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ABSTRACT 

We review Coleman’s wormhole mechanism for the vanishing of the cosmo- 

logical constant. We show that in a minisuperspace model wormhole-connected 

universes dominate the path integral. We also provide evidence that the Euclidean 

path integral over geometries with spherical topology is unstable with respect to 

formation of infinitely many wormhole-connected 4-spheres. Consistency is re- 

stored by summing over all topologies, which leads to Coleman’s result. Coleman’s 

argument for determination of other parameters is reviewed and applied to the 

mass of the pion. A discouraging result is found that the pion mass is driven to 

zero. We also consider qualitatively the implications of the wormhole theory for 

cosmology. We argue that a small number of universes containing matter and en- 

ergy may exist in contact with infinitely many cold and empty universes. Contact 

with the cold universes insures that the cosmological constant in the warm ones is 

zero. 



1. Introduction 

- 

The cosmological constant plays two roles in physics. The first role is that of 

a coupling constant, similar to other mass and coupling parameters in microscopic 

physics. Its origin is likely to include short distance physics including wavelengths 

down to the Planck scale. The other role, as its name suggests, is that of a macro- 

scopic parameter controlling the large scale behaviour of the universe. From the 

microscopic point of view we have no explanation of why the cosmological constant 

vanishes. From the cosmic viewpoint it vanishes so that the universe can be big 

and flat, as observed. Thus, it seems a miracle that microscopic physics should be 

fine tuned with practically infinite precision just so that the large scale structure 

of space-time can look as it does. What seems to be needed, as emphasized by 

Lindei” is a direct connection between the cosmic scale physics and the microscopic 

machinery which creates coupling constants. Wormholes provide just such a large 

distance - small distance connection. As far as we know, early speculations about 

wormholes date back to John Wheeler. Hawking and others[” have emphasized 

that unusual and surprising effects can be associated with them! In particular, he 

speculated that wormholes may play an important role in shifting the cosmological 

- 

-.. 

[4>51 constant to zero. 

A wormhole is a microscopic connection between two otherwise smooth and 

large regions of space-time. For example, in figure 1 a wormhole is shown connect- 

ing two flat two-dimensional sheets. The two sheets may actually be portions of the 

same sheet, as in figure 2, or may be parts of otherwise disconnected universes, as 

in figure 3. The important thing about wormholes is that they are small and cost 

little action but can connect arbitrarily distant regions of space-time. Evidently, 

there is a potential connection between the very large and the very small. 

Recently, Coleman i61 and Giddings and Strominger 171 - have considered the ef- 

fects of wormholes in the Euclidean path integral of quantum gravity. Similar ideas 

have been explored in ref. [9,10]. R emarkably, it was shown that the entire effect 

of wormholes is to modify coupling constants and to provide a probability distri- 

3 



bution for them. Even more remarkable is Coleman’s claimnl] that the probabilty 
z- for a given value of the cosmological constant is overwhelmingly concentrated at 

zeroY1 One purpose of this paper is to review Coleman’s arguments and discuss 

some subtle points about the Euclidean path integral and the wave function of the 

universe. A second purpose is to clarify the implications of Coleman’s theory for 

other parameters as well as for physics of the early universe. 

- 

In sec. 2 we review Coleman’s arguments and rederive his results using a some- 

what different method. In sec. 3 we point to some of the subtleties in defining 

the Euclidean path integral for gravity using a minisuperspace model as an exam- 

ple. In sec. 4 we argue that some of these subtleties are actually clarified once the 

wormholes are taken into account. Sec. 5 is an attempt to use Coleman’s approach 

to fix other fundamental parameters. The results of a naive treatment turn out 

to be quite discouraging: wormholes shift the pion mass to zero and the neutrino 

mass away from zero. We speculate on how one might avoid these unphysical con- 

clusions. Finally, in sec. 6 we address the issue of whether generation of heat in 

the early universe is consistent with the mechanism that shifts the cosmological 

constant to zero. 

2. Coleman’s Mechanism 

_ ._-. 

In this section we will derive Coleman’s results in a way that some people 

have found more transparent than Coleman’s original arguments. Consider the 

Euclidean path integral version of quantum gravity. We integrate over all compact 

topologies of space-time; in particular, we focus on geometries which consist of 

some number of large universes connected by tiny wormholes. To begin with, we 

will assume that the wormholes can be treated as dilute so that their emissions 

are independent. This means that their average space-time separation is much 

greater than their size, which we take to be of the order of the Planck scale. For 

definiteness, we take the large universes to have spherical topology. Let us first 

focus on a single universe with no wormholes. The Euclidean path integral for the 
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expectation value of some observable M is 

- 

(M), = Jjy-yy~ 

where the symbols have the following meaning. The parameters, such as couplings, 

masses and the cosmological constant, are collectively indicated by A. The expres- 

sion (M), denotes the expectation value of A4 in a theory with only a single large 

universe without wormholes and with parameters A. The integration J dg indicates 

a sum over metrics and other local fields and I(g, A) is the action functional. 

Now consider the effects of wormholes connecting distant regions of a single 

large universe. In particular, suppose that the two points connected by the worm- 

hole are J: and z’. Let $i(z) be a basis for the local operators at z. We assume 

that the effect of a wormhole is to insert the expression 

f c %464~ji(4 
13 

P-2) 

into the integrand of the path integral, where C;j N exp(-S,) and S, is the 

wormhole action. Thus, for example, the numerator of eq. (2.1) would be replaced 

J dgMe-‘(gJ) J dzdz’ C &+qSi(x)4j(x’) ij 

- 

_ ._-. 

The process in eq. (2.3) can be represented by a figure in which a line connects 2 

and z’ (see figure 4). It is important to distinguish such processes from ordinary 

propagators connecting z and x’. The ordinary processes propagate through a 

large region of space-time and depend on space-time separation between x and x’. 

Instead, wormholes ‘short circuit’ space-time. Therefore, the coefficients C;i do 

not depend on x and x’, at least when the two points are distant. This lack of 

dependence on space-time separation makes the wormhole amplitudes very different 

from amplitudes for the ordinary processes. In fact, if the wormholes are sufficiently 

dilute, the amplitude for each wormhole will typically scale like the square of the 

space-time volume instead of the volume. 
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Next consider the sum over any number of wormholes, as in figure 5. It is easy 

L- to see that -the sum exponentiates to yield 

. J dgMe-‘(gjA) exp (1 2 Jdxdz’C .Cij4%(x)4j(x')) 
ij 

Let us write this in a different form through the use of the identity 

eXp( ;CijKVj) - dok exp( -iDijaiaj) exp( -al&) 

P-4 

P-5) 

- 

where D;j is the inverse of Cij. The matrix element in question becomes 

Jpak J dgMexp(-;Dijaiaj) exp(-l(g, A) - 01 J dx$dx)) (2.6) 

- 

If Xi are the coefficients of J dx$i in the lagrangian, then eq. (2.6) takes the form 

Jp-- J dgMexp(-kDijaiaj) exp(-I(g, X + a)) P-7) 

In a similar manner we can take into account processes involving additional closed 

universes. Each additional universe gives a factor J dg exp(--l(g, X + cy)) in the 

cr-integrand. The combinatorics again exponentiate giving 

(M) = f J dadgM exp(-~Dijaiaj)e-~(g~~+a) exp( J dgfe-‘(g”‘+a)) (2.8) 
where N is a normalization factor. Let us compare eq. (2.8) and eq. (2.1). We see 

that (M) can be written in the form 

(w = J dv(a) (~),+a (2.9) 

_ ._-- 

where 
C 

1 
p(a) = i exp(-sD;jaiaj) J dge-‘(gj’+“) exp( J dgre-%‘,A+d) (2.10) ~- 

Eq. (2.9) has a remarkable form. It says that any expectation value computed 

in our universe is a weighted average over expectation values in universes without 
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wormholes but with couplings X + cr. This is precisely the formula for an ensemble 

of worlds with a statistical distribution of coupling constants. In other words, if 

God created a large number of big smooth worlds, each with couplings X+a, drawn 

from a statistical distribution with weight p(o), exactly the same formula would 

result. Needless to say, an observer in one of the members of the ensemble would 

have no way to deduce the existence of the others. 

One might wonder if two experiments at different locations of space-time would 

agree on the values of the couplings. The answer is yes because the integration 

variables a; are not functions of position. There is a single overall integral over cr;. 

Thus, one of the effects of the wormholes is to equalize the couplings in all regions 

of space-time, even in large universes which would otherwise be disconnected. Fur- 

thermore, there is no restriction that the operator M must only involve a single 

region of space-time. In fact, M could be a product of observables in our region 

and some vastly different place and time. The formula states that, in that case 

too, an integration over a single set of ai defines the expectation value. Therefore, 

there can be no disparity between the values of the coupling constants in distant 

regions of space-time. This completes the first part of Coleman’s argument. 

The second part involves the computation of the probability function p. Let 

us define 

X(a) = J dge-'(g,'+") (2.11) 

where the integration is over geometries with spherical topology and no wormholes. 

There are geometries of spherical topology which can be described as several large 

spheres connected by wormholes (see figure 6). We do not wish to include these in 

the definition X. We will return to this point later. For now, let us assume that 

this separation can be made. Then the probabilty function is 

p((.y) = XeXe--3Dij~i~je (2.12) 

C 

.- 

Coleman suggests that the leading approximation to X is the contribution 

from the classical stationary point associated with Euclidean de Sitter space. The 
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- 

Euclidean de Sitter space is a 4-sphere whose radius is controlled by the physical 

%-. cosmological constant A. Consider a large smooth universe of spherical topology 

with metric gij. Let us compute the effective action for gravity by integrating over 

all fluctuat-ions including matter and gauge fields.- The result can be expanded in 

powers of the curvature tensor and its derivatives* 

S eff = J d4x&(A - &R + aRabcdRabcd + bRabRab + cR2 + . . .) (2.13) 

where A, G, a, etc., are functions of the wormhole-shifted fundamental parameters 

X + Q. If we approximate ,S’,ff by Einstein gravity, then the variational equation is 

f&j = 8rGAgij (2.14) 

The maximum volume solution of this equation is the 4-sphere whose radius be- 

comes large as A + 0. Therefore, let us in general restrict our attention to large 

4-spheres of radius r. Then 

R abed = $k’ac!?bd - gadgbc) 

Substituting this into eq. (2.13), we find 

Seff(r) = T(Ar4 - &r2 + A1 + $ + . . .) 

(2.15) 

(2.16) 

A dominant contribution to the Euclidean path integral comes from the stationary 

point of Seff(r). F or ar e r small A), this occurs at r2 M 3/87rGA. Plugging this 1 g ( 

into eq. (2.16) gives 

3 s - eff = -8G2A 

Approximating X by such a saddle point, we find 

p N exp( - i Dijoioj) exp( &)eexp(hj 

(2.17) 

(2.18) 

where A is the physical value of the cosmological constant which, in general, de- 

pends in a complicated way on many wormhole parameters oi. However, A has a 

* We thank Steve Weinberg for emphasizing this to us. 
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simple linear dependence on the a which shifts the ‘bare value’ of the cosmological 

constant. Analogous statements apply to the physical value of Newton’s constant 

G(Q). Obviously, the function p is infinitely peaked at G2(cr)A(o) = 0. This is 

the basis for Coleman’s claim that wormholes provide a mechanism for setting the 

cosmological constant to zero. 

How much does the above argument depend on the details of physics at and 

below Planck scale? It seems to us that the answer is: very little. In particular, it 

does not depend on the existence of classical wormhole solutions of Planck size. To 

see this, consider a geometry consisting of two smooth asymptotically flat regions 

connected by a wormhole of size a much larger than the Planck scale (see figure 7). 

Certainly, including such configurations does not depend on peculiar small distance 

effects. How does the action depend on a ? As a approaches zero, it varies like a2, 

as long as a is large enough to ignore the effects of terms of order R3 in the effective 

lagrangian (2.13). Wh en a becomes of order Planck scale, we do not know how 

the action varies. In fact, we do not know whether the notion of a smooth metric 

or even a 4-dimensional manifold describes the wormhole adequately. The only 

important assumption is that the integral over a makes sense and gives rise to an 

effective description in terms of bilocal operators, as in eq. (2.2). For example, in 

Einstein gravity, the contribution of a wormhole with positive action is maximized 

at the endpoint a = 0. There, in place of a saddle point associated with a classical 

solution, the path integral is dominated by the endpoint contribution. 

- 

Let us now consider what happens if the dilute gas approximation breaks down. 

This is likely to occur if the shift of the cosmological constant is of the order A$. 

Under these circumstances we must introduce interactions among wormholes. For 

example, a process in which two wormholes are absorbed close to one another may 

have to be taken into account. We can always represent this by the two-wormholes 

coalescing to form a third one, which is then absorbed. This can be accounted for 

by adding a cubic term in the o’s to Dijaiaj in eq. (2.8). More generally, this term 

should be replaced by some unknown function of 0;. It may be that the natural 

variables are not ai but some 0; which are non-linear functions of the ai. In fact, 

C 
~- 
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in this regime, the space of a; may be compact so that the shifts of couplings are 

:- bounded. _ 

3. Euclidean Path Integrals in -Minisuperspace 

- 

In this section we will review the Hartle-Hawking definition of the Euclidean 

path integral. There are two main components involved in this definition. One 

is the idea of a sum over compact Euclidean geometries. This idea is basic to 

our entire discussion. The other component is a method of definition of divergent 

integrals by continuation to complex values of the conformal factor. We will find 

that this second component is not consistent with Coleman’s treatment* Rather 

than discuss the full path integral for quantum gravity, we will restrict our attention 

to a minisuperspace model. The main points can be easily understood in this 

context. Let us consider the Euclidean geometries with metric 

ds2 = g(dtz + a2(t)dR$) (34 _ 

where dfli is the metric of a unit three-sphere. The dynamical variable is the scale 

factor a(t). W e would like to integrate over the compact Euclidean geometries, i.e., 

the trajectories which begin with a = 0 at t = 0 and end with a = 0 at some final 

time t = T. The Euclidean action of such a geometry is 

T 

I=-; dt(aci2+a-h2a3) 
J 
0 

where h = 4Gfi/3. Th is action defines a hamiltonian 

(3.2) 

The total Euclidean path integral contains a functional integral over a(t) and an 

* This was also mentioned in a footnote in the second reference of [lo]. 
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integration over T: i 1131 

:- 
X = mdT J J du(+yiia@)) (3.4 

0 

The integral is only a formal expression because the action in eq. (3.2) is not 

bounded from below. First of all, it can become large and negative because of 

rapid oscillations of a which cause a to be large. This ultraviolet instability can 

be cured by adding, for example, an R2 term to the gravitational action. Perhaps, 

of greater interest are configurations of very long duration. First, consider the 

classical de Sitter solution which is a stationary point of eq. (3.2): 

- u(t) = $ sin(ht) 

with duration T = n/h. This is the configuration Coleman uses to compute the 

probability function p(a). It describes a 4-sphere. The action of this solution is 

I1 = -&. Next consider the configuration with duration slightly less than 2r/h. 

The new configuration is made by joining two 4-spheres as in figure 8. The neck 

where the two spheres join has the minimum value of the scale factor amin. This 

is the simplest wormhole configuration included in the minisuperspace model. The 

action of such a configuration is 

I2 x --& + $. (3.6) 

Similarly, IV spheres can be joined by narrow necks with the Euclidean action 

IN M -g& + &iv - 1)&i,. (3.7) 

These configurations are what remains in the minisuperspace of the -wormhole- 

connected universes of Coleman. If Coleman is right, we expect them to dominate 

the Euclidean path integral in the minisuperspace. 

t The range of integration over T is not a priori fixed. We have made the choice which is 
natural in the Euclidean formalism. 
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Hartle and Hawking have proposed a definition of the Euclidean path integral 

,=- which somehow regulates the divergences associated with the unbounded 1141 ‘ action. 

. When applied to the minisuperspace model considered in this paper, their pre- 

scription amounts to the following. The contour of integration over a is rotated to 

iu and t + it. The resulting path integral is given by eq. (3.4), with I replaced by 

T 

Z = f J dt(uii2 + a + h2u3) 
0 

(3.8) 

Eq. (3.8) is the action for a quantum mechanical problem with the hamiltonian 

- 

?l = ;($ + a + h2u3) (3.9) 

Note the difference between H and ?-L All the terms in 7-t are positive and in 

the limit A -+ 0 nothing special happens. The quantum mechanics problem with 

A = 0 is completely stable. Therefore, it is not possible that the resulting path 

integral is of order exp( A). This property of the Hartle-Hawking definition of 

the Euclidean path integral continues to be true if we integrate over geometries 

more general than in the minisuperspace model. Consider, for example, the path 

integral over conformally flat geometries of spherical topology: g;j = $26ij. As 

explained in the next section, this set includes networks of wormhole-connected 

spherical universes which constitute the tree approximation to the path integral 

considered by Coleman. The Euclidean path integral for Einstein gravity reduces 

to 

x = /[~~I.‘p(J~4~(&(“b)z - Acq) (3.10) 

Clearly, this expression is formal due to the unconventional sign of the kinetic term 

for 4. With the Hartle-Hawking continuation 4 -+ i4, it is defined to be 

x = JLdd]exp(- Jd4x(&(W12 +Mi)) 
This is just the Euclidean path integral for the stable d4 theory? Therefore, it 

A- This is not a conventional theory since it must be regulated in a conformally invariant way. 

c 
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cannot develop an exponential singularity as A + 0. 

‘ ,=- The non-appearance of singular terms in the.- minisuperspace Euclidean path 
. integral as A + 0 is related to properties of the Hartle-Hawking wave function of 

the universe. This wave function can be defined in the following way. Let q(u) be 

the Euclidean path integral for the analytically continued problem (3.8) over all 

trajectories which begin at a = 0 and end at a. 

d(u) = P,, J da(t) exp[-z(u(t))]S(u(T) - a) 

0 

(3.12) 

Another representation of this formula is 

- t)(u) =< a, J* dTe-‘HT[u = 0 >=< ~~~1, = 0 > 
0 

(3.13) 

A subsequent continuation a --+ -iu in the argument of 4 gives a Wheeler-De 

Witt wave function for the original problem defined by eq. (3.2). It can be written 

formally as 

$44 =< 4 7 dTcHTla = 0 >=< a$a = 0 > 
0 

(3.14) 

In terms of the original problem, specified by the hamiltonian H, there are two 

stationary paths that can contribute to the wave function significantly. They cor- 

respond to the two classical trajectories which begin at a = 0 and end at a. The 

first trajectory terminates at a while & > 0, as in figure 9. Its Euclidean action 

is Sl(u) M -$z2 for a << h -l. In the same limit the second trajectory, shown in 

figure 10, has action 

s2 b-4 M -& + $x2 

Thus, in the semiclassical approximation, the two wave functions are 

(3.15) 

$1 - f3-‘l = exp(iu2); $2 N ems2 = exp( & - iu2) (3.16) 

From the definition of the wave function in eq. (3.12) it is clear that the total 
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path integral over all closed compact geometries is just $(O). Coleman’s saddle 

,:- point estimate obviously comes from $2(O). However, as emphasized in ref. [14], 

. rotating the contours of a and t integrations entirely eliminates $2 and picks out 

$1 as the Hartle-Hawking wave function! Can this prescription be consistent with 

Coleman’s theory ? Hartle and Hawking claim a different connection between +(a) 

and the total Euclidean path integral. They argue that the Euclidean path integral 

is the norm of the Hartle-Hawking wave function 

X = m$;(+h(+a J 
0 

(3.17) 

Indeed, this quantity is of the order exp(&). To see this, let us study the 

behaviour of the Hartle-Hawking wave function $1. For small a, $1 grows expo- 

nentially. It is easy to see that for a > h-l we enter the classically allowed region 

where $1 oscillates with the amplitude - exp(3/16G2A). Therefore, the norm in 

‘eq. (3.17) seemingly gives the answer required for Coleman’s theory. Unfortu- 

nately, we see no basis for the claim that the Euclidean path integral in eq. (3.4) 

- 

[15’ is the conventional norm of the Wheeler-De Witt wave function. To show that 

the two are different we make use of eq. (3.14): 

da < a = 0~~~~ >< u& = 0 > 
0 

=<u=o,++o> 
Obviously, this is not the same as 

(3.18) 

X=~(O)=<u=o,~,u=O> - (3.19) c, 
Perhaps, one should simply conclude that Coleman is just wrong and the path 

integral does not exhibit the exp(&) required for his argument. On the other 
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hand, maybe the Hartle-Hawking prescription is not the only possible way to make 

sense of.. the Euclidean path integral. Below we propose a different regularization 

of the Euclidean path integral in the minisuperspace, which leads to consistency 

with Coleman’s sum over wormhole-connected universes. 

If the Wheeler-De Witt Hamiltonian was bounded from below, the wavefunc- 

tion could be obtained in two steps. First, we must solve the imaginary time 

Schroedinger equation 

H$(a,T) = -yy) 

with initial condition 

$+,o> = G> - 
Integrating $(a, T) over T gives the wave function $(a) 

(3.20) 

(3.21) 
- 

(3.22) 
0 

These steps can be formally expressed by eq. (3.14). However, the above procedure 

for defining $( a is not meaningful due to the unconventional sign of the kinetic ) 

term in the hamiltonian of eqn. (3.20). We propose to define the wave function 

formally by real time (Minkowskian) path integration for the quantum mechanics 

problem associated with the hamiltonian -H: 

1 
+(a) = -i < al- -iH[u = 0 >= -i < al mdTe’“T[u = 0 > 

J 
(3.23) 

0 

The potential energy contained in -H is plotted in figure ll.* The wave function 

defined by eq. (3.23) satisfies[131 
5 

fw+4 = 04, (3.24) ~- 

i.e. it satisfies the Wheeler-De Witt equation everywhere but the origin. In fact, 

* Note that the mass of the ‘particle’ is also position dependent: m = a. 
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- 

the precise meaning of the Wheeler-De Witt equation at a = 0 is obscure for several 

,+- reasons... First of all, since no meaning is attached to a < 0, the derivatives in H 

are ambiguous. Secondly, the boundary conditions at a = 0 involve sub-Planckian 

physics. However, the path integral in eq. (3.23) does imply eq. (3.24). Calculation 

of this path integral reveals two interesting results. The first conclusion is that, as 

with the Hartle-Hawking prescription, $(O) d oes not become large or small in the 

limit A + 0. To see this we note that, as A + 0, the hamiltonian becomes 

-H=;($+u) (3.25) 

which is once again the hamiltonian of a stable quantum mechanics problem. 

The second conclusion is that, unlike the Hartle-Hawking wave function, $(a) 

is complex and corresponds to an outgoing wave at a >> $. This should not 

come as a surprise since the physical problem we have set up corresponds to the 

quantum mechanics of a particle starting at a = 0 at t = 0. Therefore, our wave 

function describes a particle tunneling from under the barrier, which extends from 

a = 0 to a = l/h, to large values of u! One might object to our regularization, 

which is essentially substituting a.Minkowskian path integral for a Euclidean in the 

minisuperspace context. Then, a ‘manifestly real’ Euclidean path integral gives rise 

to a complex wave function. Actually, this is a standard phenomenon in problems 

which involve an instability, such as the quantum mechanics of minisuperspace. 

With our alternate regularization we once again find no evidence for exp( &) 

in the normalization of the wave function. This is despite the fact that both $11 

and $2 are present in the wave function: 

$(a) = - exp(-3/8G2A)(+z(u) + i+l(u>> (3.26) 

The naive saddle point approximation to $(a) would have given 

+(a> N $2 + $1 (3.27) 

What is the origin of the normalization factor in eq. (3.27) and how does it affect 

Coleman’s arguments ? The answer is given in the next section. 
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4. Wormholes in Minisuperspace and Beyond 

- 

In this-section we will show that a consistent treatment of wormholes in min- 

isuperspace, analogous to Coleman’s, explains the normalization factor of the wave 

function given by the path integral. As we have emphasized, the Euclidean path 

integral is divergent due to unboundedness of the action. A 4-sphere of radius 

?=$@XK is a stationary point where the action has the value -&. We 

can, however, easily generate configurations with much larger negative action. As 

described in sec. 3, N almost complete 4-spheres glued together in a sequence 

have the action M -&. Each of these configurations is also a stationary point 

of the action, and there is no consistent reason to ignore them. But do we even 

want to discard contributions such as those in figure 12? Obviously not, since they 

are just the wormhole-connected universes of Coleman, or what is left of them in 

minisuperspace. What we want to do is to apply Coleman’s reasoning and sum 

them up. In the saddle point approximation the Euclidean path integral becomes 

- 

t/7(0+) = i 2 exp($&) + 2 exp(&) 

N=O N=l 
(4.1) 

The first term sums up the processes in which any number of bounces precede a 

termination of a trajectory at a point where & > 0 and a = O+. The second series 

involves trajectories terminating with & < 0. The reason for the factor of i in the 

first term is the presence of an extra negative mode in the fluctuations about the 

trajectories which end with & > 0. Although divergent, the series in eq. (4.1) can 

be formally summed up to 

Tw+) = exp(&) + i 
1 - exp(&)’ (4.2) 

This manipulation can be made more convincing by introducing an R2 stabilizer 

term into the action. Then, for A greater than some critical value, the geometric 

series which sums up the multiple bounces converges. Analytic continuation to 

small A essentially reproduces eq. (4.2). 

-- 
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Note that (4.2) app roaches -1 as A + 0. Thus, in this limit, only if we 

sum over the wormholes do we get the correct saddle point approximation to the 

wave function. This is not to say that tunneling amplitudes cannot be understood 

without multiple bounces. In particular, if the usual Euclidean path integral is 

applied to a hamiltonian with the conventional sign of the kinetic term, such as 

-H, where H is given in eq. (3.3), th e multiple bounce has the amplitude - 

exp(-a). Thus, th e successive bounces are strongly suppressed. The reader can 

verify that the path integral carried out this way leads to the same wave function. 

Our point is that, if we insist on using the standard sign for the gravitational 

kinetic energy and the usual saddle point definition of the Euclidean path integral, 

the sum over the geometric series generated by the multiple bounces is necessary. 

This supports the view that the wormholes provide important contributions to 

the Euclidean path integral. We also see that, if A is small, no serious error is 

made by ignoring wormhole-connected universes since their only effect is to change 

normalization of the wave function. In Coleman’s case, the analogue of summing 

up the geometric series is just the calculation of sec. 2. The effects of the wormhole 

summation and the exponentially large contribution from each 4-sphere result in 

a finite prescription: quantum gravity with zero cosmological constant. 

- 

As far as we can tell, similar arguments do not apply to the Hartle-Hawking 

prescription, where it appears that trajectories with multiple bounces do not dom- 

inate the Euclidean path integral. The sum over multiple bounces in figure 12 

a) results in normalization - exp(-& ) for $1(O). Since the Hartle-Hawking 

method of evaluating the Euclidean path integral gives V/Q(O) of order 1, it ap- 

pears that it is not consistent with the idea that the wormhole-connected universes 

dominate the Euclidean path integral. 

Another interesting question is what is the role of higher 4-topologies in Cole- 

man’s argument. Let us consider the Euclidean path integral over all geometries 

with a spherical topology. An important subset of these is formed by the confor- 

mally flat geometries discussed in the previous section. Among these geometries 

there are approximate saddle points, which are generalizations of the wormhole- 

5 
-- 
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connected series of 4-spheres encountered in the minisuperspace. These are the 
i I tree diagrams of the ‘universal field theory’. Typical examples are shown in figure 

. 6. In ordinary field theory the sum over such diagrams is found by a saddle point 

approximation to the Euclidean path integral. Let us therefore construct a simple 

path integral which sums up the effects of wormhole-connected universes. Define 

a ‘field’ B(V) which d escribes large spherical universes of volume V and a field 

o for wormholes. The emission of wormholes by a universe will be represented 

by a graph like that shown in figure 13. The path integral which reproduces the 

wormhole sum is 
* 

- J dadB(V)exp(-iDa2+ J"$(B(V)r+(~flmnViav)- k&(V))) (4.3) 
0 

The reader can check that the expansion in powers of l/D generates the wormhole 

summation including loops. Integrating out B(V) with some particular integration 

measure+ reduces eq. (4.3) to 

co 
J daexp(-iDa + L J dV &fl-av+av) - Go n 

For CY < A the volume integration in the exponent converges to 

/&zy 3, exp(8G2(A - CY) 

(4.4) 

(4.5) - 

Ordinarily, the sum of connected tree graphs would be given by the extremum of 

-fa2 + /~exp(&4 - 4) (4.6) 

In our case this sum diverges for any D due to the singularity of (4.6) at A = CY!‘~’ 

We observe, however, that, for a sufficiently large A, there exists a local maximum 

5 

- 

* A similar path integral appears in the work of Giddings and Strominger (ref.[lO]). 
t Our conclusions do not depend sensitively on the choice of measure. 
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of (4.6) with 

- 

1 
o!N 

GDA3/2 ’ ‘. (4.7) 
We can regard the value of (4.6) at th is extremum as the definiton of the sum 

of connected tree graphs. With this definition, the cosmological constant is only 

weakly shifted by wormholes. As A decreases, the local maximum in eq. (4.7) 

disappears. This happens well before the wormhole-shifted cosmological constant 

vanishes. Thus, the sum of tree diagrams ceases to make sense below some value of 

the physical cosmological constant. It should be noted that all the tree diagrams 

are spheres topologically, while metrically they are very far from spherical. This 

raises an interesting possibility. It suggests that the Euclidean path integral over 

geometries of spherical topology is unstable with respect to break up into infinitely 

many wormhole-connected 4-spheres. For A less than some critical value, this 

integral is uncontrollably divergent. 

On the other hand, the result of integration over cr, which sums up the loop 

diagrams in eq. (4.4), is well-defined in the sense that all the physical amplitudes 

are dominated by the singularity at A - cr = 0. In the region where A - Q < 0 

the volume integral in eq. (4.4) is problematic. However, we can formally continue 

from the region where A - cy > 0 to obtain the same answer as in eq. (4.5). This 

procedure seems to indicate that there is no preference for a negative physical 

cosmological constant. 

Let us consider what the Hartle-Hawking prescription says about the Euclidean 

path integral over geometries of spherical topology. An important class of these 

geometries, which includes the wormhole-connected spheres, is the conformally flat 

geometries gij = 42S;j considered in the previous section. The theory specified by 

eq. (3.10) h as an instanton 

2rGAr2 --1 
4(r) =(I+ 3 > (4.8) 

C 

This is simply the 4-sphere of radius dm which constitutes the Euclidean de 

Sitter space. Multi-instanton configurations are the wormhole-connected 4-spheres. 

20 



Coleman’s treatment assumes that the Euclidean path integral is saturated by the 
c ,c- instanton sum. As we have seen above, this sum diverges. Even if defined by the 

. extremum of the action in eq. (4.6), it b ecomes singular at some critical value of 

A, below which it does not make sense. On the other hand, the Hartle-Hawking 

prescription leads to the Euclidean path integral in eq. (3.11) which defines a 

stable 44 theory and is presumably well-behaved as A + 0. This once again 

suggests that this prescription eliminates the instability which leads to Coleman’s 

wpnderful effect. This is not meant to imply that the Hartle-Hawking prescription 

is incorrect. We believe, however, that it cannot coexist with Coleman’s results. 

Some other prescription must be found to justify them. 

5. Fixing Other Coupling Constants 

Once the cosmological constant has been set to zero, it is natural to ask if 

Coleman’s theory predicts some or all of the additional parameters, such as the 

mass and coupling constants. Coleman’s answer is yes. Let us review his argument. 

We imagine carrying out the path integral over all fields in a background Euclidean 

de Sitter space of radius r. Explicit examples indicate that the result has the form 

exp(-Seff(r)) with Seff(r) given by the eq. (2.16). As in sec. 2, we eliminate the 

radius by solving 

dSeff = 0 
dr (5.1) 

This gives r2 = 3/8rGA + O(G3A). S,ff can then be written in terms of G, A, 

and a set of parameters A; which depend on the wormhole-shifted fundamental 

constants. 

3 s - EAl + O(G2A)A2 + . . . eff = -8G2A + 3 

5 
~- 

(5.2) 

The probability for the wormhole-shifted couplings and masses is proportional to 
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exp(exp(-Seff)), which for small G2A reduces to 

3 ( 2 
p(a) - e+xP&---- - 

8G2A 
f&j) (5.3) 

The absolute maximum of this function will generally occur at G2A(a) = 0. This 

defines some subspace in the space of wormhole-shifted constants. On this surface 

the probability varies, being infinitely sharply peaked at the place where Al(a) 

achieves its minimum. If this occurs at a point in the space cr;, then all the 

parameters are determined. If it occurs on some higher-dimensional surface, then 

only some relations between couplings are fixed. In this case the process can be 

continued by minimizing A2 and so on. Whether the process determines all the 

interesting couplings is not known.* - - 

It is important to know whether symmetries restrict the allowable couplings 

which can be generated by wormhole effects. For example, suppose that the fun- 

damental lagrangian is invariant under some global symmetry, such as the chiral 

symmetry or baryon number conservation. Wormholes can then break this sym- 

metry. The mechanism involves a wormhole through which the conserved current 

flows. For example, a unit of baryon number can pass through a wormhole. This 

induces a bilocal operator 

J dxds’O+(z)O(a’) (5.4) 

_ . ..-. 

where x and x’ are the ends of the wormhole and 0 is a baryon number violating 

operator. The arguments in sec. 2 indicate that the phenomenology of a single 

large universe will require the operator a,(0 + Ot) in the lagrangian. Of course, 

it may happen that the probability is maximized at o0 = 0. However, this is not 

a priori implied by the symmetry of the theory without the wormholes. 

* This procedure requires that we introduce a lower cut-off on G2A, and take it to zero at the 
end of the calculation. Grinstein and WiseI1” have suggested that the proper quantity to be 
cut off is G$I, where Gc is the ‘bare’ Newton’s constant, which does not depend on the a’s. 
With this regulator the probability is maximized at G/Go = 0. Unfortunately, this seems 
to imply that wormhole effects make gravity a free theory. However, the full consequences 
of this approach have not yet been worked out. 

-- 

22 



The obvious question is to what extent the A; can be computed from a knowl- 

,c- edge of low-energy physics alone. Power counting indicates that A1 depends on 

the short-distance physics. Since it is dimensionless, it will generally be logarith- 

mically divergent in the ultraviolet when expressed in terms of integrals over wave 

numbers. Therefore, it is sensitive to physics at arbitrarily short distances. Nev- 

ertheless, it appears that, when applied to masses of spin-0 and spin-i particles, 

Coleman’s procedure leads to some discouraging conclusions. 

- 

. Consider a light pseudoscalar particle, such as the pion. We wish to study the 

Euclidean path integral on a $-sphere of radius r as a function of the pion mass. 

Let us assume that m, is much smaller than the QCD scale fr. The low energy 

interactions of pions are well described by the SU(2) x SU(2) non-linear sigma 

model with the cut-off set around fx: 
- 

C = ~tr(V;UVU+) + tr(MU + U+M+), (5.5) 

where the SU(2) variable U is related to ii by “, 

u I exp( y) (5.6) 

The portion of the path integral with momenta 5 fx will be dealt with using 

this model. The rest of the Euclidean path integral should make use of a more 

fundamental theory involving quarks, gluons, Z’s, W’s, etc. 

Now consider the limit of large fx in which the pion becomes a free minimally 

coupled point particle with lagrangian 

L = ;((vq2 + m2,ii2) _ (5.7) 

In this case the path integral reduces to evaluation of the determinant of V2 + mz. 

Methods and results of such a calculation in arbitrary curved backgrounds can be 

found in ref. [18]. R ecently, the calculation was performed directly on a 4-sphere 
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by Grinstein and Wise [I71 with the purpose of application to Coleman’s theory. 

,=- They isolated the coefficient Al in eq. (5.3) 

A1 = &(2 - $) log 9 + O($) 
x 7r 

(5.8) 

- 

The logarithmic dependence on m, originates in the infrared modes and is totally 

independent of the ultraviolet cut-off. Thus, corrections to eq. (5.8)’ coming from 

the interaction terms in eq. (5.5)’ depend on the strength of these perturbations 

among the infrared modes. We have checked by an explicit calculation that, to 

lowest order, the interactions do not generate additional infrared logarithms. The 

reason is that Goldstone bosons decouple at low momenta. Although we have no 

general proof of this, we expect the coefficient of logm, in (5.8) to be universal. 

Thus, it appears that the probability for the pion mass is infinitely peaked at 

m 7r= 0. Unless a way around this conclusion is found, the theory of wormholes is 

in trouble. 

It is also interesting to do a similar calculation for a free massive fermion. 

Using the knowledge of eigenvalues and degeneracies of the Dirac operator on a 

4-spheret1g1 we find 

O” (1+ 3)! 
logdet(iypDp + m) - c Ir exp(-~)log((~~~~2 + $) 

I=0 * 
(5.9) 

where M is the cut-off mass. We would like to calculate the sign of the coefficient 

of log(m/M) in Al. Since this term originates in the infrared modes, the coefficient 

is cut-off independent. In contrast with the result for a free scalar, we find that 

the sign is negative. Therefore, wormholes drive the free fermion mass toward the 

cut-off scale. 

Let us apply this to neutrino physics. Since wormholes break chiral-symmetry, 

_ . . - Y acquires Majorana mass through operators like 

~+~hr24+1h + h-c. (5.10) 

where 4 is the Higgs field. At low momenta, neutrinos are almost free and the 
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above calculation should be applicable. Our calculation indicates that wormholes 

= - drive the neutrino mass away from zero. 

A possible way out of this predicament involves assuming that the dilute worm- 

hole approximation is bad. If the shift of the cosmological constant produced by 

wormholes is of order Mi, then wormholes must develop a significant density. As 

we have mentioned, under these circumstances the dynamics of (Y’S becomes non- 

linear. In fact, the o’s may be poor global coordinates for the space of wormhole 

fields. This space may be better described by some coordinates 0(o). The manifold 

may even be compact. In general, the parameters oi which multiply the specific 

operators are highly non-linear functions of 8;. Now consider the surface A(0) = 0. 

This will be some curved surface in &space, as shown in figure 14. Similar remarks 

apply to the surface m,(B) = 0. S ince we know very little about the &space, 

we see no general reason for the two surfaces to intersect. This might happen if 

the required shift of the cosmological constant is fairly large in Planck units and 

the wormholes required for shifting A become dense. Furthermore, the wormholes 

required for shifting m, carry different quantum numbers from those that shift 

A, since the former must carry off chiral charge while the latter should be chiral 

singlets. A high density of neutral wormholes could leave very little space for the 

ones that shift m,. On the other hand, the probability distribution near m, = 0 

is 

f p - exp{(~l”.32 exp(&)l (5.11) 

Evidently, as A + 0, the driving force on the chiral wormholes diverges and it is 

not clear that they can resist increasing their density. 

V. Kaplunovsky suggested an even more disturbing possibility that larger scale 

wormholes may be forced to occur if the Planck scale wormholes are not sufficient 

to shift m, to zero. Once we have integrated out the effects of wormholes and other 

fluctuations above a given scale, there is no reason why a new round of wormholes 

cannot be important at larger scale. One might object that the factor exp(-SW) in 

the amplitude for each wormhole decreases rapidly with the wormhole size. This 
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causes the coefficient D in eq. (2.8) to b e of order exp(Sw). Unfortunately, the 

; factor in eq. (5.3) is so strong as A -+ 0 that it easily overwhelms any finite 

value of D, no matter how large. This suggests that, if m, is not driven to zero 

by microscopically small wormholes, then wormholes should occur with maximum 

possible density at every scale up to fr. This seems unphysical since it would almost 

certainly adversely affect predictions of the standard model. At the moment, we 

have no answer to this puzzle. 

6. Wormholes and Cosmology 

An important question about Coleman’s theory is whether it is consistent with 

a reasonable cosmology. It will be disappointing if the theory truly predicts noth- 

ing rather than something: namely, a cold universe devoid of matter and energy. 

We must hope that there is at least a finite number of universes which have under- 

gone an interesting cosmological development. Obviously, the relevant issue is the 

absolute number of such universes and not the fractional number. We will argue 

that a possible outcome of the wormhole theory is that the number of warm uni- 

verses is finite while the number of cold ones diverges. As a result, the expectation 

values of all observables will be dominated by cold empty universes. Under these 

circumstances the quantities of physical interest are conditional probabilities given 

that one is in a warm universe. Let us begin with extending the minisuperspace 

model by including a scalar variable 4(t) h h p w ic re resents the state of all matter 

fields in the universe. The Euclidean action becomes 

- 

I = ~d++z2 - fu + u3($i2 + V(4))) 
-0 

(6.1) 
; 
.- 

For our purposes we will restrict the shape of V(d) to be the one in figure 15. A 

warm universe corresponds to a Euclidean trajectory which emerges in the classi- 

cally allowed region of a with $ in the vicinity of &. Subsequently, it can tunnel 
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to the lower well around & dumping the energy difference into heat. We are mak- 

c- ing no attempt here to model a realistic cosmology. We prefer V(d) because this 

potential makes it easy to separate the important saddle point trajectories. The 

Euclidean equations of motion are 

. . dV 
C$+39= --@ 

(i,z = -$ + $2 - 2V($) 
(6.2) 

- 

The two important saddle points correspond to classical trajectories which start 

at a = 0 with 4 = 0 and $ = & or I?$,. We observe that, if a trajectory starts at 

the bottom of the well and has 4 = 0 initially, it never acquires any non-zero 4. 

Therefore, the solutions are 
- 

4= 4a; u(t) = f sin(h,t) (6.3) a 

and 

ti= tib; u(t) = k sin(hbt) (6.4) 

where hi = 2V(4a) and similarly for b. Ignoring wormholes, these two trajecto- 

ries approximately saturate the Euclidean path integral for the Wheeler-De Witt 

wave function in the classically forbidden region u2 < 1/2V($) (neglecting 6). To 

extrapolate to large values of a, the Euclidean trajectories must be matched on to 

the solutions of the Minkowski equations of motion for u2 > 1/2V(45). Eventually, 

within the classically allowed region tunneling to the lower well, accompanied by 

heat generation, takes place. We assume that the tunneling rate between the two 

wells is much slower than the rate for a to tunnel from a = 0 into the classically 

allowed region.* Under these circumstances it is clear that a warm universe can be 

recognized in the Euclidean path integral as the extremum in eq. (6.4), and a cold 

universe - as the extremum in eq. (6.3). 

_ . . 72. 

A- This is true if the wells are separated by a high barrier. 
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Let us now consider the effect of wormholes in the Euclidean path integral. In 

analogy--with the discussion of sec. 4, a wormhole is just a reflection off a = 0. 

There are three types of wormholes. The two diagonal processes take place entirely 

at 4a or q&. In addition, transitions between 4a and f$b are possible. The reason 

appreciable transitions exist, even if the barrier is high, is that the d-motion at 

a = 0 costs no action. If the wormholes are taken into account, the Euclidean path 

integral is saturated by series of large and small bubbles which correspond to cold 

and warm universes. When we depart from minisuperspace, the path integral will 

contain arbitrarily connected bubbles of type a (cold) and of type b (warm), as in 

figure 16. The probability in eq. (5.3) g eneralizes to a function of A, = 9V(q5,)/8G2 

and Ab = 9V($b)/8G2, as well as other constants. Typically, it will have the form 
- 

P - exP(F, exP( &-) + Fb exP(&)) 
b 

(6.5) 

where Fa and Fb are the prefactors which depend on the wormhole-shifted funda- 

mental constants of the theory. 

An important question is whether both Aa and Ab are shifted to zero by worm- 

holes. If this is the case, we will be forced to conclude that both a and b become 

cold and uninteresting universes. However, it is quite possible that the prefactors 

in eq. (6.5) are such that this does not occur. Recall that both F and A depend on 

the fundamental constants X + cr. Therefore, the F’s have an implicit dependence 

on the A’s. Let us imagine a simplified model where the prefactors are functions 

of just Aa and Ab: 

Fa = Fa(Aa, Ab); Fb = Fb(Aa,Ab)* w-9 

_ ..-=- 

Suppose that the prefactors satisfy 

Fa(O, 0) + Fb(O, 0) < J’a(O, Xc), (6.7) 

where F,(O,x) is the maximum of Fa(O, Ab). Then the probability is infinitely 

larger at A, = 0 and Ab = x than at A, = 0 and Ab = 0. The property (6.7) holds 
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for a broad variety of smooth functions F. Therefore, we do not consider this to 
,c- be a ‘fine-tuned’ possibility. 

It is interesting to determine the mean numbers of universes of type a and b 

in a connected diagram. The result is 

Na N exp(- 3 ) 8G2Aa ’ 
h$, N eXp(- 3 > 8G2Ab (6.8) 

- 

Thus, if (6.7) holds, th e number of cold universes is driven to infinity, while the 

warm ones stay finite in number. However, the cosmological constant in these 

warm universes is driven to zero by contact with the infinity of cold universes. 

This follows from the fact that Aa = 0 and that eventually the universe tunnels to 

the well at 4a. 
- 

The details of this scenario may vary depending on the specific mechanism for 

inflation. However, the idea that the cosmological constant in our warm universe 

is driven to zero by contact with an infinity of cold universes can be quite general. 

It suggests that the reason why the cosmological constant is zero lies outside our 

own universe. 
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FIGURE CAPTIONS 

- 
1) A wormhole is a microscopic configuration connecting two asymptotically 

flat regions of space-time. 

2) The two asymptotically flat regions can actually be connected even in the 

absence of a wormhole. 

. 
. . 3) A wormhole between two otherwise disconnected universes. 

4) A large universe with one wormhole. 

5) A large universe with multiple wormholes. 

6) Geometries of spherical topology which consist of many wormhole-connected 

spheres. 

7) A more detailed picture of a wormhole of size a. 

8) Two 4-spheres connected by a wormhole. 

9) The minisuperspace trajectory which corresponds to the smaller part of the 

Euclidean sphere. 

10) The minisuperspace trajectory which corresponds to the bigger part of the 

Euclidean sphere. 

11) The potential energy in the hamiltonian -H. Note that the mass of the 

‘particle’ is also position dependent: m = a. 
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12) Minisuperspace trajectories which involve several reflections off the barrier 

at.. a F 0. 

13) A representation of emission of baby universes in terms of a Feynman graph. 

14) Schematic drawing of A = 0 and m, = 0 surfaces in the space of wormhole 

variables t9( a). 

15) The convenient potential for the scalar variable I$. 

16) Important contributions to the Euclidean path integral in a theory with two 

types of large universes. 
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