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A SURVEY ON PRACTICAL NUMBERS 

Abstract. A positive integer m is said to be practical if every integer n E (l,m) 

is a sum of distinct positive divisors of ro. In this paper we give an equivalent 

definition of practical number, and describe some arithmetical properties of practical 

numbers showing a remarkable analogy with primes. We give an improvement of the 

estimate of the gap between consecutive practical numbers and prove the existence of 

infinitely many practical numbers in suitable binary recurrence sequences, including 

the sequences of Fibonacci, Lucas and Peli. 

1. Introduction 

A positive integer m is said to be practical (see [11]) if every n with 1 < n < m 

is a sum of distinct positive divisors of ni. Several authors dealt with some aspects of the 

theory of practical numbers. P. Erdos [3] in 1950 announced that practical numbers have 

zero asymptotic density. B. M. Stewart [12] proved the following structure theorem: an 

integer in > 2, m = p ^ p j 2 ' * 'Pkk> w^ tn P r i m e s Pi < P2 < • • • < Pk and integers OLÌ > 1> 
is practical if and only if pi = 2 and, for i — 2 , 3 , . . . , k, 

where a(n) denotes the sum of the positive divisors of n. 

Let P(x) be the counting function of practical numbers: 

m practical 

M. Hausman and H. N. Shapiro [5] showed in 1984 that 

(Ioga;)/3 

for any /3 < | ( 1 - l / l og2 ) 2 ~ 0.0979. M. Margenstern ([6], [7]) proved that 
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P(x)>—T— — r 
e xP \ 275̂ 2 (log Ioga)2 + 3 log logie | 

G. Tenenbaum ([13], [14]) improved the above upper and lower bounds as follows: 

(loglog#)~5/3_e < £ P(x) < log log a; log log log a;. 
log x log x 

Moreover, Margenstern conjectured that 

p(x)~\JL-
logx 

with A ~ 1.341, in analogy with the asymptotic behayior of primes. 

The author [8] recently proved two Goldbach-type conjectures for practical numbers 
first stated in [6]: (i) every even positive integer is a sum of two practical numbers; (ii) 
there exist infinitely many practical numbers m, such that ra — 2 and ?n+2 are also practical. 

The purpose of the present paper is to survey some of the above results and to give 
some new contributions to the theory of practical numbers. 

Sierpinski [10] and Stewart [12] independently remarked that a positive integer m 
is practical if and only if every integer n with 1 < n < a(m) is a sum of distinct positive 
divisors of m. Here we give an alternative proof of this equivalence. 

We also give an improved version of [8, Lemma 2], which yields a slightly simpler 
proof of the Goldbach-type result (i) mentioned above. 

We study the gap between consecutive practical numbers, improving upon a result 
of Hausman and Shapiro [5]. 

Finally we prove that some binary recurrence sequences, including the classical 
sequences of Fibonacci, Lucas and Peli, contain infinitely many practical numbers. We 
incidentally note that it is unknown whether the Fibonacci sequence {1,1,2,3,5,...} and 
the Lucas sequence {1,3,4,7,11,...} contain infinitely many prime numbers. Dubner and 
Keller [2] recently announced the primality of some "titanic" (i.e. having more than 1000 
digits) Fibonacci and Lucas numbers, such as F9311, F5387, £14449» £7741, £5851, £4793, 

^4787-

2. An arithmetical result 

In this section we give an equivalent defìnition of practical number. We begin with 
the following lemma: 
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LEMMA 1. Let m be a positive integer, and let d\ — 1 < c/2 < • • • < dr = m 
be the positive divisors of m. Let dh be the least divisor such that dh > y/m. Then 
rfi + efe'H \-dh-i + l<m. 

Proof The lemma is true for in =. 1,2,3,4. Let m > 4; since dh-i < y/m we 
have 

rfi+dà-f ••• + 4 - 1 + 1 < l + 2-+3+-- - + [v/m] + l 

= [y^KIv^l+i) • « 
2 

< v/^(v/^+1) 1 1 

< m. • 

LEMMA 2. (MARGENSTERN) Le£ ?r& Z?e a positive integer, and let 
di,... ,dh,... ,dr be as in Lemma 1. Then in is such that every n with 1 < n < a(m) is 
a sum of distinct positive divisors ofm, if and only if dj+i < di + \- dj + 1 far every 
j = l , . . . , / i - l . 

Proof For the proof see Margenstern's paper [7]. • 

PROPOSITION 3. A positive integer m is practical if and only if every n with 
1 < n < <r(m) is a sum of distinct positive divisors ofm. 

Proof Since <r(m) > m, if m is such that every n with 1 < n < a(m) is a sum 
of distinct positive divisors of in, a fortiori m is a practical number. 

Let m be practical, i.e. every n with 1 < n < m is a sum of distinct positive 
divisors of m. Let di,..., dh, •. •, dr be as in the preceding lemmas. For any j satisfying 
1 < ji < /* — 1 we have di + • • • + dj + 1 < m by Lemma 1. Hence di + • • • + dj + 1 
is a sum of distinct divisors of m, of which at least one must be > dj.+\. It follows that 
dj+i < di -\ f- dj + 1, whence, by Lemma 2, every n with 1 < n < a(m) is a sum of 
distinct positive divisors of m. • 

3. The Goldbach problem for practical numbers 

In this section we prove that every even positive integer is a sum of two practical 
numbers. 

LEMMA 4. If in is a practical number and n is an integer such that 1 < n < 
a (in) + 1, then mn is a practical number. In particular, for 1 < n < lin, mn is practical. 
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Proof. The first assertion easily follows from Stewart's structure theorem; see also 
[7, p. 6]. Since in — 1 is a sum of distinct divisors of m, we have in + (m — 1) < <r(m), 
i.e. 2ra < <r(m) + 1, and this proves the second assertion. • 

The author [8, Lemma 2] proved that if m and m + 2 are practical numbers then 
every even integer 2n £ [7772,37772] is a sum of two practical numbers. This can be 
improved as follows: 

LEMMA 5. If m and m + 2 are two practical numbers, then every even integer 
2n with \m2 < 2n < |?n2 is a sum oftwo practical numbers. 

Proof. We split up the interval [^m2, |m 2 ] into the union of three subintervals: 

(i) [|m2, m2[ ; 

(ii) [m2, 3m2] ; 

(iii) ]3m2, |?772] . 

(i) If m = 2, the only even number contained in the interval [^m2, m2 [ is 2, which 
is a sum oftwo practical numbers (2 = 1 + 1). Suppose m > 2 and let 2n E [§"*2>- m<2[ • 
If 277, = |m 2 or 2?7 = \m? + ?77, we use the decompositions 

i?7}2 = m (^777 — l ) + 777, 

-1112 + 777 = 777 (|777 — l ) + 2777. 

Otherwise we can represent 277 as 7̂772 + km + 2j with 0 < k < ^m, 1 < j < |m , 
( fc^) : ^(0 , |m) .Then. 

277 = ^7772 + km, + 2j = 777 (^777 + fc — j ) + ( m + 2) j . 

By Lemma 4, 277 is a sum of two practical numbers. 

(ii) For the interval [m2, 3m2] see [8, Lemma 2]. 

(iii) If 777 = 2, the only even number contained in the interval ]3?n2, |7772] is 
14, which is a sum of two practical numbers (14 = 6 + 8). Suppose 777 > 2 and let 
2n G ]3??i2, fra2] . We can represent 2?i as f m2 - km + 2j with 1 < k < | m , 
1 < j < 7̂77. Then 

277 = |?772 - km + 2j = 777(2777 -k-j-S) +.(m + 2) (§777 + j) , 

which is a sum of two practical numbers by Lemma 4. • 

THEOREM 6. Every even positive integer is a sum oftwo practical numbers. 
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Proof. Since (2,4), (4,6), (6,8) are pairs of twin practical numbers, by Lemma 5 
every 2n < 126 is a sum of two practical numbers. Suppose we have a sequence {mn} 
such that 

(i) mi = 16 

and for every n 

(ii) mn is practical 

(iii) mn + 2 is practical 

(iv) 1 < mn+1/mn < y/ì. 

Since, by (iv), the intervals [|m~, fm£] and [fm^+1, fm£+1] overlap, every 
even positive integer 2n > 128 is a sum of two practical numbers by Lemma 5. We shall 
construct a sequence {mn} satisfying (i), (ii), (iii) and a condition slightly stronger than 
(iv), i.e. 1 < mn+i/mn < 2. 

Let So = {16, 30, 54, 88, 160}. For every r <E S0ì r and r + 2 are practical 
numbers. Denote So = {»*o,i, r 0 ) 2 , - - , ^0,5} with r0)i < r0)2 < ••• < r0)5. Note that 
ô,* < 2r0)i_i (i = 2, 3,4,5) and r0)5 = | r§ ( 1 + 2r0)i. Let /i0 = 5 and, for k = 1,2,..., 

defìne 

S* = {!rjfe_1)i + 2rfc_M » rfc-i,i + 3rfc-i,« | * = 1,2,..., 

= { ^ , 1 , ^ , 2 , . . . , ^,/ifc} 

with rfc)i <.rfc,2 < < n,hk- Further let 5 = UfeLo^- I f w e w r i t e 5 ' = {mn}, with 
mn < m n + i for every ?T., one can see that {m.n} satisfìes (i), (ii), (iii) and mn+i < 2mn. 
The proof of this is similar to the argument given in [8, Theorem 1]. • 

4. k-tuples of twin practical numbers 

It is easy to find infinitely many pairs (m, m + 2) of twin practical numbers (see 
the proof of Theorem 6 above). The following was conjectured in [6] and [7]: 

THEOREM 7. There exist infinitely many practical numbers m such that m — 2 
and m + 2 are also practical. 

Proof. For the proof see [8, Theorem 2]. • 

It is shown in [7] that for any even m > 2, at least one of m, m + 2, m + 4, m -f 6 
is not practical. However, we state the following 

CONJECTURE 8. There exist infinitely many b-tuples of practical numbers of the 
forni (m — 6, m — 2, m, m + 2, m + 6). 
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5. Gaps between practical numbers 

Here we give an estimate of the gap between consecutive practical numbers. The 
same problem for primes has been extensively studied. If {pn} is the sequence of primes, 
R. C. Baker and G. Harmari [1] recently proved that 

Pn+l-Pn<PnÒ3b, 

the exponent 0. 535 being of course replaced by | + e under the Riemann Hypothesis. If 
{sn} is the sequence of practical numbers, Hausman and Shapiro [5] proved that 

We can improve this inequality as follows: 

TllEOREM 9. Let {sn} be the sequence of practical numbers and let A > 4e~"7/2, 
where j is the Euler-Mascheroni Constant. For any sujficiently large n we bave 

1/2 

Sn+l - Sn < A 
(log log S n ) Ì / 2 " 

Proof. Let 6 > 0 and e < eJ be such that 4c"1/2(l + <5)(1 - 6)-ll'À < A. Let 

Nk = n«<efc Pk> w n e r e P denotes a prime. By [4, §22.9] we nave 

(1) lim —<N*) = # • 

For every k, let m^ be any integer such that'iVfc_i|m(fc), m^k)\Nk. It is easy to 
see, by induction on fc, that Nk is practical for ali k > 1, and if k > 3 then m^ is also 
practical. To prove this, note that Ni = 2 and N2 = 22 • 32 • 52 • 72 are practical, and 
mW/Nk-i is a product of primes not exceeding e*. Since ek < 2Nk~i for k > 3, ra(*)-
and hence JVj. are practical by repeated application of Lemma 4. 

Since 7i|??!. easily implies cr(n)/n < <J(?77.)/??2, we get 

<r(Nk-i) < <x(m(fc)) <r(tfA.) 
7Vfc_i log log Nk ra(*) log log ra(*) 7V& log log ^ . 

Clearly 

log log Nk _ 1 ~ log log TV*, 

whence, by (1), 

i to < r (m ( t ) ) = ey. 
k-*oo ?77,(*0 log log 772 '̂) 



A survey on practical numbers 353 

Thus there exists an integer k0 such that for any k > k0 

(2) min . \ ' > e. 
A T , ™ | m m l 0 S l 0 S m 

m\Nk. 

Let sn be a practical number such that sn > e N% log log NjiQ and let K be the least positive 

integer such that 

NK > — . 
K~ cNJogìogN, 

Further, let 

m[K) = NK-X< m^ < < m(
A

K) = NK 

be ali the integers satisfying NK^i\m^ } rrij\NK, and let v be such that 

(3) " # 0 < — - r ^ r-, 

e ??7.i> ' log log m), ' 

and 

(4) m ^ > 
e m ^ ! log log m j , ^ 

Let tf and r be defìned by m ^ = tfNK_u NK = tmiK\ Clearly r > 1. Let p " be the 

least prime factor of r, and let p' be the greatest prime < p" (if p " — 2, we let p ' = ì ) . 

By Bertrand's postulate we have p" < 2p'. Since NK = t?rJVK_i, we have 

^=1 n H n p 
v p<e K - 1 / yeK~1<p<eh' 

K 

whence p'I^r, p'|tf, and p'\ml '. Therefore /U-v(«) 

P" •—r = P" ••-• NK_I 
P' p' 

is a multiple of NK-\. Moreover 

iVs = rm^ = p' • ~ • p" • ^ 
P" p' 

is a multiple of p"??v, /p ' . Hence 

(«) /, mi, (K) 
p • — = m : > 

for some i > v, since p" > p'. It follows that 

(5) 4"+ )
1<y- !y-<2mW 
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Let q sn/mi 
+1 

+ 1. By (2) and (4) we have 

Sn 
q < 

m 
+ 1 

< c m ^ log log m ^ ! + 1 

whence, by Lemma 4, r = <? m t j is a practical number. Further 

_ O) 
•r sn — ^ j / + l 

777. 
O) 
J/ + U 

+ 1 - «n > 0, 

whence, by (3) and (5), 

firx+l fin S ^ ^? 

- ™ a ( i - ' ' 
777, "+1 

< 2 
era,, log log mi, 

For any e > 0 and any suffìciently large 77 we have, by (3), (4) and (5), 

Sn 
(6) 

and 

mUi > 
e log log m ^ 

> e 1 " -

(7) 

sn+l ~ sn < 2 

< 4 

777 

777^ ' C 777]/ + 1 log log 777,/ ' 

c1/2 ( log log m S 1 

II' 

1/2 
Sn C log log 777^ 

< 4c- 1 / 2 ( l + <5) 
1/2 

fin 

(log log 777 \l ,)sW 

Since, by (5) and (6), 

m 00 = JZ£L roW > 1.(1-«)/» 
777 

(K) " V + l ^ 2°n 
"+1 

we get 

log log m ^ > log f —— log sn - log 2 j > (1 - <$) log log sn, 
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whence, by (7), 
1/2 

. Sri 
Sn+1 ~ Sn < A 

(log log Sn)1/2' 

REMARK. By Gronwall's theorem [4, Theorem 323] we have 

r <r(n) 7 

lini sup —•—^— = e r , 

n^oo n log log n 

which justifies the choice of the sequence Nk in our proof of Theorem 9. 
6. Binary recurrence sequences 

Let P, Q be non-zero integers; a pair of Lucas sequences {un(P, Q)}, {vn(P, Q)} 

is a pair of binary recurrence sequences defìned as 

uo(P,Q) = 0 

u1(P,Q) = l 

un(P,Q) = Pun^{P,Q) -Qun.2(P,Q) for n > 2 

and 
v0{P,Q) = 2 

v1(PìQ) = P 

vn(P, Q) = P vn-i(P, Q)-Q vn-2(P,Q) for n > 2. 

The sequence {un(P,Q)} is also called a fundamental Lucas sequence and 

{vn(P, Q)} its companion sequence. 

Suppose P2 — AQ / 0 and let a, (3 be the distinct roots of the polynomial 

x2-Px + Q. 

We have 
an - 8n 

«n(P>Q) = ir 
a — p 

and 
vn(PìQ) = an+0n. 

Using a shorter notation, we shail write un and vn instead of un(P) Q) and vn(P, Q). For 

(P,Q) = ( 1 , -1 ) , un and vn are the sequence of Fibonacci numbers and the sequence of 

Lucas numbers, respectively; for (P, Q) = (2, - 1 ) , un is the sequence of Peli numbers [9, 

p. 56]. 

THEOREM 10. Let {un(P, Q)} be a fundamental Lucas sequence. IfP2 — 4:Q>0 

and PQ + P is even, then the sequence {\un(P,Q)\} contains infinitely many practical 

numbers. 
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Proof. We shall prove that, for sufficiently large k, \u3,2k I is a practical number. 
Let {vn} be the companion sequence of {un}. Since u2m — umvm for every m, we have, 
for k > 0, 

k-i 

U3.2k = U3 J J V3.2h. 

Also, P2 - 4Q > 0 implies «3 = P 2 - Q > 0. Note that v3 - P(P2 - SQ), whence 
sgn v3 = sgn P. Since P 2 — A.Q > 0, we have a, /3 E M, whence vn = an -f /?n is positive 
for 72 even. Therefore 

jfe-i 

\u3.2k\ = «3 M • J J V3-2fc-
Z» = l 

Since PQ -f P is even, v3m is even for ali ra. Denoting v'3m == v3m/2, we have 

fc-i 

|w3 .2*| — 2A: z/,3 | ^ 3 | • J J v3 .2 f c . 

Let 2&+1 > max{u3) |i>3|}, and define uf = 2fc t/.3 |v3| n i = i ^32^- ̂ e s n o w ' by induction 
on y, that Uj is practical for j = 1 , . . . , k. For j — 1 this follows from Lemma 4 applied 
twice, since 2k is practical and u3ì \v'3\ < 2k+1. Let 1 < j < k — 1, and assume that Uj is 
practical. We have 

u* = 2k-i\u3.2j\ 

and 

Uj + 1 ~ uj l;3-2-'> 

where 

„£.„ = Ì„3.2J. = i (a* + 0*) [a^' - o?fì* + 02i+l) . 

Note that 

and 

a — a p + p — v2i+i - Q 

are positive integers (not both odd). In order to prove that u?+1 is practical, by Lemma 4 
applied twice it suffices to show that 

M = max | a 2 +/3" , a" - a" /32 + fi" > < u*. 

Since a; + 2/ < a;2 — art/ + y2 + 1 for ali x) y G M, we have 

s,r ^ 2j+1 2j o2j , /o2J '+1 , 1 / i 2 j 1 1 

M < a —otp+p 4- 1 = V2Ì+I - <y + 1 

< v2i+i + Q = oc- + or / r + /?- . 
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From P2 - AQ > 0 and P = a -f (3 £ 0 it tbllows that a ^ ±(3. Therefore 

a2J - P2J 

«2i = — " — T T - £ 0, a — p 

i.e. |w2i| > 1- Hence 

M < w ( / + 1 + a 2 y + ^ + 1 ) 

= |l*3.2i| < 2 f c - J ' . |«3 .2i | = l i? . • 

3-2 J /03-2 J 

a3*2' - /?: 

a - / ? 

T H E O R E M 11. Lef {vn(P, Q)} be a companion Lucas sequence with Q = — 1 and 

P > 0. If there exists a positive integer t such that vs^t is practical, then {vn} contains 

inftnitely many practical numbers. 

Proof. We shall prove by induction that, for every k > 0, v3k3$t is practical. 

For k = 0 this is true by assumption. Suppose that ^3*35^ is practical for some k. Since 

vn = a n -f /?n, where a and /? are the roots of the polynomial x2 — Px -f- Q, we have 

V3k+l35t ~ v3k35t [a 
3k70t 

— Ct 
3k35to3k35t , a3k7Qt\ 

Define 

x^Mv/*) if x * ° 

vmM*lv) if y ̂  0, 
where ^^ is the d-th cyclotomic polynomial and <p is the Euler totient function. Note that 

xv(d)<f>d(y/x) = y^dHd(x/y) if a; ^ 0 and 3/ ̂  0. 

Since x70 - x35y35 + y70 = $6(x, y) $3o(z, 2/) $42(2, '£/) $2ioO, 2/), we have 

«3*+i35t - «3*35* ^ (C* 3 ** ,^* ) M ^ ^ ) < M ^ ^ ) ^ l O ^ , ^ ) . 

Note that, since Q = — 1, 

$ 6 (^, /?^)=, 3^-(- ir 
^30(^ 3 ^ , / ? 3 ^) = V3k8t + ( - l ) S 3 * 6 t - ( - 1 ) V 2 * ~ 1 

$42 (a 3**, /? 3**) = V3*12t + (-1)*V3*10< - ( - l )*V 3 *6 t - «3Mt + 1 

^210 ( a 3 ^ , / ? 3 * * ) = V3fc48t - (-l)*V3fc46t + «3*44*.+ (- l )*V3*38t - V3fc36t 

-f 2 ( - l ) * V 3 k 3 4 f - t/3fc32< + (- l )*^ 3fc 30t + v3*24t - ( - l ) V 3 * 2 2 * 

+ l>3*20t - (-1)*^3*18* + ^3*16* ~ ( ~ 1 ) v3*14t ~ v3*8t ~ v3*4t ~ 1-
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Sirice P > 0 and Q — — 1, for every n > 0 we have vn < vn+1, whence 

0 < «3*2, - 1 < <f>e(a3kt,/33kt) < v3k2i + 1 < v3k35t, 

0 < v3k8t - v3k6t + v3k2t ~ 1 < $30{a3 \P3 *) < v&m + v3k6t < v3k35t, 

0 < v3k12t ~ v3^10t + V3k6t - V3k4t < $42 (aà \(33 *) < V3fc12< + V3k10t + 1 < ^3*35*-

Since v3fc+i35,, v3fc35t> ^(c*3**,/?3**), Saofa3**,/?3**)) $42 (a3**, Z?3*') are positive 

integers, we have $ 2 i o ( a 3 *,/?3 *) > 0, and it is easy to show that $210(a3**,/?3**) < 

2v3fc48,. By Lemma 4, we have that 

m = ,3*35, <Ma3 f c ' , /?3 ' ' ) *3o(« 3 ' ' , / ? 3 ' ' ) « « ( a 8 * * , / * * ) 

is a practical number. Since v3k+i35i = m$2io(®3 ^P3 *), to complete the proof it 

suffices to show that 2v3k48i < 2m, and this can be proved by straightforward and tedious 

calculations that we omit. • 

The Fibonacci sequence {un(l,— 1)} and the Peli sequence {«n(2,—1)} satisfy 

the assumptions of Theorem 10. Since LQ3O = v35.i8(ì,— 1) is a practical number, the 

Lucas sequence {vn(l,— 1)} satisfìes the assumptions of Theorem 11. Therefore there 

exist infinitely many practical Fibonacci, Peli and Lucas numbers. 

It is interesting to note that the first practical Fibonacci numbers are F3, FQ, FU, 

F24, F3Q, F3Q, F42, -̂ 48) which, except for F3, have practical subscripts. It is well known 

that every prime Fibonacci number, except for F4, has a prime subscript [4], but there exist 

some practical Fibonacci numbers with non-practical subscripts. The least such number is 

F444. In fact, 444 = 22 • 3 • 37 is not practical, but 

F444 = 24 • 32 • 73 • 149 • 443 • 2221 • 4441 • 11987 -1121101 • 54018521 • 55927129 

• 6870470209 • 8336942267 • 81143477963 • 1459000305513721 

is a practical number. 
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