character-input-stream

(wrapped-character-input-stream)

((char-count :initform 1 :accessor char-count-of)

(line-count :initform 1 :accessor line-count-of)

(col-count :initform 1 :accessor col-count-of)

(prev-col-count :initform 1 :accessor prev-col-count-of)))

(defmethod stream-read-char ((stream counting-character-input-stream))

(with-accessors ((inner-stream stream-of) (chars char-count-of)

(lines line-count-of) (cols col-count-of)

(prev prev-col-count-of)) stream

(let ((char (call-next-method)))

(cond ((eql char :eof)

:eof)

((char= char #\Newline)

(incf lines)

(incf chars)

(setf prev cols)

(setf cols 1)

char)

(t

(incf chars)

(incf cols)

char)))))

(defmethod stream-unread-char ((stream counting-character-input-stream)

char)

(with-accessors ((inner-stream stream-of) (chars char-count-of)

(lines line-count-of) (cols col-count-of)

(prev prev-col-count-of)) stream

(cond ((char= char #\Newline)

(decf lines)

(decf chars)

(setf cols prev))

(t

(decf chars)

(decf cols)

char))

(call-next-method)))

The default methods for stream-read-char-no-hang, stream-peek-char, stream-listen,
stream-clear-input, stream-read-line, and stream-read-sequence should be sufficient (though the
last two will probably be slower than methods that forwarded directly).

Here’s a sample use of this class:

Chapter 11: Streams 89

(with-input-from-string (input "1 2

3 :foo ")

(let ((counted-stream (make-instance ’counting-character-input-stream

:stream input)))

(loop for thing = (read counted-stream) while thing

unless (numberp thing) do

(error "Non-number ~S (line ~D, column ~D)" thing

(line-count-of counted-stream)

(- (col-count-of counted-stream)

(length (format nil "~S" thing))))

end

do (print thing))))

1

2

3

Non-number :FOO (line 2, column 5)

[Condition of type SIMPLE-ERROR]

11.3.8.2 Output prefixing character stream

One use for a wrapped output stream might be to prefix each line of text with a timestamp, e.g., for a
logging stream. Here’s a simple stream that does this, though without any fancy line-wrapping. Note that
all character output stream classes must implement stream-write-char and stream-line-column.

(defclass wrapped-stream (fundamental-stream)

((stream :initarg :stream :reader stream-of)))

(defmethod stream-element-type ((stream wrapped-stream))

(stream-element-type (stream-of stream)))

(defmethod close ((stream wrapped-stream) &key abort)

(close (stream-of stream) :abort abort))

(defclass wrapped-character-output-stream

(wrapped-stream fundamental-character-output-stream)

((col-index :initform 0 :accessor col-index-of)))

(defmethod stream-line-column ((stream wrapped-character-output-stream))

(col-index-of stream))

(defmethod stream-write-char ((stream wrapped-character-output-stream)

char)

(with-accessors ((inner-stream stream-of) (cols col-index-of)) stream

(write-char char inner-stream)

(if (char= char #\Newline)

(setf cols 0)

(incf cols))))

(defclass prefixed-character-output-stream

(wrapped-character-output-stream)

((prefix :initarg :prefix :reader prefix-of)))

(defgeneric write-prefix (prefix stream)

(:method ((prefix string) stream) (write-string prefix stream))

(:method ((prefix function) stream) (funcall prefix stream)))

(defmethod stream-write-char ((stream prefixed-character-output-stream)

char)

(with-accessors ((inner-stream stream-of) (cols col-index-of)

(prefix prefix-of)) stream

(when (zerop cols)

(write-prefix prefix inner-stream))

(call-next-method)))

As with the example input stream, this implements only the minimal protocol. A production implemen-
tation should also provide methods for at least stream-write-line, stream-write-sequence.

And here’s a sample use of this class:

Chapter 11: Streams 90

(flet ((format-timestamp (stream)

(apply #’format stream "[~2@*~2,’ D:~1@*~2,’0D:~0@*~2,’0D] "

(multiple-value-list (get-decoded-time)))))

(let ((output (make-instance ’prefixed-character-output-stream

:stream *standard-output*

:prefix #’format-timestamp)))

(loop for string in ’("abc" "def" "ghi") do

(write-line string output)

(sleep 1))))

[0:30:05] abc

[0:30:06] def

[0:30:07] ghi

NIL

11.4 Simple Streams

Simple streams are an extensible streams protocol that avoids some problems with Gray streams.

Documentation about simple streams is available at:

http://www.franz.com/support/documentation/6.2/doc/streams.htm

The implementation should be considered Alpha-quality; the basic framework is there, but many classes
are just stubs at the moment.

See SYS:CONTRIB;SB-SIMPLE-STREAMS;SIMPLE-STREAM-TEST.LISP for things that should work.

Known differences to the ACL behaviour:

• open not return a simple-stream by default. This can be adjusted; see default-open-class in the file
cl.lisp

• write-vector is unimplemented.

http://www.franz.com/support/documentation/6.2/doc/streams.htm

91

12 Package Locks

None of the following sections apply to SBCL built without package locking support.

warning: The interface described here is experimental: incompatible changes in future SBCL
releases are possible, even expected: the concept of “implementation packages” and the associ-
ated operators may be renamed; more operations (such as naming restarts or catch tags) may
be added to the list of operations violating package locks.

12.1 Package Lock Concepts

12.1.1 Package Locking Overview

Package locks protect against unintentional modifications of a package: they provide similar protection to
user packages as is mandated to common-lisp package by the ANSI specification. They are not, and should
not be used as, a security measure.

Newly created packages are by default unlocked (see the :lock option to defpackage).

The package common-lisp and SBCL internal implementation packages are locked by default, including
sb-ext.

It may be beneficial to lock common-lisp-user as well, to ensure that various libraries don’t pollute it
without asking, but this is not currently done by default.

12.1.2 Implementation Packages

Each package has a list of associated implementation packages. A locked package, and the symbols whose
home package it is, can be modified without violating package locks only when *package* is bound to one
of the implementation packages of the locked package.

Unless explicitly altered by defpackage, sb-ext:add-implementation-package, or sb-ext:remove-

implementation-package each package is its own (only) implementation package.

12.1.3 Package Lock Violations

12.1.3.1 Lexical Bindings and Declarations

Lexical bindings or declarations that violate package locks cause a compile-time warning, and a runtime
program-error when the form that violates package locks would be executed.

A complete listing of operators affect by this is: let, let*, flet, labels, macrolet, and
symbol-macrolet, declare.

Package locks affecting both lexical bindings and declarations can be disabled locally with
sb-ext:disable-package-locks declaration, and re-enabled with sb-ext:enable-package-locks

declaration.

Example:

(in-package :locked)

(defun foo () ...)

(defmacro with-foo (&body body)

‘(locally (declare (disable-package-locks locked:foo))

(flet ((foo () ...))

(declare (enable-package-locks locked:foo)) ; re-enable for body

,@body)))

12.1.3.2 Other Operations

If an non-lexical operation violates a package lock, a continuable error that is of a subtype of
sb-ext:package-lock-violation (subtype of package-error) is signalled when the operation is
attempted.

Additional restarts may be established for continuable package lock violations for interactive use.

Chapter 12: Package Locks 92

The actual type of the error depends on circumstances that caused the violation: operations on pack-
ages signal errors of type sb-ext:package-locked-error, and operations on symbols signal errors of type
sb-ext:symbol-package-locked-error.

12.1.4 Package Locks in Compiled Code

12.1.4.1 Interned Symbols

If file-compiled code contains interned symbols, then loading that code into an image without the said
symbols will not cause a package lock violation, even if the packages in question are locked.

12.1.4.2 Other Limitations on Compiled Code

With the exception of interned symbols, behaviour is unspecified if package locks affecting compiled code
are not the same during loading of the code or execution.

Specifically, code compiled with packages unlocked may or may not fail to signal package-lock-violations
even if the packages are locked at runtime, and code compiled with packages locked may or may not signal
spurious package-lock-violations at runtime even if the packages are unlocked.

In practice all this means that package-locks have a negligible performance penalty in compiled code as
long as they are not violated.

12.1.5 Operations Violating Package Locks

12.1.5.1 Operations on Packages

The following actions cause a package lock violation if the package operated on is locked, and *package*

is not an implementation package of that package, and the action would cause a change in the state of the
package (so e.g. exporting already external symbols is never a violation). Package lock violations caused by
these operations signal errors of type sb-ext:package-locked-error.

1. Shadowing a symbol in a package.

2. Importing a symbol to a package.

3. Uninterning a symbol from a package.

4. Exporting a symbol from a package.

5. Unexporting a symbol from a package.

6. Changing the packages used by a package.

7. Renaming a package.

8. Deleting a package.

9. Adding a new package local nickname to a package.

10. Removing an existing package local nickname to a package.

12.1.5.2 Operations on Symbols

Following actions cause a package lock violation if the home package of the symbol operated on is locked,
and *package* is not an implementation package of that package. Package lock violations caused by these
action signal errors of type sb-ext:symbol-package-locked-error.

These actions cause only one package lock violation per lexically apparent violated package.

Example:

;;; Packages FOO and BAR are locked.

;;;

;;; Two lexically apparent violated packages: exactly two

;;; package-locked-errors will be signalled.

(defclass foo:point ()

((x :accessor bar:x)

(y :accessor bar:y)))

Chapter 12: Package Locks 93

1. Binding or altering its value lexically or dynamically, or establishing it as a symbol-macro.

Exceptions:

− If the symbol is not defined as a constant, global symbol-macro or a global dynamic variable, it
may be lexically bound or established as a local symbol macro.

− If the symbol is defined as a global dynamic variable, it may be assigned or bound.

2. Defining, undefining, or binding it, or its setf name as a function.

Exceptions:

− If the symbol is not defined as a function, macro, or special operator it and its setf name may be
lexically bound as a function.

3. Defining, undefining, or binding it as a macro or compiler macro.

Exceptions:

− If the symbol is not defined as a function, macro, or special operator it may be lexically bound as
a macro.

4. Defining it as a type specifier or structure.

5. Defining it as a declaration with a declaration proclamation.

6. Declaring or proclaiming it special.

7. Declaring or proclaiming its type or ftype.

Exceptions:

− If the symbol may be lexically bound, the type of that binding may be declared.

− If the symbol may be lexically bound as a function, the ftype of that binding may be declared.

8. Defining a setf expander for it.

9. Defining it as a method combination type.

10. Using it as the class-name argument to setf of find-class.

11. Defining it as a hash table test using sb-ext:define-hash-table-test.

12.2 Package Lock Dictionary

[Declaration]sb-ext:disable-package-locks
Syntax: (sb-ext:disable-package-locks symbol*)

Disables package locks affecting the named symbols during compilation in the lexical scope of the dec-
laration. Disabling locks on symbols whose home package is unlocked, or disabling an already disabled
lock, has no effect.

[Declaration]sb-ext:enable-package-locks
Syntax: (sb-ext:enable-package-locks symbol*)

Re-enables package locks affecting the named symbols during compilation in the lexical scope of the dec-
laration. Enabling locks that were not first disabled with sb-ext:disable-package-locks declaration,
or enabling locks that are already enabled has no effect.

[Condition]sb-ext:package-lock-violation
Class precedence list: package-lock-violation, package-error, error, serious-condition,
condition, t

Subtype of cl:package-error. A subtype of this error is signalled when a package-lock is violated.

[Condition]sb-ext:package-locked-error
Class precedence list: package-locked-error, package-lock-violation, package-error, error,
serious-condition, condition, t

Subtype of sb-ext:package-lock-violation. An error of this type is signalled when an operation on
a package violates a package lock.

[Condition]sb-ext:symbol-package-locked-error
Class precedence list: symbol-package-locked-error, package-lock-violation, package-error,
error, serious-condition, condition, t

Subtype of sb-ext:package-lock-violation. An error of this type is signalled when an operation on
a symbol violates a package lock. The symbol that caused the violation is accessed by the function
sb-ext:package-locked-error-symbol.

Chapter 12: Package Locks 94

[Function]sb-ext:package-locked-error-symbol symbol-package-locked-error
Returns the symbol that caused the symbol-package-locked-error condition.

[Function]sb-ext:package-locked-p package
Returns t when package is locked, nil otherwise. Signals an error if package doesn’t designate a valid
package.

[Function]sb-ext:lock-package package
Locks package and returns t. Has no effect if package was already locked. Signals an error if package
is not a valid package designator

[Function]sb-ext:unlock-package package
Unlocks package and returns t. Has no effect if package was already unlocked. Signals an error if
package is not a valid package designator.

[Function]sb-ext:package-implemented-by-list package
Returns a list containing the implementation packages of package. Signals an error if package is not a
valid package designator.

[Function]sb-ext:package-implements-list package
Returns the packages that package is an implementation package of. Signals an error if package is not
a valid package designator.

[Function]sb-ext:add-implementation-package packages-to-add &optional package
Adds packages-to-add as implementation packages of package. Signals an error if package or any of
the packages-to-add is not a valid package designator.

[Function]sb-ext:remove-implementation-package packages-to-remove &optional package
Removes packages-to-remove from the implementation packages of package. Signals an error if package
or any of the packages-to-remove is not a valid package designator.

[Macro]sb-ext:without-package-locks &body body
Ignores all runtime package lock violations during the execution of body. Body can begin with declara-
tions.

[Macro]sb-ext:with-unlocked-packages (&rest packages) &body forms
Unlocks packages for the dynamic scope of the body. Signals an error if any of packages is not a valid
package designator.

[Macro]cl:defpackage name [[option]]* ⇒ package
Options are extended to include the following:

• :lock boolean

If the argument to :lock is t, the package is initially locked. If :lock is not provided it defaults to
nil.

• :implement package-designator*

The package is added as an implementation package to the packages named. If :implement is not
provided, it defaults to the package itself.

Example:

(defpackage "FOO" (:export "BAR") (:lock t) (:implement))

(defpackage "FOO-INT" (:use "FOO") (:implement "FOO" "FOO-INT"))

;;; is equivalent to

(defpackage "FOO") (:export "BAR"))

(lock-package "FOO")

(remove-implementation-package "FOO" "FOO")

(defpackage "FOO-INT" (:use "BAR"))

(add-implementation-package "FOO-INT" "FOO")

95

13 Threading

SBCL supports a fairly low-level threading interface that maps onto the host operating system’s concept of
threads or lightweight processes. This means that threads may take advantage of hardware multiprocessing
on machines that have more than one CPU, but it does not allow Lisp control of the scheduler. This is found
in the SB-THREAD package.

Threads are part of the default build on x86[-64]/ARM64 Linux and Windows.

They are also supported on: x86[-64] Darwin (Mac OS X), x86[-64] FreeBSD, x86 SunOS (Solaris), PPC
Linux, ARM64 Linux, RISC-V Linux. On these platforms threads must be explicitly enabled at build-time,
see INSTALL for directions.

13.1 Threading basics

(make-thread (lambda () (write-line "Hello, world")))

13.1.1 Thread Objects

[Structure]sb-thread:thread
Class precedence list: thread, structure-object, t

Thread type. Do not rely on threads being structs as it may change in future versions.

[Variable]sb-thread:*current-thread*
Bound in each thread to the thread itself.

[Function]sb-thread:list-all-threads
Return a list of the live threads. Note that the return value is potentially stale even before the function
returns, as new threads may be created and old ones may exit at any time.

[Function]sb-thread:thread-alive-p thread
Return t if thread is still alive. Note that the return value is potentially stale even before the function
returns, as the thread may exit at any time.

[Function]sb-thread:thread-name thread
Name of the thread. Can be assigned to using setf. A thread name must be a simple-string (not
necessarily unique) or nil.

[Function]sb-thread:main-thread-p &optional thread
True if thread, defaulting to current thread, is the main thread of the process.

[Function]sb-thread:main-thread
Returns the main thread of the process.

13.1.2 Making, Returning From, Joining, and Yielding Threads

[Function]sb-thread:make-thread function &key name arguments
Create a new thread of name that runs function with the argument list designator provided (defaults to
no argument). Thread exits when the function returns. The return values of function are kept around
and can be retrieved by join-thread.

Invoking the initial abort restart established by make-thread terminates the thread.

See also: return-from-thread, abort-thread.

[Macro]sb-thread:return-from-thread values-form &key allow-exit
Unwinds from and terminates the current thread, with values from values-form as the results visible to
join-thread.

If current thread is the main thread of the process (see main-thread-p), signals an error unless
allow-exit is true, as terminating the main thread would terminate the entire process. If allow-exit
is true, returning from the main thread is equivalent to calling sb-ext:exit with :code 0 and :abort

nil.

See also: abort-thread and sb-ext:exit.

Chapter 13: Threading 96

[Function]sb-thread:abort-thread &key allow-exit
Unwinds from and terminates the current thread abnormally, causing join-thread on current thread to
signal an error unless a default-value is provided.

If current thread is the main thread of the process (see main-thread-p), signals an error unless
allow-exit is true, as terminating the main thread would terminate the entire process. If allow-exit
is true, aborting the main thread is equivalent to calling sb-ext:exit code 1 and :abort nil.

Invoking the initial abort restart established by make-thread is equivalent to calling abort-thread

in other than main threads. However, whereas abort restart may be rebound, abort-thread always
unwinds the entire thread. (Behaviour of the initial abort restart for main thread depends on the
:toplevel argument to sb-ext:save-lisp-and-die.)

See also: return-from-thread and sb-ext:exit.

[Function]sb-thread:join-thread thread &key default timeout
Suspend current thread until thread exits. Return the result values of the thread function.

If thread does not exit within timeout seconds and default is supplied, return two values: 1) default
2) :timeout. If default is not supplied, signal a join-thread-error with join-thread-problem equal
to :timeout.

If thread does not exit normally (i.e. aborted) and default is supplied, return two values: 1) default
2) :abort. If default is not supplied, signal a join-thread-error with join-thread-problem equal
to :abort.

If thread is the current thread, signal a join-thread-error with join-thread-problem equal to
:self-join.

Trying to join the main thread causes join-thread to block until timeout occurs or the process exits:
when the main thread exits, the entire process exits.

Users should not rely on the ability to join a chosen thread from more than one other thread simul-
taneously. Future changes to join-thread may directly call the underlying thread library, and not all
threading implementations consider such usage to be well-defined.

note: Return convention in case of a timeout is experimental and subject to change.

[Function]sb-thread:thread-yield
Yield the processor to other threads.

13.1.3 Asynchronous Operations

[Function]sb-thread:interrupt-thread thread function
Interrupt thread and make it run function.

The interrupt is asynchronous, and can occur anywhere with the exception of sections protected using
sb-sys:without-interrupts.

function is called with interrupts disabled, under sb-sys:allow-with-interrupts. Since functions
such as grab-mutex may try to enable interrupts internally, in most cases function should either enter
sb-sys:with-interrupts to allow nested interrupts, or sb-sys:without-interrupts to prevent them
completely.

When a thread receives multiple interrupts, they are executed in the order they were sent -- first in, first
out.

This means that a great degree of care is required to use interrupt-thread safely and sanely in a pro-
duction environment. The general recommendation is to limit uses of interrupt-thread for interactive
debugging, banning it entirely from production environments -- it is simply exceedingly hard to use
correctly.

With those caveats in mind, what you need to know when using it:

• If calling function causes a non-local transfer of control (ie. an unwind), all normal cleanup forms
will be executed.

However, if the interrupt occurs during cleanup forms of an unwind-protect, it is just as if that
had happened due to a regular go, throw, or return-from: the interrupted cleanup form and those
following it in the same unwind-protect do not get executed.

sbcl tries to keep its own internals asynch-unwind-safe, but this is frankly an unreasonable ex-
pectation for third party libraries, especially given that asynch-unwind-safety does not compose: a
function calling only asynch-unwind-safe function isn’t automatically asynch-unwind-safe.

Chapter 13: Threading 97

This means that in order for an asynch unwind to be safe, the entire callstack at the point of
interruption needs to be asynch-unwind-safe.

• In addition to asynch-unwind-safety you must consider the issue of reentrancy. interrupt-thread
can cause function that are never normally called recursively to be re-entered during their dynamic
contour, which may cause them to misbehave. (Consider binding of special variables, values of global
variables, etc.)

Taken together, these two restrict the "safe" things to do using interrupt-thread to a fairly minimal
set. One useful one -- exclusively for interactive development use is using it to force entry to debugger
to inspect the state of a thread:

(interrupt-thread thread #’break)

Short version: be careful out there.

[Function]sb-thread:terminate-thread thread
Terminate the thread identified by thread, by interrupting it and causing it to call sb-ext:abort-thread
with :allow-exit t.

The unwind caused by terminate-thread is asynchronous, meaning that eg. thread executing

(let (foo)

(unwind-protect

(progn

(setf foo (get-foo))

(work-on-foo foo))

(when foo

;; An interrupt occurring inside the cleanup clause

;; will cause cleanups from the current UNWIND-PROTECT

;; to be dropped.

(release-foo foo))))

might miss calling release-foo despite get-foo having returned true if the interrupt occurs inside the
cleanup clause, eg. during execution of release-foo.

Thus, in order to write an asynch unwind safe unwind-protect you need to use without-interrupts:

(let (foo)

(sb-sys:without-interrupts

(unwind-protect

(progn

(setf foo (sb-sys:allow-with-interrupts

(get-foo)))

(sb-sys:with-local-interrupts

(work-on-foo foo)))

(when foo

(release-foo foo)))))

Since most libraries using unwind-protect do not do this, you should never assume that unknown code
can safely be terminated using terminate-thread.

13.1.4 Miscellaneous Operations

[Function]sb-thread:symbol-value-in-thread symbol thread &optional errorp
Return the local value of symbol in thread, and a secondary value of t on success.

If the value cannot be retrieved (because the thread has exited or because it has no local binding for
name) and errorp is true signals an error of type symbol-value-in-thread-error; if errorp is false
returns a primary value of nil, and a secondary value of nil.

Can also be used with setf to change the thread-local value of symbol.

symbol-value-in-thread is primarily intended as a debugging tool, and not as a mechanism for inter-
thread communication.

13.1.5 Error Conditions

[Condition]sb-thread:thread-error
Class precedence list: thread-error, error, serious-condition, condition, t

Chapter 13: Threading 98

Conditions of type thread-error are signalled when thread operations fail. The offending thread is
initialized by the :thread initialization argument and read by the function thread-error-thread.

[Function]sb-thread:thread-error-thread condition
Return the offending thread that the thread-error pertains to.

[Condition]sb-thread:interrupt-thread-error
Class precedence list: interrupt-thread-error, thread-error, error, serious-condition,
condition, t

Signalled when interrupting a thread fails because the thread has already exited. The offending thread
can be accessed using thread-error-thread.

[Condition]sb-thread:join-thread-error
Class precedence list: join-thread-error, thread-error, error, serious-condition, condition, t

Signalled when joining a thread fails due to abnormal exit of the thread to be joined. The offending
thread can be accessed using thread-error-thread.

13.2 Special Variables

The interaction of special variables with multiple threads is mostly as one would expect, with behaviour
very similar to other implementations.

• global special values are visible across all threads;

• bindings (e.g. using LET) are local to the thread;

• threads do not inherit dynamic bindings from the parent thread

The last point means that

(defparameter *x* 0)

(let ((*x* 1))

(sb-thread:make-thread (lambda () (print *x*))))

prints 0 and not 1 as of 0.9.6.

13.3 Atomic Operations

Following atomic operations are particularly useful for implementing lockless algorithms.

[Macro]sb-ext:atomic-decf place &optional diff
Atomically decrements place by diff, and returns the value of place before the decrement.

place must access one of the following:

• a defstruct slot with declared type (unsigned-byte 64) or aref of a (simple-array
(unsigned-byte 64) (*)) The type sb-ext:word can be used for these purposes.

• car or cdr (respectively first or rest) of a cons.

• a variable defined using defglobal with a proclaimed type of fixnum.

Macroexpansion is performed on place before expanding atomic-decf.

Decrementing is done using modular arithmetic, which is well-defined over two different domains:

• For structures and arrays, the operation accepts and produces an (unsigned-byte 64), and diff

must be of type (signed-byte 64). atomic-decf of #x0 by one results in #xFFFFFFFFFFFFFFFF
being stored in place.

• For other places, the domain is fixnum, and diff must be a fixnum. atomic-decf of #x-
4000000000000000 by one results in #x3FFFFFFFFFFFFFFF being stored in place.

diff defaults to 1.

experimental: Interface subject to change.

[Macro]sb-ext:atomic-incf place &optional diff
Atomically increments place by diff, and returns the value of place before the increment.

place must access one of the following:

• a defstruct slot with declared type (unsigned-byte 64) or aref of a (simple-array
(unsigned-byte 64) (*)) The type sb-ext:word can be used for these purposes.

Chapter 13: Threading 99

• car or cdr (respectively first or rest) of a cons.

• a variable defined using defglobal with a proclaimed type of fixnum.

Macroexpansion is performed on place before expanding atomic-incf.

Incrementing is done using modular arithmetic, which is well-defined over two different domains:

• For structures and arrays, the operation accepts and produces an (unsigned-byte 64), and diff

must be of type (signed-byte 64). atomic-incf of #xFFFFFFFFFFFFFFFF by one results in
#x0 being stored in place.

• For other places, the domain is fixnum, and diff must be a fixnum. atomic-incf of
#x3FFFFFFFFFFFFFFF by one results in #x-4000000000000000 being stored in place.

diff defaults to 1.

experimental: Interface subject to change.

[Macro]sb-ext:atomic-pop place
Like pop, but atomic. place may be read multiple times before the operation completes -- the write
does not occur until such time that no other thread modified place between the read and the write.

Works on all CASable places.

[Macro]sb-ext:atomic-push obj place
Like push, but atomic. place may be read multiple times before the operation completes -- the write
does not occur until such time that no other thread modified place between the read and the write.

Works on all CASable places.

[Macro]sb-ext:atomic-update place update-fn &rest arguments
Updates place atomically to the value returned by calling function designated by update-fn with
arguments and the previous value of place.

place may be read and update-fn evaluated and called multiple times before the update succeeds:
atomicity in this context means that the value of place did not change between the time it was read,
and the time it was replaced with the computed value.

place can be any place supported by sb-ext:compare-and-swap.

Examples:

;;; Conses T to the head of FOO-LIST.

(defstruct foo list)

(defvar *foo* (make-foo))

(atomic-update (foo-list *foo*) #’cons t)

(let ((x (cons :count 0)))

(mapc #’sb-thread:join-thread

(loop repeat 1000

collect (sb-thread:make-thread

(lambda ()

(loop repeat 1000

do (atomic-update (cdr x) #’1+)

(sleep 0.00001))))))

;; Guaranteed to be (:COUNT . 1000000) -- if you replace

;; atomic update with (INCF (CDR X)) above, the result becomes

;; unpredictable.

x)

[Macro]sb-ext:compare-and-swap place old new
Atomically stores new in place if old matches the current value of place. Two values are considered to
match if they are eq. Returns the previous value of place: if the returned value is eq to old, the swap
was carried out.

place must be an CAS-able place. Built-in CAS-able places are accessor forms whose car is one of the
following:

car, cdr, first, rest, svref, symbol-plist, symbol-value, svref, slot-value sb-mop:standard-

instance-access, sb-mop:funcallable-standard-instance-access,

Chapter 13: Threading 100

or the name of a defstruct created accessor for a slot whose storage type is not raw. (Refer to the the
"Efficiency" chapter of the manual for the list of raw slot types. Future extensions to this macro may
allow it to work on some raw slot types.)

In case of slot-value, if the slot is unbound, slot-unbound is called unless old is eq to sb-pcl:+slot-

unbound+ in which case sb-pcl:+slot-unbound+ is returned and new is assigned to the slot. Additionally,
the results are unspecified if there is an applicable method on either sb-mop:slot-value-using-class,
(setf sb-mop:slot-value-using-class), or sb-mop:slot-boundp-using-class.

Additionally, the place can be a anything for which a CAS-function has been defined. (See sb-ext:cas
for more information.)

CAS Protocol

Our compare-and-swap is user-extensible by defining functions named (CAS place), allowing users to add
CAS support to new places.

[Macro]sb-ext:cas place old new
Synonym for compare-and-swap.

Additionally defun, defgeneric, defmethod, flet, and labels can be also used to define CAS-functions
analogously to SETF-functions:

(defvar *foo* nil)

(defun (cas foo) (old new)

(cas (symbol-value ’*foo*) old new))

First argument of a cas function is the expected old value, and the second argument of is the new value.
Note that the system provides no automatic atomicity for cas functions, nor can it verify that they are
atomic: it is up to the implementor of a cas function to ensure its atomicity.

experimental: Interface subject to change.

13.4 Mutex Support

Mutexes are used for controlling access to a shared resource. One thread is allowed to hold the mutex, others
which attempt to take it will be made to wait until it’s free. Threads are woken in the order that they go to
sleep.

(defpackage :demo (:use "CL" "SB-THREAD" "SB-EXT"))

(in-package :demo)

(defvar *a-mutex* (make-mutex :name "my lock"))

(defun thread-fn ()

(format t "Thread ~A running ~%" *current-thread*)

(with-mutex (*a-mutex*)

(format t "Thread ~A got the lock~%" *current-thread*)

(sleep (random 5)))

(format t "Thread ~A dropped lock, dying now~%" *current-thread*))

(make-thread #’thread-fn)

(make-thread #’thread-fn)

[Structure]sb-thread:mutex
Class precedence list: mutex, structure-object, t

Mutex type.

[Macro]sb-thread:with-mutex (mutex &key wait-p timeout value) &body body
Acquire mutex for the dynamic scope of body. If wait-p is true (the default), and the mutex is not
immediately available, sleep until it is available.

If timeout is given, it specifies a relative timeout, in seconds, on how long the system should try to
acquire the lock in the contested case.

Chapter 13: Threading 101

If the mutex isn’t acquired successfully due to either wait-p or timeout, the body is not executed, and
with-mutex returns nil.

Otherwise body is executed with the mutex held by current thread, and with-mutex returns the values
of body.

Historically with-mutex also accepted a value argument, which when provided was used as the new
owner of the mutex instead of the current thread. This is no longer supported: if value is provided, it
must be either nil or the current thread.

[Macro]sb-thread:with-recursive-lock (mutex &key wait-p timeout) &body body
Acquire mutex for the dynamic scope of body.

If wait-p is true (the default), and the mutex is not immediately available or held by the current thread,
sleep until it is available.

If timeout is given, it specifies a relative timeout, in seconds, on how long the system should try to
acquire the lock in the contested case.

If the mutex isn’t acquired successfully due to either wait-p or timeout, the body is not executed, and
with-recursive-lock returns nil.

Otherwise body is executed with the mutex held by current thread, and with-recursive-lock returns
the values of body.

Unlike with-mutex, which signals an error on attempt to re-acquire an already held mutex,
with-recursive-lock allows recursive lock attempts to succeed.

[Function]sb-thread:make-mutex &key name
Create a mutex.

[Function]sb-thread:mutex-name instance
The name of the mutex. Setfable.

[Function]sb-thread:mutex-owner mutex
Current owner of the mutex, nil if the mutex is free. Naturally, this is racy by design (another thread
may acquire the mutex after this function returns), it is intended for informative purposes. For testing
whether the current thread is holding a mutex see holding-mutex-p.

[Function]sb-thread:mutex-value mutex
Current owner of the mutex, nil if the mutex is free. May return a stale value, use mutex-owner instead.

[Function]sb-thread:grab-mutex mutex &key waitp timeout
Acquire mutex for the current thread. If waitp is true (the default) and the mutex is not immediately
available, sleep until it is available.

If timeout is given, it specifies a relative timeout, in seconds, on how long grab-mutex should try to
acquire the lock in the contested case.

If grab-mutex returns t, the lock acquisition was successful. In case of waitp being nil, or an expired
timeout, grab-mutex may also return nil which denotes that grab-mutex did -not- acquire the lock.

Notes:

• grab-mutex is not interrupt safe. The correct way to call it is:

(without-interrupts ... (allow-with-interrupts (grab-mutex ...)) ...)

without-interrupts is necessary to avoid an interrupt unwinding the call while the mutex is in an
inconsistent state while allow-with-interrupts allows the call to be interrupted from sleep.

• (grab-mutex <mutex> :timeout 0.0) differs from (grab-mutex <mutex> :waitp nil) in that the former
may signal a deadline-timeout if the global deadline was due already on entering grab-mutex.

The exact interplay of grab-mutex and deadlines are reserved to change in future versions.

• It is recommended that you use with-mutex instead of calling grab-mutex directly.

[Function]sb-thread:release-mutex mutex &key if-not-owner
Release mutex by setting it to nil. Wake up threads waiting for this mutex.

release-mutex is not interrupt safe: interrupts should be disabled around calls to it.

If the current thread is not the owner of the mutex then it silently returns without doing anything (if
if-not-owner is :punt), signals a warning (if if-not-owner is :warn), or releases the mutex anyway
(if if-not-owner is :force).

Chapter 13: Threading 102

13.5 Semaphores

Semaphores are among other things useful for keeping track of a countable resource, e.g. messages in a
queue, and sleep when the resource is exhausted.

[Structure]sb-thread:semaphore
Class precedence list: semaphore, structure-object, t

Semaphore type. The fact that a semaphore is a structure-object should be considered an implemen-
tation detail, and may change in the future.

[Function]sb-thread:make-semaphore &key name count
Create a semaphore with the supplied count and name.

[Function]sb-thread:signal-semaphore semaphore &optional n
Increment the count of semaphore by n. If there are threads waiting on this semaphore, then n of them
is woken up.

[Function]sb-thread:wait-on-semaphore semaphore &key n timeout notification
Decrement the count of semaphore by n if the count would not be negative.

Else blocks until the semaphore can be decremented. Returns the new count of semaphore on success.

If timeout is given, it is the maximum number of seconds to wait. If the count cannot be decremented
in that time, returns nil without decrementing the count.

If notification is given, it must be a semaphore-notification object whose
semaphore-notification-status is nil. If wait-on-semaphore succeeds and decrements
the count, the status is set to t.

[Function]sb-thread:try-semaphore semaphore &optional n notification
Try to decrement the count of semaphore by n. If the count were to become negative, punt and return
nil, otherwise return the new count of semaphore.

If notification is given it must be a semaphore notification object with semaphore-notification-

status of nil. If the count is decremented, the status is set to t.

[Function]sb-thread:semaphore-count instance
Returns the current count of the semaphore instance.

[Function]sb-thread:semaphore-name semaphore
The name of the semaphore instance. Setfable.

[Structure]sb-thread:semaphore-notification
Class precedence list: semaphore-notification, structure-object, t

Semaphore notification object. Can be passed to wait-on-semaphore and try-semaphore as the
:notification argument. Consequences are undefined if multiple threads are using the same notifi-
cation object in parallel.

[Function]sb-thread:make-semaphore-notification
Constructor for semaphore-notification objects. semaphore-notification-status is initially nil.

[Function]sb-thread:semaphore-notification-status semaphore-notification
Returns t if a wait-on-semaphore or try-semaphore using semaphore-notification has succeeded
since the notification object was created or cleared.

[Function]sb-thread:clear-semaphore-notification semaphore-notification
Resets the semaphore-notification object for use with another call to wait-on-semaphore or
try-semaphore.

13.6 Waitqueue/condition variables

These are based on the POSIX condition variable design, hence the annoyingly CL-conflicting name. For
use when you want to check a condition and sleep until it’s true. For example: you have a shared queue, a
writer process checking “queue is empty” and one or more readers that need to know when “queue is not
empty”. It sounds simple, but is astonishingly easy to deadlock if another process runs when you weren’t
expecting it to.

There are three components:

Chapter 13: Threading 103

• the condition itself (not represented in code)

• the condition variable (a.k.a. waitqueue) which proxies for it

• a lock to hold while testing the condition

Important stuff to be aware of:

• when calling condition-wait, you must hold the mutex. condition-wait will drop the mutex while it
waits, and obtain it again before returning for whatever reason;

• likewise, you must be holding the mutex around calls to condition-notify;

• a process may return from condition-wait in several circumstances: it is not guaranteed that the un-
derlying condition has become true. You must check that the resource is ready for whatever you want
to do to it.

(defvar *buffer-queue* (make-waitqueue))

(defvar *buffer-lock* (make-mutex :name "buffer lock"))

(defvar *buffer* (list nil))

(defun reader ()

(with-mutex (*buffer-lock*)

(loop

(condition-wait *buffer-queue* *buffer-lock*)

(loop

(unless *buffer* (return))

(let ((head (car *buffer*)))

(setf *buffer* (cdr *buffer*))

(format t "reader ~A woke, read ~A~%"

current-thread head))))))

(defun writer ()

(loop

(sleep (random 5))

(with-mutex (*buffer-lock*)

(let ((el (intern

(string (code-char

(+ (char-code #\A) (random 26)))))))

(setf *buffer* (cons el *buffer*)))

(condition-notify *buffer-queue*))))

(make-thread #’writer)

(make-thread #’reader)

(make-thread #’reader)

[Structure]sb-thread:waitqueue
Class precedence list: waitqueue, structure-object, t

Waitqueue type.

[Function]sb-thread:make-waitqueue &key name
Create a waitqueue.

[Function]sb-thread:waitqueue-name instance
The name of the waitqueue. Setfable.

[Function]sb-thread:condition-wait queue mutex &key timeout
Atomically release mutex and start waiting on queue until another thread wakes us up using either
condition-notify or condition-broadcast on queue, at which point we re-acquire mutex and return
t.

Spurious wakeups are possible.

If timeout is given, it is the maximum number of seconds to wait, including both waiting for the wakeup
and the time to re-acquire mutex. When neither a wakeup nor a re-acquisition occurs within the given
time, returns nil without re-acquiring mutex.

Chapter 13: Threading 104

If condition-wait unwinds, it may do so with or without mutex being held.

Important: Since condition-wait may return without condition-notify or condition-broadcast

having occurred, the correct way to write code that uses condition-wait is to loop around the call,
checking the associated data:

(defvar *data* nil)

(defvar *queue* (make-waitqueue))

(defvar *lock* (make-mutex))

;; Consumer

(defun pop-data (&optional timeout)

(with-mutex (*lock*)

(loop until *data*

do (or (condition-wait *queue* *lock* :timeout timeout)

;; Lock not held, must unwind without touching *data*.

(return-from pop-data nil)))

(pop *data*)))

;; Producer

(defun push-data (data)

(with-mutex (*lock*)

(push data *data*)

(condition-notify *queue*)))

[Function]sb-thread:condition-notify queue &optional n
Notify n threads waiting on queue.

important: The same mutex that is used in the corresponding condition-wait must be held by this
thread during this call.

[Function]sb-thread:condition-broadcast queue
Notify all threads waiting on queue.

important: The same mutex that is used in the corresponding condition-wait must be held by this
thread during this call.

13.7 Barriers

These are based on the Linux kernel barrier design, which is in turn based on the Alpha CPU memory
model. They are presently implemented for x86, x86-64, PPC, ARM64, and RISC-V systems, and behave
as compiler barriers on all other CPUs.

In addition to explicit use of the sb-thread:barrier macro, the following functions and macros also
serve as :memory barriers:

• sb-ext:atomic-decf, sb-ext:atomic-incf, sb-ext:atomic-push, and sb-ext:atomic-pop.

• sb-ext:compare-and-swap.

• sb-thread:grab-mutex, sb-thread:release-mutex, sb-thread:with-mutex and sb-thread:with-

recursive-lock.

• sb-thread:signal-semaphore, sb-thread:try-semaphore and sb-thread:wait-on-semaphore.

• sb-thread:condition-wait, sb-thread:condition-notify and sb-thread:condition-broadcast.

[Macro]sb-thread:barrier (kind) &body forms
Insert a barrier in the code stream, preventing some sort of reordering.

kind should be one of:

:compiler Prevent the compiler from reordering memory access across the barrier.

:memory Prevent the cpu from reordering any memory access across the barrier.

:read Prevent the cpu from reordering any read access across the barrier.

:write Prevent the cpu from reordering any write access across the barrier.

Chapter 13: Threading 105

:data-dependency

Prevent the cpu from reordering dependent memory reads across the barrier (requiring reads
before the barrier to complete before any reads after the barrier that depend on them). This
is a weaker form of the :read barrier.

forms is an implicit progn, evaluated before the barrier. barrier returns the values of the last form in
forms.

The file "memory-barriers.txt" in the Linux kernel documentation is highly recommended reading for
anyone programming at this level.

13.8 Sessions/Debugging

If the user has multiple views onto the same Lisp image (for example, using multiple terminals, or a windowing
system, or network access) they are typically set up as multiple sessions such that each view has its own
collection of foreground/background/stopped threads. A thread which wishes to create a new session can
use sb-thread:with-new-session to remove itself from the current session (which it shares with its parent
and siblings) and create a fresh one. # See also sb-thread:make-listener-thread.

Within a single session, threads arbitrate between themselves for the user’s attention. A thread may
be in one of three notional states: foreground, background, or stopped. When a background process at-
tempts to print a repl prompt or to enter the debugger, it will stop and print a message saying that it has
stopped. The user at his leisure may switch to that thread to find out what it needs. If a background
thread enters the debugger, selecting any restart will put it back into the background before it resumes.
Arbitration for the input stream is managed by calls to sb-thread:get-foreground (which may block) and
sb-thread:release-foreground.

13.9 Foreign threads

Direct calls to pthread_create (instead of MAKE-THREAD) create threads that SBCL is not aware of, these
are called foreign threads. Currently, it is not possible to run Lisp code in such threads. This means that
the Lisp side signal handlers cannot work. The best solution is to start foreign threads with signals blocked,
but since third party libraries may create threads, it is not always feasible to do so. As a workaround, upon
receiving a signal in a foreign thread, SBCL changes the thread’s sigmask to block all signals that it wants
to handle and resends the signal to the current process which should land in a thread that does not block
it, that is, a Lisp thread.

The resignalling trick cannot work for synchronously triggered signals (SIGSEGV and co), take care not
to trigger any. Resignalling for synchronously triggered signals in foreign threads is subject to --lose-on-

corruption, see Section 3.3.1 [Runtime Options], page 12.

13.10 Implementation (Linux x86/x86-64)

Threading is implemented using pthreads and some Linux specific bits like futexes.

On x86 the per-thread local bindings for special variables is achieved using the %fs segment register to
point to a per-thread storage area. This may cause interesting results if you link to foreign code that expects
threading or creates new threads, and the thread library in question uses %fs in an incompatible way. On
x86-64 the r12 register has a similar role.

Queues require the sys_futex() system call to be available: this is the reason for the NPTL requirement.
We test at runtime that this system call exists.

Garbage collection is done with the existing Conservative Generational GC. Allocation is done in small
(typically 8k) regions: each thread has its own region so this involves no stopping. However, when a region
fills, a lock must be obtained while another is allocated, and when a collection is required, all processes are
stopped. This is achieved by sending them signals, which may make for interesting behaviour if they are
interrupted in system calls. The streams interface is believed to handle the required system call restarting
correctly, but this may be a consideration when making other blocking calls e.g. from foreign library code.

Large amounts of the SBCL library have not been inspected for thread-safety. Some of the obviously un-
safe areas have large locks around them, so compilation and fasl loading, for example, cannot be parallelized.
Work is ongoing in this area.

A new thread by default is created in the same POSIX process group and session as the thread it was
created by. This has an impact on keyboard interrupt handling: pressing your terminal’s intr key (typically

Chapter 13: Threading 106

Control-C) will interrupt all processes in the foreground process group, including Lisp threads that SBCL
considers to be notionally ‘background’. This is undesirable, so background threads are set to ignore the
SIGINT signal.

sb-thread:make-listener-thread in addition to creating a new Lisp session makes a new POSIX
session, so that pressing Control-C in one window will not interrupt another listener - this has been found
to be embarrassing.

107

14 Timers

SBCL supports a system-wide event scheduler implemented on top of setitimer that also works with threads
but does not require a separate scheduler thread.

The following example schedules a timer that writes “Hello, world” after two seconds.

(schedule-timer (make-timer (lambda ()

(write-line "Hello, world")

(force-output)))

2)

It should be noted that writing timer functions requires special care, as the dynamic environment in
which they run is unpredictable: dynamic variable bindings, locks held, etc, all depend on whatever code
was running when the timer fired. The following example should serve as a cautionary tale:

(defvar *foo* nil)

(defun show-foo ()

(format t "~&foo=~S~%" *foo*)

(force-output t))

(defun demo ()

(schedule-timer (make-timer #’show-foo) 0.5)

(schedule-timer (make-timer #’show-foo) 1.5)

(let ((*foo* t))

(sleep 1.0))

(let ((*foo* :surprise!))

(sleep 2.0)))

14.1 Timer Dictionary

[Structure]sb-ext:timer
Class precedence list: timer, structure-object, t

Timer type. Do not rely on timers being structs as it may change in future versions.

[Function]sb-ext:make-timer function &key name thread
Create a timer that runs function when triggered.

If a thread is supplied, function is run in that thread. If thread is t, a new thread is created for
function each time the timer is triggered. If thread is nil, function is run in an unspecified thread.

When thread is not t, interrupt-thread is used to run function and the ordering guarantees of
interrupt-thread apply. In that case, function runs with interrupts disabled but with-interrupts
is allowed.

[Function]sb-ext:timer-name timer
Return the name of timer.

[Function]sb-ext:timer-scheduled-p timer &key delta
See if timer will still need to be triggered after delta seconds from now. For timers with a repeat interval
it returns true.

[Function]sb-ext:schedule-timer timer time &key repeat-interval absolute-p catch-up
Schedule timer to be triggered at time. If absolute-p then time is universal time, but non-integral
values are also allowed, else time is measured as the number of seconds from the current time.

If repeat-interval is given, timer is automatically rescheduled upon expiry.

If repeat-interval is non-NIL, the Boolean catch-up controls whether timer will "catch up" by re-
peatedly calling its function without delay in case calls are missed because of a clock discontinuity such
as a suspend and resume cycle of the computer. The default is nil, i.e. do not catch up.

[Function]sb-ext:unschedule-timer timer
Cancel timer. Once this function returns it is guaranteed that timer shall not be triggered again and
there are no unfinished triggers.

Chapter 14: Timers 108

[Function]sb-ext:list-all-timers
Return a list of all timers in the system.

109

15 Networking

The sb-bsd-sockets module provides a thinly disguised BSD socket API for SBCL. Ideas have been stolen
from the BSD socket API for C and Graham Barr’s IO::Socket classes for Perl.

Sockets are represented as CLOS objects, and the API naming conventions attempt to balance between
the BSD names and good lisp style.

15.1 Sockets Overview

Most of the functions are modelled on the BSD socket API. BSD sockets are widely supported, portably
(“portable” by Unix standards, at least) available on a variety of systems, and documented. There are some
differences in approach where we have taken advantage of some of the more useful features of Common Lisp
- briefly:

• Where the C API would typically return -1 and set errno, sb-bsd-sockets signals an error. All the
errors are subclasses of sb-bsd-sockets:socket-condition and generally correspond one for one with
possible errno values.

• We use multiple return values in many places where the C API would use pass-by-reference values.

• We can often avoid supplying an explicit length argument to functions because we already know how
long the argument is.

• IP addresses and ports are represented in slightly friendlier fashion than "network-endian integers".

15.2 General Sockets

[Class]sb-bsd-sockets:socket
Class precedence list: socket, standard-object, t

Slots:

• protocol — initarg: :protocol; reader: sb-bsd-sockets:socket-protocol

Protocol used by the socket. If a keyword, the symbol-name of the keyword will be passed to
get-protocol-by-name downcased, and the returned value used as protocol. Other values are used
as-is.

• type — initarg: :type; reader: sb-bsd-sockets:socket-type

Type of the socket: :stream or :datagram.

Common superclass of all sockets, not meant to be directly instantiated.

[Generic Function]sb-bsd-sockets:socket-bind socket &rest address
Bind socket to address, which may vary according to socket family. For the inet family, pass address
and port as two arguments; for file address family sockets, pass the filename string. See also bind(2)

[Generic Function]sb-bsd-sockets:socket-accept socket
Perform the accept(2) call, returning a newly-created connected socket and the peer address as multiple
values

[Generic Function]sb-bsd-sockets:socket-connect socket &rest address
Perform the connect(2) call to connect socket to a remote peer. No useful return value.

[Generic Function]sb-bsd-sockets:socket-peername socket
Return SOCKET’s peer; depending on the address family this may return multiple values

[Generic Function]sb-bsd-sockets:socket-name socket
Return the address (as vector of bytes) and port that socket is bound to, as multiple values.

[Generic Function]sb-bsd-sockets:socket-receive socket buffer length &key oob peek waitall
dontwait element-type

Read length octets from socket into buffer (or a freshly-consed buffer if nil), using recvfrom(2). If
length is nil, the length of buffer is used, so at least one of these two arguments must be non-NIL. If
buffer is supplied, it had better be of an element type one octet wide. Returns the buffer, its length,
and the address of the peer that sent it, as multiple values. On datagram sockets, sets MSG TRUNC so
that the actual packet length is returned even if the buffer was too small.

Chapter 15: Networking 110

[Generic Function]sb-bsd-sockets:socket-send socket buffer length &key address external-format
oob eor dontroute dontwait nosignal confirm more

Send length octets from buffer into socket, using sendto(2). If buffer is a string, it will converted
to octets according to external-format. If length is nil, the length of the octet buffer is used. The
format of address depends on the socket type (for example for inet domain sockets it would be a list of
an ip address and a port). If no socket address is provided, send(2) will be called instead. Returns the
number of octets written.

[Generic Function]sb-bsd-sockets:socket-listen socket backlog
Mark socket as willing to accept incoming connections. The integer backlog defines the maximum
length that the queue of pending connections may grow to before new connection attempts are refused.
See also listen(2)

[Generic Function]sb-bsd-sockets:socket-open-p socket
Return true if socket is open; otherwise, return false.

[Generic Function]sb-bsd-sockets:socket-close socket &key abort
Close socket, unless it was already closed.

If socket-make-stream has been called, calls close using abort on that stream. Otherwise closes the
socket file descriptor using close(2).

[Generic Function]sb-bsd-sockets:socket-shutdown socket &key direction
Indicate that no communication in direction will be performed on socket.

direction has to be one of :input, :output or :io.

After a shutdown, no input and/or output of the indicated direction can be performed on socket.

[Generic Function]sb-bsd-sockets:socket-make-stream socket &key input output element-type
external-format buffering timeout auto-close serve-events

Find or create a stream that can be used for io on socket (which must be connected). Specify whether
the stream is for input, output, or both (it is an error to specify neither).

element-type and external-format are as per open.

timeout specifies a read timeout for the stream.

[Method]sb-bsd-sockets:socket-make-stream (socket socket) &key input output (element-type
(quote character)) (buffering full) (external-format default) timeout auto-close
serve-events

Default method for socket objects.

element-type defaults to character, to construct a bivalent stream, capable of both binary and character
io use :default.

Acceptable values for buffering are :full, :line and :none, default is :full, ie. output is buffered till
it is explicitly flushed using close or finish-output. (force-output forces some output to be flushed:
to ensure all buffered output is flused use finish-output.)

Streams have no timeout by default. If one is provided, it is the number of seconds the system will at
most wait for input to appear on the socket stream when trying to read from it.

If auto-close is true, the underlying os socket is automatically closed after the stream and the socket
have been garbage collected. Default is false.

If serve-events is true, blocking io on the socket will dispatch to the recursive event loop. Default is
false.

The stream for socket will be cached, and a second invocation of this method will return the same
stream. This may lead to oddities if this function is invoked with inconsistent arguments (e.g., one might
request an input stream and get an output stream in response).

[Function]sb-bsd-sockets:socket-error where &optional errno
Signal an appropriate error for syscall where and errno.

where should be a string naming the failed function.

When supplied, errno should be the unix error number associated to the failed call. The default behavior
is to use the current value of the errno variable.

[Generic Function]sb-bsd-sockets:non-blocking-mode socket
Is socket in non-blocking mode?

Chapter 15: Networking 111

15.3 Socket Options

A subset of socket options are supported, using a fairly general framework which should make it sim-
ple to add more as required - see SYS:CONTRIB;SB-BSD-SOCKETS:SOCKOPT.LISP for details. The name
mapping from C is fairly straightforward: SO_RCVLOWAT becomes sockopt-receive-low-water and (setf

sockopt-receive-low-water).

[Function]sb-bsd-sockets:sockopt-reuse-address socket
Return the value of the so-reuseaddr socket option for socket. This can also be updated with setf.

[Function]sb-bsd-sockets:sockopt-keep-alive socket
Return the value of the so-keepalive socket option for socket. This can also be updated with setf.

[Function]sb-bsd-sockets:sockopt-oob-inline socket
Return the value of the so-oobinline socket option for socket. This can also be updated with setf.

[Function]sb-bsd-sockets:sockopt-bsd-compatible socket
Return the value of the so-bsdcompat socket option for socket. This can also be updated with setf.
Available only on Linux.

[Function]sb-bsd-sockets:sockopt-pass-credentials socket
Return the value of the so-passcred socket option for socket. This can also be updated with setf.
Available only on Linux.

[Function]sb-bsd-sockets:sockopt-debug socket
Return the value of the so-debug socket option for socket. This can also be updated with setf.

[Function]sb-bsd-sockets:sockopt-dont-route socket
Return the value of the so-dontroute socket option for socket. This can also be updated with setf.

[Function]sb-bsd-sockets:sockopt-broadcast socket
Return the value of the so-broadcast socket option for socket. This can also be updated with setf.

[Function]sb-bsd-sockets:sockopt-tcp-nodelay socket
Return the value of the tcp-nodelay socket option for socket. This can also be updated with setf.

15.4 INET Domain Sockets

The TCP and UDP sockets that you know and love. Some representation issues:

• IPv4 Internet addresses are represented by vectors of (unsigned-byte 8) - viz. #(127 0 0 1). Ports
are just integers: 6010. No conversion between network- and host-order data is needed from the user
of this package.

• IPv6 Internet addresses are represented by vectors of 16 (unsigned-byte 8) - viz. #(0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1). Ports are just integers. As for IPv4 addresses, no conversion between network- and
host-order data is needed from the user of this package.

• Socket addresses are represented by the two values for address and port, so for example,
(socket-connect socket #(192 168 1 1) 80) for IPv4 and (socket-connect socket #(0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1) 80) for IPv6.

[Class]sb-bsd-sockets:inet-socket
Class precedence list: inet-socket, socket, standard-object, t

Class representing tcp and udp over IPv4 sockets.

Examples:

(make-instance ’sb-bsd-sockets:inet-socket :type :stream :protocol :tcp)

(make-instance ’sb-bsd-sockets:inet-socket :type :datagram :protocol :udp)

[Class]sb-bsd-sockets:inet6-socket
Class precedence list: inet6-socket, socket, standard-object, t

Class representing tcp and udp over IPv6 sockets.

Examples:

(make-instance ’sb-bsd-sockets:inet6-socket :type :stream :protocol :tcp)

(make-instance ’sb-bsd-sockets:inet6-socket :type :datagram :protocol :udp)

Chapter 15: Networking 112

[Function]sb-bsd-sockets:make-inet-address dotted-quads
Return a vector of octets given a string dotted-quads in the format "127.0.0.1". Signals an error if the
string is malformed.

[Function]sb-bsd-sockets:make-inet6-address colon-separated-integers
Return a vector of octets given a string representation of an IPv6 address colon-separated-integers.
Signal an error if the string is malformed.

[Function]sb-bsd-sockets:get-protocol-by-name name
Given a protocol name, return the protocol number, the protocol name, and a list of protocol aliases

15.5 Local (Unix) Domain Sockets

Local domain (AF_LOCAL) sockets are also known as Unix-domain sockets, but were renamed by POSIX
presumably on the basis that they may be available on other systems too.

A local socket address is a string, which is used to create a node in the local filesystem. This means of
course that they cannot be used across a network.

[Class]sb-bsd-sockets:local-socket
Class precedence list: local-socket, socket, standard-object, t

Class representing local domain (AF LOCAL) sockets, also known as unix-domain sockets.

A local abstract socket address is also a string the scope of which is the local machine. However, in
contrast to a local socket address, there is no corresponding filesystem node.

[Class]sb-bsd-sockets:local-abstract-socket
Class precedence list: local-abstract-socket, local-socket, socket, standard-object, t

Class representing local domain (AF LOCAL) sockets with addresses in the abstract namespace.

15.6 Name Service

Presently name service is implemented by calling out to the getaddrinfo(3) and gethostinfo(3), or to
gethostbyname(3) gethostbyaddr(3) on platforms where the preferred functions are not available. The
exact details of the name resolving process (for example the choice of whether DNS or a hosts file is used
for lookup) are platform dependent.

[Class]sb-bsd-sockets:host-ent
Class precedence list: host-ent, standard-object, t

Slots:

• name — initarg: :name; reader: sb-bsd-sockets:host-ent-name

The name of the host

• addresses — initarg: :addresses; reader: sb-bsd-sockets:host-ent-addresses

A list of addresses for this host.

This class represents the results of an address lookup.

[Function]sb-bsd-sockets:get-host-by-name node
Returns a host-ent instance for node or signals a name-service-error.

Another host-ent instance containing zero, one or more IPv6 addresses may be returned as a second
return value.

node may also be an ip address in dotted quad notation or some other weird stuff - see getaddrinfo(3)
for the details.

[Function]sb-bsd-sockets:get-host-by-address address
Returns a host-ent instance for address, which should be a vector of (integer 0 255) with 4 elements in
case of an IPv4 address and 16 elements in case of an IPv6 address, or signals a name-service-error.
See gethostbyaddr(3) for details.

[Generic Function]sb-bsd-sockets:host-ent-address host-ent
Return some valid address for host-ent.

113

16 Profiling

SBCL includes both a deterministic profiler, that can collect statistics on individual functions, and a more
“modern” statistical profiler.

Inlined functions do not appear in the results reported by either.

16.1 Deterministic Profiler

The package sb-profile provides a classic, per-function-call profiler.

note: When profiling code executed by multiple threads in parallel, the consing attributed to
each function is inaccurate.

[Macro]sb-profile:profile &rest names
profile Name*

If no names are supplied, return the list of profiled functions.

If names are supplied, wrap profiling code around the named functions. As in trace, the names are
not evaluated. A symbol names a function. A string names all the functions named by symbols in the
named package. If a function is already profiled, then unprofile and reprofile (useful to notice function
redefinition.) If a name is undefined, then we give a warning and ignore it. See also unprofile, report
and reset.

[Macro]sb-profile:unprofile &rest names
Unwrap any profiling code around the named functions, or if no names are given, unprofile all profiled
functions. A symbol names a function. A string names all the functions named by symbols in the named
package. names defaults to the list of names of all currently profiled functions.

[Function]sb-profile:report &key limit print-no-call-list
Report results from profiling. The results are approximately adjusted for profiling overhead. The com-
pensation may be rather inaccurate when bignums are involved in runtime calculation, as in a very-long-
running Lisp process.

If limit is set to an integer, only the top limit results are reported. If print-no-call-list is t (the
default) then a list of uncalled profiled functions are listed.

[Function]sb-profile:reset
Reset the counters for all profiled functions.

16.2 Statistical Profiler

The sb-sprof module, loadable by

(require :sb-sprof)

provides an alternate profiler which works by taking samples of the program execution at regular intervals,
instead of instrumenting functions like sb-profile:profile does. You might find sb-sprof more useful
than the deterministic profiler when profiling functions in the common-lisp-package, SBCL internals, or
code where the instrumenting overhead is excessive.

Additionally sb-sprof includes a limited deterministic profiler which can be used for reporting the
amounts of calls to some functions during

16.2.1 Example Usage

(in-package :cl-user)

(require :sb-sprof)

(declaim (optimize speed))

(defun cpu-test-inner (a i)

(logxor a

(* i 5)

(+ a i)))

Chapter 16: Profiling 114

(defun cpu-test (n)

(let ((a 0))

(dotimes (i (expt 2 n) a)

(setf a (cpu-test-inner a i)))))

;;;; CPU profiling

;;; Take up to 1000 samples of running (CPU-TEST 26), and give a flat

;;; table report at the end. Profiling will end one the body has been

;;; evaluated once, whether or not 1000 samples have been taken.

(sb-sprof:with-profiling (:max-samples 1000

:report :flat

:loop nil)

(cpu-test 26))

;;; Record call counts for functions defined on symbols in the CL-USER

;;; package.

(sb-sprof:profile-call-counts "CL-USER")

;;; Take 1000 samples of running (CPU-TEST 24), and give a flat

;;; table report at the end. The body will be re-evaluated in a loop

;;; until 1000 samples have been taken. A sample count will be printed

;;; after each iteration.

(sb-sprof:with-profiling (:max-samples 1000

:report :flat

:loop t

:show-progress t)

(cpu-test 24))

;;;; Allocation profiling

(defun foo (&rest args)

(mapcar (lambda (x) (float x 1d0)) args))

(defun bar (n)

(declare (fixnum n))

(apply #’foo (loop repeat n collect n)))

(sb-sprof:with-profiling (:max-samples 10000

:mode :alloc

:report :flat)

(bar 1000))

16.2.2 Output

The flat report format will show a table of all functions that the profiler encountered on the call stack during
sampling, ordered by the number of samples taken while executing that function.

Self Total Cumul

Nr Count % Count % Count % Calls Function

--

1 69 24.4 97 34.3 69 24.4 67108864 CPU-TEST-INNER

2 64 22.6 64 22.6 133 47.0 - SB-VM::GENERIC-+

3 39 13.8 256 90.5 172 60.8 1 CPU-TEST

4 31 11.0 31 11.0 203 71.7 - SB-KERNEL:TWO-ARG-XOR

For each function, the table will show three absolute and relative sample counts. The Self column shows
samples taken while directly executing that function. The Total column shows samples taken while executing

Chapter 16: Profiling 115

that function or functions called from it (sampled to a platform-specific depth). The Cumul column shows
the sum of all Self columns up to and including that line in the table.

Additionally the Calls column will record the amount of calls that were made to the function during
the profiling run. This value will only be reported for functions that have been explicitly marked for call
counting with profile-call-counts.

The profiler also hooks into the disassembler such that instructions which have been sampled are an-
notated with their relative frequency of sampling. This information is not stored across different sampling
runs.

; 6CF: 702E JO L4 ; 6/242 samples

; 6D1: D1E3 SHL EBX, 1

; 6D3: 702A JO L4

; 6D5: L2: F6C303 TEST BL, 3 ; 2/242 samples

; 6D8: 756D JNE L8

; 6DA: 8BC3 MOV EAX, EBX ; 5/242 samples

; 6DC: L3: 83F900 CMP ECX, 0 ; 4/242 samples

16.2.3 Platform support

Allocation profiling is only supported on SBCL builds that use the generational garbage collector. Tracking
of call stacks at a depth of more than two levels is only supported on x86 and x86-64.

16.2.4 Macros

[Macro]sb-sprof:with-profiling (&key sample-interval alloc-interval max-samples reset
mode loop max-depth show-progress threads report) &body body

Evaluate body with statistical profiling turned on. If loop is true, loop around the body until a sufficient
number of samples has been collected. Returns the values from the last evaluation of body.

The following keyword args are recognized:

:sample-interval <n>
Take a sample every <n> seconds. Default is *sample-interval*.

:mode <mode>
If :cpu, run the profiler in cpu profiling mode. If :alloc, run the profiler in allocation
profiling mode. If :time, run the profiler in wallclock profiling mode.

:max-samples <max>
If :loop is nil (the default), collect no more than <max> samples. If :loop is t, repeat
evaluating body until <max> samples are taken. Default is *max-samples*.

:report <type>
If specified, call report with :type <type> at the end.

:reset <bool>
If true, call reset at the beginning.

:threads <list-form>

Form that evaluates to the list threads to profile, or :all to indicate that all threads should
be profiled. Defaults to all threads.

:threads has no effect on call-counting at the moment.

On some platforms (eg. Darwin) the signals used by the profiler are not properly delivered
to threads in proportion to their cpu usage when doing :cpu profiling. If you see empty call
graphs, or are obviously missing several samples from certain threads, you may be falling
afoul of this. In this case using :mode :time is likely to work better.

:loop <bool>
If false (the default), evaluate body only once. If true repeatedly evaluate body.

[Macro]sb-sprof:with-sampling (&optional on) &body body
Evaluate body with statistical sampling turned on or off in the current thread.

Chapter 16: Profiling 116

16.2.5 Functions

[Function]sb-sprof:map-traces function samples
Call function on each trace in samples

The signature of function must be compatible with (thread trace).

function is called once for each trace where thread is the sb-thread:tread instance which was sampled
to produce trace, and trace is an opaque object to be passed to map-trace-pc-locs.

experimental: Interface subject to change.

[Function]sb-sprof:sample-pc info pc-or-offset
Extract and return program counter from info and pc-or-offset.

Can be applied to the arguments passed by map-trace-pc-locs and map-all-pc-locs.

experimental: Interface subject to change.

[Function]sb-sprof:report &key type max min-percent call-graph sort-by sort-order stream
show-progress

Report statistical profiling results. The following keyword args are recognized:

:type <type>
Specifies the type of report to generate. If :flat, show flat report, if :graph show a call
graph and a flat report. If nil, don’t print out a report.

:stream <stream>

Specify a stream to print the report on. Default is *standard-output*.

:max <max>
Don’t show more than <max> entries in the flat report.

:min-percent <min-percent>
Don’t show functions taking less than <min-percent> of the total time in the flat report.

:sort-by <column>
If :samples, sort flat report by number of samples taken. If :cumulative-samples, sort
flat report by cumulative number of samples taken (shows how much time each function
spent on stack.) Default is *report-sort-by*.

:sort-order <order>
If :descending, sort flat report in descending order. If :ascending, sort flat report in
ascending order. Default is *report-sort-order*.

:show-progress <bool>
If true, print progress messages while generating the call graph.

:call-graph <graph>
Print a report from <graph> instead of the latest profiling results.

Value of this function is a call-graph object representing the resulting call-graph, or nil if there are no
samples (eg. right after calling reset.)

Profiling is stopped before the call graph is generated.

[Function]sb-sprof:reset
Reset the profiler.

[Function]sb-sprof:start-profiling &key max-samples mode sample-interval alloc-interval
max-depth threads

Start profiling statistically in the current thread if not already profiling. The following keyword args are
recognized:

:sample-interval <n>
Take a sample every <n> seconds. Default is *sample-interval*.

:mode <mode>
If :cpu, run the profiler in cpu profiling mode. If :alloc, run the profiler in allocation
profiling mode. If :time, run the profiler in wallclock profiling mode.

Chapter 16: Profiling 117

:max-samples <max>
Maximum number of stack traces to collect. Default is *max-samples*.

:threads <list>
List threads to profile, or :all to indicate that all threads should be profiled. Defaults to
:all.

:threads has no effect on call-counting at the moment.

On some platforms (eg. Darwin) the signals used by the profiler are not properly delivered
to threads in proportion to their cpu usage when doing :cpu profiling. If you see empty call
graphs, or are obviously missing several samples from certain threads, you may be falling
afoul of this.

[Function]sb-sprof:stop-profiling
Stop profiling if profiling.

[Function]sb-sprof:profile-call-counts &rest names
Mark the functions named by names as being subject to call counting during statistical profiling. If a
string is used as a name, it will be interpreted as a package name. In this case call counting will be done
for all functions with names like x or (setf x), where x is a symbol with the package as its home package.

[Function]sb-sprof:unprofile-call-counts
Clear all call counting information. Call counting will be done for no functions during statistical profiling.

16.2.6 Variables

[Variable]sb-sprof:*max-samples*
Default maximum number of stack traces collected.

[Variable]sb-sprof:*sample-interval*
Default number of seconds between samples.

16.2.7 Credits

sb-sprof is an SBCL port, with enhancements, of Gerd Moellmann’s statistical profiler for CMUCL.

118

17 Contributed Modules

SBCL comes with a number of modules that are not part of the core system. These are loaded via (require

:modulename) (see Section 7.11 [Customization Hooks for Users], page 59). This section contains documen-
tation (or pointers to documentation) for some of the contributed modules.

Chapter 17: Contributed Modules 119

17.1 sb-aclrepl

The sb-aclrepl module offers an Allegro CL-style Read-Eval-Print Loop for SBCL, with integrated inspec-
tor. Adding a debugger interface is planned.

17.1.1 Usage

To start sb-aclrepl as your read-eval-print loop, put the form

(require ’sb-aclrepl)

in your ~/.sbclrc initialization file.

17.1.2 Customization

The following customization variables are available:

[Variable]sb-aclrepl:*command-char*
Prefix character for a top-level command

[Variable]sb-aclrepl:*prompt*
The current prompt string or formatter function.

[Variable]sb-aclrepl:*exit-on-eof*
If t, then exit when the eof character is entered.

[Variable]sb-aclrepl:*use-short-package-name*
when t, use the shortnest package nickname in a prompt

[Variable]sb-aclrepl:*max-history*
Maximum number of history commands to remember

17.1.3 Example Initialization

Here’s a longer example of a ~/.sbclrc file that shows off some of the features of sb-aclrepl:

(ignore-errors (require ’sb-aclrepl))

(when (find-package ’sb-aclrepl)

(push :aclrepl cl:*features*))

#+aclrepl

(progn

(setq sb-aclrepl:*max-history* 100)

(setf (sb-aclrepl:alias "asdc")

#’(lambda (sys) (asdf:operate ’asdf:compile-op sys)))

(sb-aclrepl:alias "l" (sys) (asdf:operate ’asdf:load-op sys))

(sb-aclrepl:alias "t" (sys) (asdf:operate ’asdf:test-op sys))

;; The 1 below means that two characaters ("up") are required

(sb-aclrepl:alias ("up" 1 "Use package") (package) (use-package package))

;; The 0 below means only the first letter ("r") is required,

;; such as ":r base64"

(sb-aclrepl:alias ("require" 0 "Require module") (sys) (require sys))

(setq cl:*features* (delete :aclrepl cl:*features*)))

Questions, comments, or bug reports should be sent to Kevin Rosenberg (kevin@rosenberg.net).

17.1.4 Credits

Allegro CL is a registered trademark of Franz Inc.

mailto:kevin@rosenberg.net

Chapter 17: Contributed Modules 120

17.2 sb-concurrency

Additional data structures, synchronization primitives and tools for concurrent programming. Similiar to
Java’s java.util.concurrent package.

Chapter 17: Contributed Modules 121

17.2.1 Queue

sb-concurrency:queue is a lock-free, thread-safe FIFO queue datatype.

The implementation is based on An Optimistic Approach to Lock-Free FIFO Queues by Edya Ladan-Mozes
and Nir Shavit.

Before SBCL 1.0.38, this implementation resided in its own contrib (see Section 17.7 [sb-queue], page 138)
which is still provided for backwards-compatibility but which has since been deprecated.

[Structure]sb-concurrency:queue
Class precedence list: queue, structure-object, t

Lock-free thread safe fifo queue.

Use enqueue to add objects to the queue, and dequeue to remove them.

[Function]sb-concurrency:dequeue queue
Retrieves the oldest value in queue and returns it as the primary value, and t as secondary value. If the
queue is empty, returns nil as both primary and secondary value.

[Function]sb-concurrency:enqueue value queue
Adds value to the end of queue. Returns value.

[Function]sb-concurrency:list-queue-contents queue
Returns the contents of queue as a list without removing them from the queue. Mainly useful for manual
examination of queue state, as the list may be out of date by the time it is returned, and concurrent
dequeue operations may in the worse case force the queue-traversal to be restarted several times.

[Function]sb-concurrency:make-queue &key name initial-contents
Returns a new queue with name and contents of the initial-contents sequence enqueued.

[Function]sb-concurrency:queue-count queue
Returns the number of objects in queue. Mainly useful for manual examination of queue state, and in
print-object methods: inefficient as it must walk the entire queue.

[Function]sb-concurrency:queue-empty-p queue
Returns t if queue is empty, nil otherwise.

[Function]sb-concurrency:queue-name instance
Name of a queue. Can be assigned to using setf. Queue names can be arbitrary printable objects, and
need not be unique.

[Function]sb-concurrency:queuep object
Returns true if argument is a queue, nil otherwise.

Chapter 17: Contributed Modules 122

17.2.2 Mailbox (lock-free)

sb-concurrency:mailbox is a lock-free message queue where one or multiple ends can send messages to one
or multiple receivers. The difference to [Section sb-concurrency:queue], page 121, is that the receiving end
may block until a message arrives.

Built on top of the [Structure sb-concurrency queue], page 121, implementation.

[Structure]sb-concurrency:mailbox
Class precedence list: mailbox, structure-object, t

Mailbox aka message queue.

send-message adds a message to the mailbox, receive-message waits till a message becomes available,
whereas receive-message-no-hang is a non-blocking variant, and receive-pending-messages empties
the entire mailbox in one go.

Messages can be arbitrary objects

[Function]sb-concurrency:list-mailbox-messages mailbox
Returns a fresh list containing all the messages in the mailbox. Does not remove messages from the
mailbox.

[Function]sb-concurrency:mailbox-count mailbox
Returns the number of messages currently in the mailbox.

[Function]sb-concurrency:mailbox-empty-p mailbox
Returns true if mailbox is currently empty, nil otherwise.

[Function]sb-concurrency:mailbox-name instance
Name of a mailbox. SETFable.

[Function]sb-concurrency:mailboxp object
Returns true if argument is a mailbox, nil otherwise.

[Function]sb-concurrency:make-mailbox &key name initial-contents
Returns a new mailbox with messages in initial-contents enqueued.

[Function]sb-concurrency:receive-message mailbox &key timeout
Removes the oldest message from mailbox and returns it as the primary value, and a secondary value of
t. If mailbox is empty waits until a message arrives.

If timeout is provided, and no message arrives within the specified interval, returns primary and secondary
value of nil.

[Function]sb-concurrency:receive-message-no-hang mailbox
The non-blocking variant of receive-message. Returns two values, the message removed from mailbox,
and a flag specifying whether a message could be received.

[Function]sb-concurrency:receive-pending-messages mailbox &optional n
Removes and returns all (or at most n) currently pending messages from mailbox, or returns nil if no
messages are pending.

Note: Concurrent threads may be snarfing messages during the run of this function, so even though x,y
appear right next to each other in the result, does not necessarily mean that y was the message sent right
after x.

[Function]sb-concurrency:send-message mailbox message
Adds a message to mailbox. Message can be any object.

Chapter 17: Contributed Modules 123

17.2.3 Gates

sb-concurrency:gate is a synchronization object suitable for when multiple threads must wait for a single
event before proceeding.

[Structure]sb-concurrency:gate
Class precedence list: gate, structure-object, t

gate type. Gates are synchronization constructs suitable for making multiple threads wait for single
event before proceeding.

Use wait-on-gate to wait for a gate to open, open-gate to open one, and close-gate to close an open
gate. gate-open-p can be used to test the state of a gate without blocking.

[Function]sb-concurrency:close-gate gate
Closes gate. Returns t if the gate was previously open, and nil if the gate was already closed.

[Function]sb-concurrency:gate-name instance
Name of a gate. SETFable.

[Function]sb-concurrency:gate-open-p gate
Returns true if gate is open.

[Function]sb-concurrency:gatep object
Returns true if the argument is a gate.

[Function]sb-concurrency:make-gate &key name open
Makes a new gate. Gate will be initially open if open is true, and closed if open is nil (the default.)
name, if provided, is the name of the gate, used when printing the gate.

[Function]sb-concurrency:open-gate gate
Opens gate. Returns t if the gate was previously closed, and nil if the gate was already open.

[Function]sb-concurrency:wait-on-gate gate &key timeout
Waits for gate to open, or timeout seconds to pass. Returns t if the gate was opened in time, and nil

otherwise.

Chapter 17: Contributed Modules 124

17.2.4 Frlocks, aka Fast Read Locks

[Structure]sb-concurrency:frlock
Class precedence list: frlock, structure-object, t

FRlock, aka Fast Read Lock.

Fast Read Locks allow multiple readers and one potential writer to operate in parallel while providing
for consistency for readers and mutual exclusion for writers.

Readers gain entry to protected regions without waiting, but need to retry if a writer operated inside the
region while they were reading. This makes frlocks very efficient when readers are much more common
than writers.

FRlocks are not suitable when it is not safe at all for readers and writers to operate on the same data
in parallel: they provide consistency, not exclusion between readers and writers. Hence using an frlock
to eg. protect an sbcl hash-table is unsafe. If multiple readers operating in parallel with a writer would
be safe but inconsistent without a lock, frlocks are suitable.

The recommended interface to use is frlock-read and frlock-write, but those needing it can also use
a lower-level interface.

Example:

;; Values returned by FOO are always consistent so that

;; the third value is the sum of the two first ones.

(let ((a 0)

(b 0)

(c 0)

(lk (make-frlock)))

(defun foo ()

(frlock-read (lk) a b c))

(defun bar (x y)

(frlock-write (lk)

(setf a x

b y

c (+ x y)))))

[Macro]sb-concurrency:frlock-read (frlock) &body value-forms
Evaluates value-forms under frlock till it obtains a consistent set, and returns that as multiple values.

[Macro]sb-concurrency:frlock-write (frlock &key wait-p timeout) &body body
Executes body while holding frlock for writing.

[Function]sb-concurrency:make-frlock &key name
Returns a new frlock with name.

[Function]sb-concurrency:frlock-name instance
Name of an frlock. SETFable.

[Function]sb-concurrency:frlock-read-begin frlock
Start a read sequence on frlock. Returns a read-token and an epoch to be validated later.

Using frlock-read instead is recommended.

[Function]sb-concurrency:frlock-read-end frlock
Ends a read sequence on frlock. Returns a token and an epoch. If the token and epoch are eql to the
read-token and epoch returned by frlock-read-begin, the values read under the frlock are consistent
and can be used: if the values differ, the values are inconsistent and the read must be restated.

Using frlock-read instead is recommended.

Example:

(multiple-value-bind (t0 e0) (frlock-read-begin *fr*)

(let ((a (get-a))

(b (get-b)))

(multiple-value-bind (t1 e1) (frlock-read-end *fr*)

(if (and (eql t0 t1) (eql e0 e1))

(list :a a :b b)

:aborted))))

Chapter 17: Contributed Modules 125

[Function]sb-concurrency:grab-frlock-write-lock frlock &key wait-p timeout
Acquires frlock for writing, invalidating existing and future read-tokens for the duration. Returns t

on success, and nil if the lock wasn’t acquired due to eg. a timeout. Using frlock-write instead is
recommended.

[Function]sb-concurrency:release-frlock-write-lock frlock
Releases frlock after writing, allowing valid read-tokens to be acquired again. Signals an error if the
current thread doesn’t hold frlock for writing. Using frlock-write instead is recommended.

Chapter 17: Contributed Modules 126

17.3 sb-cover

The sb-cover module provides a code coverage tool for SBCL. The tool has support for expression coverage,
and for some branch coverage. Coverage reports are only generated for code compiled using compile-file

with the value of the sb-cover:store-coverage-data optimization quality set to 3.

As of SBCL 1.0.6 sb-cover is still experimental, and the interfaces documented here might change in
later versions.

17.3.1 Example Usage

;;; Load SB-COVER

(require :sb-cover)

;;; Turn on generation of code coverage instrumentation in the compiler

(declaim (optimize sb-cover:store-coverage-data))

;;; Load some code, ensuring that it’s recompiled with the new optimization

;;; policy.

(asdf:oos ’asdf:load-op :cl-ppcre-test :force t)

;;; Run the test suite.

(cl-ppcre-test:test)

;;; Produce a coverage report

(sb-cover:report "/tmp/report/")

;;; Turn off instrumentation

(declaim (optimize (sb-cover:store-coverage-data 0)))

17.3.2 Functions

[Function]sb-cover:report directory &key form-mode if-matches external-format
Print a code coverage report of all instrumented files into directory. If directory does not exist, it
will be created. The main report will be printed to the file cover-index.html. The external format of the
source files can be specified with the external-format parameter.

If the keyword argument form-mode has the value :car, the annotations in the coverage report will be
placed on the CARs of any cons-forms, while if it has the value :whole the whole form will be annotated
(the default). The former mode shows explicitly which forms were instrumented, while the latter mode
is generally easier to read.

The keyword argument if-matches should be a designator for a function of one argument, called for the
namestring of each file with code coverage info. If it returns true, the file’s info is included in the report,
otherwise ignored. The default value is cl:identity.

[Function]sb-cover:reset-coverage &optional object
Reset all coverage data back to the ‘Not executed‘ state.

[Function]sb-cover:clear-coverage
Clear all files from the coverage database. The files will be re-entered into the database when the fasl

files (produced by compiling store-coverage-data optimization policy set to 3) are loaded again into
the image.

[Function]sb-cover:save-coverage
Returns an opaque representation of the current code coverage state. The only operation that may be done
on the state is passing it to restore-coverage. The representation is guaranteed to be readably printable.
A representation that has been printed and read back will work identically in restore-coverage.

[Function]sb-cover:save-coverage-in-file pathname
Call save-coverage and write the results of that operation into the file designated by pathname.

[Function]sb-cover:restore-coverage coverage-state
Restore the code coverage data back to an earlier state produced by save-coverage.

Chapter 17: Contributed Modules 127

[Function]sb-cover:restore-coverage-from-file pathname
read the contents of the file designated by pathname and pass the result to restore-coverage.

Chapter 17: Contributed Modules 128

17.4 sb-grovel

The sb-grovel module helps in generation of foreign function interfaces. It aids in extracting constants’
values from the C compiler and in generating SB-ALIEN structure and union types, see Section 9.2.1 [Defining
Foreign Types], page 70.

The ASDF(http://www.cliki.net/ASDF) component type GROVEL-CONSTANTS-FILE has its PER-
FORM operation defined to write out a C source file, compile it, and run it. The output from this program
is Lisp, which is then itself compiled and loaded.

sb-grovel is used in a few contributed modules, and it is currently compatible only to SBCL. However, if
you want to use it, here are a few directions.

17.4.1 Using sb-grovel in your own ASDF system

1. Create a Lisp package for the foreign constants/functions to go into.

2. Make your system depend on the ’sb-grovel system.

3. Create a grovel-constants data file - for an example, see example-constants.lisp in the contrib/sb-grovel/
directory in the SBCL source distribution.

4. Add it as a component in your system. e.g.

(eval-when (:compile-toplevel :load-toplevel :execute)

(require :sb-grovel))

(defpackage :example-package.system

(:use :cl :asdf :sb-grovel :sb-alien))

(in-package :example-package.system)

(defsystem example-system

:depends-on (sb-grovel)

:components

((:module "sbcl"

:components

((:file "defpackage")

(grovel-constants-file "example-constants"

:package :example-package)))))

Make sure to specify the package you chose in step 1

5. Build stuff.

17.4.2 Contents of a grovel-constants-file

The grovel-constants-file, typically named constants.lisp, comprises lisp expressions describing the foreign
things that you want to grovel for. A constants.lisp file contains two sections:

• a list of headers to include in the C program, for example:

("sys/types.h" "sys/socket.h" "sys/stat.h" "unistd.h" "sys/un.h"

"netinet/in.h" "netinet/in_systm.h" "netinet/ip.h" "net/if.h"

"netdb.h" "errno.h" "netinet/tcp.h" "fcntl.h" "signal.h")

• A list of sb-grovel clauses describing the things you want to grovel from the C compiler, for example:

((:integer af-local

#+(or sunos solaris) "AF_UNIX"

#-(or sunos solaris) "AF_LOCAL"

"Local to host (pipes and file-domain).")

(:structure stat ("struct stat"

(integer dev "dev_t" "st_dev")

(integer atime "time_t" "st_atime")))

(:function getpid ("getpid" int)))

There are two types of things that sb-grovel can sensibly extract from the C compiler: constant integers
and structure layouts. It is also possible to define foreign functions in the constants.lisp file, but these

http://www.cliki.net/ASDF

Chapter 17: Contributed Modules 129

definitions don’t use any information from the C program; they expand directly to sb-alien:define-

alien-routine (see Section 9.7.2 [The define-alien-routine Macro], page 77) forms.

Here’s how to use the grovel clauses:

• :integer - constant expressions in C. Used in this form:

(:integer lisp-variable-name "C expression" &optional doc export)

"C expression" will be typically be the name of a constant. But other forms are possible.

• :enum

(:enum lisp-type-name ((lisp-enumerated-name c-enumerated-name) ...)))

An sb-alien:enum type with name lisp-type-name will be defined. The symbols are the
lisp-enumerated-names, and the values are grovelled from the c-enumerated-names.

• :structure - alien structure definitions look like this:

(:structure lisp-struct-name ("struct c_structure"

(type-designator lisp-element-name

"c_element_type" "c_element_name"

:distrust-length nil)

; ...

))

type-designator is a reference to a type whose size (and type constraints) will be groveled for. sb-
grovel accepts a form of type designator that doesn’t quite conform to either lisp nor sb-alien’s type
specifiers. Here’s a list of type designators that sb-grovel currently accepts:

• integer - a C integral type; sb-grovel will infer the exact type from size information extracted
from the C program. All common C integer types can be grovelled for with this type designator,
but it is not possible to grovel for bit fields yet.

• (unsigned n) - an unsigned integer variable that is n bytes long. No size information from the C
program will be used.

• (signed n) - an signed integer variable that is n bytes long. No size information from the C
program will be used.

• c-string - an array of char in the structure. sb-grovel will use the array’s length from the C
program, unless you pass it the :distrust-length keyword argument with non-nil value (this
might be required for structures such as solaris’s struct dirent).

• c-string-pointer - a pointer to a C string, corresponding to the sb-alien:c-string type (see
Section 9.2.3 [Foreign Type Specifiers], page 71).

• (array alien-type) - An array of the previously-declared alien type. The array’s size will be
determined from the output of the C program and the alien type’s size.

• (array alien-type n) - An array of the previously-declared alien type. The array’s size will be
assumed as being n.

Note that c-string and c-string-pointer do not have the same meaning. If you declare that an
element is of type c-string, it will be treated as if the string is a part of the structure, whereas if
you declare that the element is of type c-string-pointer, a pointer to a string will be the structure
member.

• :function - alien function definitions are similar to define-alien-routine definitions, because they
expand to such forms when the lisp program is loaded. See Section 9.7 [Foreign Function Calls], page 77.

(:function lisp-function-name ("alien_function_name" alien-return-type

(argument alien-type)

(argument2 alien-type)))

17.4.3 Programming with sb-grovel’s structure types

Let us assume that you have a grovelled structure definition:

(:structure mystruct ("struct my_structure"

(integer myint "int" "st_int")

(c-string mystring "char[]" "st_str")))

What can you do with it? Here’s a short interface document:

Chapter 17: Contributed Modules 130

• Creating and destroying objects:

• Function (allocate-mystruct) - allocates an object of type mystructand returns a system area
pointer to it.

• Function (free-mystruct var) - frees the alien object pointed to by var.

• Macro (with-mystruct var ((member init) [...]) &body body) - allocates an object of type
mystruct that is valid in body. If body terminates or control unwinds out of body, the object
pointed to by var will be deallocated.

• Accessing structure members:

• (mystruct-myint var) and (mystruct-mystring var) return the value of the respective fields in
mystruct.

• (setf (mystruct-myint var) new-val) and (setf (mystruct-mystring var) new-val) sets
the value of the respective structure member to the value of new-val. Notice that in (setf

(mystruct-mystring var) new-val)’s case, new-val is a lisp string.

17.4.3.1 Traps and Pitfalls

Basically, you can treat functions and data structure definitions that sb-grovel spits out as if they were alien
routines and types. This has a few implications that might not be immediately obvious (especially if you
have programmed in a previous version of sb-grovel that didn’t use alien types):

• You must take care of grovel-allocated structures yourself. They are alien types, so the garbage collector
will not collect them when you drop the last reference.

• If you use the with-mystruct macro, be sure that no references to the variable thus allocated leaks
out. It will be deallocated when the block exits.

Chapter 17: Contributed Modules 131

17.5 sb-md5

The sb-md5 module implements the RFC1321 MD5 Message Digest Algorithm. [FIXME cite]

[Function]sb-md5:md5sum-file pathname
Calculate the MD5 message-digest of the file specified by ‘pathname’.

[Function]sb-md5:md5sum-sequence sequence &key start end
Calculate the MD5 message-digest of data in ‘sequence’, which should be a 1d simple-array with element
type (unsigned-byte 8). On cmu cl and sbcl non-simple and non-1d arrays with this element-type are
also supported.

[Function]sb-md5:md5sum-stream stream
Calculate an MD5 message-digest of the contents of ‘stream’. Its element-type has to be (unsigned-byte
8). Use on character streams is deprecated, as this will not work correctly on implementations with
‘char-code-limit’ > 256 and ignores character coding issues.

[Function]sb-md5:md5sum-string string &key external-format start end
Calculate the MD5 message-digest of the binary representation of ‘string’ (as octets) in the external
format specified by ‘external-format’. The boundaries ‘start’ and ‘end’ refer to character positions in the
string, not to octets in the resulting binary representation. The permissible external format specifiers are
determined by the underlying implementation.

17.5.1 Credits

The implementation for CMUCL was largely done by Pierre Mai, with help from members of the cmucl-help
mailing list. Since CMUCL and SBCL are similar in many respects, it was not too difficult to extend the
low-level implementation optimizations for CMUCL to SBCL. Following this, SBCL’s compiler was extended
to implement efficient compilation of modular arithmetic (see Section 6.3 [Modular arithmetic], page 39),
which enabled the implementation to be expressed in portable arithmetical terms, apart from the use of
rotate-byte for bitwise rotation.

Chapter 17: Contributed Modules 132

17.6 sb-posix

Sb-posix is the supported interface for calling out to the operating system.1

The scope of this interface is “operating system calls on a typical Unixlike platform”. This is section 2 of
the Unix manual, plus section 3 calls that are (a) typically found in libc, but (b) not part of the C standard.
For example, we intend to provide support for opendir() and readdir(), but not for printf(). That said,
if your favourite system call is not included yet, you are encouraged to submit a patch to the SBCL mailing
list.

Some facilities are omitted where they offer absolutely no additional use over some portable function, or
would be actively dangerous to the consistency of Lisp. Not all functions are available on all platforms.

Sb-posix functions do not implicitly take measures to provide thread-safety or reentrancy beyond whatever
the underlying C library does, except in cases where doing so is necessary to maintain the consistency of the
Lisp image. For example, the bindings to the user and group database accessing functions are neither thread-
safe nor reentrant unless the underlying libc happens to make them so (but see Section 17.6.7 [Extensions
to POSIX], page 136).

17.6.1 Lisp names for C names

All symbols are in the SB-POSIX package. This package contains a Lisp function for each supported Unix
system call or function, a variable or constant for each supported Unix constant, an object type for each
supported Unix structure type, and a slot name for each supported Unix structure member. A symbol name
is derived from the C binding’s name, by (a) uppercasing, then (b) removing leading underscores (#_) then
replacing remaining underscore characters with the hyphen (#\-). The requirement to uppercase is so that
in a standard upcasing reader the user may write sb-posix:creat instead of sb-posix:|creat| as would
otherise be required.

No other changes to “Lispify” symbol names are made, so creat() becomes CREAT, not CREATE.

The user is encouraged not to (USE-PACKAGE :SB-POSIX) but instead to use the SB-POSIX: prefix on all
references, as some of the symbols symbols contained in the SB-POSIX package have the same name as CL
symbols (OPEN, CLOSE, SIGNAL etc).

17.6.2 Types

Generally, marshalling between Lisp and C data types is done using SBCL’s FFI. See Chapter 9 [Foreign
Function Interface], page 70.

Some functions accept objects such as filenames or file descriptors. In the C binding to POSIX these are
represented as strings and small integers respectively. For the Lisp programmer’s convenience we introduce
designators such that CL pathnames or open streams can be passed to these functions. For example, rename
accepts both pathnames and strings as its arguments.

17.6.2.1 File-descriptors

[Type]sb-posix:file-descriptor
A fixnum designating a native file descriptor.

sb-sys:make-fd-stream can be used to construct a file-stream associated with a native file descriptor.

Note that mixing I/O operations on a file-stream with operations directly on its descriptor may produce
unexpected results if the stream is buffered.

[Type]sb-posix:file-descriptor-designator
Designator for a file-descriptor: either a fixnum designating itself, or a file-stream designating the
underlying file-descriptor.

[Function]sb-posix:file-descriptor file-descriptor
Converts file-descriptor-designator into a file-descriptor.

17.6.2.2 Filenames

[Type]sb-posix:filename
A string designating a filename in native namestring syntax.

1 The functionality contained in the package SB-UNIX is for SBCL internal use only; its contents are likely to change
from version to version.

Chapter 17: Contributed Modules 133

Note that native namestring syntax is distinct from Lisp namestring syntax:

(pathname "/foo*/bar")

is a wild pathname with a pattern-matching directory component. sb-ext:parse-native-namestring

may be used to construct Lisp pathnames that denote posix filenames as understood by system calls, and
sb-ext:native-namestring can be used to coerce them into strings in the native namestring syntax.

Note also that posix filename syntax does not distinguish the names of files from the names of directories:
in order to parse the name of a directory in posix filename syntax into a pathname my-defaults for
which

(merge-pathnames (make-pathname :name "FOO" :case :common)

my-defaults)

returns a pathname that denotes a file in the directory, supply a true :as-directory argument to
sb-ext:parse-native-namestring. Likewise, to supply the name of a directory to a posix function in
non-directory syntax, supply a true :as-file argument to sb-ext:native-namestring.

[Type]sb-posix:filename-designator
Designator for a filename: a string designating itself, or a designator for a pathname designating the
corresponding native namestring.

[Function]sb-posix:filename filename
Converts filename-designator into a filename.

17.6.3 Function Parameters

The calling convention is modelled after that of CMUCL’s UNIX package: in particular, it’s like the C interface
except that:

a. Length arguments are omitted or optional where the sensible value is obvious. For example, read would
be defined this way:

(read fd buffer &optional (length (length buffer))) => bytes-read

b. Where C simulates “out” parameters using pointers (for instance, in pipe() or socketpair()) these
may be optional or omitted in the Lisp interface: if not provided, appropriate objects will be allocated
and returned (using multiple return values if necessary).

c. Some functions accept objects such as filenames or file descriptors. Wherever these are specified as such
in the C bindings, the Lisp interface accepts designators for them as specified in the ’Types’ section
above.

d. A few functions have been included in sb-posix that do not correspond exactly with their C counterparts.
These are described in See Section 17.6.6 [Functions with idiosyncratic bindings], page 136.

17.6.4 Function Return Values

The return value is usually the same as for the C binding, except in error cases: where the C function is defined
as returning some sentinel value and setting errno on error, we instead signal an error of type SYSCALL-ERROR.
The actual error value (errno) is stored in this condition and can be accessed with SYSCALL-ERRNO.

We do not automatically translate the returned value into “Lispy” objects – for example, SB-POSIX:OPEN
returns a small integer, not a stream. Exception: boolean-returning functions (or, more commonly, macros)
do not return a C integer, but instead a Lisp boolean.

17.6.5 Lisp objects and C structures

Sb-posix provides various Lisp object types to stand in for C structures in the POSIX library. Lisp bindings
to C functions that accept, manipulate, or return C structures accept, manipulate, or return instances of
these Lisp types instead of instances of alien types.

The names of the Lisp types are chosen according to the general rules described above. For example Lisp
objects of type STAT stand in for C structures of type struct stat.

Accessors are provided for each standard field in the structure. These are named structure-name-

field-name where the two components are chosen according to the general name conversion rules, with the
exception that in cases where all fields in a given structure have a common prefix, that prefix is omitted.
For example, stat.st_dev in C becomes STAT-DEV in Lisp.

Chapter 17: Contributed Modules 134

Because sb-posix might not support all semi-standard or implementation-dependent members of all struc-
ture types on your system (patches welcome), here is an enumeration of all supported Lisp objects corre-
sponding to supported POSIX structures, and the supported slots for those structures.

• flock

[Class]sb-posix:flock
Class precedence list: flock, standard-object, t

Slots:

• type — initarg: :type; reader: sb-posix:flock-type; writer: (setf sb-posix:flock-type)

Type of lock; F RDLCK, F WRLCK, F UNLCK.

• whence — initarg: :whence; reader: sb-posix:flock-whence; writer:
(setf sb-posix:flock-whence)

Flag for starting offset.

• start — initarg: :start; reader: sb-posix:flock-start; writer:
(setf sb-posix:flock-start)

Relative offset in bytes.

• len — initarg: :len; reader: sb-posix:flock-len; writer: (setf sb-posix:flock-len)

Size; if 0 then until eof.

• pid — reader: sb-posix:flock-pid

Process id of the process holding the lock; returned with F GETLK.

Class representing locks used in fcntl(2).

• passwd

[Class]sb-posix:passwd
Class precedence list: passwd, standard-object, t

Slots:

• name — initarg: :name; reader: sb-posix:passwd-name; writer:
(setf sb-posix:passwd-name)

User’s login name.

• passwd — initarg: :passwd; reader: sb-posix:passwd-passwd; writer:
(setf sb-posix:passwd-passwd)

The account’s encrypted password.

• uid — initarg: :uid; reader: sb-posix:passwd-uid; writer: (setf sb-posix:passwd-uid)

Numerical user id.

• gid — initarg: :gid; reader: sb-posix:passwd-gid; writer: (setf sb-posix:passwd-gid)

Numerical group id.

• gecos — initarg: :gecos; reader: sb-posix:passwd-gecos; writer:
(setf sb-posix:passwd-gecos)

User’s name or comment field.

• dir — initarg: :dir; reader: sb-posix:passwd-dir; writer: (setf sb-posix:passwd-dir)

Initial working directory.

• shell — initarg: :shell; reader: sb-posix:passwd-shell; writer:
(setf sb-posix:passwd-shell)

Program to use as shell.

Instances of this class represent entries in the system’s user database.

• passwd

[Class]sb-posix:group
Class precedence list: group, standard-object, t

Slots:

• name — initarg: :name; reader: sb-posix:group-name; writer: (setf sb-posix:group-name)

The name of the group.

Chapter 17: Contributed Modules 135

• passwd — initarg: :passwd; reader: sb-posix:group-passwd; writer:
(setf sb-posix:group-passwd)

The group’s encrypted password.

• gid — initarg: :gid; reader: sb-posix:group-gid; writer: (setf sb-posix:group-gid)

Numerical group id.

• mem — initarg: :mem; reader: sb-posix:group-mem; writer: (setf sb-posix:group-mem)

A list of strings naming members of the group.

Instances of this class represent entries in the system’s group database.

• stat

[Class]sb-posix:stat
Class precedence list: stat, standard-object, t

Slots:

• mode — initarg: :mode; reader: sb-posix:stat-mode

Mode of file.

• ino — initarg: :ino; reader: sb-posix:stat-ino

File serial number.

• dev — initarg: :dev; reader: sb-posix:stat-dev

Device id of device containing file.

• nlink — initarg: :nlink; reader: sb-posix:stat-nlink

Number of hard links to the file.

• uid — initarg: :uid; reader: sb-posix:stat-uid

User id of file.

• gid — initarg: :gid; reader: sb-posix:stat-gid

Group id of file.

• size — initarg: :size; reader: sb-posix:stat-size

For regular files, the file size in bytes. For symbolic links, the length in bytes of the filename
contained in the symbolic link.

• rdev — initarg: :rdev; reader: sb-posix:stat-rdev

For devices the device number.

• atime — initarg: :atime; reader: sb-posix:stat-atime

Time of last access.

• mtime — initarg: :mtime; reader: sb-posix:stat-mtime

Time of last data modification.

• ctime — initarg: :ctime; reader: sb-posix:stat-ctime

Time of last status change.

Instances of this class represent posix file metadata.

• termios

[Class]sb-posix:termios
Class precedence list: termios, standard-object, t

Slots:

• iflag — initarg: :iflag; reader: sb-posix:termios-iflag; writer:
(setf sb-posix:termios-iflag)

Input modes.

• oflag — initarg: :oflag; reader: sb-posix:termios-oflag; writer:
(setf sb-posix:termios-oflag)

Output modes.

Chapter 17: Contributed Modules 136

• cflag — initarg: :cflag; reader: sb-posix:termios-cflag; writer:
(setf sb-posix:termios-cflag)

Control modes.

• lflag — initarg: :lflag; reader: sb-posix:termios-lflag; writer:
(setf sb-posix:termios-lflag)

Local modes.

• cc — initarg: :cc; reader: sb-posix:termios-cc; writer: (setf sb-posix:termios-cc)

Control characters.

Instances of this class represent I/O characteristics of the terminal.

• timeval

[Class]sb-posix:timeval
Class precedence list: timeval, standard-object, t

Slots:

• sec — initarg: :tv-sec; reader: sb-posix:timeval-sec; writer:
(setf sb-posix:timeval-sec)

Seconds.

• usec — initarg: :tv-usec; reader: sb-posix:timeval-usec; writer:
(setf sb-posix:timeval-usec)

Microseconds.

Instances of this class represent time values.

17.6.6 Functions with idiosyncratic bindings

A few functions in sb-posix don’t correspond directly to their C counterparts.

• getcwd

[Function]sb-posix:getcwd
Returns the process’s current working directory as a string.

• readlink

[Function]sb-posix:readlink pathspec
Returns the resolved target of a symbolic link as a string.

• syslog

[Function]sb-posix:syslog priority format &rest args
Send a message to the syslog facility, with severity level priority. The message will be formatted
as by cl:format (rather than C’s printf) with format string format and arguments args.

17.6.7 Extensions to POSIX

Some of POSIX’s standardized operators are not safe to use on their own, so SB-POSIX exports a few
“helpers” that do not correspond exactly to functionality present in the POSIX standard.

The user and group database accessing routines are not required to be thread-safe or reentrant, and so
can only be used safely if all clients coordinate around their use. Since it would be logically impossible for
independently developed programs to coordinate, SB-POSIX exports two iteration macros, SB-POSIX:DO-
PASSWDS and SB-POSIX:DO-GROUPS, each of which iterates over the respective database while preventing the
keyed accesses (SB-POSIX:GETPWNAM, SB-POSIX:GETPWUID, SB-POSIX:GETGRNAM, SB-POSIX:GETGRGID) from
running until iteration completes.

• do-passwds

[Macro]sb-posix:do-passwds (passwd &optional result) &body body
Evaluate body with passwd bound to successive entries from the passwd database, and return
result. An implicit block named nil surrounds the form; an implicit tagbody surrounds body.
It is unspecified whether passwd is assigned, rebound, or destructively modified upon each iteration.
It is an error to use any operator that accesses the passwd database during the dynamic extent of
do-passwds.

Chapter 17: Contributed Modules 137

• do-groups

[Macro]sb-posix:do-groups (group &optional result) &body body
Evaluate body with group bound to successive entries from the group database, and return result.
An implicit block named nil surrounds the form; an implicit tagbody surrounds body. It is un-
specified whether group is assigned, rebound, or destructively modified upon each iteration. It is an
error to use any operator that accesses the group database during the dynamic extent of do-groups.

Chapter 17: Contributed Modules 138

17.7 sb-queue

Since SBCL 1.0.38, the sb-queuemodule has been merged into the sb-concurrencymodule (see Section 17.2
[sb-concurrency], page 120.)

Chapter 17: Contributed Modules 139

17.8 sb-rotate-byte

The sb-rotate-byte module offers an interface to bitwise rotation, with an efficient implementation for
operations which can be performed directly using the platform’s arithmetic routines. It implements the
specification at http://www.cliki.net/ROTATE-BYTE.

Bitwise rotation is a component of various cryptographic or hashing algorithms: MD5, SHA-1, etc.; often
these algorithms are specified on 32-bit rings. [FIXME cite cite cite].

[Function]sb-rotate-byte:rotate-byte count bytespec integer
Rotates a field of bits within integer; specifically, returns an integer that contains the bits of integer
rotated count times leftwards within the byte specified by bytespec, and elsewhere contains the bits of
integer.

http://www.cliki.net/ROTATE-BYTE

Chapter 17: Contributed Modules 140

17.9 sb-simd

The sb-simd module provides a convenient interface for SIMD programming in SBCL. It provides one
package per SIMD instruction set, plus functions and macros for querying whether an instruction set is
available and what functions and data types it exports.

17.9.1 Data Types

The central data type in sb-simd is the SIMD pack. A SIMD pack is very similar to a specialized vector,
except that its length must be a particular power of two that depends on its element type and the underlying
hardware. The set of element types that are supported for SIMD packs is similar to that of SBCL’s specialized
array element types, except that there is currently no support for SIMD packs of complex numbers or
characters.

The supported scalar types are f32, f64, sN, and uN, where N is either 8, 16, 32, or 64. These
scalar types are abbreviations for the Common Lisp types single-float, double-float, signed-byte,
and unsigned-byte, respectively. For each scalar data type X, there exists one or more SIMD data type X.Y
with Y elements. For example, in AVX there are two supported SIMD data types with element type f64,
namely f64.2 (128 bit) and f64.4 (256 bit).

SIMD packs are regular Common Lisp objects that have a type, a class, and can be passed as function
arguments. The price for this is that SIMD packs have both a boxed and an unboxed representation. The
unboxed representation of a SIMD pack has zero overhead and fits into a CPU register, but can only be
used within a function and when the compiler can statically determine the SIMD pack’s type. Otherwise,
the SIMD pack is boxed, i.e., spilled to the heap together with its type information. In practice, boxing of
SIMD packs can usually be avoided via inlining, or by loading and storing them to specialized arrays instead
of passing them around as function arguments.

17.9.2 Casts

For each scalar data type X, there is a function named X that is equivalent to (lambda (v) (coerce v ’X)).
For each SIMD data type X.Y, there is a function named X.Y that ensures that its argument is of type X.Y,
or, if the argument is a number, calls the cast function of X and broadcasts the result.

All functions provided by sb-simd (apart from the casts themselves) implicitly cast each argument to its
expected type. So to add the number five to each single float in a SIMD pack x of type f32.8, it is sufficient
to write (f32.8+ x 5). We don’t mention this implicit conversion explicitly in the following sections, so if
any function description states that an argument must be of type X.Y, the argument can actually be of any
type that is a suitable argument of the cast function named X.Y.

17.9.3 Constructors

For each SIMD data type X.Y, there is a constructor named make-X.Y that takes Y arguments of type X and
returns a SIMD pack whose elements are the supplied values.

17.9.4 Unpackers

For each SIMD data type X.Y, there is a function named X.Y-values that returns, as Y multiple values, the
elements of the supplied SIMD pack of type X.Y.

17.9.5 Reinterpret Casts

For each SIMD data type X.Y, there is a function named X.Y! that takes any SIMD pack or scalar datum
and interprets its bits as a SIMD pack of type X.Y. If the supplied datum has more bits than the resulting
value, the excess bits are discarded. If the supplied datum has less bits than the resulting value, the missing
bits are assumed to be zero.

17.9.6 Associatives

For each associative binary function, e.g., two-arg-X.Y-OP, there is a function X.Y-OP that takes any number
of arguments and combines them with this binary function in a tree-like fashion. If the binary function has
an identity element, it is possible to call the function with zero arguments, in which case the identity element
is returned. If there is no identity element, the function must receive at least one argument.

Examples of associative functions are f32.8+, for summing any number of 256 bit packs of single floats,
and u8.32-max, for computing the element-wise maximum of one or more 256 bit packs of 8 bit integers.

Chapter 17: Contributed Modules 141

17.9.7 Reducers

For binary functions two-arg-X.Y-OP that are not associative, but that have a neutral element, there are
functions X.Y-OP that take any positive number of arguments and return the reduction of all arguments with
the binary function. In the special case of a single supplied argument, the binary function is invoked on the
neutral element and that argument. Reducers have been introduced to generate Lisp-style subtraction and
division functions.

Examples of reducers are f32.8/, for successively dividing a pack of 32 bit single floats by all further
supplied packs of 32 bit single floats, or u32.8- for subtracting any number of supplied packs of 32 bit
unsigned integers from the first supplied one, except in the case of a single argument, where u32.8- simply
negates all values in the pack.

17.9.8 Rounding

For each floating-point SIMD data type X.Y there are several functions that round the values of a sup-
plied SIMD pack to nearby floating-point values whose fractional digits are all zero. Those functions are
X.Y-round, X.Y-floor, X.Y-ceiling, and X.Y-truncate, and they have the same semantics as the one
argument versions of cl:round, cl:floor, cl:ceiling, and cl:truncate, respectively.

17.9.9 Comparisons

For each SIMD data type X.Y, there exist conversion functions X.Y<, X.Y<=, X.Y>, X.Y>=, and X.Y= that
check whether the supplied arguments are strictly monotonically increasing, monotonically increasing, strictly
monotonically decreasing, monotonically decreasing, equal, or nowhere equal, respectively. In contrast to the
Common Lisp functions <, <=, >, >=, =, and /= the SIMD comparison functions don’t return a generalized
boolean, but a SIMD pack of unsigned integers with Y elements. The bits of each unsigned integer are either
all one, if the values of the arguments at that position satisfy the test, or all zero, if they don’t. We call a
SIMD packs of such unsigned integers a mask.

17.9.10 Conditionals

The SIMD paradigm is inherently incompatible with fine-grained control flow. A piece of code containing
an if special form cannot be vectorized in a straightforward way, because doing so would require as many
instruction pointers and processor states as there are values in the desired SIMD data type. Instead, most
SIMD instruction sets provide an operator for selecting values from one of two supplied SIMD packs based on
a mask. The mask is a SIMD pack with as many elements as the other two arguments, but whose elements
are unsigned integers whose bits must be either all zeros or all ones. This selection mechanism can be used
to emulate the effect of an if special form, at the price that both operands have to be computed each time.

In sb-simd, all conditional operations and comparisons emit suitable mask fields, and there is a X.Y-if

function for each SIMD data type with element type X and number of elements Y whose first arguments must
be a suitable mask, whose second and third argument must be objects that can be converted to the SIMD
data type X.Y, and that returns a value of type X.Y where each element is from the second operand if the
corresponding mask bits are set, and from the third operand if the corresponding mask bits are not set.

17.9.11 Loads and Stores

In practice, a SIMD pack X.Y is usually not constructed by calling its constructor, but by loading Y consecu-
tive elements from a specialized array with element type X. The functions for doing so are called X.Y-aref and
X.Y-row-major-aref, and have similar semantics as Common Lisp’s aref and row-major-aref. In addition
to that, some instruction sets provide the functions X.Y-non-temporal-aref and X.Y-non-temporal-row-

major-aref, for accessing a memory location without loading the referenced values into the CPU’s cache.

For each function X.Y-foo for loading SIMD packs from an array, there also exists a corresponding
function (setf X.Y-foo) for storing a SIMD pack in the specified memory location. An exception to this
rule is that some instruction sets (e.g., SSE) only provide functions for non-temporal stores, but not for the
corresponding non-temporal loads.

One difficulty when treating the data of a Common Lisp array as a SIMD pack is that some hardware
instructions require a particular alignment of the address being referenced. Luckily, most architectures
provide instructions for unaligned loads and stores that are, at least on modern CPUs, not slower than
their aligned equivalents. So by default we translate all array references as unaligned loads and stores. An
exception are the instructions for non-temporal loads and stores, that always require a certain alignment.

Chapter 17: Contributed Modules 142

We do not handle this case specially, so without special handling by the user, non-temporal loads and stores
will only work on certain array indices that depend on the actual placement of that array in memory.

17.9.12 Specialized Scalar Operations

Finally, for each SIMD function X.Y-OP that applies a certain operation OP element-wise to the Y elements of
type X, there exists also a functions X-OP for applying that operation only to a single element. For example,
the SIMD function f64.4+ has a corresponding function f64+ that differs from cl:+ in that it only accepts
arguments of type double float, and that it adds its supplied arguments in a fixed order that is the same as
the one used by f64.4.

There are good reasons for exporting scalar functions from a SIMD library, too. The most obvious one is
that they obey the same naming convention and hence make it easier to locate the correct functions. Another
benefit is that the semantics of each scalar operation is precisely the same as that of the corresponding SIMD
function, so they can be used to write reference implementations for testing. A final reason is that these
scalar functions can be used to simplify the life of tools for automatic vectorization.

17.9.13 Instruction Set Dispatch

One challenge that is unique to image-based programming systems such as Lisp is that a program can run
on one machine, be dumped as an image, and then resumed on another machine. While nobody expects
this feature to work across machines with different architectures, it is quite likely that the machine where
the image is dumped and the one where execution is resumed provide different instruction set extensions.

As a practical example, consider a game developer that develops software on an x86-64 machine with all
SIMD extensions up to AVX2, but then dumps it as an image and ships it to a customer whose machine
only supports SIMD extensions up to SSE2. Ideally, the image should contain multiple optimized versions
of all crucial functions, and dynamically select the most appropriate version based on the instruction set
extensions that are actually available.

This kind of run time instruction set dispatch is explicitly supported by means of the instruction-set-
case macro. The code resulting from an invocation of this macro compiles to an efficient jump table whose
index is recomputed on each startup of the Lisp image.

143

18 Deprecation

In order to support evolution of interfaces in SBCL as well as in user code, SBCL allows declaring functions,
variables and types as deprecated. Users of deprecated things are notified by means of warnings while the
deprecated thing in question is still available.

This chapter documents the interfaces for being notified when using deprecated thing and declaring things
as deprecated, the deprecation process used for SBCL interfaces, and lists legacy interfaces in various stages
of deprecation.

Deprecation in this context should not be confused with those things the ANSI Common Lisp standard
calls deprecated: the entirety of ANSI CL is supported by SBCL, and none of those interfaces are subject
to censure.

18.1 Why Deprecate?

While generally speaking we try to keep SBCL changes as backwards compatible as feasible, there are
situations when existing interfaces are deprecated:

• Broken Interfaces

Sometimes it turns out that an interface is sufficiently misdesigned that fixing it would be worse than
deprecating it and replacing it with another.

This is typically the case when fixing the interface would change its semantics in ways that could break
user code subtly: in such cases we may end up considering the obvious breakage caused by deprecation
to be preferable.

Another example are functions or macros whose current signature makes them hard or impossible to
extend in the future: backwards compatible extensions would either make the interface intolerably
hairy, or are sometimes outright impossible.

• Internal Interfaces

SBCL has several internal interfaces that were never meant to be used in user code – or at least never
meant to be used in user code unwilling to track changes to SBCL internals.

Ideally we’d like to be free to refactor our own internals as we please, without even going through the
hassle of deprecating things. Sometimes, however, it turns out that our internal interfaces have several
external users who aren’t using them advisedly, but due to misunderstandings regarding their status or
stability.

Consider a deprecated internal interface a reminder for SBCL maintainers not to delete the thing just
yet, even though it is seems unused – because it has external users.

When internal interfaces are deprecated we try our best to provide supported alternatives.

• Aesthetics & Ease of Maintenance

Sometimes an interface isn’t broken or internal, but just inconsistent somehow.

This mostly happens only with historical interfaces inherited from CMUCL which often haven’t been
officially supported in SBCL before, or with new extensions to SBCL that haven’t been around for very
long in the first place.

The alternative would be to keep the suboptimal version around forever, possibly alongside an improved
version. Sometimes we may do just that, but because every line of code comes with a maintenance cost,
sometimes we opt to deprecate the suboptimal version instead: SBCL doesn’t have infinite developer
resources.

We also believe that sometimes cleaning out legacy interfaces helps keep the whole system more com-
prehensible to users, and makes introspective tools such as apropos more useful.

18.2 The Deprecation Pipeline

SBCL uses a deprecation pipeline with multiple stages: as time goes by, deprecated things move from earlier
stages of deprecation to later stages before finally being removed. The intention is making users aware of
necessary changes early but allowing a migration to new interfaces at a reasonable pace.

Deprecation proceeds in three stages, each lasting approximately a year. In some cases it might move
slower or faster, but one year per stage is what we aim at in general. During each stage warnings (and errors)

Chapter 18: Deprecation 144

of increasing severity are signaled, which note that the interface is deprecated, and point users towards any
replacements when applicable.

1. Early Deprecation

During early deprecation the interface is kept in working condition. However, when a thing in this
deprecation stage is used, an sb-ext:early-deprecation-warning, which is a style-warning, is
signaled at compile-time.

The internals may change at this stage: typically because the interface is re-implemented on top of its
successor. While we try to keep things as backwards-compatible as feasible (taking maintenance costs
into account), sometimes semantics change slightly.

For example, when the spinlock API was deprecated, spinlock objects ceased to exist, and the whole
spinlock API became a synonym for the mutex API – so code using the spinlock API continued working,
but silently switched to mutexes instead. However, if someone relied on

(typep lock ’spinlock)

returning NIL for a mutexes, trouble could ensue.

2. Late Deprecation

During late deprecation the interface remains as it was during early deprecation, but the compile-time
warning is upgraded: when a thing in this deprecation stage is used, a sb-ext:late-deprecation-

warning, which is a full warning, is signaled at compile-time.

3. Final Deprecation

During final deprecation the symbols still exist. However, when a thing in this deprecation stage is
used, a sb-ext:final-deprecation-warning, which is a full warning, is signaled at compile-time and
an error is signaled at run-time.

4. After Final Deprecation

The interface is deleted entirely.

18.3 Deprecation Conditions

sb-ext:deprecation-condition is the superclass of all deprecation-related warning and error conditions.
All common slots and readers are defined in this condition class.

[Condition]sb-ext:deprecation-condition
Class precedence list: deprecation-condition, condition, t

Superclass for deprecation-related error and warning conditions.

[Condition]sb-ext:early-deprecation-warning
Class precedence list: early-deprecation-warning, style-warning, warning,
deprecation-condition, condition, t

This warning is signaled when the use of a variable, function, type, etc. in :early deprecation is detected
at compile-time. The use will work at run-time with no warning or error.

[Condition]sb-ext:late-deprecation-warning
Class precedence list: late-deprecation-warning, warning, deprecation-condition, condition, t

This warning is signaled when the use of a variable, function, type, etc. in :late deprecation is detected
at compile-time. The use will work at run-time with no warning or error.

[Condition]sb-ext:final-deprecation-warning
Class precedence list: final-deprecation-warning, warning, deprecation-condition, condition, t

This warning is signaled when the use of a variable, function, type, etc. in :final deprecation is detected
at compile-time. An error will be signaled at run-time.

[Condition]sb-ext:deprecation-error
Class precedence list: deprecation-error, error, serious-condition, deprecation-condition,
condition, t

This error is signaled at run-time when an attempt is made to use a thing that is in :final deprecation,
i.e. call a function or access a variable.

Chapter 18: Deprecation 145

18.4 Introspecting Deprecation Information

The deprecation status of functions and variables can be inspected using the sb-cltl2:function-

information and sb-cltl2:variable-information functions provided by the sb-cltl2 contributed mod-
ule.

18.5 Deprecation Declaration

The sb-ext:deprecated declaration can be used to declare objects in various namespaces1 as deprecated.

[Declaration]sb-ext:deprecated
Syntax:

sb-ext:deprecated stage since {object-clause}*

stage ::= {:early | :late | :final}

since ::= {version | (software version)}

object-clause ::= (namespace name [:replacement replacement])

namespace ::= {cl:variable | cl:function | cl:type}

were name is the name of the deprecated thing, version and software are strings describing the version
in which the thing has been deprecated and replacement is a name or a list of names designating things
that should be used instead of the deprecated thing.

Currently the following namespaces are supported:

cl:function

Declare functions, compiler-macros or macros as deprecated.

note: When declaring a function to be in :final deprecation, there should be
no actual definition of the function as the declaration emits a stub function
that signals a sb-ext:deprecation-error at run-time when called.

cl:variable

Declare special and global variables, constants and symbol-macros as deprecated.

note: When declaring a variable to be in :final deprecation, there should be
no actual definition of the variable as the declaration emits a symbol-macro
that signals a sb-ext:deprecation-error at run-time when accessed.

cl:type Declare named types (i.e. defined via deftype), standard classes, structure classes and
condition classes as deprecated.

18.6 Deprecation Examples

Marking functions as deprecated:

(defun foo ())

(defun bar ())

(declaim (deprecated :early ("my-system" "1.2.3")

(function foo :replacement bar)))

;; Remember: do not define the actual function or variable in case of

;; :final deprecation:

(declaim (deprecated :final ("my-system" "1.2.3")

(function fez :replacement whoop)))

Attempting to use the deprecated functions:

(defun baz ()

(foo))

| STYLE-WARNING: The function CL-USER::FOO has been deprecated...

1 See “namespace” entry in the glossary of the Common Lisp Hyperspec.

Chapter 18: Deprecation 146

=> BAZ

(baz)

=> NIL ; no error

(defun danger ()

(fez))

| WARNING: The function CL-USER::FEZ has been deprecated...

=> DANGER

(danger)

|- ERROR: The function CL-USER::FEZ has been deprecated...

18.7 Deprecated Interfaces in SBCL

This sections lists legacy interfaces in various stages of deprecation.

18.7.1 List of Deprecated Interfaces

18.7.1.1 Early Deprecation

• SOCKINT::WIN32-*

Deprecated in favor of the corresponding prefix-less functions (e.g. sockint::bind replaces
sockint::win32-bind) as of 1.2.10 in March 2015. Expected to move into late deprecation in August
2015.

• SB-UNIX:UNIX-EXIT

Deprecated as of 1.0.56.55 in May 2012. Expected to move into late deprecation in May 2013.

When the SBCL process termination was refactored as part of changes that led to sb-ext:quit being
deprecated, sb-unix:unix-exit ceased to be used internally. Since SB-UNIX is an internal package
not intended for user code to use, and since we’re slowly in the process of refactoring things to be less
Unix-oriented, sb-unix:unix-exit was initially deleted as it was no longer used. Unfortunately it
became apparent that it was used by several external users, so it was re-instated in deprecated form.

While the cost of keeping sb-unix:unix-exit indefinitely is trivial, the ability to refactor our internals
is important, so its deprecation was taken as an opportunity to highlight that SB-UNIX is an internal
package and SB-POSIX should be used by user-programs instead – or alternatively calling the foreign
function directly if the desired interface doesn’t for some reason exist in SB-POSIX.

Remedy

For code needing to work with legacy SBCLs, use e.g. system-exit as show above in remedies for
sb-ext:quit. In modern SBCLs simply call either sb-posix:exit or sb-ext:exit with appropriate
arguments.

• SB-C::MERGE-TAIL-CALLS Compiler Policy

Deprecated as of 1.0.53.74 in November 2011. Expected to move into late deprecation in November
2012.

This compiler policy was never functional: SBCL has always merged tail calls when it could, regardless
of this policy setting. (It was also never officially supported, but several code-bases have historically
used it.)

Remedy

Simply remove the policy declarations. They were never necessary: SBCL always merged tail-calls
when possible. To disable tail merging, structure the code to avoid the tail position instead.

• Spinlock API

Deprecated as of 1.0.53.11 in August 2011. Expected to move into late deprecation in August 2012.

Spinlocks were an internal interface, but had a number of external users and were hence deprecated
instead of being simply deleted.

Chapter 18: Deprecation 147

Affected symbols: sb-thread::spinlock, sb-thread::make-spinlock, sb-thread::with-spinlock,
sb-thread::with-recursive-spinlock, sb-thread::get-spinlock, sb-thread::release-

spinlock, sb-thread::spinlock-value, and sb-thread::spinlock-name.

Remedy

Use the mutex API instead, or implement spinlocks suiting your needs on top of sb-ext:compare-and-
swap, sb-ext:spin-loop-hint, etc.

• SOCKINT::HANDLE->FD, SOCKINT::FD->HANDLE

Internally deprecated in 2012. Declared deprecated as of 1.2.10 in March 2015. Expected to move into
final deprecation in August 2015.

18.7.1.2 Late Deprecation

• SB-THREAD:JOIN-THREAD-ERROR-THREAD and SB-THREAD:INTERRUPT-THREAD-
ERROR-THREAD

Deprecated in favor of sb-thread:thread-error-thread as of 1.0.29.17 in June 2009. Expected to
move into final deprecation in June 2012.

Remedy

For code that needs to support legacy SBCLs, use e.g.:

(defun get-thread-error-thread (condition)

#+#.(cl:if (cl:find-symbol "THREAD-ERROR-THREAD" :sb-thread)

’(and) ’(or))

(sb-thread:thread-error-thread condition)

#-#.(cl:if (cl:find-symbol "THREAD-ERROR-THREAD" :sb-thread)

’(and) ’(or))

(etypecase condition

(sb-thread:join-thread-error

(sb-thread:join-thread-error-thread condition))

(sb-thread:interrupt-thread-error

(sb-thread:interrupt-thread-error-thread condition))))

• SB-INTROSPECT:FUNCTION-ARGLIST

Deprecated in favor of sb-introspect:function-lambda-list as of 1.0.24.5 in January 2009. Ex-
pected to move into final deprecation in January 2012.

Renamed for consistency and aesthetics. Functions have lambda-lists, not arglists.

Remedy

For code that needs to support legacy SBCLs, use e.g.:

(defun get-function-lambda-list (function)

#+#.(cl:if (cl:find-symbol "FUNCTION-LAMBDA-LIST" :sb-introspect)

’(and) ’(or))

(sb-introspect:function-lambda-list function)

#-#.(cl:if (cl:find-symbol "FUNCTION-LAMBDA-LIST" :sb-introspect)

’(and) ’(or))

(sb-introspect:function-arglist function))

• Stack Allocation Policies

Deprecated in favor of sb-ext:*stack-allocate-dynamic-extent* as of 1.0.19.7 in August 2008, and
are expected to be removed in August 2012.

Affected symbols: sb-c::stack-allocate-dynamic-extent, sb-c::stack-allocate-vector, and
sb-c::stack-allocate-value-cells.

These compiler policies were never officially supported, and turned out the be a flawed design.

Remedy

Chapter 18: Deprecation 148

For code that needs stack-allocation in legacy SBCLs, conditionalize using:

#-#.(cl:if (cl:find-symbol "*STACK-ALLOCATE-DYNAMIC-EXTENT*" :sb-ext)

’(and) ’(or))

(declare (optimize sb-c::stack-allocate-dynamic-extent))

However, unless stack allocation is essential, we recommend simply removing these declarations. Refer
to documentation on sb-ext:*stack-allocate-dynamic* for details on stack allocation control in
modern SBCLs.

• SB-SYS:OUTPUT-RAW-BYTES

Deprecated as of 1.0.8.16 in June 2007. Expected to move into final deprecation in June 2012.

Internal interface with some external users. Never officially supported, deemed unnecessary in presence
of write-sequence and bivalent streams.

Remedy

Use streams with element-type (unsigned-byte 8) or :default – the latter allowing both binary and
character IO – in conjunction with write-sequence.

18.7.1.3 Final Deprecation

No interfaces are currently in final deprecation.

18.7.2 Historical Interfaces

The following is a partial list of interfaces present in historical versions of SBCL, which have since then been
deleted.

• SB-KERNEL:INSTANCE-LAMBDA

Historically needed for CLOS code. Deprecated as of 0.9.3.32 in August 2005. Deleted as of 1.0.47.8 in
April 2011. Plain lambda can be used where sb-kernel:instance-lambda used to be needed.

• SB-ALIEN:DEF-ALIEN-ROUTINE, SB-ALIEN:DEF-ALIEN-VARIABLE, SB-ALIEN:DEF-ALIEN-
TYPE

Inherited from CMUCL, naming convention not consistent with preferred SBCL style. Deprecated as of
0.pre7.90 in December 2001. Deleted as of 1.0.9.17 in September 2007. Replaced by sb-alien:define-

alien-routine, sb-alien:define-alien-variable, and sb-alien:define-alien-type.

149

Appendix A Concept Index

A
Actual Source . 17, 18
Arithmetic, hardware . 39, 139
Arithmetic, modular . 39, 139
Asynchronous Timeout . 65
Availability of debug variables . 30

B
Block compilation, debugger implications 28
Block, basic . 32
Block, start location . 32

C
Character Coding Conditions . 68
Character Names . 56
Cleanup, stack frame kind . 28
Code Coverage . 126
Compatibility with other Lisps . 20
Compile time type errors . 23
Compiler Diagnostic Severity . 16
Compiler messages . 15
Concurrency . 120
Converting between Strings and Octet Vectors 69

D
Deadline . 64
Debug optimization quality . 30, 32
Debug variables . 29
Debugger . 26
debugger, disabling . 36
debugger, enabling . 36
Decimal Syntax for Rationals . 42
declaration, dynamic-extent . 37
Declaration, freeze-type . 67
Declarations . 91
Deprecation Conditions . 144
Deprecation Declaration . 145
Deprecation Examples . 145
disabling debugger . 36
disabling ldb . 12, 36
dynamic-extent declaration . 37

E
Efficiency . 37
Entry points, external . 28
Errors, run-time . 29
Existing programs, to run . 20
Extended Package Prefix Syntax 42
External entry points . 28
External Format Designators . 68
External formats . 72
External, stack frame kind . 28

F
Fast Read Lock . 124
Finalization . 44
Foreign Function Interface, generation 128
freeze-type declaration . 67
Frlock . 124
Function, tracing . 34

G
Garbage collection . 44
Garbage Collection, conservative . 8
Garbage Collection, generational . 8
Gate . 123

H
Hash tables . 60
Hashing, cryptographic . 131

I
Inline expansion . 24, 32
Interning Symbols . 42
Interpreter . 25
Interrupts . 29
Introspecting Deprecation Information 145

L
ldb . 2, 12
ldb, disabling . 12, 36
ldb, enabling . 36
Locations, unknown . 29
Logical pathnames . 82

M
Macroexpansion . 18
Macroexpansion, errors during . 24
Mailbox, lock-free . 122
Messages, Compiler . 15
Modular arithmetic . 39, 139

N
Name, of character . 56
NFKC . 42
Nicknames, Package-local . 42
Normalization, String . 58
Normalization, Symbol Name . 42

O
Open-coding . 24
Operating System Interface . 132
optimization quality, safety . 38
Optimize declaration . 32
Optional, stack frame kind . 28
Original Source . 17, 18

Appendix A: Concept Index 150

P
Package Locks . 42
Package Prefix Syntax, extended 42
Package-Local Nicknames . 42
Packages, locked . 91
Pathnames . 82
Pathnames, logical . 82
Policy, debugger . 32
Posix . 132
Precise type checking . 19
Processing Path . 17, 18
Profiling . 113
Profiling, deterministic . 113
Profiling, statistical . 113

Q
Queue, FIFO . 138
Queue, lock-free . 121

R
Random Number Generation . 62
Rational, decimal syntax for . 42
Read errors, compiler . 24
Read-Eval-Print Loop . 119
Reader Extensions . 42
Recursion, tail . 28
REPL . 119

S
safety optimization quality . 38
Safety optimization quality . 19, 38
Sb-concurrency . 120
Semi-inline expansion . 32
Severity of compiler messages . 16
SIMD . 140
Single Stepping . 36
Slot access . 37
Sockets, Networking . 109

Source location printing, debugger 31
Source-to-source transformation . 18
Stack frames . 27
Static functions . 24
Stepper . 36
Stream External formats . 84
Supported External Formats . 69
Symbol Name Normalization . 42
Symbols, interning . 42
Synchronous Timeout . 64
System Calls . 132

T
Tail recursion . 28
The Default External Format . 68
The Deprecation Pipeline . 143
Timeout . 64, 65
Tracing . 34
Type checking, at compile time . 23
Type checking, precise . 19
Types, portability . 20

U
Unbound slots . 48, 50
Unicode . 42, 56
Unknown code locations . 29

V
Validity of debug variables . 30
Variables, debugger access . 29

W
Weak pointers . 45
Why Deprecate? . 143

151

Appendix B Function Index

?
? . 34

A
abort . 33

sb-thread:abort-thread . 96
sb-ext:add-implementation-package 94
sb-ext:add-package-local-nickname 43

sb-alien:addr . 73
sb-sequence:adjust-sequence 50, 51
sb-unicode:age . 57

sb-alien:alien-callable-function 78
sb-alien:alien-funcall . 77
sb-alien:alien-sap . 73

sb-unicode:alphabetic-p . 57
sb-ext:always-bound . 40

cl:apropos . 143
sb-ext:array-storage-vector 65
sb-ext:assert-version->= . 66
sb-ext:atomic-decf . 98
sb-ext:atomic-incf . 98
sb-ext:atomic-pop . 99
sb-ext:atomic-push . 99
sb-ext:atomic-update . 99

B
backtrace . 34

sb-thread:barrier . 104
sb-unicode:bidi-class . 56
sb-unicode:bidi-mirroring-glyph 57

cl:both-case-p . 59
bottom . 27

sb-ext:bytes-consed-between-gcs 45

C
sb-ext:cancel-finalization 45
sb-ext:cas . 100

sb-unicode:case-ignorable-p . 57
sb-unicode:cased-p . 57
sb-unicode:casefold . 58

sb-alien:cast . 73
cl:change-class . 49

sb-unicode:char-block . 57
cl:char-downcase . 59
cl:char-name . 56
cl:class-name . 49
cl:class-of . 48

sb-mop:class-prototype . 48
sb-cover:clear-coverage . 126

sb-thread:clear-semaphore-notification 102
cl:close . 85

sb-concurrency:close-gate . 123
cl:coerce . 50

sb-unicode:combining-class . 56
sb-ext:compare-and-swap . 99

cl:compute-applicable-methods 49
sb-mop:compute-discriminating-function 49
sb-mop:compute-effective-method 48, 49

sb-sequence:concatenate . 51

sb-thread:condition-broadcast 104
sb-thread:condition-notify . 104
sb-thread:condition-wait . 103

sb-unicode:confusable-p . 59
cl:cons . 38

continue . 33
copy function . 52

cl:copy-seq . 51

D
sb-unicode:decimal-value . 56

cl:declare . 91
sb-unicode:default-ignorable-p 58

cl:defclass . 49
cl:defconstant . 5

sb-ext:defglobal . 40
sb-alien:define-alien-callable 78
sb-alien:define-alien-routine 77
sb-alien:define-alien-variable 75

sb-ext:define-hash-table-test 61
cl:define-method-combination 3
cl:defmethod . 49
cl:defpackage . 42, 91, 94
cl:defstruct . 47, 49

sb-ext:delete-directory . 66
sb-ext:deprecated . 145

sb-concurrency:dequeue . 121
sb-alien:deref . 73

describe . 34
sb-ext:describe-compiler-policy 22

sb-unicode:digit-value . 57
sb-ext:disable-debugger . 36
sb-ext:disable-package-locks 91, 93

sb-posix:do-groups . 137
sb-posix:do-passwds . 136

cl:dolist . 52
sb-sequence:dosequence . 52

down . 27
sb-ext:dynamic-space-size 45

E
sb-unicode:east-asian-width . 57

cl:ed . 60
element function . 52
sb-sequence:elt . 50
sb-sequence:emptyp . 51

sb-ext:enable-debugger . 36
sb-ext:enable-package-locks 91, 93

endp function . 52
sb-concurrency:enqueue . 121

sb-mop:ensure-class . 49
sb-mop:ensure-class-using-class 49

cl:ensure-generic-function 48
error . 34

cl:eval . 25
sb-ext:exit . 9

cl:expt . 63
sb-alien:extern-alien . 75

Appendix B: Function Index 152

F
sb-posix:file-descriptor . 132
sb-posix:filename . 133

sb-ext:finalize . 44
sb-mop:finalize-inheritance 48

cl:find . 50
cl:find-class . 49
cl:find-method . 50
cl:find-package . 42
cl:find-symbol . 42
cl:flet . 38, 91

sb-ext:float-denormalized-p 66
frame . 27

sb-alien:free-alien . 74
sb-concurrency:frlock-name . 124
sb-concurrency:frlock-read . 124
sb-concurrency:frlock-read-begin 124
sb-concurrency:frlock-read-end . 124
sb-concurrency:frlock-write . 124

sb-mop:funcallable-standard-

instance-access . 50

G
sb-concurrency:gate-name . 123
sb-concurrency:gate-open-p . 123
sb-concurrency:gatep . 123

sb-ext:gc . 44
sb-ext:gc-logfile . 45

sb-unicode:general-category . 56
sb-ext:generation-average-age 45
sb-ext:generation-bytes-allocated 46
sb-ext:generation-bytes-

consed-between-gcs . 46
sb-ext:generation-minimum-age-before-gc . . 46
sb-ext:generation-number-of-gcs 46
sb-ext:generation-number-of-gcs-

before-promotion . 46
sb-mop:generic-function-declarations 48
sb-ext:get-bytes-consed . 45

sb-alien:get-errno . 75
sb-bsd-sockets:get-host-by-address 112
sb-bsd-sockets:get-host-by-name . 112
sb-bsd-sockets:get-protocol-by-name 112

sb-ext:get-time-of-day . 66
sb-posix:getcwd . 136

sb-ext:global . 40
sb-concurrency:grab-frlock-write-lock 125

sb-thread:grab-mutex . 101
sb-unicode:grapheme-break-class 58
sb-unicode:graphemes . 59

H
sb-unicode:hangul-syllable-type 57

sb-ext:hash-table-synchronized-p 62
sb-ext:hash-table-weakness 62

help . 34
sb-unicode:hex-digit-p . 58

sb-bsd-sockets:host-ent-address . 112

I
sb-unicode:ideographic-p . 57
index function . 52

cl:inspect . 60
sb-sys:int-sap . 73

cl:intern . 42
sb-mop:intern-eql-specializer 49

sb-thread:interrupt-thread . 96
sb-sequence:iterator-copy . 53
sb-sequence:iterator-element . 53
sb-sequence:iterator-endp . 53
sb-sequence:iterator-index . 53
sb-sequence:iterator-step . 53

J
sb-thread:join-thread . 64, 96

L
cl:labels . 38, 91

sb-sequence:length . 50
cl:let . 40, 91
cl:let* . 40, 91

sb-unicode:line-break-class . 58
sb-unicode:lines . 59

cl:list . 38
cl:list* . 38

sb-thread:list-all-threads . 95
sb-ext:list-all-timers . 108

list-locals . 29
sb-concurrency:list-mailbox-messages 122
sb-concurrency:list-queue-contents 121

sb-alien:load-shared-object 76
sb-ext:lock-package . 94

cl:logand . 39
cl:logical-pathname-translations 82

sb-unicode:lowercase . 58
sb-unicode:lowercase-p . 57

M
cl:macrolet . 91

sb-concurrency:mailbox-count . 122
sb-concurrency:mailbox-empty-p . 122
sb-concurrency:mailbox-name . 122
sb-concurrency:mailboxp . 122

sb-thread:main-thread . 95
sb-thread:main-thread-p . 95
sb-alien:make-alien . 74
sb-alien:make-alien-string . 74

cl:make-array . 38
sb-concurrency:make-frlock . 124
sb-concurrency:make-gate . 123

cl:make-hash-table . 60
sb-bsd-sockets:make-inet-address 112
sb-bsd-sockets:make-inet6-address 112

cl:make-instance . 50
sb-concurrency:make-mailbox . 122

sb-mop:make-method-lambda 49
sb-pcl:make-method-specializers-form 49

sb-thread:make-mutex . 101
sb-concurrency:make-queue . 121

cl:make-random-state . 62
sb-thread:make-semaphore . 102

Appendix B: Function Index 153

sb-thread:make-semaphore-notification 102
sb-sequence:make-sequence-iterator 52, 53
sb-sequence:make-sequence-like 50, 51
sb-sequence:make-simple-sequence-iterator 53

sb-thread:make-thread . 95
sb-ext:make-timer . 107

sb-thread:make-waitqueue . 103
sb-ext:make-weak-pointer . 45

sb-sequence:map . 51
sb-sprof:map-traces . 116

sb-unicode:math-p . 58
sb-md5:md5sum-file . 131
sb-md5:md5sum-sequence . 131
sb-md5:md5sum-stream . 131
sb-md5:md5sum-string . 131

sb-sequence:merge . 52
sb-unicode:mirrored-p . 57

sb-ext:muffle-conditions . 15
sb-thread:mutex-name . 101
sb-thread:mutex-owner . 101
sb-thread:mutex-value . 101

N
cl:name-char . 56

sb-ext:name-conflict-symbols 60
sb-ext:native-namestring . 82
sb-ext:native-pathname . 82

next . 36
cl:no-applicable-method 47, 49

sb-pcl:no-primary-method 47, 49
sb-bsd-sockets:non-blocking-mode 110

sb-unicode:normalize-string . 58
sb-unicode:normalized-p . 58
sb-unicode:numeric-value . 57

O
sb-ext:octets-to-string . 69

cl:open . 68, 84
sb-concurrency:open-gate . 123

out . 36

P
sb-ext:package-implemented-by-list 94
sb-ext:package-implements-list 94
sb-ext:package-local-nicknames 43
sb-ext:package-locally-

nicknamed-by-list . 43
sb-ext:package-locked-error-symbol 94
sb-ext:package-locked-p . 94
sb-ext:parse-native-namestring 82
sb-pcl:parse-specializer-using-class 50
sb-ext:posix-getenv . 54

print . 34
sb-ext:process-alive-p . 55
sb-ext:process-close . 56
sb-ext:process-core-dumped 56
sb-ext:process-error . 55
sb-ext:process-exit-code . 56
sb-ext:process-input . 55
sb-ext:process-kill . 56
sb-ext:process-output . 55
sb-ext:process-p . 55
sb-ext:process-status . 56

sb-ext:process-wait . 56
sb-profile:profile . 113

sb-sprof:profile-call-counts 117
cl:prog2 . 3

sb-unicode:proplist-p . 57
sb-ext:purify . 66

Q
sb-concurrency:queue-count . 121
sb-concurrency:queue-empty-p . 121
sb-concurrency:queue-name . 121
sb-concurrency:queuep . 121

R
cl:random . 62, 63
cl:read . 42
cl:read-from-string . 42
cl:read-line . 65

sb-posix:readlink . 136
sb-ext:readtable-normalization 42

sb-concurrency:receive-message . 122
sb-concurrency:receive-message-no-hang 122
sb-concurrency:receive-pending-messages 122
sb-concurrency:release-frlock-write-lock 125

sb-thread:release-mutex . 101
sb-ext:remove-implementation-package 94
sb-ext:remove-package-local-nickname 43

sb-profile:report . 113, 116, 126
cl:require . 60

sb-profile:reset . 113, 116
sb-cover:reset-coverage . 126

restart . 33
restart-frame . 33

sb-cover:restore-coverage . 126
sb-cover:restore-coverage-from-file 127

sb-ext:restrict-compiler-policy 22
return . 33

sb-thread:return-from-thread 95
sb-rotate-byte:rotate-byte . 131, 139

sb-ext:run-program . 54, 65

S
sb-sprof:sample-pc . 116
sb-alien:sap-alien . 73

sb-sys:sap-ref-32 . 73
sb-sys:sap= . 73

cl:satisfies . 19
sb-cover:save-coverage . 126
sb-cover:save-coverage-in-file 126

sb-ext:save-lisp-and-die . 10
sb-ext:schedule-timer . 107

sb-unicode:script . 57
sb-ext:search-roots . 46
sb-ext:seed-random-state . 62

sb-thread:semaphore-count . 102
sb-thread:semaphore-name . 102
sb-thread:semaphore-notification-status 102

sb-concurrency:send-message . 122
sb-unicode:sentence-break-class 58
sb-unicode:sentences . 59

sb-ext:set-sbcl-source-location 82
cl:setf . 40

setf element function . 52

Appendix B: Function Index 154

cl:setq . 40
sb-thread:signal-semaphore . 102

cl:sleep . 63, 65
sb-alien:slot . 73

cl:slot-boundp . 47, 48
sb-mop:slot-boundp-using-class 49
sb-mop:slot-definition-allocation 49
sb-mop:slot-definition-name 49

cl:slot-makunbound 47, 48
cl:slot-missing . 48
cl:slot-unbound . 48
cl:slot-value . 47, 48

sb-mop:slot-value-using-class 49
sb-bsd-sockets:socket-accept . 109
sb-bsd-sockets:socket-bind . 109
sb-bsd-sockets:socket-close . 110
sb-bsd-sockets:socket-connect . 109
sb-bsd-sockets:socket-error . 110
sb-bsd-sockets:socket-listen . 110
sb-bsd-sockets:socket-make-stream 110
sb-bsd-sockets:socket-name . 109
sb-bsd-sockets:socket-open-p . 110
sb-bsd-sockets:socket-peername . 109
sb-bsd-sockets:socket-receive . 109
sb-bsd-sockets:socket-send . 110
sb-bsd-sockets:socket-shutdown . 110
sb-bsd-sockets:sockopt-broadcast 111
sb-bsd-sockets:sockopt-bsd-compatible 111
sb-bsd-sockets:sockopt-debug . 111
sb-bsd-sockets:sockopt-dont-route 111
sb-bsd-sockets:sockopt-keep-alive 111
sb-bsd-sockets:sockopt-oob-inline 111
sb-bsd-sockets:sockopt-pass-credentials 111
sb-bsd-sockets:sockopt-reuse-address 111
sb-bsd-sockets:sockopt-tcp-nodelay 111

sb-unicode:soft-dotted-p . 58
source . 31

sb-mop:standard-instance-access 50
start . 36

sb-sprof:start-profiling . 116
step . 36

step function . 52
stop . 36

sb-sprof:stop-profiling . 117
sb-gray:stream-advance-to-column 86
sb-gray:stream-clear-input 85
sb-gray:stream-clear-output 86

cl:stream-element-type 85
cl:stream-external-format 84

sb-gray:stream-file-position 85
sb-gray:stream-finish-output 86
sb-gray:stream-force-output 86
sb-gray:stream-fresh-line . 86
sb-gray:stream-line-column 87
sb-gray:stream-line-length 87
sb-gray:stream-listen . 86
sb-gray:stream-peek-char . 86
sb-gray:stream-read-byte . 87
sb-gray:stream-read-char . 86
sb-gray:stream-read-char-no-hang 86
sb-gray:stream-read-line . 86
sb-gray:stream-read-sequence 85
sb-gray:stream-start-line-p 87
sb-gray:stream-terpri . 87
sb-gray:stream-unread-char 86
sb-gray:stream-write-byte . 87

sb-gray:stream-write-char . 87
sb-gray:stream-write-sequence 86
sb-gray:stream-write-string 87
sb-ext:string-to-octets . 69

cl:string-upcase . 59
cl:subseq . 50, 51
cl:subtypep . 48
cl:symbol-macrolet . 91

sb-thread:symbol-value-in-thread 97
sb-posix:syslog . 136

T

sb-thread:terminate-thread . 97
sb-thread:thread-alive-p . 95
sb-thread:thread-error-thread 98
sb-thread:thread-name . 95
sb-thread:thread-yield . 96

sb-ext:timer-name . 107
sb-ext:timer-scheduled-p 107

sb-unicode:titlecase . 58
top . 27
toplevel . 33

cl:trace . 34, 60
sb-ext:truly-the . 67

sb-thread:try-semaphore . 102
cl:typep . 48

U

sb-unicode:unicode-1-name . 57
sb-unicode:unicode-equal . 59
sb-unicode:unicode< . 59
sb-unicode:unicode<= . 59
sb-unicode:unicode= . 59
sb-unicode:unicode> . 59
sb-unicode:unicode>= . 59

sb-alien:unload-shared-object 76
sb-ext:unlock-package . 94
sb-ext:unmuffle-conditions 15
sb-pcl:unparse-specializer-using-class 50

sb-profile:unprofile . 113
sb-sprof:unprofile-call-counts 117

sb-ext:unschedule-timer . 107
cl:untrace . 35

up . 27
sb-unicode:uppercase . 58
sb-unicode:uppercase-p . 57

V

sb-mop:validate-superclass 48, 49
sb-debug:var . 29

cl:vector . 38

Appendix B: Function Index 155

W

sb-ext:wait-for . 64
sb-concurrency:wait-on-gate . 123

sb-thread:wait-on-semaphore 102
sb-thread:waitqueue-name . 103

sb-ext:weak-pointer-value 45
sb-unicode:whitespace-p . 58

sb-alien:with-alien . 74
cl:with-compilation-unit 16, 22

sb-sys:with-deadline . 64
sb-ext:with-locked-hash-table 62

sb-thread:with-mutex . 100
cl:with-open-file 68, 84

sb-sprof:with-profiling . 115
sb-thread:with-recursive-lock 101
sb-sprof:with-sampling . 115

sb-sequence:with-sequence-iterator 53
sb-sequence:with-sequence-iterator-functions . . 53

sb-ext:with-timeout . 65
sb-ext:with-unlocked-packages 94
sb-ext:without-package-locks 94

sb-unicode:word-break-class . 58
sb-unicode:words . 59

156

Appendix C Variable Index

A
sb-ext:*after-gc-hooks* . 44

C
sb-aclrepl:*command-char* . 119

sb-ext:*compiler-print-variable-alist* 15
sb-ext:*core-pathname* . 12

sb-thread:*current-thread* . 95

D
sb-ext:*debug-print-variable-alist* 27

E
sb-ext:*ed-functions* . 60
sb-ext:*evaluator-mode* . 25
sb-ext:*exit-hooks* . 14

sb-aclrepl:*exit-on-eof* . 119

F
cl:*features* . 42

G
sb-ext:*gc-run-time* . 45

I
sb-ext:*init-hooks* . 14
sb-ext:*invoke-debugger-hook* 26

M
sb-aclrepl:*max-history* . 119

sb-sprof:*max-samples* . 117
sb-debug:*max-trace-indentation* 35

sb-ext:*module-provider-functions* 60
sb-ext:*muffled-warnings* 60

N
cl:nil . 3

O
sb-ext:*on-package-variance* 44

P
cl:*package* . 42, 91

sb-ext:*posix-argv* . 9, 53
sb-aclrepl:*prompt* . 119

R
cl:*random-state* . 62
cl:*read-default-float-format* 42

S
sb-sprof:*sample-interval* 117

sb-ext:*save-hooks* . 11
sb-pcl:+slot-unbound+ . 50
sb-ext:*stack-allocate-dynamic-extent* 37
sb-ext:*sysinit-pathname-function* 11

T
sb-debug:*trace-encapsulate-default* 35
sb-debug:*trace-indentation-step* 35
sb-debug:*trace-report-default* 35

U
sb-aclrepl:*use-short-package-name* 119

sb-ext:*userinit-pathname-function* 11

157

Appendix D Type Index

B
cl:built-in-class . 49

C
cl:character . 3

sb-ext:code-deletion-note 16
sb-ext:compiler-note . 16

D
sb-sys:deadline-timeout . 64
sb-ext:deprecation-condition 144
sb-ext:deprecation-error 144, 145

E
sb-ext:early-deprecation-warning 144, 146

cl:error . 16, 144

F
sb-posix:file-descriptor . 132
sb-posix:file-descriptor-designator 132
sb-posix:filename . 132
sb-posix:filename-designator 133

sb-ext:final-deprecation-warning 144, 148
cl:float . 42, 63

sb-posix:flock . 134
sb-concurrency:frlock . 124

sb-mop:funcallable-standard-class 48
sb-mop:funcallable-standard-object 48

cl:function . 48
sb-gray:fundamental-binary-input-stream 85
sb-gray:fundamental-binary-output-stream . . 85
sb-gray:fundamental-binary-stream 85
sb-gray:fundamental-

character-input-stream . 85
sb-gray:fundamental-

character-output-stream . 85
sb-gray:fundamental-character-stream 85
sb-gray:fundamental-input-stream 84
sb-gray:fundamental-output-stream 85
sb-gray:fundamental-stream 84

G
sb-concurrency:gate . 123

cl:generic-function . 48
sb-posix:group . 134

H
sb-bsd-sockets:host-ent . 112

I
sb-bsd-sockets:inet-socket . 111
sb-bsd-sockets:inet6-socket . 111

sb-thread:interrupt-thread-error 98

J
sb-thread:join-thread-error 64, 98

L
sb-ext:late-deprecation-warning 144, 147

cl:list . 50
sb-bsd-sockets:local-abstract-socket 112
sb-bsd-sockets:local-socket . 112

M
sb-concurrency:mailbox . 122

sb-thread:mutex . 100

N
sb-ext:name-conflict . 60

cl:nil . 3

P
cl:package-error . 91

sb-ext:package-lock-violation 91, 93
sb-ext:package-locked-error 91, 93

sb-posix:passwd . 134
sb-sequence:protocol-unimplemented 51

Q
sb-concurrency:queue . 121

R
cl:rational . 42

S
sb-thread:semaphore . 102
sb-thread:semaphore-notification 102

cl:sequence . 50, 51, 53
sb-bsd-sockets:socket . 109

cl:standard-class . 48
cl:standard-generic-function 48
cl:standard-object 48, 50

sb-posix:stat . 135
cl:string . 3
cl:structure-class . 49
cl:style-warning 16, 144

sb-ext:symbol-package-locked-error 91, 93

T
cl:t . 49

sb-posix:termios . 135
sb-thread:thread . 95
sb-thread:thread-error . 97

sb-ext:timeout . 65
sb-ext:timer . 107

sb-posix:timeval . 136

Appendix D: Type Index 158

V

cl:vector . 50

W

sb-thread:waitqueue . 103

cl:warning . 16, 144

159

Colophon

This manual is maintained in Texinfo, and automatically translated into other forms (e.g. HTML or pdf). If
you’re reading this manual in one of these non-Texinfo translated forms, that’s fine, but if you want to modify
this manual, you are strongly advised to seek out a Texinfo version and modify that instead of modifying
a translated version. Even better might be to seek out the Texinfo version (maintained at the time of this
writing as part of the SBCL project at http://sbcl.sourceforge.net/) and submit a patch.

http://sbcl.sourceforge.net/

	1 Getting Support and Reporting Bugs
	Volunteer Support
	Commercial Support
	Reporting Bugs
	How to Report Bugs Effectively
	Signal Related Bugs

	2 Introduction
	ANSI Conformance
	Exceptions

	Extensions
	Idiosyncrasies
	Declarations
	FASL Format
	Compiler-only Implementation
	Defining Constants
	Style Warnings

	Development Tools
	Editor Integration
	Language Reference
	Generating Executables

	More SBCL Information
	SBCL Homepage
	Online Documentation
	Additional Documentation Files
	Internals Documentation

	More Common Lisp Information
	Internet Community
	Third-party Libraries
	Common Lisp Books

	History and Implementation of SBCL

	3 Starting and Stopping
	Starting SBCL
	From Shell to Lisp
	Running from Emacs
	Shebang Scripts

	Stopping SBCL
	Exit
	End of File
	Saving a Core Image
	Exit on Errors

	Command Line Options
	Runtime Options
	Toplevel Options

	Initialization Files
	Initialization and Exit Hooks

	4 Compiler
	Diagnostic Messages
	Controlling Verbosity
	Diagnostic Severity
	Understanding Compile Diagnostics
	The Parts of a Compiler Diagnostic
	The Original and Actual Source
	The Processing Path

	Handling of Types
	Declarations as Assertions
	Precise Type Checking
	Getting Existing Programs to Run
	Implementation Limitations

	Compiler Policy
	Compiler Errors
	Type Errors at Compile Time
	Errors During Macroexpansion
	Read Errors

	Open Coding and Inline Expansion
	Interpreter
	Advanced Compiler Use and Efficiency Hints

	5 Debugger
	Debugger Entry
	Debugger Banner
	Debugger Invocation

	Debugger Command Loop
	Stack Frames
	Stack Motion
	How Arguments are Printed
	Function Names
	Entry Point Details

	Debug Tail Recursion
	Unknown Locations and Interrupts

	Variable Access
	Variable Value Availability
	Note On Lexical Variable Access

	Source Location Printing
	How the Source is Found
	Source Location Availability

	Debugger Policy Control
	Exiting Commands
	Information Commands
	Function Tracing
	Single Stepping
	Enabling and Disabling the Debugger

	6 Efficiency
	Slot access
	Structure object slot access
	Standard object slot access

	Stack allocation
	Modular arithmetic
	Global and Always-Bound variables
	Miscellaneous Efficiency Issues

	7 Beyond the ANSI Standard
	Reader Extensions
	Extended Package Prefix Syntax
	Symbol Name Normalization
	Decimal Syntax for Rationals

	Package-Local Nicknames
	Package Variance
	Garbage Collection
	Finalization
	Weak Pointers
	Introspection and Tuning
	Tracing Live Objects Back to Roots

	Generic Function Dispatch
	Slot Access
	Metaobject Protocol
	AMOP Compatibility of Metaobject Protocol
	Metaobject Protocol Extensions

	Extensible Sequences
	Iterator Protocol
	Simple Iterator Protocol

	Support For Unix
	Command-line arguments
	Querying the process environment
	Running external programs

	Unicode Support
	Unicode property access
	String operations
	Breaking strings

	Customization Hooks for Users
	Tools To Help Developers
	Resolution of Name Conflicts
	Hash Table Extensions
	Random Number Generation
	Timeouts and Deadlines
	Timeout Parameters
	Synchronous Timeouts (Deadlines)
	Asynchronous Timeouts
	Operations Supporting Timeouts and Deadlines

	Miscellaneous Extensions
	Stale Extensions
	Efficiency Hacks

	8 External Formats
	The Default External Format
	External Format Designators
	Character Coding Conditions
	Converting between Strings and Octet Vectors
	Supported External Formats

	9 Foreign Function Interface
	Introduction to the Foreign Function Interface
	Foreign Types
	Defining Foreign Types
	Foreign Types and Lisp Types
	Foreign Type Specifiers

	Operations On Foreign Values
	Accessing Foreign Values
	Untyped memory

	Coercing Foreign Values
	Foreign Dynamic Allocation

	Foreign Variables
	Local Foreign Variables
	External Foreign Variables

	Foreign Data Structure Examples
	Loading Shared Object Files
	Foreign Function Calls
	The alien-funcall Primitive
	The define-alien-routine Macro
	define-alien-routine Example

	Calling Lisp From C
	Lisp as a Shared Library

	Step-By-Step Example of the Foreign Function Interface

	10 Pathnames
	Lisp Pathnames
	Home Directory Specifiers
	The SYS Logical Pathname Host

	Native Filenames

	11 Streams
	Stream External Formats
	Bivalent Streams
	Gray Streams
	Gray Streams classes
	Methods common to all streams
	Input stream methods
	Character input stream methods
	Output stream methods
	Character output stream methods
	Binary stream methods
	Gray Streams examples
	Character counting input stream
	Output prefixing character stream

	Simple Streams

	12 Package Locks
	Package Lock Concepts
	Package Locking Overview
	Implementation Packages
	Package Lock Violations
	Lexical Bindings and Declarations
	Other Operations

	Package Locks in Compiled Code
	Interned Symbols
	Other Limitations on Compiled Code

	Operations Violating Package Locks
	Operations on Packages
	Operations on Symbols

	Package Lock Dictionary

	13 Threading
	Threading basics
	Thread Objects
	Making, Returning From, Joining, and Yielding Threads
	Asynchronous Operations
	Miscellaneous Operations
	Error Conditions

	Special Variables
	Atomic Operations
	CAS Protocol

	Mutex Support
	Semaphores
	Waitqueue/condition variables
	Barriers
	Sessions/Debugging
	Foreign threads
	Implementation (Linux x86/x86-64)

	14 Timers
	Timer Dictionary

	15 Networking
	Sockets Overview
	General Sockets
	Socket Options
	INET Domain Sockets
	Local (Unix) Domain Sockets
	Name Service

	16 Profiling
	Deterministic Profiler
	Statistical Profiler
	Example Usage
	Output
	Platform support
	Macros
	Functions
	Variables
	Credits

	17 Contributed Modules
	sb-aclrepl
	Usage
	Customization
	Example Initialization
	Credits

	sb-concurrency
	Queue
	Mailbox (lock-free)
	Gates
	Frlocks, aka Fast Read Locks

	sb-cover
	Example Usage
	Functions

	sb-grovel
	Using sb-grovel in your own ASDF system
	Contents of a grovel-constants-file
	Programming with sb-grovel's structure types
	Traps and Pitfalls

	sb-md5
	Credits

	sb-posix
	Lisp names for C names
	Types
	File-descriptors
	Filenames

	Function Parameters
	Function Return Values
	Lisp objects and C structures
	Functions with idiosyncratic bindings
	Extensions to POSIX

	sb-queue
	sb-rotate-byte
	sb-simd
	Data Types
	Casts
	Constructors
	Unpackers
	Reinterpret Casts
	Associatives
	Reducers
	Rounding
	Comparisons
	Conditionals
	Loads and Stores
	Specialized Scalar Operations
	Instruction Set Dispatch

	18 Deprecation
	Why Deprecate?
	The Deprecation Pipeline
	Deprecation Conditions
	Introspecting Deprecation Information
	Deprecation Declaration
	Deprecation Examples
	Deprecated Interfaces in SBCL
	List of Deprecated Interfaces
	Early Deprecation
	Late Deprecation
	Final Deprecation

	Historical Interfaces

	A Concept Index
	B Function Index
	C Variable Index
	D Type Index
	Colophon

