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Abstract Reliability refers to the reproducibility of values of a test, assay or other meas-
urement in repeated trials on the same individuals. Better reliability implies better
precision of single measurements and better tracking of changes in measurements
in research or practical settings. The main measures of reliability are within-subject
random variation, systematic change in the mean, and retest correlation. Asimple,
adaptable form of within-subject variation is the typical (standard) error of meas-
urement: the standard deviation of an individual’s repeated measurements. For
many measurements in sports medicine and science, the typical error is best
expressed as a coefficient of variation (percentage of the mean). A biased, more
limited form of within-subject variation is the limits of agreement: the 95% likely
range of change of an individual’s measurements between 2 trials. Systematic
changes in the mean of a measure between consecutive trials represent such
effects as learning, motivation or fatigue; these changes need to be eliminated
from estimates of within-subject variation. Retest correlation is difficult to inter-
pret, mainly because its value is sensitive to the heterogeneity of the sample of
participants. Uses of reliability include decision-making when monitoring indi-
viduals, comparison of tests or equipment, estimation of sample size in experi-
ments and estimation of the magnitude of individual differences in the response
to a treatment. Reasonable precision for estimates of reliability requires approx-
imately 50 study participants and at least 3 trials. Studies aimed at assessing
variation in reliability between tests or equipment require complex designs and
analyses that researchers seldom perform correctly. A wider understanding of
reliability and adoption of the typical error as the standard measure of reliability
would improve the assessment of tests and equipment in our disciplines.

CURRENT OPINION Sports Med 2000 Jul; 30 (1): 1-15
0112-1642/00/0007-0001/$20.00/0

© Adis International Limited. All rights reserved.

Measurement error makes the observed value of
a measure differ from the true value. Anyone who
takes or uses measurements should therefore have
some understanding of measurement error. In my
experience, the 2 most important aspects of meas-
urement error are concurrent validity and retest re-
liability. Concurrent validity concerns the agree-
ment between the observed value and the true or

criterion value of a measure. Retest reliability con-
cerns the reproducibility of the observed value when
the measurement is repeated. Analysis of validity
is complex, owing to the inevitable presence of er-
ror in the criterion value. I have therefore limited
this article to the measurement errors that are acces-
sible in reliability studies. These errors have a ma-
jor impact on our attempts to measure changes be-



tween repeated measurements; they are also a con-
cern for anyone interested in a single measurement.

Studying the reliability of a measure is a straight-
forward matter of repeating the measurement a rea-
sonable number of times on a reasonable number
of individuals. The most important measurement
error to come out of such a study is the random
error or ‘noise’ in the measure: the smaller the er-
ror, the better the measure. How best to represent
this error and several other measures of reliability
is a matter of debate. Atkinson and Nevill[1] con-
tributed a useful point of view in their review of
reliability in this journal recently, but I have a dif-
ferent perspective on the relative merits of the var-
ious measures of reliability. In the present article I
justify my choice of the most appropriate meas-
ures. I also explore the uses of reliability and deal
with the design and analysis of reliability studies.
My approach to reliability is appropriate for most
variables that have numbers as values (e.g. 71.3kg
for body mass). Reliability of measures that have
labels as values (e.g. female for sex) is beyond the
scope of the present article.

1. Measures of Reliability

When we speak of reliability, we refer to the
repeatability or reproducibility of a measure or vari-
able. I will sometimes follow the popular but in-
accurate convention of referring not to the reliabil-
ity of a measure but to the reliability of the test,
assay or instrument that provided the measure. I
will also use the word ‘trials’ to mean repeated ad-
ministrations of a test or assay.

Researchers quantify reliability in a variety of
ways. I deal here with what I believe are the only
3 important types of measure: within-subject vari-
ation, change in the mean, and retest correlation.[2]

1.1 Within-Subject Variation

Within-subject variation is the most important
type of reliability measure for researchers, because
it affects the precision of estimates of change in the
variable of an experimental study. It is also the most
important type of reliability measure for coaches,
physicians, scientists and other professionals using

tests to monitor the performance or health of their
clients. In these situations, the smaller the within-
subject variation, the easier it will be to notice or
measure a change in performance or health.

An easy way to understand the meaning of within-
subject variation is to regard it as the random vari-
ation in a measure when one individual is tested
many times. For example, if the values for many
trials of one individual are 71, 76, 74, 79, 79 and
76, there is a random variation of a few units be-
tween trials. A statistic that captures this notion of
random variability of a single individual’s values
on repeated testing is the standard deviation of the
individual’s values. This within-subject standard
deviation is also known as the standard error of
measurement. In plain language, it represents the
typical error in a measurement, and that is how I
will refer to it hereafter.

The variation represented by typical error comes
from several sources. The main source is usually
biological. For example, an individual’s maximum
power output changes between trials because of
changes in mental or physical state. Equipment may
also contribute noise to the measurements, although
in simple reliability studies this technological source
of error is often unavoidably lumped in with the
biological error. When the same individual is re-
tested on different equipment or by different oper-
ators, additional error due to differences in the cali-
bration or functioning of the equipment or in the
ability of the operators can surface. An analogous
situation occurs when different judges rate the same
athlete in different locations. I will deal with these
and other complex examples of reliability in section
3.3.

In most situations where reliability is an issue,
we are interested in the simple question of repro-
ducibility of an individual’s values obtained on the
same piece of equipment by the same operator. To
estimate typical error in these situations, we usu-
ally use many participants and a few trials rather
than 1 participant and many trials. For example, for
5 participants in 2 trials, with the values shown in
table I, the typical error is 2.9. We can still interpret
the typical error of 2.9 as the variation we would
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expect to see from trial to trial if any one of these
participants performed multiple trials.

When a group of volunteers performs 2 or more
trials, there is always a change in the mean value
between trials. In the above example, the means in
the first and second trial are 68.4 and 69.6, respec-
tively, so there is a change in the mean of 1.2.
Change in the mean is itself a measure of reliability
that I discuss in more detail in the next section. I
introduce the concept here to point out that, for
almost all applications of reliability, it is important
to have an estimate of typical error that is unaf-
fected by a change in the mean. The values of the
change score or difference score for each volunteer
yield such an estimate: simply divide the standard
deviation of the difference score by √2. In the above
example, the difference scores are 5, –2, 6, 0 and
–3; the standard deviation of these scores is 4.1, so
the typical error is 4.1/√2 = 2.9. This method for
calculating the typical error follows from the fact
that the variance of the difference score (sdiff

2) is
equal to the sum of the variances representing the
typical error in each trial: sdiff

2 = s2 + s2, so s =
sdiff/√2.

For many measurements in sports medicine and
science, the typical error gets bigger as the value
of the measure gets bigger.[3] For example, several
trials on an ergometer for one athlete might yield
power output with a mean and typical error of 378.6
± 4.4W, whereas a stronger athlete performing the
same trials might produce 453.1 ± 6.1W. Although
the absolute values of the typical errors are some-
what different, the values expressed as a percent-
age of their respective means are similar: 1.2 and
1.3%. This form of the typical error is a coefficient
of variation. It is sometimes more applicable to
every participant than the raw typical error. As a
dimensionless measure, it also allows direct com-
parison of reliability of measures irrespective of
calibration or scaling. Thus it facilitates compari-
son of reliability between ergometers, analysers,
tests or populations of volunteers. I will refer to it
in plain language as the typical percentage error.

Another measure of within-subject variation, lim-
its of agreement, has begun to appear in reliability

studies. Bland and Altman,[4] the researchers who
devised this measure, realised that the difference
scores between trials give a good indication of the
reliability of the test. Instead of using the standard
deviation of the difference scores directly, they cal-
culated the range within which an individual’s dif-
ference scores would fall most (95%) of the time.
In the above example of 5 individuals tested twice,
the 95% limits of agreement are –10.1 and 12.5.
The interpretation of these limits is as follows: on
the basis of our 2 trials with 5 participants, when
we test and then retest another participant, the score
in the second trial has 1 chance in 20 of being more
than 12.5 higher or less than 10.1 lower than the
score in the first trial. Note that the limits in this
example are not quite symmetrical, because the par-
ticipants showed an average improvement of 1.2 in
the second trial. It is preferable to take this im-
provement out of each limit and express the limits
as 1.2 ± 11.3.

The relationship between the typical error and
the limits of agreement is straightforward. Let the
limits of agreement be L. As before, let the within-
subject standard deviation (typical error) be s, and
the standard deviation of the difference score be
sdiff. For simplicity, we will ignore any change in
the mean between the trials. It follows from basic
statistical theory that L = ±t0.975,ν • sdiff, where
t0.975,ν is the value of the t statistic with cumulative
probability 0.975 and ν degrees of freedom. But
sdiff = s•√2, so:

L = ±t0.975,ν • s • √2 (Eq. 1)

In our example of 5 participants, s = 2.9, ν = 4
and t0.975,4 = 2.8, so the limits of agreement are
±(2.8)(√2)s = ±3.9s = ±11.3. When a reliability study

Table I. Data from a reliability study for a variable measured twice
in 5 participants

Participant Trial 1 Trial 2

Kim 62 67

Lou 78 76

Pat 81 87

Sam 55 55

Vic 66 63
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has a large sample size, t0.975,ν = 1.96, so L = ±1.96s
• √2 = ±2.77s, or approximately ± 3 times the typ-
ical error. This formula is still valid when the typical
error is expressed as a coefficient of variation; the
corresponding limits of agreement are then percent-
age limits.

Should researchers use the typical error or the
limits of agreement as a measure of within-subject
variation? Atkinson and Nevill[1] favoured limits of
agreement. I believe typical error is better. Here are
my reasons.
• As I have just shown, the values of the limits of

agreement depend on the sample size of the re-
liability study from which they are estimated. In
statistical terms, the limits are biased. The bias
is < 5% when there are more than 25 degrees of
freedom (e.g. > 25 participants and 2 trials, or >
13 participants and 3 trials), but it rises to 21%
for 7 degrees of freedom (8 participants and 2
trials). In most studies of reliability, between 8
and 30 volunteers perform only 2 trials. The re-
sulting bias ranges from 21 to < 5%, so anyone
comparing the magnitude of limits of agreement
between studies must account for the number of
degrees of freedom between the studies. This
problem does not occur with the typical error,
which has an expected value independent of
sample size. Defenders of limits of agreement
might argue that we should compute limits of
agreement in all studies by multiplying the typ-
ical error by 2.77 rather than by the exact value
derived from the t statistic with the right number
of degrees of freedom. In that case, though, the
level of confidence of the limits would not be
well defined.

• Limits of agreement apply to the special case of
variability of an individual’s values between pairs
of trials, but they do not apply to the simplest
situation of only one trial (e.g. a urine test for a
banned substance). With a single trial, the user
is interested in the error in the value of that trial,
not in the error in the difference between the
trial and some hypothetical previous or future
trial. Characterising the variability of a single
measurement with confidence limits for a dif-

ference score is therefore fatuous. Confidence
limits for a single measurement would be more
appropriate, but as a generic measure of within-
subject variation this statistic would have the
same bias problem as limits of agreement.

• The widespread use of 95% confidence limits to
represent precision of the estimate of population
parameters is not a basis for using 95% to define
agreement limits for an individual participant’s
difference scores. Even the use of 95% for con-
fidence intervals is debatable, but I will not go
into that issue here. Instead, I will show that
95% is too stringent for a decision limit, at least
when the participant is an athlete. Let us assume
we are monitoring the performance of a runner
with a reasonably good running test, one that has
95% limits of agreement of ± 7.0%. Proponents
of limits of agreement would argue that an ath-
lete or coach should be satisfied that something
beneficial has happened between 2 trials only
when there is an increase in performance of 7.0%
or more. But with an observed change of + 7.0%,
there is a 97.5% probability (odds of 39 to 1)
that performance is indeed better, or a 2.5% prob-
ability (odds of 1 to 39) that it is worse. In my
view, this degree of certainty about a true change
in performance is unrealistic: an individual would
or should act on less. For example, half the lim-
its of agreement seems a more reasonable thresh-
old for action; with an observed enhancement of
3.5%, the probability that a true enhancement
has occurred is still 84%, or odds of about 5 to
1 that performance is really better. Even smaller
changes in performance are worthwhile for top
runners,[2] but you would need a test with better
reliability to be confident that such changes were
more than just chance occurrences in this simple
test-retest situation with a single athlete.

• There is an extensive theoretical base for reli-
ability, the most developed form of which is
known as generalisability theory.[5,6] Variances
are the common coin for all computations in this
literature. Anyone wishing to perform computa-
tions using a published typical error has only to
square the published value to convert it to a vari-
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ance. Procedures for calculating confidence limits
of the variance (and therefore of the typical er-
ror) are also available. On the other hand, limits
of agreement have to be converted to a variance
by factoring in the appropriate number of de-
grees of freedom. The conversion is straightfor-
ward for simple reliability studies, but for more
complex measures of reliability involving several
variance components, counting the degrees of
freedom may be a challenge. I am also uncertain
whether the factor that converts typical error to
limits of agreement is the appropriate factor to
convert the confidence limits of the typical error
to confidence limits of the limits of agreement,
at least for < 25 degrees of freedom.

• Which measure is better for the purpose of teach-
ing or learning about measurement error? Al-
though the numerical difference between them
is only a factor of approximately 3, conceptually
they are quite different. In my opinion the concept
of typical error is self-explanatory, and it con-
veys what measurement error is all about: vari-
ation in the values of repeated measurements. The
concept of 95% confidence limits for the differ-
ence between 2 measurements narrows the focus
of measurement error to one application: decision-
making in a test-retest situation. This appears to
be the only situation where limits of agreement
would have an advantage over the typical error,
if 95% confidence limits were appropriate for
decisions affecting an individual.
Researchers and editors now have to consider

which of these 2 measures they will publish in re-
liability studies. Publishing both is probably inap-
propriate, because they are too closely related.

1.2 Change in the Mean

This measure of reliability is simply the change
in the mean value between 2 trials of a test. The
change consists of 2 components: a random change
and a systematic change (also known as systematic
bias).

Random change in the mean is due to so-called
sampling error. This kind of change arises purely
from the random error of measurement, which in-

evitably makes the mean for each trial different.
The random change is smaller with larger sample
sizes, because the random errors from each meas-
urement tend to cancel out when more measure-
ments are added together for calculation of the mean.

Systematic change in the mean is a non-random
change in the value between 2 trials that applies to
all study participants. The simplest example of a
systematic change is a learning effect or training
effect: the participants perform the second trial
better than the first, because they benefit from the
experience of the first trial. In tests of human per-
formance that depend on effort or motivation, vol-
unteers might also perform the second trial better
because they want to improve. Performance can be
worse in a second trial if fatigue from the first trial
is present at the time of the second trial. Perfor-
mance can also decline in a series of trials, owing
to loss of motivation.

Systematic change in the mean is an important
issue when volunteers perform a series of trials as
part of a monitoring programme. The volunteers
are usually monitored to determine the effects of
an intervention (e.g. a change in diet or training),
so it is important to perform enough trials to make
learning effects or other systematic changes negli-
gible before applying the intervention.

Systematic changes are seemingly less impor-
tant for researchers performing a controlled study,
because it is the relative change in means for both
groups that provides evidence of an effect. How-
ever, the magnitude of the systematic change is
likely to differ between individuals, and these in-
dividual differences make the test less reliable by
increasing the typical error (see section 2.3). Re-
searchers should therefore choose or design tests
or equipment with small learning effects, or they
should get volunteers to perform practice (or famil-
iarisation) trials to reduce learning effects.

1.3 Retest Correlation

This type of measure represents how closely the
values of one trial track the values of another as we
move our attention from individual to individual.
If each participant has an identical value in both

Measures of Reliability 5

  Adis International Limited. All rights reserved. Sports Med 2000 Jul; 30 (1)



trials, the correlation coefficient has a value of 1,
and in a plot of the values of the 2 trials all points
fall on a straight line. When the random error in the
measurement swamps the real measurement, a plot
of the values for 2 trials shows a random scatter of
points, and the correlation coefficient approaches
zero. The correlation also represents how well the
rank order of participants in one trial is replicated
in the second trial: the closer the correlation gets to
1, the better the replication.

The retest correlation is clearly a good measure
of reliability, and it shares with typical percentage
error the advantages of being dimensionless. How-
ever, the within-subject error is the better mea-
sure.[1,2] The main problem with retest correlation
is that the value of the correlation is sensitive to the
heterogeneity (spread) of values between partici-
pants. You can see this effect in a plot of points that
have a strong correlation. If you focus on a small
subsample of the participants in one part of the plot,
the points for those individuals seem to be scattered
randomly. As you expand the range of the subsam-
ple, the linearity in the scatter gradually emerges.
This effect is also obvious from a formula that can
be derived from the definition of reliability corre-
lation:[7]

r = (pure subject variance)/(pure subject variance +
typical error variance)

= (S2 - s2)/S2

= 1 - (s/S)2 (Eq. 2)

where S is the usual between-subject standard de-
viation and s is the typical error.

If the sample takes in a wide range of partici-
pants, S is much greater than s, so (s/S)2 approaches
zero and the correlation approaches 1. As we focus
in on a homogeneous subgroup, S gets smaller until
it equals s in magnitude (i.e. any apparent difference
between individuals is due entirely to the random
error of measurement); therefore (s/S)2 approaches
1, so the correlation approaches zero. Notice that
the value of the retest correlation changes as we
change the sample of participants, but at no time
does the test itself change, and at no time does the
typical error change. The typical error therefore cap-

tures the essence of the reliability of the test, but
the retest correlation does not.

An important corollary is that the typical error
can often be estimated from a sample of individuals
that is not particularly representative of a popula-
tion, or it can be estimated from multiple retests on
just a few volunteers. Either way, the resulting typ-
ical error often applies to most individuals in the
population, whereas the retest correlation applies
only to individuals similar to those sampled to es-
timate the correlation. A further important corol-
lary is that you cannot compare the reliability of 2
measures on the basis of their retest correlations
alone: the worse measure (the one with the larger
typical error) could have a higher retest correlation
if its reliability was determined with a more heter-
ogeneous sample.

Suppose you are satisfied that your participants
are similar to those in the published reliability study.
How do you decide whether the magnitude of the
published correlation is acceptable for your pur-
poses? Authors of reliability studies sometimes give
what they consider to be acceptable values. For ex-
ample, Kovaleski and co-workers[8] cited the classic
Shrout and Fleiss paper on reliability[9] to support
their claim that a clinically acceptable correlation
was 0.75[8] or 0.80.[10] It turns out that Shrout and
Fleiss[9] did not assess the utility of magnitudes of
retest correlations. Atkinson and Nevill[1] were of
the opinion that no-one had defined acceptable mag-
nitudes of the retest correlation for practical use,
although they did cite my statistics website[11] for
the relationship between retest correlation and sam-
ple size in experimental studies (see section 2.2).
In fact, there is another study,[12] on acceptable val-
ues of the validity correlation, that applies to reli-
ability. In that study, Manly and I found that a test
used to assign pass-fail grades needs to have a va-
lidity correlation of at least 0.90 to keep the error
rate acceptable. Assigning 3 or more grades needs
a test with even higher validity. If the only source
of error in a test is random error of measurement
(the typical error), it is easy to show that the valid-
ity correlation is the square root of the retest reli-
ability. Thus tests need to have reliabilities of at
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least 0.902 = 0.81 to be trustworthy for yes-no de-
cisions about further treatment of an individual,
about selection of a team member, or for similar
criterion-referenced assessments. I emphasise that
this rule applies only when the between-subject
standard deviation of your participants is similar to
that in the reliability study.

2. Uses of Reliability

I have already mentioned how reliability affects
the precision of single measurements and change
scores. Anyone making decisions based on such
measurements should take this precision into ac-
count. In particular, I give advice here on monitor-
ing an individual for a real change. Another prac-
tical application of reliability is in the assessment
of competing brands of equipment (section 3.3).

In research settings, an important use of reliabil-
ity is to estimate sample size for experimental stud-
ies. Reliability can also be used to estimate the mag-
nitude of individual differences in the response to
the treatments in such studies. I outline procedures
for these 2 uses below.

2.1 Monitoring an Individual

In section 1.1, I argued that an observed change
equal in magnitude to the limits of agreement was
probably too large to use as a threshold for decid-
ing that a real change has occurred. Amore realistic
threshold appears to be about 1.5 to 2.0 times the
typical error (or a little more than half the limits of
agreement), because the corresponding odds of a
real change are between 6 and 12 to 1. For example,
if an anthropometrist’s typical error of measure-
ment for the sum of 7 skinfolds is 1.6mm, an ob-
served change of at least 2 to 3mm in an athlete’s
skinfolds would indicate that a real change was
likely.

The value of the typical error to use in such
situations needs to come from a short term or con-
current reliability study, in which there is no true
change in the individuals’ measurements between
trials. For example, the typical error of measure-
ment between skinfold assessments taken within 1
day would be appropriate for making decisions about

changes in an individual over any time frame. In
contrast, the typical error for use in estimation of
sample size and individual differences in experi-
ments needs to come from a reliability study of the
same duration as the experiment.

2.2 Estimation of Sample Size

Most experiments consist of a pretest, a treat-
ment and a post-test. The aim in these studies is to
measure the change in the mean of a dependent
variable between the pre- and post-tests. The typi-
cal error of the dependent variable represents noise
that tends to obscure any change in the mean, so
the magnitude of the typical error has a direct effect
on the sample size needed to give a clear indication
of the change in the mean.

In this section I develop formulae for estimating
sample sizes from the typical error or retest corre-
lation. The resulting sample sizes are often beyond
the resources or inclination of researchers, but
studies with smaller sample sizes nevertheless pro-
duce confidence limits that are more useful than
nothing at all. These studies should therefore be
published, perhaps designated as pilot studies, so
they can be included in meta-analyses.

I advocate a new approach to sample size esti-
mation, in which sample size is chosen to give ad-
equate precision for an outcome.[2] Precision is de-
fined by confidence limits: the range within which
the true value of the outcome is 95% likely to oc-
cur. Adequate precision means that the outcome
has no substantial change in impact on an individ-
ual volunteer over the range of values represented
by the confidence limits. Let us apply this approach
to an experiment.

For a crossover or simple test-retest experiment
without a control group, basic statistical theory pre-
dicts confidence limits of ±t0.975,n-1 • s • √2/√n for a
change in the mean, where n is the sample size, s
is the typical error and t is the t statistic. Equating
this expression to the value of the confidence limits
representing adequate precision, ±d say, and rear-
ranging:

n = 2(t • s/d)2 ≈ 8s2/d2 (Eq. 3)
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The fact that sample size is proportional to the
square of the typical error in this formula under-
scores the importance of high reliability in experi-
mental research. For example, when the typical er-
ror of the test has the same magnitude as the smallest
worthwhile effect (s = d), a sample of about 8 vol-
unteers (more precisely 10) gives adequate preci-
sion in a simple experiment; a test with twice the
typical error entails a study with about 4 times as
many participants. This formula is easily adapted
to more complex designs. For example, sample size
for a study with participants equally divided be-
tween an experimental group and a control group
is 4n, or 32s2/d2.

Choosing the value for d depends on the nature
of the outcome variable and the participants. In re-
search on factors affecting athletic performance, d
is about half the typical error of an athlete’s perfor-
mance between races.[2] The resulting sample sizes
can be very large. For example, if race performance
has half the typical error as performance in a labo-
ratory test, a study with a control group needs a
sample size of n = 32s2/((s/2)/2)2 = 512 to delimit
the smallest worthwhile effect on performance.

When interest centres on experiments involving
the average person in a population, Cohen[13] ar-
gued that clinical judgement should be guided by
the spread of raw scores (not change scores) in the
population, and suggested that the smallest worth-
while value of d is 0.2 of the between-subject stand-
ard deviation. Thus, 0.2S = d = t0.975,n-1 • s • √2/√n,
so n = 50(t • s/S)2. But (s/S)2 = 1 – r, where r is the
retest correlation, so:

n = 50t2(1 – r) ≈ 200(1 – r) (Eq. 4)

Total sample size for a study with a control group
is again 4n, or 800(1 – r). The profound effect of
reliability on sample size is again apparent: the sam-
ple size dwindles to a few individuals for a retest
correlation that is nearly perfect, whereas the sam-
ple size is about 200 (800 with a control group)
when the retest correlation is zero.

In the above estimate of sample size, the between-
subject standard deviation, S, is made up of true
between-subject variation (ST) and an independent

concurrent error of measurement (e), such that S2 =
ST

2 + e2. Ideally, we should consider the smallest
worthwhile effect as a fraction of ST rather than of
S, so the smallest worthwhile effect should be writ-
ten as 0.2ST = 0.2√(S2 – e2). If e is the same as the
typical error, s, it is easy to show from this equation
that the sample size needs to be increased by a fac-
tor of 1/r. This factor has little effect on sample size
for high retest correlations, but sample size tends
to infinity as r tends to zero.

The concurrent error, e, may be different from
the within-subject standard deviation, s. For exam-
ple, in a 1-month study of skinfold thickness, s is
the error variation between an individual’s meas-
urements separated by 1 month, but e is the error
variation between an individual’s skinfolds mea-
sured within a short period (e.g. the same day).
Thus, s includes variation due to real changes in
skinfolds between individuals, but e is simply the
error in the technique of measurement. In this sit-
uation, sample size needs to be increased by a fac-
tor of 1/rc, where rc is the concurrent retest corre-
lation, (S2 – e2)/S2.

These formulae for sample size in studies of the
average person in a population appear to show a
primacy for retest correlation, but I must caution
researchers that use of retest correlation is justified
only if the sample in the reliability study is repre-
sentative of the population in the experiment. In
particular, it is wrong to use a retest correlation
based on one population to estimate sample size in
a study of a population with a different between-
subject standard deviation. Most often there will be
doubt about the applicability of the correlation from
a published reliability study, so you should calcu-
late sample size using, for example, n = 50(t • s/S)2

≈ 200s2/S2. Or, if you take concurrent reliability
into account, n ≈ 200s2/(S2 – e2). Reliability studies
provide estimates of s and e; S comes either from
a descriptive study of the population of interest or
from a reliability study of a representative sample
of the population.

Reliability has the same marked effect on sample
size in the traditional approach to sample size esti-
mation, which is usually based on 80% certainty of
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observing statistical significance (p < 0.05) for the
smallest worthwhile effect. The resulting sample
sizes are about twice as big as those estimated us-
ing my approach. For an example related to human
performance tests, see Eliasziw et al.[14]

The foregoing formulae for estimating sample
size are based on the value of the typical error in
the experiment itself. Of course, we do not know
that value until we have performed the experiment,
so we use the value from a reliability study instead.
If the typical error in the experiment differs from
that in the reliability study, the estimate of sample
size will be misleading. For example, the time be-
tween trials may differ between the reliability study
and the experiment, and this difference may have
a substantial effect on the typical error. Other rea-
sons for differences in the typical error between the
experiment and reliability study include differences
in equipment, researchers, environment and char-
acteristics of the volunteers. The researcher who
wants to perform a reliability study to estimate sam-
ple size for a subsequent experiment has some con-
trol over these factors, but 2 more factors that can
affect the typical error are beyond his or her con-
trol. First, the treatment in the experiment may pro-
duce responses that differ between study partici-
pants. These individual differences in the response
show up as an increased error in the post-test, thereby
increasing the overall typical error in the experi-
ment. Secondly, evidence from a recent study sug-
gests that blinding participants to the treatment may
increase the variability of responses between par-
ticipants, again resulting in an increase in the typ-
ical error.[15] Any estimate of sample size based on
typical error in a reliability study must therefore be
regarded as a minimum.

2.3 Estimation of Individual Differences

When the response to an experimental treatment
differs between participants, we say that there are
individual differences in the response. For exam-
ple, a treatment might increase the power output of
athletes by a mean of 3%, but the variation in the
true enhancement between individual athletes might
be a standard deviation of 2.5%. In this example,

most athletes would show positive responses to the
treatment, some athletes would show little or no
response and some would even respond negatively.
Note that this figure of 2.5% is not simply the stand-
ard deviation of the difference scores, which would
include variation due to typical error. When I refer
to individual differences, I mean variation in the
true effect free of typical error. Although the pri-
mary aim in an experiment is to estimate the mean
enhancement, it is obviously important to know
whether the individual differences are substantial.
Analysis of reliability offers one approach to this
problem.

When individual differences are present, study
participants show a greater variability in the post-
pre difference score. Analysis of the experimental
group as a reliability study therefore yields an es-
timate of the typical error inflated by individual
differences. Comparison of this inflated typical er-
ror with the typical error of the control group or
with the typical error from a reliability study per-
mits estimation of the magnitude of the individual
differences as a standard deviation, sind (2.5% in
the above example). If the experiment consists of
a pre-test, an intervention and a post-test, the esti-
mate is readily derived from basic statistical prin-
ciples as:

sind = √(2s2
expt – 2s2) (Eq. 5)

where sexpt is the inflated typical error in the exper-
imental group, and s is the typical error in the con-
trol group or in a reliability study. For example, if
the typical error in the experimental group is 2%
and the typical error in the control group or in a
reliability study is 1%, the standard deviation of
the individual differences (sind) is √6 = 2.5%. Esti-
mation of individual differences is also possible
with mixed modelling,[16] which can also generate
confidence limits for the estimate.

When individual differences are present, the ob-
vious next step is to identify the participant charac-
teristics that predict the individual differences. The
appropriate analysis is repeated-measures analysis of
covariance, with the likely participant characteristics
(e.g. age, gender, fitness, genotype) as covariates.[16]
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3. Design and Analysis of 
Reliability Studies

A typical published reliability study consists of
several trials performed on a sample of volunteers
with 1 item of equipment and 1 operator of the
equipment. The results of this simple kind of study
meet the needs of most users of the test or equipment,
provided the study has a sufficient number of par-
ticipants and trials, and provided the analysis is
appropriate. I will deal with design and analysis of
such studies first, then discuss more complex studies.

3.1 Design of Simple Studies

The paramount concern in the design of any study
is adequate precision for the estimates of the out-
come measures. In a reliability study, the most im-
portant outcome measures are the typical error and
the change in the mean between trials. The ration-
ale for choosing a sample size that gives adequate
precision for the estimate of systematic change in
the mean presents a conundrum: the sample size
must be the same as you would use in a simple
experiment to delimit the smallest worthwhile ef-
fect of a treatment, but you cannot estimate that
sample size without knowing the typical error. The
researcher therefore has to base sample size for a
reliability study solely on consideration of preci-
sion for the typical error.

Precision is defined, as usual, by the likely range
(confidence limits) for the true value. Table II shows

factors for computing the likely range of the typical
error in reliability studies consisting of various
numbers of participants and trials. Researchers can
use this table to opt for a combination of trials and
participants that gives an acceptable likely range
for the typical error. The definition of ‘acceptable’
depends on the intended use of the typical error. Let
us consider 2 common uses: estimation of sample
size in an experiment and comparison of a new test
with a published test.

Suppose we opt for 15 participants and 4 trials,
and the observed typical error is 1.0%. From table
II, the resulting likely range for the true typical
error is 1.0 × 1.24 to 1 ÷ 1.24, or 1.24 to 0.81. The
likely range for the sample size in the experiment
could therefore be overestimated by a factor of 1.54
(= 1.242) or underestimated by a factor of 0.65 (=
0.812). These limits represent a large difference in
the resources needed for the study, so we must con-
clude that 15 participants with 4 trials is hardly
adequate for estimating reliability. Fifty participants
and 3 trials reduce the factors to 1.32 and 0.76,
which represent a more acceptable risk of wasting
or underestimating resources for the experiment.

To compare the typical error of a new test with
a published typical error for another test, we need
the precision of the published typical error, or pref-
erably the sample size and number of trials in that
study. We then calculate confidence limits for the
comparison of the typical errors, using the F ratio.
For simplicity, let us assume that we perform our
study with the same sample size and number of
trials as in the published study, and that we obtain
the same typical error. For 15 participants and 4
trials, the confidence limits for the ratio of the typ-
ical errors is 0.74 to 1.36. In other words, the typical
error for our test could be as low as 0.74 of the
typical error for the published test (which would
make ours a far better test), or it could be as high
as 1.4 of the published test (which would make ours
far worse). Once again, 15 participants and 4 trials
are clearly inadequate. For 50 participants in 3 tri-
als, the confidence limits for the ratio of the typical
errors are 0.82 to 1.22, from which we could con-
clude tentatively that there is no substantial differ-

Table II. Factors for generating the 95% likely range of the true
value of a typical error from the value observed in a reliability study
consisting of different numbers of participants and trialsa

Participants Trials

2 3 4 5

7 1.94 1.55 1.42 1.35

10 1.68 1.42 1.32 1.26

15 1.49 1.32 1.24 1.21

20 1.40 1.26 1.20 1.17

30 1.30 1.20 1.16 1.14

50 1.22 1.15 1.12 1.10

a Multiply and divide an observed typical error by the factor to
generate the upper and lower Tate and Klett[17] 95% confi-
dence limits for the true value. Data were generated with a
spreadsheet.[18]
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ence between the 2 tests. Of course, if our test gave
a substantially lower or higher typical error than
that of the published test, we could make a firmer
conclusion about the relative reliabilities, possibly
with fewer participants or trials.

A further important design consideration is the
number of practice trials needed before the typical
error settles into its lowest value. Addressing this
problem requires a reasonably accurate estimate of
changes in the typical error between consecutive
pairs of trials. In unpublished simulations, I have
found that a sample size of at least 50 gives ade-
quate precision for the estimate of the change in
typical error. Reliability studies in which 50 or more
volunteers perform 3 or more trials are rare in the
literature. It seems we must accept most published
reliability studies as pilot studies.

3.2 Analysis of Simple Studies

Analysis of reliability studies is straightforward
when there are only 2 trials. The typical error can
be derived from the standard deviation of the dif-
ference scores for each participant, and the change
in the mean is simply the mean of the difference
scores. For 3 or more trials, I urge researchers to
check for learning effects on the typical error by
performing separate analyses on consecutive pairs
of trials (trials 1+2, trials 2+3, etc.). You can down-
load a spreadsheet for this purpose.[19]

Consecutive trials with similar typical errors can
be analysed together to produce a single more pre-
cise estimate of typical error for those trials. Esti-
mates of changes in the mean between these trials
will also be a little more precise when derived from
a single analysis of 3 or more such trials than when
derived from consecutive pairs of trials. The appro-
priate analysis is a linear model with participants
and trials as effects and with estimation by analysis
of variance or by restricted maximum likelihood.
The typical error is the residual error term in such
analyses, regardless of whether participants and trials
are fixed or random effects, but trials has to be a
fixed effect for estimation of changes in the mean.

A one-way analysis of variance with participants
as the effect produces an unsuitable estimate of

typical error: in such an analysis the identity of the
trial is ignored, so changes in the mean between
trials add to the typical error. The resulting statistic
is biased high and is hard to interpret, because the
relative contributions of random error and changes
in the mean are unknown. For example, with 2 tri-
als and a change in the mean equal in magnitude to
the typical error, I have found in simulations that
this method yields a typical error inflated by a fac-
tor of 1.23. One-way analysis of variance is equiv-
alent to calculating a separate variance for each
participant from 2 or more trials, then averaging
the variances and taking the square root. Authors
who have used this equivalent method have usually
committed a further mistake by averaging the par-
ticipants’ standard deviations instead of variances.
In my simulations, averaging the standard devia-
tions underestimates the typical error by a factor of
0.82 for 2 trials and 0.90 for 3 trials; the factor
tends to 1.00 for a large number of trials. If the
change in the mean between 2 tests is equal in mag-
nitude to the typical error, the 2 mistakes virtually
cancel each other out.

Having opted for an appropriate method of analy-
sis, researchers should check their data for the pre-
sence of so-called heteroscedasticity. In the context
of reliability or repeated-measures analyses, this
term refers to a typical error that differs in some
systematic way between participants. For example,
participants with larger values of a variable often
have larger typical errors, and typical errors for
subgroups of participants (male vs female, compet-
itive vs recreational, etc.) may also differ. Analys-
ing the raw values of these measures with the usual
statistical procedures is problematic, because the
procedures are based on the assumption that the
typical error is the same for every participant. If
this assumption is violated, participants with the
larger typical errors have a greater influence on the
value of any derived statistic, and the value of the
statistic may also be biased.

The generic method to check for heteroscedas-
ticity is to examine plots of residual values versus
predicted values provided by the analysis of vari-
ance or other statistical procedure used to estimate
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the reliability statistics. The residuals are the indi-
vidual values of the random error for each partici-
pant for each trial; indeed, the standard deviation
of the residuals is the typical error. With pairwise
analysis of trials, a simple but equivalent method
is to plot each participant’s difference score against
the mean for the 2 trials.[4] If the residuals for one
group of participants are clearly different from an-
other, or if the residuals or difference scores show
a trend towards larger values for participants at one
end of the plot, heteroscedasticity is present. The
appropriate action in the case of groups with dif-
ferent residuals is to analyse the reliability of the
groups separately. Variation in the magnitude of
residuals with magnitude of the variable can be re-
moved or reduced by an appropriate transforma-
tion of the variable.

As noted earlier, for many variables the typical
error increases for volunteers with larger values of
the variable, whereas the typical percentage error
tends to be similar between volunteers. For these
variables, analysis after logarithmic transformation
addresses the problem of heteroscedasticity and pro-
vides an estimate of the typical percentage error. To
see how, imagine that the typical percentage error
is 5%, which means that the observed value for
every volunteer is typically (1 ± 0.05) times the
mean value for the volunteer. Therefore, log(ob-
served value) = log[(mean value)(1 ± 0.05)] =
log(mean value) + log(1 ± 0.05) ≈ log(mean value)
± 0.05, because log(1 ± 0.05) ≈ ± 0.05 for natural
(base e) logarithms. The typical error in the log of
every individual’s value is therefore the same (0.05).
You obtain the estimate of the typical percentage
error of the original variable by multiplying the
typical error of the log-transformed measure by 100.
Alternatively, if you use 100log(observed value) as
the transformation, the errors in the analyses are
automatically approximate percentages, as are the
magnitudes of changes in the mean in the analyses.
The approximation is accurate for errors or changes
less than 5%, but for larger errors or changes the
typical percentage error or change is 100(eerr/100 – 1),
where err is the typical error or change in the mean
provided by the analysis of the 100log-transformed

measure.[20] There is also a special way to interpret
errors > 5%. For example, if the error is 23%, the
variation about the mean value is typically 1/1.23
to 1.23 times the mean value, or 0.81 to 1.23. The
typical variation is not 1 ± 0.23 times the mean.

When a sample is homogeneous – that is, when
all participants have similar values for the measure
in question – the typical error is the same for all
participants, regardless of transformation. In this
situation, transformation to reduce heteroscedas-
ticity is not an issue. Analysis of the log transformed
variable is still a convenient method for obtaining
the typical percentage error, although an equally
accurate estimate is obtained by dividing the typi-
cal error (from an analysis of the raw variable) by
the grand mean of all trials. Log transformation
becomes more important as the sample becomes
more heterogeneous, but I have found by simula-
tion that estimates of typical percentage error from
raw and log-transformed variables differ substan-
tially (by a factor of 1.04 or more) only when the
between-subject standard deviation is more than
35% of the mean. I doubt whether any variables in
sports medicine and science show such large be-
tween-subject variation, so estimates of reliability
derived from untransformed variables in previous
studies are probably not substantially biased.

The estimate of the typical error for the average
participant may be unbiased, but participants at ei-
ther end of a heterogeneous sample who differ in
the typical error before transformation may still differ
in the typical percentage error after log transforma-
tion. For example, with increasing skinfold thickness
the typical error increases but the typical percent-
age error decreases (Gore C, personal communica-
tion). A simple solution to this kind of problem is
to rank-order participants, divide them into several
groups, then compute the typical error or typical
percentage error for each group. Alternatively, it
may be possible to find a transformation that gives
all participants the same typical error (absence of
heteroscedasticity) for the transformed variable.

For researchers interested in retest correlation as
a measure of reliability, the intraclass correlation
coefficient derived from a mixed model (the
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ICC(3,1)[9]) is unbiased for any sample size. Use
of the intraclass correlation is also the only sensible
approach to computing an average correlation be-
tween more than 2 trials. The usual Pearson corre-
lation coefficient between a pair of trials is an ad-
equate estimate of retest correlation, although it is
biased slightly high for small samples: in simula-
tions for 7 individuals, the bias is up to 0.04 units,
depending on the value of the correlation.

Authors of many previous reliability studies have
provided only a correlation coefficient as the mea-
sure of reliability. Nevertheless, it is usually possible
to calculate the more useful typical error or typical
percentage error from their data. By rearranging
the relationship r = (S2 – s2)/S2, we get the familiar:

s = S√(1 – r) (Eq. 6)

where s is the typical error, S is the average of the
standard deviations for the participants in each trial
and r is the intraclass correlation. The typical per-
centage error is obtained by dividing the resulting
estimate of the typical error by the mean for the
participants in all trials, then multiplying by 100.
This formula is exact when r is the intraclass cor-
relation, but even for a Pearson correlation my sim-
ulations show that the formula in surprisingly ac-
curate: for samples of 10 or more participants the
resulting typical percentage error is underestimated
by a factor of 0.95 at most, but for samples of 7 the
bias can be a factor of 0.90.

All estimates of reliability should be accompa-
nied by confidence limits for the true value. Statis-
tical programs usually provide confidence limits
for the change in the mean, or you can use the for-
mula in section 2.2. Confidence limits for the typ-
ical error are derived from the chi-squared distri-
bution. For small degrees of freedom, the upper
limit tends to be skewed out relative to the lower
limit. Tate and Klett[17] provided an adjustment that
reduces the skewness by minimising the width of
the confidence interval, although it is then not an
equal-probability interval. With only slight adjust-
ment the Tate and Klett limits can be represented
conveniently by a single factor (table II).

3.3 Complex Studies

The foregoing sections concern studies aimed at
determining the reliability of 1 group of individuals
with 1 type of test or equipment. In this section I deal
with more complex studies: reliability of the mean
of several trials; comparison of the reliability of 2
groups of individuals; comparison of 2 test protocols,
items of equipment or operators of the equipment;
and studies of continuously graded reliability.

Researchers sometimes improve the reliability
of their measurements by using the mean of multi-
ple trials: if there are n independent trials, the typ-
ical error of the mean is 1/√n times the error of a
single trial. If the multiple trials are conducted over
a short period (e.g. on the same day, without re-
calibration of equipment), but the researcher is in-
terested in reliability of the mean over a longer
period (e.g. on different days, with recalibration),
the longer period is likely to be a source of substan-
tial error. Therefore, beyond a certain number of
multiple trials no substantial increase in reliability
will be possible. To determine the number of trials,
researchers need to perform a reliability study with
multiple trials, estimate the magnitude of the error
between trials over the shorter period (es) and over
the longer period (el), then choose n such that
es/√n<<el. The most appropriate analysis is by re-
peated measures with 2 within-subject effects
(same day, different day), each modelled with its
own within-subject error. A statistically less chal-
lenging approach is as follows: analyse reliability
of the trials on the same day to determine the trial
number beyond which learning effects are negli-
gible (e.g. trial 2); now compute between-day reli-
ability for the mean of an increasing number of
contiguous same-day trials (e.g. trials 3+4, trials
3+4+5. . .) to determine the number of same-day
trials beyond which there is no further increase in
between-day reliability.

Comparing the reliability of 2 groups of partic-
ipants is straightforward. The participants are in-
dependent of each other, so any study amounts to
2 separate reliability studies. Confidence limits for
the ratio of the typical errors between correspond-
ing trials in the 2 groups can be derived from an F

Measures of Reliability 13

  Adis International Limited. All rights reserved. Sports Med 2000 Jul; 30 (1)



ratio. Changes in the mean between corresponding
pairs of trials can be compared with unpaired t tests
of the difference scores.

Comparing the reliability of 2 items (protocols,
equipment or operators) is possible using the above
approach for 2 groups of participants tested sepa-
rately. Using the same participants has more power
but requires analysis by an expert. Each participant
performs at least 1 trial on 1 item of equipment and
at least 2 trials on the other, preferably in a balanced,
randomised fashion. The analysis needs a mixed
model, in which the equipment is a fixed effect,
trial number is a fixed effect, participants is a ran-
dom effect, and a dummy random variable is intro-
duced to account for the extra within-subject vari-
ance associated with measures on one of the items.
Confidence limits for the extra variance address the
question of the difference in typical error between
the items. The model also provides an estimate of
the difference in learning effects between the items.

When setting up a study to compare 2 items,
keep in mind that the typical error always consists
of biological variation arising from the individuals
and technological variation arising from the items.
Since the aim is to compare the technological vari-
ation, try to make the biological variation as small
as possible, because it contributes to the uncertainty
in your comparison of the items. For example, when
comparing the reliability of 2 anthropometrists, you
would get them to measure the same individuals on
the same day, to avoid any substantial biological
variation. Similarly, when comparing the reliabil-
ity measures of power provided by 2 ergometers,
use athletes as study participants, because they ap-
pear to be more reliable than non-athletes.

The problem of a continuous gradation of reli-
ability arises when randomly chosen items or in-
stallations of the same kind of equipment produce
consistently different values. For example, one item
might always give high values, another might give
low values and so on. Possible sources of these
differences between items include inadequate qual-
ity control in manufacture, different environmental
effects at the same or different locations, and dif-
ferences in calibration or other aspects of operation

by different operators. When a volunteer is retested
on different items of the equipment, this variation
between items adds to what would otherwise be the
typical error for retests on the same apparatus, with
the result that the overall typical error is higher.
This typical error is the one that best represents the
typical error in a one-off measurement taken on a
randomly chosen item of equipment. It is also the
one to use in the somewhat unusual situation of
repeated trials when each trial is with a different
item of equipment.

Researchers who are aware of the concept of
lower reliability when retesting on different items
or installations have usually computed a retest cor-
relation rather than a typical error. The appropriate
correlation is the intraclass correlation ICC(2,1) of
Shrout and Fleiss.[9] It is derived from the so-called
fully random model, in which the identity of the
participants and trials are considered random ef-
fects. Researchers have often misapplied this model
to data obtained from a single item of equipment.
The resulting reliability is degraded by the learning
effect, not by consistent differences in values be-
tween items of equipment. The only correct way to
estimate the reliability between items of equipment
is to test volunteers with a sufficient number of
different items. The identity of the items is a ran-
dom effect, and an extra fixed effect representing
trial number is introduced in the analysis to account
for learning effects. The typical error for a volun-
teer retested on different items is derived by adding
the residual variance to the variance for the items.
A similar analysis is appropriate when a number of
different judges rate the performance of the same
athletes at different competitions; in this case, the
variance corresponding to judges needs to be di-
vided by the number of judges before it is added to
the residual variance to give the typical error vari-
ance for an athlete between competitions.

Unfortunately, even the 2-way random model
with the addition of a fixed trial effect would still
not account for the possibility that the magnitude
of the typical error itself varies between items of
equipment or between judges. As far as I know,
no-one has developed a theoretical framework for
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quantifying such continuous variability in the typical
error. It is not part of generalisability theory, which
is another name for mixed modelling and which
can deal only with the impact of random effects I
discussed in the previous paragraph. Modelling con-
tinuous differences in reliability of subjects also
seems to be impossible at present. Thus, the only
way to model the better reliability that you find, for
example, with faster athletes or more experienced
operators, is to divide the volunteers or operators
appropriately into a small number of groups, then
compare the typical errors between groups.

4. Conclusion

The concept of the typical error in an individu-
al’s score should be comprehensible to most re-
searchers and practitioners in sports medicine and
science. I believe the concept is easier to grasp and
to apply than limits of agreement. Change in the
mean value of a measure between trials is also an
important component of reliability, and it needs to
be kept separate from typical error. Retest correla-
tion is difficult to use, because its value is sensitive
to the heterogeneity of the sample of participants.
In my opinion, observed values and confidence limits
of the typical error and changes in the mean are
necessary and sufficient to characterise the reliability
of a measure. Publication of these data in reliability
studies would substantially enhance comparison of
the reliability of tests, assays or equipment. Greater
understanding of the theory of reliability by re-
searchers would also help reduce the incidence of
inappropriate analyses in the literature.
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