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Abstract

Reliability refersto the reproducibility of values of atest, assay or other meas-
urement in repeated trialson the sameindividual s. Better reliability impliesbetter
precision of single measurementsand better tracking of changesin measurements
in research or practical settings. The main measures of reliability are within-subject
random variation, systematic changein themean, and retest correlation. A simple,
adaptable form of within-subject variation isthe typical (standard) error of meas-
urement: the standard deviation of an individual’s repeated measurements. For
many measurements in sports medicine and science, the typical error is best
expressed as a coefficient of variation (percentage of the mean). A biased, more
limited form of within-subject variationisthelimits of agreement: the 95% likely
range of change of an individual’s measurements between 2 trials. Systematic
changes in the mean of a measure between consecutive trials represent such
effects as learning, motivation or fatigue; these changes need to be eliminated
from estimates of within-subject variation. Retest correlation is difficult to inter-
pret, mainly because its value is sensitive to the heterogeneity of the sample of
participants. Uses of reliability include decision-making when monitoring indi-
viduals, comparison of tests or equipment, estimation of sample size in experi-
ments and estimation of the magnitude of individual differencesin the response
to atreatment. Reasonable precision for estimates of reliability requires approx-
imately 50 study participants and at least 3 trials. Studies aimed at assessing
variation in reliability between tests or equipment require complex designs and
analyses that researchers seldom perform correctly. A wider understanding of
reliability and adoption of the typical error as the standard measure of reliability
would improve the assessment of tests and equipment in our disciplines.

M easurement error makes the observed val ue of
ameasure differ from the true value. Anyone who
takes or uses measurements should therefore have
some understanding of measurement error. In my
experience, the 2 most important aspects of meas-
urement error are concurrent validity and retest re-
liability. Concurrent validity concerns the agree-
ment between the observed value and the true or

criterion value of ameasure. Retest reliability con-
cerns the reproducibility of the observed value when
the measurement is repeated. Analysis of validity
is complex, owing to the inevitable presence of er-
ror in the criterion value. | have therefore limited
this article to the measurement errors that are acces-
sibleinreliability studies. These errors have ama-
jor impact on our attempts to measure changes be-
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tween repeated measurements; they are also acon-
cernfor anyoneinterested in asingle measurement.

Studying the reliability of ameasureis a straight-
forward matter of repeating the measurement area-
sonable number of times on a reasonable number
of individuals. The most important measurement
error to come out of such a study is the random
error or ‘noise’ in the measure: the smaller the er-
ror, the better the measure. How best to represent
this error and several other measures of reliability
is a matter of debate. Atkinson and Nevilllll con-
tributed a useful point of view in their review of
reliability in thisjournal recently, but | have a dif-
ferent perspective on the relative merits of the var-
ious measures of reliability. In the present article |
justify my choice of the most appropriate meas-
ures. | also explore the uses of reliability and deal
with the design and analysis of reliability studies.
My approach to reliability is appropriate for most
variables that have numbers as values (e.g. 71.3kg
for body mass). Reliability of measures that have
labels as values (e.g. female for sex) is beyond the
scope of the present article.

1. Measures of Reliability

When we speak of reliability, we refer to the
repeatability or reproducibility of a measure or vari-
able. | will sometimes follow the popular but in-
accurate convention of referring not to the reliabil-
ity of a measure but to the reliability of the test,
assay or instrument that provided the measure. |
will also usetheword ‘trials' to mean repeated ad-
ministrations of atest or assay.

Researchers quantify reliability in a variety of
ways. | deal here with what | believe are the only
3 important types of measure: within-subject vari-
ation, changein the mean, and retest correl ation.!?

1.1 Within-Subject Variation

Within-subject variation is the most important
type of reliability measurefor researchers, because
it affectsthe precision of estimates of changeinthe
variable of an experimental study. It isalso the most
important type of reliability measure for coaches,
physicians, scientists and other professionalsusing
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tests to monitor the performance or health of their
clients. In these situations, the smaller the within-
subject variation, the easier it will be to notice or
measure a change in performance or health.

An easy way to understand the meaning of within-
subject variation isto regard it as the random vari-
ation in a measure when one individual is tested
many times. For example, if the values for many
trials of one individual are 71, 76, 74, 79, 79 and
76, there is a random variation of a few units be-
tween trials. A statistic that captures this notion of
random variability of a single individual’s values
on repeated testing is the standard deviation of the
individual's values. This within-subject standard
deviation is also known as the standard error of
measurement. In plain language, it represents the
typical error in a measurement, and that is how |
will refer to it hereafter.

The variation represented by typical error comes
from severa sources. The main source is usually
biological. For example, an individual’s maximum
power output changes between trials because of
changesin mental or physical state. Equipment may
also contribute noise to the measurements, although
in simple reliability studiesthistechnological source
of error is often unavoidably lumped in with the
biologica error. When the same individual is re-
tested on different equipment or by different oper-
ators, additional error due to differences in the cali-
bration or functioning of the equipment or in the
ability of the operators can surface. An analogous
situation occurs when different judges rate the same
athlete in different locations. | will deal with these
and other complex examples of reliability in section
3.3.

In most situations where reliability is an issue,
we are interested in the simple question of repro-
ducibility of anindividual’s values obtained on the
same piece of equipment by the same operator. To
estimate typical error in these situations, we usu-
aly use many participants and a few trials rather
than 1 participant and many trials. For example, for
5 participantsin 2 trials, with the values shown in
tablel, thetypical erroris2.9. We can still interpret
the typical error of 2.9 as the variation we would
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expect to see from trial to tria if any one of these
participants performed multiple trials.

When agroup of volunteers performs 2 or more
trials, there is always a change in the mean value
between trials. In the above example, the meansin
thefirst and second trial are 68.4 and 69.6, respec-
tively, so there is a change in the mean of 1.2.
Changeinthemeanisitself ameasureof reliability
that | discuss in more detail in the next section. |
introduce the concept here to point out that, for
almost al applications of reliability, it isimportant
to have an estimate of typical error that is unaf-
fected by a change in the mean. The values of the
change score or difference score for each volunteer
yield such an estimate: simply divide the standard
deviation of the difference score by v2. In the above
example, the difference scores are 5, —2, 6, 0 and
—3; the standard deviation of these scoresis4.1, so
the typica error is 4.1/v2 = 2.9. This method for
caculating the typical error follows from the fact
that the variance of the difference score (syiff 2) is
equal to the sum of the variances representing the
typical error in each tridl: sy 2 = S + %, s0 s =
Suif/ V2.

For many measurementsin sports medicine and
science, the typical error gets bigger as the value
of the measure gets bigger.[3! For example, several
trials on an ergometer for one athlete might yield
power output with amean and typical error of 378.6
+ 4.4W, whereas a stronger athlete performing the
sametrials might produce 453.1 + 6.1W. Although
the absolute values of the typical errors are some-
what different, the values expressed as a percent-
age of their respective means are similar: 1.2 and
1.3%. Thisform of thetypical error isacoefficient
of variation. It is sometimes more applicable to
every participant than the raw typical error. As a
dimensionless measure, it also allows direct com-
parison of reliability of measures irrespective of
cdibration or scaling. Thus it facilitates compari-
son of reliability between ergometers, analysers,
tests or populations of volunteers. | will refer to it
in plain language as the typical percentage error.

Another measure of within-subject variation, lim-
its of agreement, has begun to appear in reliability
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Table |. Data from a reliability study for a variable measured twice
in 5 participants

Participant Trial 1 Trial 2
Kim 62 67
Lou 78 76
Pat 81 87
Sam 55 55
Vic 66 63

studies. Bland and Altman,!¥l the researchers who
devised this measure, realised that the difference
scores between trials give agood indication of the
reliability of the test. Instead of using the standard
deviation of thedifference scoresdirectly, they cal-
culated the range within which an individual’s dif-
ference scores would fall most (95%) of the time.
In the above example of 5 individual stested twice,
the 95% limits of agreement are —10.1 and 12.5.
The interpretation of these limitsis asfollows. on
the basis of our 2 trials with 5 participants, when
we test and then retest another participant, the score
inthe second trial has 1 chancein 20 of being more
than 12.5 higher or less than 10.1 lower than the
score in the first trial. Note that the limits in this
example are not quite symmetrical, because the par-
ticipants showed an average improvement of 1.2in
the second trial. It is preferable to take this im-
provement out of each limit and express the limits
asl2+113.

The relationship between the typical error and
the limits of agreement is straightforward. Let the
limits of agreement be L. Asbefore, let the within-
subject standard deviation (typical error) be s, and
the standard deviation of the difference score be
Saife- FOr simplicity, we will ignore any change in
the mean between the trials. It follows from basic
statistical theory that L = *tgg7sy « Suirr, Where
to.o75y isthevalue of thet statistic with cumulative
probability 0.975 and v degrees of freedom. But
Sqiff = S\/Z, SO
L =+tpg75y * S* V2 (Eg. 1)

In our example of 5 participants, s=2.9,v =4
and tpg7s4 = 2.8, so the limits of agreement are
+(2.8)(V2)s=+3.9s=+11.3. When areliability study
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hasalarge samplesize, tp g75, = 1.96, so L = +1.96s

- V2 = +2.77s, or approximately + 3 timesthe typ-

ical error. Thisformulais still valid when the typical

error is expressed as a coefficient of variation; the
corresponding limits of agreement are then percent-
age limits.

Should researchers use the typical error or the
limits of agreement as a measure of within-subject
variation? Atkinsonand Nevill 1l favoured limits of
agreement. | believetypical error isbetter. Hereare
My reasons.

» Asl havejust shown, the values of the limits of
agreement depend on the sample size of there-
liability study fromwhich they are estimated. In
stetistical terms, the limits are biased. The bias
is < 5% when there are more than 25 degrees of
freedom (e.g. > 25 participantsand 2 trials, or >
13 participants and 3 trials), but it risesto 21%
for 7 degrees of freedom (8 participants and 2
trials). In most studies of reliability, between 8
and 30 volunteers perform only 2 trials. There-
sulting bias ranges from 21 to < 5%, so anyone
comparing the magnitude of limitsof agreement
between studies must account for the number of
degrees of freedom between the studies. This
problem does not occur with the typical error,
which has an expected value independent of
sample size. Defenders of limits of agreement
might argue that we should compute limits of
agreement in all studies by multiplying the typ-
ical error by 2.77 rather than by the exact value
derived from thet statistic with theright number
of degrees of freedom. In that case, though, the
level of confidence of the limits would not be
well defined.

» Limitsof agreement apply to the special case of
variability of anindividual’s values between pairs
of trias, but they do not apply to the simplest
situation of only onetrial (e.g. aurinetest for a
banned substance). With a single trial, the user
isinterested intheerror inthevalue of that trial,
not in the error in the difference between the
trial and some hypothetical previous or future
trial. Characterising the variability of a single
measurement with confidence limits for a dif-
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ference score is therefore fatuous. Confidence
limits for a single measurement would be more
appropriate, but as a generic measure of within-
subject variation this statistic would have the
same bias problem as limits of agreement.
Thewidespread use of 95% confidencelimitsto
represent precision of the estimate of popul ation
parametersisnot abasisfor using 95%to define
agreement limits for an individual participant’s
difference scores. Even the use of 95% for con-
fidence intervals is debatable, but | will not go
into that issue here. Instead, | will show that
95% istoo stringent for adecision limit, at least
when the participant isan athlete. L et usassume
we are monitoring the performance of a runner
with areasonably good runningtest, onethat has
95% limits of agreement of + 7.0%. Proponents
of limits of agreement would argue that an ath-
lete or coach should be satisfied that something
beneficial has happened between 2 trials only
when there is an increase in performance of 7.0%
or more. But with an observed change of + 7.0%,
there is a 97.5% probability (odds of 39 to 1)
that performance isindeed better, or a2.5% prob-
ability (odds of 1 to 39) that it isworse. In my
view, this degree of certainty about atrue change
in performanceisunrealistic: anindividua would
or should act on less. For example, half thelim-
its of agreement seems a more reasonabl e thresh-
oldfor action; with an observed enhancement of
3.5%, the probability that a true enhancement
has occurred is still 84%, or odds of about 5 to
1 that performanceisreally better. Even smaller
changes in performance are worthwhile for top
runners,? but you would need atest with better
reliability to be confident that such changes were
more than just chance occurrencesin thissimple
test-retest situation with a single athlete.

There is an extensive theoretical base for reli-
ability, the most developed form of which is
known as generalisability theory.!>8 Variances
arethe common coinfor all computationsinthis
literature. Anyone wishing to perform computa-
tions using a published typical error hasonly to
squarethe published valueto convert it to avari-
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ance. Proceduresfor cal cul ating confidencelimits

of the variance (and therefore of the typical er-

ror) are also available. On the other hand, limits
of agreement have to be converted to avariance
by factoring in the appropriate number of de-
grees of freedom. The conversion is straightfor-
ward for simplereliability studies, but for more
complex measures of reliability involving severa
variance components, counting the degrees of
freedom may beachallenge. | amalso uncertain
whether the factor that convertstypical error to
limits of agreement is the appropriate factor to
convert the confidencelimitsof thetypical error
to confidence limits of the limits of agreement,
at least for < 25 degrees of freedom.

¢ Which measureis better for the purpose of teach-
ing or learning about measurement error? Al-
though the numerical difference between them
isonly afactor of approximately 3, conceptually
they arequitedifferent. In my opinion the concept
of typical error is self-explanatory, and it con-
veys what measurement error is all about: vari-
ationintheval uesof repeated measurements. The
concept of 95% confidence limitsfor the differ-
ence between 2 measurements narrows the focus
of measurement error to one application: decision-
making in atest-retest situation. This appearsto
be the only situation where limits of agreement
would have an advantage over thetypical error,
if 95% confidence limits were appropriate for
decisions affecting an individual.

Researchers and editors now have to consider
which of these 2 measures they will publish in re-
liability studies. Publishing both is probably inap-
propriate, because they are too closely related.

1.2 Change in the Mean

This measure of reliability issimply the change
in the mean value between 2 trials of a test. The
change consists of 2 components. arandom change
and a systematic change (al so known as systematic
bias).

Random change in the mean is due to so-called
sampling error. This kind of change arises purely
from the random error of measurement, which in-
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evitably makes the mean for each trial different.
The random change is smaller with larger sample
sizes, because the random errors from each meas-
urement tend to cancel out when more measure-
mentsare added together for cal culation of the mean.

Systematic changein the mean isanon-random
change in the value between 2 trials that appliesto
al study participants. The simplest example of a
systematic change is a learning effect or training
effect: the participants perform the second trial
better than the first, because they benefit from the
experience of the first trial. In tests of human per-
formance that depend on effort or motivation, vol-
unteers might also perform the second trial better
because they want to improve. Performance can be
worsein asecond trial if fatigue from thefirst trial
is present at the time of the second trial. Perfor-
mance can also decline in a series of trials, owing
to loss of motivation.

Systematic change in the mean is an important
issue when volunteers perform a series of trials as
part of a monitoring programme. The volunteers
are usually monitored to determine the effects of
an intervention (e.g. a change in diet or training),
so it isimportant to perform enough trialsto make
learning effects or other systematic changes negli-
gible before applying the intervention.

Systematic changes are seemingly less impor-
tant for researchers performing a controlled study,
because it is the relative change in means for both
groups that provides evidence of an effect. How-
ever, the magnitude of the systematic change is
likely to differ between individuals, and these in-
dividual differences make the test less reliable by
increasing the typical error (see section 2.3). Re-
searchers should therefore choose or design tests
or eguipment with small learning effects, or they
should get volunteersto perform practice (or famil-
iarisation) trials to reduce learning effects.

1.3 Retest Correlation

Thistype of measure represents how closely the
values of onetrial track the values of another aswe
move our attention from individual to individual.
If each participant has an identical value in both
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trials, the correlation coefficient has a value of 1,
and in aplot of the values of the 2 trials al points
fal on astraight line. When therandom error inthe
measurement swampsthe real measurement, aplot
of the valuesfor 2 trials shows a random scatter of
points, and the correlation coefficient approaches
zero. The correlation also represents how well the
rank order of participantsin onetrial is replicated
in the second trial: the closer the correlation getsto
1, the better the replication.

The retest correlation is clearly agood measure
of reliability, and it shares with typical percentage
error the advantages of being dimensionless. How-
ever, the within-subject error is the better mea-
sure.[1:2l The main problem with retest correlation
isthat the value of the correlation is sensitiveto the
heterogeneity (spread) of values between partici-
pants. You can seethis effectin aplot of pointsthat
have a strong correlation. If you focus on a small
subsampl e of the participantsin onepart of theplot,
thepointsfor thoseindividual s seem to be scattered
randomly. Asyou expand the range of the subsam-
ple, the linearity in the scatter gradually emerges.
This effect is also obvious from aformulathat can
be derived from the definition of reliability corre-
lation:[7]

r = (pure subject variance)/(pure subject variance +
typical error variance)

= (- H)IS?

=1- (99?2 (Eq. 2)

where Sisthe usual between-subject standard de-
viation and sisthetypical error.

If the sample takes in a wide range of partici-
pants, Sismuch greater than s, so (s/S)2 approaches
zero and the correlation approaches 1. Aswefocus
in on ahomogeneous subgroup, Sgetssmaller until
it equals sin magnitude (i.e. any apparent difference
between individuals is due entirely to the random
error of measurement); therefore (s/S)2 approaches
1, so the correlation approaches zero. Notice that
the value of the retest correlation changes as we
change the sample of participants, but at no time
doesthe test itself change, and at no time does the
typical error change. Thetypical error therefore cap-
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tures the essence of the reliability of the test, but
the retest correlation does not.

An important corollary is that the typical error
can often be estimated from asampleof individuals
that is not particularly representative of a popula-
tion, or it can be estimated from multiple retests on
just afew volunteers. Either way, the resulting typ-
ical error often applies to most individuals in the
population, whereas the retest correlation applies
only to individuals similar to those sampled to es-
timate the correlation. A further important corol-
lary isthat you cannot compare the reliability of 2
measures on the basis of their retest correlations
alone: the worse measure (the one with the larger
typical error) could have ahigher retest correlation
if itsreliability was determined with a more heter-
ogeneous sample.

Suppose you are satisfied that your participants
are smilar to those in the published reliability study.
How do you decide whether the magnitude of the
published correlation is acceptable for your pur-
poses? Authors of reliability studies sometimes give
what they consider to be acceptable values. For ex-
ample, Kovaleski and co-workerd®! cited the classic
Shrout and Fleiss paper on reliability!¥ to support
their claim that a clinically acceptable correlation
was 0.75!8] or 0.80.119 |t turns out that Shrout and
Fleiss® did not assess the utility of magnitudes of
retest correlations. Atkinson and Nevilllll were of
the opinion that no-one had defined acceptable mag-
nitudes of the retest correlation for practical use,
although they did cite my statistics websitel11] for
the relationship between retest correlation and sam-
ple size in experimental studies (see section 2.2).
Infact, thereisanother study,!*2 on acceptable val-
ues of the validity correlation, that applies to reli-
ability. In that study, Manly and | found that a test
used to assign pass-fail grades needs to have ava-
lidity correlation of at least 0.90 to keep the error
rate acceptable. Assigning 3 or more grades needs
atest with even higher validity. If the only source
of error in atest is random error of measurement
(the typical error), it is easy to show that the valid-
ity correlation is the square root of the retest reli-
ability. Thus tests need to have reliabilities of at
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least 0.902 = 0.81 to be trustworthy for yes-no de-
cisions about further treatment of an individual,
about selection of a team member, or for similar
criterion-referenced assessments. | emphasise that
this rule applies only when the between-subject
standard deviation of your participantsissimilar to
that in the reliability study.

2. Uses of Reliability

| have already mentioned how reliability affects
the precision of single measurements and change
scores. Anyone making decisions based on such
measurements should take this precision into ac-
count. In particular, | give advice here on monitor-
ing an individual for areal change. Another prac-
tical application of reliability isin the assessment
of competing brands of equipment (section 3.3).

I'nresearch settings, animportant use of reliabil-
ity isto estimate sample sizefor experimental stud-
ies. Reliability can also be used to estimate the mag-
nitude of individual differences in the response to
thetreatmentsin such studies. | outline procedures
for these 2 uses below.

2.1 Monitoring an Individual

Insection 1.1, | argued that an observed change
equal in magnitude to the limits of agreement was
probably too large to use as a threshold for decid-
ing that areal changehasoccurred. Amorerealistic
threshold appears to be about 1.5 to 2.0 times the
typical error (or alittle more than half the limits of
agreement), because the corresponding odds of a
real changearebetween 6 and 12to 1. For example,
if an anthropometrist’s typical error of measure-
ment for the sum of 7 skinfolds is 1.6mm, an ob-
served change of at least 2 to 3mm in an athlete’s
skinfolds would indicate that a real change was
likely.

The value of the typical error to use in such
situations needs to come from a short term or con-
current reliability study, in which there is no true
change in the individuals' measurements between
trials. For example, the typical error of measure-
ment between skinfold assessments taken within 1
day would be appropriatefor making decisionsabout
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changes in an individual over any time frame. In
contrast, the typical error for use in estimation of
sample size and individual differences in experi-
ments needs to come from areliability study of the
same duration as the experiment.

2.2 Estimation of Sample Size

Most experiments consist of a pretest, a treat-
ment and a post-test. The aim in these studiesisto
measure the change in the mean of a dependent
variable between the pre- and post-tests. The typi-
cal error of the dependent variabl e represents noise
that tends to obscure any change in the mean, so
the magnitude of thetypical error hasadirect effect
onthe samplesize needed to giveaclear indication
of the change in the mean.

Inthissection | develop formulaefor estimating
sample sizes from the typical error or retest corre-
lation. The resulting sample sizes are often beyond
the resources or inclination of researchers, but
studies with smaller sampl e sizes neverthel ess pro-
duce confidence limits that are more useful than
nothing at all. These studies should therefore be
published, perhaps designated as pilot studies, so
they can be included in meta-analyses.

| advocate a new approach to sample size esti-
mation, in which sample size is chosen to give ad-
equate precision for an outcome.[? Precisionisde-
fined by confidence limits: the range within which
the true value of the outcome is 95% likely to oc-
cur. Adeguate precision means that the outcome
has no substantial change in impact on an individ-
ual volunteer over the range of values represented
by the confidencelimits. Let usapply thisapproach
to an experiment.

For acrossover or simple test-retest experiment
without a control group, basic statistical theory pre-
dicts confidencelimits of +to 9751 - S+ V2/Vnfor a
change in the mean, where n is the sample size, s
isthetypical error and t isthe t statistic. Equating
thisexpression to the value of the confidencelimits
representing adequate precision, +d say, and rear-
ranging:

n=2(t.s/d)2 = 8s%/d? (Ea. 3)
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The fact that sample size is proportional to the
square of the typical error in this formula under-
scores the importance of high reliability in experi-
mental research. For example, when the typical er-
ror of thetest has the same magnitude asthe smallest
worthwhile effect (s = d), asample of about 8 vol-
unteers (more precisely 10) gives adequate preci-
sion in a simple experiment; a test with twice the
typical error entails a study with about 4 times as
many participants. This formulais easily adapted
to more complex designs. For example, sasmplesize
for a study with participants equally divided be-
tween an experimental group and a control group
is4n, or 32s%/d2.

Choosing the value for d depends on the nature
of the outcome variable and the participants. In re-
search on factors affecting athletic performance, d
isabout half thetypical error of an athlete’'s perfor-
mance between races.[? The resulting sample sizes
can bevery large. For example, if race performance
has half the typical error as performance in alabo-
ratory test, a study with a control group needs a
sample size of n = 328%/((s/2)/2)2 = 512 to delimit
the smallest worthwhile effect on performance.

When interest centres on experimentsinvolving
the average person in a population, Cohen!13! ar-
gued that clinical judgement should be guided by
the spread of raw scores (not change scores) in the
population, and suggested that the smallest worth-
whilevalue of d is 0.2 of the between-subject stand-
ard deviation. Thus, 0.2S=d =tgg75 .1 « S+ V2/Vn,
son=50(t . /S)2 But (§S)2=1-r, wherer isthe
retest correlation, so:
n=50t3(1—r) = 200(1 —r) (Eq. 4)

Total sample sizefor astudy with acontrol group
is again 4n, or 800(1 — r). The profound effect of
reliability on sample sizeis again apparent: the sam-
ple size dwindles to a few individuals for a retest
correlation that is nearly perfect, whereas the sam-
ple size is about 200 (800 with a control group)
when the retest correlation is zero.

In the above estimate of sample size, the between-
subject standard deviation, S, is made up of true
between-subject variation (St) and an independent
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concurrent error of measurement (€), such that & =
Sr 2 + €2 Ideally, we should consider the smallest
worthwhile effect as afraction of Sy rather than of
S, so the smallest worthwhile effect should be writ-
ten as 0.2S7 = 0.2V(S? — €?). If eisthe same asthe
typical error, s, itiseasy to show from thisequation
that the sample size needsto be increased by afac-
tor of 1/r. Thisfactor haslittle effect on samplesize
for high retest correlations, but sample size tends
toinfinity asr tends to zero.

The concurrent error, e, may be different from
the within-subject standard deviation, s. For exam-
ple, in a 1-month study of skinfold thickness, sis
the error variation between an individua’s meas-
urements separated by 1 month, but e is the error
variation between an individua’s skinfolds mea-
sured within a short period (e.g. the same day).
Thus, s includes variation due to real changes in
skinfolds between individuals, but e is simply the
error in the technique of measurement. In this sit-
uation, sample size needs to beincreased by afac-
tor of 1/rc, wherer. is the concurrent retest corre-
lation, (S? — e2)/S2.

These formulae for sample sizein studies of the
average person in a population appear to show a
primacy for retest correlation, but | must caution
researchersthat use of retest correlationisjustified
only if the sample in the reliability study is repre-
sentative of the population in the experiment. In
particular, it is wrong to use a retest correlation
based on one population to estimate sample sizein
a study of a population with a different between-
subject standard deviation. M ost often therewill be
doubt about the applicability of the correlation from
a published reliability study, so you should calcu-
|ate sample size using, for example, n=50(t - §/S)2
= 200s%/<%. Or, if you take concurrent reliability
into account, n= 200s%/(S%—¢€?). Reliability studies
provide estimates of s and e S comes either from
a descriptive study of the population of interest or
from areliability study of a representative sample
of the population.

Reliability has the same marked effect on sample
sizein the traditional approach to sample size esti-
mation, which is usually based on 80% certainty of
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observing statistical significance (p < 0.05) for the
smallest worthwhile effect. The resulting sample
sizes are about twice as big as those estimated us-
ing my approach. For an examplerelated to human
performance tests, see Eliasziw et al.[14

The foregoing formulae for estimating sample
size are based on the value of the typical error in
the experiment itself. Of course, we do not know
that value until we have performed the experiment,
so we usethevaluefrom areliability study instead.
If the typical error in the experiment differs from
that in the reliability study, the estimate of sample
size will be misleading. For example, the time be-
tween trials may differ between the reliability study
and the experiment, and this difference may have
asubstantial effect on the typical error. Other rea-
sonsfor differencesinthetypical error betweenthe
experiment and reliability study include differences
in equipment, researchers, environment and char-
acteristics of the volunteers. The researcher who
wants to perform areliability study to estimate sam-
ple sizefor asubsequent experiment has some con-
trol over these factors, but 2 more factors that can
affect the typical error are beyond his or her con-
trol. First, thetreatment in the experiment may pro-
duce responses that differ between study partici-
pants. Theseindividual differencesin the response
show up asanincreased error in the post-test, thereby
increasing the overall typical error in the experi-
ment. Secondly, evidence from arecent study sug-
gests that blinding participants to the treatment may
increase the variability of responses between par-
ticipants, again resulting in an increase in the typ-
ical error.[13 Any estimate of sample size based on
typical error inareliability study must therefore be
regarded as a minimum.

2.3 Estimation of Individual Differences

When theresponseto an experimental treatment
differs between participants, we say that there are
individual differences in the response. For exam-
ple, atreatment might increase the power output of
athletes by a mean of 3%, but the variation in the
true enhancement between individua athletes might
be a standard deviation of 2.5%. In this example,

0 Adis International Limited. All rights reserved.

most athleteswould show positive responsesto the
treatment, some athletes would show little or no
response and somewould even respond negatively.
Note that thisfigure of 2.5% isnot smply the stand-
ard deviation of the difference scores, whichwould
include variation dueto typical error. When | refer
to individual differences, | mean variation in the
true effect free of typical error. Although the pri-
mary aim in an experiment isto estimate the mean
enhancement, it is obviously important to know
whether the individual differences are substantial.
Analysis of reliability offers one approach to this
problem.

When individua differences are present, study

participants show a greater variability in the post-
pre difference score. Analysis of the experimental
group as areliability study therefore yields an es-
timate of the typical error inflated by individual
differences. Comparison of thisinflated typical er-
ror with the typical error of the control group or
with the typical error from areliability study per-
mits estimation of the magnitude of the individual
differences as a standard deviation, sing (2.5% in
the above example). If the experiment consists of
apre-test, an intervention and a post-test, the esti-
mate is readily derived from basic statistical prin-
ciplesas:
Sind = ‘/(Zszexpt - 252) (Eq. 5)
where o istheinflated typical error in the exper-
imental group, and sisthetypical error in the con-
trol group or in areliability study. For example, if
the typical error in the experimental group is 2%
and the typical error in the control group or in a
reliability study is 1%, the standard deviation of
theindividual differences (sing) isV6 = 2.5%. Esti-
mation of individual differences is also possible
with mixed modelling,[16] which can also generate
confidence limits for the estimate.

Whenindividual differencesare present, the ob-
vious next step is to identify the participant charac-
teristicsthat predict theindividual differences. The
appropriate analysisisrepeated-measures anaysi s of
covariance, with thelikely participant characteristics
(e.0. age, gender, fitness, genotype) as covariates.[1]
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3. Design and Analysis of
Reliability Studies

A typical published reliability study consists of
several trials performed on a sample of volunteers
with 1 item of equipment and 1 operator of the
equipment. The results of thissimplekind of study
meet the needs of most users of thetest or equipment,
provided the study has a sufficient number of par-
ticipants and trials, and provided the analysis is
appropriate. | will deal with design and analysis of
such studiesfirst, then discuss more complex studies.

3.1 Design of Simple Studies

The paramount concernin the design of any study
is adequate precision for the estimates of the out-
come measures. In areliability study, the most im-
portant outcome measures are the typical error and
the change in the mean between trials. The ration-
ale for choosing a sample size that gives adequate
precision for the estimate of systematic change in
the mean presents a conundrum: the sample size
must be the same as you would use in a simple
experiment to delimit the smallest worthwhile ef-
fect of a treatment, but you cannot estimate that
sample size without knowing the typical error. The
researcher therefore has to base sample size for a
reliability study solely on consideration of preci-
sion for the typical error.

Precisionisdefined, asusual, by thelikely range
(confidence limits) for thetrue value. Table Il shows

Table Il. Factors for generating the 95% likely range of the true
value of a typical error from the value observed in a reliability study
consisting of different numbers of participants and trials?

Participants Trials
2 3 4 5

7 1.94 1.55 1.42 1.35
10 1.68 1.42 1.32 1.26
15 1.49 1.32 1.24 121
20 1.40 1.26 1.20 1.17
30 1.30 1.20 1.16 1.14
50 1.22 1.15 1.12 1.10

a Multiply and divide an observed typical error by the factor to
generate the upper and lower Tate and Klett!!”] 95% confi-
dence limits for the true value. Data were generated with a
spreadsheet.[1®!

0 Adis International Limited. All rights reserved.

factorsfor computing thelikely range of thetypical
error in reliability studies consisting of various
numbers of participantsand trials. Researchers can
use this table to opt for a combination of trials and
participants that gives an acceptable likely range
for thetypical error. The definition of ‘ acceptable’
dependson theintended use of thetypical error. Let
us consider 2 common uses: estimation of sample
sizein an experiment and comparison of anew test
with a published test.

Suppose we opt for 15 participants and 4 trials,
and the observed typical error is 1.0%. From table
I1, the resulting likely range for the true typical
erroris1.0x1.24to 1+ 1.24, or 1.24t00.81. The
likely range for the sample size in the experiment
couldthereforebeoverestimated by afactor of 1.54
(= 1.24?) or underestimated by a factor of 0.65 (=
0.819). These limits represent a large difference in
the resources needed for the study, so we must con-
clude that 15 participants with 4 trials is hardly
adequate for estimating reliability. Fifty participants
and 3 trias reduce the factors to 1.32 and 0.76,
which represent a more acceptable risk of wasting
or underestimating resources for the experiment.

To compare the typical error of a new test with
a published typical error for another test, we need
the precision of the published typical error, or pref-
erably the sample size and number of trialsin that
study. We then calculate confidence limits for the
comparison of the typical errors, using the F ratio.
For simplicity, let us assume that we perform our
study with the same sample size and number of
trials as in the published study, and that we obtain
the same typical error. For 15 participants and 4
trials, the confidence limitsfor the ratio of the typ-
ical errorsis0.74 to 1.36. In other words, the typical
error for our test could be as low as 0.74 of the
typical error for the published test (which would
make ours a far better test), or it could be as high
as 1.4 of thepublishedtest (which would makeours
far worse). Once again, 15 participantsand 4 trials
are clearly inadequate. For 50 participantsin 3 tri-
als, the confidencelimitsfor theratio of thetypical
errors are 0.82 to 1.22, from which we could con-
clude tentatively that there is no substantial differ-
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ence between the 2 tests. Of course, if our test gave
a substantially lower or higher typical error than
that of the published test, we could make a firmer
conclusion about the relativereliabilities, possibly
with fewer participants or trias.

A further important design consideration is the
number of practice trials needed before the typical
error settles into its lowest value. Addressing this
problem requires areasonably accurate estimate of
changes in the typical error between consecutive
pairs of trials. In unpublished simulations, | have
found that a sample size of at least 50 gives ade-
quate precision for the estimate of the change in
typical error. Riahility studiesin which 50 or more
volunteers perform 3 or more trials are rare in the
literature. It seems we must accept most published
reliability studies as pilot studies.

3.2 Analysis of Simple Studies

Analysisof reliability studiesisstraightforward
when there are only 2 trials. The typica error can
be derived from the standard deviation of the dif-
ference scores for each participant, and the change
in the mean is simply the mean of the difference
scores. For 3 or more trials, | urge researchers to
check for learning effects on the typical error by
performing separate analyses on consecutive pairs
of trials(trials1+2, trials 2+3, etc.). You can down-
load a spreadsheet for this purpose.[19

Consecutive trials with similar typical errors can
be analysed together to produce a single more pre-
cise estimate of typical error for those trials. Esti-
mates of changes in the mean between these trials
will also bealittle more precise when derived from
asingleanalysisof 3 or more such trialsthan when
derived from consecutivepairsof trials. Theappro-
priate analysis is a linear model with participants
and trialsas effectsand with estimation by analysis
of variance or by restricted maximum likelihood.
The typical error istheresidua error term in such
analyses, regardless of whether participants and trials
are fixed or random effects, but trials has to be a
fixed effect for estimation of changesin the mean.

A one-way analysis of variance with participants
as the effect produces an unsuitable estimate of

0 Adis International Limited. All rights reserved.

typical error: in such an analysistheidentity of the
trial is ignored, so changes in the mean between
trialsadd to thetypical error. Theresulting statistic
is biased high and is hard to interpret, because the
relative contributions of random error and changes
in the mean are unknown. For example, with 2 tri-
alsand achangein the mean equal in magnitudeto
the typical error, | have found in simulations that
this method yields atypical error inflated by afac-
tor of 1.23. One-way analysis of variance is equiv-
aent to calculating a separate variance for each
participant from 2 or more trials, then averaging
the variances and taking the sgquare root. Authors
who have used thisequivalent method haveusually
committed a further mistake by averaging the par-
ticipants' standard deviations instead of variances.
In my simulations, averaging the standard devia-
tions underestimates the typical error by afactor of
0.82 for 2 trials and 0.90 for 3 trials; the factor
tends to 1.00 for a large number of trials. If the
changein the mean between 2 testsisequal in mag-
nitude to the typical error, the 2 mistakes virtually
cancel each other out.

Having opted for an appropriate method of analy-
sis, researchers should check their datafor the pre-
sence of so-called heteroscedasticity. Inthe context
of reliability or repeated-measures analyses, this
term refers to a typical error that differs in some
systematic way between participants. For example,
participants with larger values of a variable often
have larger typical errors, and typical errors for
subgroupsof participants (malevsfemale, compet-
itive vsrecreational, etc.) may also differ. Anays-
ing the raw values of these measures with the usual
statistical procedures is problematic, because the
procedures are based on the assumption that the
typical error is the same for every participant. If
this assumption is violated, participants with the
larger typical errorshave agreater influence onthe
vaue of any derived statistic, and the value of the
statistic may also be biased.

The generic method to check for heteroscedas-
ticity isto examine plots of residual values versus
predicted values provided by the analysis of vari-
ance or other statistical procedure used to estimate
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thereliability statistics. The residuals are the indi-
vidua values of the random error for each partici-
pant for each trial; indeed, the standard deviation
of the residualsis the typical error. With pairwise
analysis of trias, a simple but equivalent method
isto plot each participant’sdifference score against
the mean for the 2 trials.[4 If the residuals for one
group of participants are clearly different from an-
other, or if the residuals or difference scores show
atrend towardslarger valuesfor participantsat one
end of the plot, heteroscedasticity is present. The
appropriate action in the case of groups with dif-
ferent residuals is to analyse the reliability of the
groups separately. Variation in the magnitude of
residual s with magnitude of the variable can be re-
moved or reduced by an appropriate transforma-
tion of the variable.

As noted earlier, for many variables the typical
error increases for volunteers with larger values of
the variable, whereas the typical percentage error
tends to be similar between volunteers. For these
variables, analysis after logarithmic transformation
addresses the problem of heteroscedasticity and pro-
videsan estimate of thetypical percentage error. To
see how, imagine that the typical percentage error
is 5%, which means that the observed value for
every volunteer is typically (1 = 0.05) times the
mean vaue for the volunteer. Therefore, log(ob-
served value) = log[(mean value)(1 + 0.05)] =
log(mean value) + log(1 = 0.05) = log(mean value)
+ 0.05, because log(1 + 0.05) = £ 0.05 for natura
(base e) logarithms. The typical error in the log of
every individual’s value is therefore the same (0.05).
You obtain the estimate of the typica percentage
error of the original variable by multiplying the
typica error of the log-transformed measure by 100.
Alternatively, if you use 100log(observed value) as
the transformation, the errors in the analyses are
automatically approximate percentages, as are the
magnitudes of changesin the mean in the analyses.
Theapproximationisaccuratefor errorsor changes
less than 5%, but for larger errors or changes the
typical percentage error or changeis 100(e¥™1%0 — 1),
where err isthetypical error or changein the mean
provided by theanalysis of the 100l og-transformed
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measure.[20 Thereisalso aspecial way to interpret
errors > 5%. For example, if the error is 23%, the
variation about the mean value istypically 1/1.23
to 1.23 times the mean value, or 0.81 to 1.23. The
typical variation is not 1 + 0.23 times the mean.

When a sample is homogeneous — that is, when
all participants have similar values for the measure
in question — the typical error is the same for all
participants, regardless of transformation. In this
situation, transformation to reduce heteroscedas-
ticity isnot an issue. Analysis of the log transformed
variableis still a convenient method for obtaining
the typical percentage error, although an equally
accurate estimate is obtained by dividing the typi-
cal error (from an analysis of the raw variable) by
the grand mean of al trials. Log transformation
becomes more important as the sample becomes
more heterogeneous, but | have found by simula-
tion that estimates of typical percentage error from
raw and log-transformed variables differ substan-
tially (by afactor of 1.04 or more) only when the
between-subject standard deviation is more than
35% of the mean. | doubt whether any variablesin
sports medicine and science show such large be-
tween-subject variation, so estimates of reliability
derived from untransformed variables in previous
studies are probably not substantially biased.

The estimate of the typical error for the average
participant may be unbiased, but participants at ei-
ther end of a heterogeneous sample who differ in
thetypical error beforetransformation may still differ
inthetypical percentage error after log transforma-
tion. For example, with increasing skinfold thickness
the typical error increases but the typical percent-
age error decreases (Gore C, personal communica-
tion). A simple solution to this kind of problem is
to rank-order participants, divide them into severa
groups, then compute the typical error or typical
percentage error for each group. Alternatively, it
may be possible to find atransformation that gives
all participants the same typical error (absence of
heteroscedasticity) for the transformed variable.

For researchersinterested inretest correlation as
a measure of reliability, the intraclass correlation
coefficient derived from a mixed model (the
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ICC(3,1)!9) is unbiased for any sample size. Use
of theintraclasscorrelationisalsotheonly sensible
approach to computing an average correlation be-
tween more than 2 trials. The usual Pearson corre-
lation coefficient between a pair of trialsis an ad-
equate estimate of retest correlation, although it is
biased dlightly high for small samples: in simula-
tionsfor 7 individuals, the biasis up to 0.04 units,
depending on the value of the correlation.
Authors of many previous reiability studies have
provided only a correlation coefficient as the mea-
sureof reliability. Nevertheless, it isusually possible
to calculate the more useful typical error or typical
percentage error from their data. By rearranging
therelationshipr = (S2—s?)/S?, we get thefamiliar:

s=SV/(1-r) (Eq. 6)

where sisthetypical error, Sisthe average of the
standard deviationsfor the participantsin eachtrial
and r isthe intraclass correlation. The typical per-
centage error is obtained by dividing the resulting
estimate of the typical error by the mean for the
participants in al trials, then multiplying by 100.
This formulais exact when r is the intraclass cor-
relation, but even for aPearson correl ation my sim-
ulations show that the formula in surprisingly ac-
curate: for samples of 10 or more participants the
resulting typical percentage error is underestimated
by afactor of 0.95 at most, but for samplesof 7 the
bias can be afactor of 0.90.

All estimates of reliability should be accompa-
nied by confidence limitsfor thetruevalue. Statis-
tical programs usually provide confidence limits
for the change in the mean, or you can use the for-
mulain section 2.2. Confidence limits for the typ-
ical error are derived from the chi-squared distri-
bution. For small degrees of freedom, the upper
limit tends to be skewed out relative to the lower
limit. Tateand K| ett!1”] provided an adjustment that
reduces the skewness by minimising the width of
the confidence interval, although it is then not an
equal-probability interval. With only slight adjust-
ment the Tate and Klett limits can be represented
conveniently by asingle factor (table I1).

0 Adis International Limited. All rights reserved.

3.3 Complex Studies

The foregoing sectionsconcern studiesaimed at
determining the reliability of 1 group of individuals
with 1 type of test or equipment. In thissection | deal
with more complex studies: reliability of the mean
of several trials; comparison of the reliability of 2
groupsof individuals; comparison of 2 test protocols,
items of equipment or operators of the equipment;
and studies of continuously graded reliability.

Researchers sometimes improve the reliability
of their measurements by using the mean of multi-
pletrias: if there are n independent trials, the typ-
ical error of the mean is 1/vn times the error of a
singletrial. If themultipletrialsare conducted over
a short period (e.g. on the same day, without re-
caibration of equipment), but the researcher isin-
terested in reliability of the mean over a longer
period (e.g. on different days, with recalibration),
thelonger periodislikely to beasourceof substan-
tial error. Therefore, beyond a certain number of
multipletrials no substantial increase in reliability
will be possible. To determine the number of trials,
researchers need to perform areliability study with
multipletrials, estimate the magnitude of the error
between trials over the shorter period (es) and over
the longer period (g), then choose n such that
eJVn<<g. The most appropriate analysisis by re-
peated measures with 2 within-subject effects
(same day, different day), each modelled with its
own within-subject error. A statistically less chal-
lenging approach is as follows:. analyse reliability
of thetrials on the same day to determine the tria
number beyond which learning effects are negli-
gible (e.g. tria 2); now compute between-day reli-
ability for the mean of an increasing number of
contiguous same-day trials (e.g. trials 3+4, trias
3+4+5. . ) to determine the number of same-day
trials beyond which there is no further increase in
between-day reliability.

Comparing the reliability of 2 groups of partic-
ipants is straightforward. The participants are in-
dependent of each other, so any study amounts to
2 separatereliability studies. Confidence limitsfor
theratio of thetypical errors between correspond-
ing trials in the 2 groups can be derived from an F
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ratio. Changes in the mean between corresponding
pairsof trials can be compared with unpaired t tests
of the difference scores.

Comparing the reliability of 2 items (protocols,
equipment or operators) ispossible using the above
approach for 2 groups of participants tested sepa-
rately. Using the same participants has more power
but requires analysis by an expert. Each participant
performsat least 1 trial on 1 item of equipment and
at least 2 trials on the other, preferably in abalanced,
randomised fashion. The analysis needs a mixed
model, in which the equipment is a fixed effect,
trial number is afixed effect, participantsisaran-
dom effect, and adummy random variableisintro-
duced to account for the extra within-subject vari-
ance associated with measures on one of theitems.
Confidencelimitsfor theextravariance addressthe
question of the difference in typical error between
the items. The model also provides an estimate of
the difference in learning effects between the items.

When setting up a study to compare 2 items,
keep in mind that the typical error always consists
of biological variation arising from theindividuals
and technological variation arising from theitems.
Since the aim isto compare the technol ogical vari-
ation, try to make the biological variation as small
as possible, because it contributes to the uncertainty
in your comparison of the items. For example, when
comparing the reliability of 2 anthropometrists, you
would get them to measure the sameindividualson
the same day, to avoid any substantial biological
variation. Similarly, when comparing the reliabil-
ity measures of power provided by 2 ergometers,
use athletes as study participants, because they ap-
pear to be more reliable than non-athletes.

The problem of a continuous gradation of reli-
ability arises when randomly chosen items or in-
stallations of the same kind of equipment produce
consistently different values. For example, one item
might always give high values, another might give
low values and so on. Possible sources of these
differencesbetween itemsincludeinadequate qual -
ity control in manufacture, different environmental
effects at the same or different locations, and dif-
ferencesin calibration or other aspects of operation
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by different operators. When avolunteer isretested
on different items of the equipment, this variation
between items adds to what would otherwise bethe
typical error for retests on the same apparatus, with
the result that the overall typical error is higher.
Thistypical error isthe onethat best representsthe
typica error in a one-off measurement taken on a
randomly chosen item of equipment. It is aso the
one to use in the somewhat unusual situation of
repeated trials when each tria is with a different
item of equipment.

Researchers who are aware of the concept of
lower reliability when retesting on different items
or installations have usually computed aretest cor-
relation rather than atypical error. The appropriate
correlation istheintraclass correlation ICC(2,1) of
Shrout and Fleiss.[¥! Itisderived from the so-called
fully random model, in which the identity of the
participants and trials are considered random ef-
fects. Researchers have often misapplied this model
to data obtained from a single item of equipment.
Theresulting reliability isdegraded by thelearning
effect, not by consistent differences in values be-
tween items of equipment. The only correct way to
estimatethereliability between itemsof equipment
is to test volunteers with a sufficient number of
different items. The identity of the itemsis aran-
dom effect, and an extra fixed effect representing
trial number isintroducedin the analysisto account
for learning effects. The typical error for avolun-
teer retested on different itemsisderived by adding
the residual variance to the variance for the items.
A similar analysisisappropriate when anumber of
different judges rate the performance of the same
athletes at different competitions; in this case, the
variance corresponding to judges needs to be di-
vided by the number of judges beforeit isadded to
the residual variance to give the typical error vari-
ance for an athlete between competitions.

Unfortunately, even the 2-way random model
with the addition of afixed trial effect would still
not account for the possibility that the magnitude
of the typical error itself varies between items of
equipment or between judges. As far as | know,
no-one has developed a theoretical framework for
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quantifying such continuous variability in the typical
error. It isnot part of generalisability theory, which
is another name for mixed modelling and which
can deal only with the impact of random effects |
discussed in the previous paragraph. Modelling con-
tinuous differences in reliability of subjects also
seems to be impossible at present. Thus, the only
way to model the better reliability that you find, for
example, with faster athletes or more experienced
operators, is to divide the volunteers or operators
appropriately into a small number of groups, then
compare the typical errors between groups.

4. Conclusion

The concept of the typical error in an individu-
al’s score should be comprehensible to most re-
searchers and practitioners in sports medicine and
science. | believe the concept iseasier to grasp and
to apply than limits of agreement. Change in the
mean value of a measure between trialsis also an
important component of reliability, and it needsto
be kept separate from typical error. Retest correla-
tionisdifficult to use, becauseitsvalueissensitive
to the heterogeneity of the sample of participants.
In my opinion, observed valuesand confidencelimits
of the typical error and changes in the mean are
necessary and sufficient to characterisethereliability
of ameasure. Publication of thesedatainreliability
studieswould substantially enhance comparison of
thereliability of tests, assaysor equipment. Greater
understanding of the theory of reliability by re-
searchers would also help reduce the incidence of
inappropriate analyses in the literature.
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