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Abstract

v

The 70% of Earth’s surface covered by oceans sup-
ports significant biological diversity and immense
untapped potential for marine bioproducts. The
recently completed international Census of Ma-
rine Life (2000-2010) invested heavily in evaluat-
ing the diversity, abundance, and distribution of
life in the ocean but concluded that at least 50%
and potentially >90% of marine species remain
undescribed by science. Despite this potential,
and numerous successes spanning pharmaceuti-
cals, nutraceuticals, anti-foulants and adhesives,
biofuels, biocatalysts (enzymes), and cosmetics,

several impediments have slowed marine bio-
product development. First, the sheer size of the
ocean constrains comprehensive exploration.
Second, marine taxonomists and ecologists gen-
erally do not focus on the most promising groups
for bioproduct development. Third, the geo-
graphic mismatch between (often remote) bio-
diversity hotspots and science capacity limit
discovery. Despite these challenges, new ocean
sampling tools (digital imaging, remote vehicles,
genetic approaches, in situ samplers), many de-
veloped or improved during the Census of Marine
Life, should enhance future marine biodiversity
and thus marine bioproduct discovery.

Introduction - An Ocean of Discovery

v

Bioprospectors have long recognized the oppor-
tunity for discovery from ocean environments,
despite a slow start to marine bioproduct devel-
opment [1]. The immense size and range of life
in the oceans point to great potential for discov-
ery that surpasses all other environments on
Earth. Globally, oceans cover 70% of the Earth’s
surface, encompassing >90% of the known bio-
sphere volume [2]. This recognition stems, in part,
from the large pool of potential “raw material” for
marine bioproducts, namely the wide diversity of
ocean life. The international Census of Marine Life
(CoML) that ended in 2010 created a whole new
level of interest and recognition of marine bio-
diversity for a wide range of ocean stakeholders.
This 10-year program united some 2700 re-
searchers from over 80 countries around the
world to catalyze discoveries on the diversity, dis-
tribution, and abundance of life in the ocean [2].
The program included 17 projects that spanned
from microbes to marine mammals and from the
intertidal zone to the deep plains [3]. When the
program officially ended in 2010, participants es-
timated that they had found some 5000 new spe-

Planta Med 2016; 82: 790-799

cies [2]. Noting typical lag times between the col-
lection of new species and their formal descrip-
tion in the scientific literature of seven years and
that some novel species may sit in specimen jars
unrecognized for a century or more [4], the full
range of CoML species discovery may not be fully
known for another decade or more. Although
none of the CoML projects considered bioactive
compounds and the scientific description of those
estimated new species will probably take decades
to complete, the technologies and new informa-
tion on biodiversity that continue to emerge from
that program and related research illustrate the
potential for discovery of new environments,
new species, and new processes. These findings
also point to great potential for marine natural
product discovery that could surpass all other en-
vironments on Earth.

Despite greater numbers of documented species
[5] and established bioactive compounds for land
biota compared with ocean biota [6], the oceans
nonetheless support substantially higher diver-
sity at a higher taxonomic level (i.e., taxonomic
distinctness), and thus may well eventually yield
more species and a greater pool of bioactive com-
pounds than all other environments combined
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[7]. For example, the oceans house 34 of 36 known animal phyla
in contrast to the 17 found on land; 15 phyla occur exclusively in
the oceans. From metabolically active microbes deep in the ocean
seafloor crust [8] to seabirds that soar hundreds of meters above
the ocean [9] to the fishes and invertebrates that migrate thou-
sands of meters through the deep ocean on a daily basis [10],
our recognition of the diversity of life and range of specialized
habitats in the oceans continues to expand every year. New tech-
nologies for observing, sampling, and recognizing ocean life [2,
11], many developed or enhanced during the CoML, all point to-
wards an ocean of discovery. For example, the development of
new genetic tools offers a workaround to the problem that scien-
tists can cultivate fewer than 1% of marine microbes; these tools
suggest immense microbial diversity that could reach a billion
different types [12]. The diverse adaptations of marine organisms
to high pressure, high and low temperatures, salt, and tolerance
to environments with elevated hydrogen sulphide, methane
efflux, and low oxygen all point to an immense opportunity for
bioprospecting. Importantly, opportunities could emerge that
utilize genetic as well as species diversity to address a wide range
of societal needs.

An Ocean of Opportunity -

Marine Bioprospecting to Date

v

Pharmaceuticals, nutraceuticals, anti-foulants and adhesives, bio-
fuels, biocatalysts (enzymes), and cosmetics all utilize products
from marine organisms. Of these categories, medically approved
pharmaceuticals represent the least productive line of marine bio-
prospecting to date, with the first drug approved for sale in 2004
- a chronic pain product produced from a marine snail neurotox-
in. Nucleosides identified from marine sponges had attracted
great promise as far back as the 1950s and inspired synthetic
U.S. Food and Drug Administration (FDA) approved pharmaceuti-
cals such as cytarabine decades ago [13], but the low success rate
in the direct production of marine pharmaceuticals that followed
has been particularly discouraging. Drug approval typically re-
quires an 8- to 15-year period from discovery to market, with an
estimated typical development price tag of US$900 million and
hundreds of thousands of failures for every successful commer-
cial product [14]. Although the FDA has approved only seven
drugs derived from marine organisms [15], the success rate rela-
tive to the 28 000 registered marine products compares favorably
with terrestrial products. Furthermore, numerous other products
currently in clinical trial in tandem with the potential application
of marine natural products for inhibiting pain [1], different hall-
marks of cancer [16], asthma [17], and herpes simplex treatment
[18] points to major research potential and interest.

In contrast, marine organisms have already yielded a wide range
of nutraceuticals beneficial to human health [19], with significant
growth in the European and Asian nutraceutical industries total-
ling US$1.5 billion in 2009 and expected growth to US$180 bil-
lion by 2017 [19]. These products span from vitamins and miner-
als and food supplements, such as highly popular fish omega-3
oils, to compounds with cancer prevention, anti-inflammatory,
antioxidant, and antimicrobial activities [20] to restorative cos-
metics, the latter often derived from marine algae. Cosmetics in-
clude materials developed for application to human bodies for
cleansing, protection, or altering appearance without affecting
body structure or function [21]. Potential cosmetics from marine
organisms span from sunscreen compounds derived from algal
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symbionts in invertebrates [22] and aquatic vertebrates [23] to
marine algal-derived anti-photoaging agents and skin whiteners
in Asia [24]. A wide range of marine algal products has also been
developed to treat multiple skin conditions [24].

On the one hand, the banning of many biocidal compounds from
marine applications in tandem with a need to combat fouling
organisms has catalyzed successful efforts to develop naturally
derived antifoulants [25], including many from marine algae. On
the other hand, the bio-adhesives industry capitalizes on marine
organisms such as barnacles and mussels that produce strong
natural glues that adhere under water. The capacity of sea stars
to quickly attach and detach from hard surfaces points to intrigu-
ing possibilities for temporary adhesives [26].

Food and energy production from marine organisms also shows
great promise. The utility of transgenic technology to enhance
aquaculture has been recognized for decades; for example, the
transfer of antifreeze proteins from cod to salmon can extend
aquaculture production geographically and seasonally [27] and
improve growth rates. Indeed, Atlantic salmon recently became
the first FDA approved genetically modified animal. Marine algae,
and diatoms specifically, show great potential for biofuel pro-
duction, noting the capacity of some species to produce oils and
carbohydrates from photosynthesis that may yield different bio-
fuels [28]. Bioluminescence proteins extracted from marine
organisms have also been widely used in the biotechnology in-
dustry and in research [29]. Enzymes produced by specialized
marine organisms spanning from microbes to algae to animals
remain stable under specific environmental conditions (high
pressure, extreme hot or cold temperatures, high salt, and hydro-
gen sulphide and methane rich as well as oxygen poor water) and
can act on proteins, lipids, carbohydrates, and other compounds.
The utility of these compounds remains largely unknown, with
most of the current focus on inventory [30].

An Ocean of Opportunity - Biodiversity Technologies
v

Technologies developed over the last decade have rapidly ad-
vanced science capacity for new species discovery, and include
tools that expedite the discovery of new habitats, others that
facilitate specimen collection, and others that expedite or clarify
taxonomic descriptions. Some of these capacities were developed
or extended within the CoML, whereas other techniques
emerged in parallel.

Dramatic improvements in acoustic tools, such as multibeam
acoustics and associated analytical software capabilities that use
sound waves to map seabed, greatly enhance the capacity for
habitat discovery [31]. The huge areas of ocean habitat on Earth
limit the proportion of well-quantified habitats to date, however,
seabed mapping has matured in its capacity to differentiate
broadly different habitat types and produce highly detailed phys-
ical maps [31]. Habitat offers the best predictor of species distri-
butions [32,33] and thus the likelihood of identifying promising
locations for species discovery. Ironically, coastal depths can be
especially challenging to map from surface ships because vessels
required for multibeam equipment cannot efficiently navigate
the shallowest waters without significant risk. Although optical-
based remote sensing methods such as LIDAR (Light Detection
and Ranging) can image wide swaths of shallow seabeds under
clear waters [34], water actually attenuates light quickly, typi-
cally 100 s of m or less. This opacity limits optical mapping tools,
including SCUBA, to a small percent of ocean depths. Noting the
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ephemeral, highly patchy, and discrete nature of some marine
habitats such as cold seeps and hydrothermal vents [35,36], the
expansion of exploration of ocean biota from ship-based sam-
pling to submersibles [37] and, more recently, remotely operated
vehicles (ROVs) and autonomous underwater vehicles (AUVs)
[11] greatly increases the potential for habitat discovery, particu-
larly in light of major advances in digital imaging and analysis.
Submersibles and ROVs also provide excellent platforms for
specimen collection when equipped to collect delicate biota from
highly specialized locations, as illustrated by the initial collec-
tions of novel chemosymbionts from hydrothermal vents [38].
Nonetheless, only nine nations currently operate deep diving
submersibles [39] and the various nets, grabs, and bottles used
for the last century continue to dominate the tools used in the
collection of marine specimens, including new species [2].

New technologies enable habitat discovery through means other
than habitat surveys. New and improved environmental sensors
that measure a wide range of chemical constituents, including
hydrogen sulphide, oxygen, temperature, methane, pH, salinity,
and other variables [40], can help in discovering unique or spe-
cialized environments. Improved stability of such sensors, com-
bined with ever-increasing miniaturization, enable the use on
sampling platforms such as ocean gliders [41] and ARGO floats
[42] that drift across large swaths of ocean collecting data, AUVs
[43], and underwater cabled observatories [44]. Collectively,
these tools provide opportunities to identify novel environments
to catalyze new discovery.

The Taxonomic Impediment to Species Discovery

v

As time-consuming and expensive as the collection of specimens
can be, the process of documenting biodiversity itself requires
complex taxonomic scrutiny, and even then taxonomic confusion
may arise from morphologically similar species [45], misspell-
ings, and misidentification. The World Register of Marine Species
(WoRMS), a partner of the CoML program, is cataloging all valid
scientific names for marine species, with the current count at just
under 230000 of the ~245000 known species [46]; this same
project documented 56 different taxonomic names for a single
species, illustrating the confusion arising from taxonomic errors.
Fortunately, new technologies developed by the genetics revolu-
tion already minimize ambiguities and accelerate species discov-
ery rates. Genetic barcoding, which first referred to animal iden-
tification using the mitochondrial cytochrome c oxidase I (COI)
gene [47], has expanded to utilize other genetic identifiers [48,
49], and now provides unambiguous species identification span-
ning from microbes to whales. Species identification using genet-
ic barcoding requires comparison of genetic material from speci-
mens to library sequences of similar genetic material. Therefore,
the current lack of a complete library of known and unknown
marine species constrains genetic taxonomy and will continue
to do so until every species has been barcoded, a very long-term
prospect given the many unknown species and current rates of
species discovery (see below). Moreover, barcoding may produce
errors just as serious as those that have plagued morphological
taxonomy, and points to the need for collaborative approaches
between researchers using genetic and morphological-based
taxonomy. Nonetheless, barcoding provides an unambiguous tool
for differentiating among specimens within the library, and the
convergence of barcoding with morphological taxonomy offers
huge potential in cataloging ocean life.
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High-throughput mass sequencing encompasses several different
genetic approaches, including environmental DNA sampling that
can be likened to “biota in a blender”; in essence, analysis of gene
sequences within a sample of water, sediment, or even biota
within organisms, produces estimates of the numbers of species
or operational taxonomic units (microbiologists in particular use
OTU to refer to genetically distinct life forms that may or may not
conform to different species definitions). Mass sequencing can
therefore identify the number of different life forms in a sample,
even those forms undescribed taxonomically. Indeed, concerns
about the rapid loss of coral reef diversity prompted CoML scien-
tists to propose the mass sequencing of reef biota, even if simply
to produce a list of genetic identifiers of unknown species [50]. At
least the level of biodiversity loss might be quantifiable even in
poorly known areas. Genetic techniques also allow for the identi-
fication of specific gene expressions, such as toxic strains of dino-
flagellates. Indeed, the Environmental Sample Processor was de-
veloped to collect in situ samples and test for the presence of a
particular gene in microbial samples or in larval invertebrates
[51]. When deployed on ocean observatories that relay data to
shore [44], this strategy could provide real-time information on
the presence and activity of species of interest.

For some of these new technologies, the application for bio-
prospecting may not be immediately obvious. Certainly any tech-
nologies that facilitate specimen collection can expedite the dis-
covery of new bioproducts, and mass-sequencing tools can help
to identify biodiversity hotspots that could be targeted for explo-
ration. Similarly, improved sensors and platforms offer the prom-
ise of the discovery of new environments or at least new habitat
locations with potentially novel species, such as the first discov-
ery of hydrothermal vents in the Southern Ocean recently [52].

Novel Environments

v

The propagation of technologies that enable new habitat discov-
ery offers a two-pronged benefit for marine bioprospecting. New
habitats often support novel species and thus bioproduct poten-
tial, but perhaps more importantly, by human standards, the ex-
tremes of temperature, chemistry, and pressure that characterize
many of these newly discovered environments require special-
ized biota with specific enzymes and physiological adaptations.
The examples below illustrate new environments, most discov-
ered in the last few decades. Not surprisingly, most novel habitat
discoveries occur in deep and remote waters [11]. In some of
these environments, such as hydrothermal vents, new species
discoveries show no sign of slowing down [4], even though the
first reports of unique hydrothermal vent fauna appeared almost
40 years ago [38].

Ice biota offers a shallow-water example of novel habitats high-
lighted by the CoML. Scientists first reported cold and ice-adapted
organisms and ice enzymes long ago [53], and transgenic tech-
nology has already improved aquaculture growth rates of cold
water fishes [54], however, knowledge of entire ice-associated
communities that span from microbes to fishes and marine
mammals only recently came into sharp focus [55,56]. From a
bioprospecting perspective, the low diversity of ice biota offers
modest promise for new bioproducts with only a few species
per major taxonomic group [53], but the extreme conditions in
which these species live (temperatures <-10°C and salinities
>100 ppt) suggest potentially unusual physiological adaptations.
Polar environments more generally support organisms capable
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of anabolic and catabolic processes at cold temperatures that
could offer significant potential for new habitat discovery, partic-
ularly given the large areas of undersampled Arctic and Antarctic
environments such as those under multiyear ice [53,57] or re-
mote deep fjords.

Deep-water coral patches were first reported in the 1800s [58],
but first recognized as distinct habitats in the early 20th century
[59]. Habitat models now predict likely locations for corals on
seamounts [60] and are based on environmental characteristics
[33,61]. We now know that deep-water corals [62] and sponges
provide a distinct habitat for a variety of invertebrates and mi-
crobes, and bioprospecting has already begun to target sponge
microbes [63] and a wide range of natural products from corals
in general [6].

The discovery of hydrothermal vents in 1978 changed our view of
life on Earth and illustrated the potential for the discovery of fun-
damentally different ecosystems, in this case an ecosystem fueled
not by sunlight but by chemicals such as hydrogen sulphide and
methane emitted from superheated seawater within the seafloor
[38]. The capacity of some vent organisms to tolerate normally
toxic hydrogen sulphide, with little to no oxygen, and seawater
heated well above ambient levels [64] forced the rewriting of
textbooks describing metabolic pathways, enzyme characteris-
tics, adaptation, and even basic ecology. The complex biogeogra-
phy of hydothermal vents [65] and high levels of endemism and
taxonomic distinctness [66] add to the expectation of discovery.
Research cruises in recent years have discovered new vent habi-
tats in the Southern [52], Indian [67], and Arctic [68] Oceans, with
expectations of more vent habitats to come [36].

The discovery of seeps and their chemosynthetic communities
[69] some 30 years ago was thought to represent a habitat exten-
sion of hydrothermal vents, but we now recognize seeps, which
may include methane, natural gas, or hydrocarbon emissions, as
quite distinct habitats with little species overlap with vents [66]
and high rates of endemism [70]. Although we know that seeps,
and the mud volcanoes that characterize some seep environ-
ments, occur widely in all oceans [71], new discoveries continue,
such as the first report of an Antarctic seep just a decade ago [72].
Oxygen minimum zones and anoxic basins exclude many or most
life forms, respectively [73, 74], but the taxa that can tolerate such
conditions necessarily display specialized adaptations and physi-
ologies to cope with low oxygen. Anoxic basins, such as those at
3200-3600 m in the deep Mediterranean, exclude most life forms
other than specialized bacteria and Archaea [74]. But DNA evi-
dence points to the presence of living Protista [75]; metabolically
active species from the animal phylum Loricifera with specialized
organelles and symbionts were recently reported from the an-
oxic L'Atalante Basin [76].

The last decade also saw recognition of the “deep biosphere”,
where “deep” refers to depths of more than 1000 m below sea-
floor sediments deep in the Earth’s crust in an environment
thought devoid of life until just two decades ago [8]. The presence
of metabolically active microbes in these environments points to
capacities to utilize extremely limited resources and/or a greater
prevalence of symbioses than previously recognized [11].

These findings suggest that our current expectations of adapta-
tions and life forms underestimate the novelty of nature and
physiology, and the associated potential for discovery of funda-
mentally novel bioproducts and processes in the global oceans.
But new species discovery hardly requires new environments,
noting that even well-studied ocean regions such as the Gulf of
Maine continue to yield new species [77]. In addition to discrete,
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hard-to-locate habitats such as those described above, the sheer
volume of the ocean and the massive volume of biological habi-
tats it encompasses point to a discouragingly large potential for
species discovery. Indeed, science has sampled only a few percent
of the global oceans [4,78] and although specific habitats such as
coral reefs have yielded the most natural products to date, the
reality is that the 95% of the global biosphere encompassed by
the oceans offers great potential for species and habitat discovery.

Who - Known and Unknown Diversity

v

So where does this plethora of new tools leave us in terms of
completely documenting ocean diversity? The short answer is
that we probably have a very long way to go. Despite the invest-
ment of many millions of U.S. dollars in the CoML, many un-
knowns remain and the program illustrated the unknown as ef-
fectively as the newly known for species discovery. Marine scien-
tists currently describe about 1650 new species per year [79], but
available taxonomists primarily constrain that number [80] more
than the availability of novel species. The technologies described
above can facilitate, but not overcome, this “taxonomic impedi-
ment” [81]. Even marine experts cannot agree on the correct
order of magnitude of unknown species, with total species pro-
jections beyond 10 million [7,82] to as little as 300000 [83], with
median total marine species projections of 1 million [5] to 2 mil-
lion [84]. Importantly, these estimates do not include microbes,
whose diversity could number over a billion [12]. A simple calcu-
lation based on a prediction of 2 million species and a stable an-
nual description rate of 1650 new species per year suggests that
we might expect to finish inventorying marine animals in about
1000 years. This gap is particularly interesting in light of the rapid
increase in microbial patents in recent years, catalyzed by the
genetics revolution [85]. Although a complete marine species in-
ventory looks highly unlikely in any of our lifetimes, or perhaps
even those of our great, great, great grandchildren, we have suffi-
cient knowledge to ask where new discoveries are most likely
and which groups of organisms are poorly versus well described.
Although our knowledge of marine biodiversity decreases with
the size of organisms, new species include some large-sized taxa
such as the 3-kg lobster discovered off the coast of Africa [86].
Even widespread species can elude scientists, such as Prochloro-
coccus, first reported in 1988 [87] and now recognized as the
most abundant photosynthetic organism on Earth.

The rates of new species description vary hugely among animal
phyla, with a strong bias towards crustaceans, molluscs, and
fishes [79]. Not surprisingly, projections of unknowns based on
surveys of taxonomic experts for different major taxa [5] do not
map well onto taxonomic effort in that fishes are relatively well
known (<20% unknown), whereas the least known major taxa
include nematodes (>81% unknown), flatworms (>67% un-
known), sponges (>67% unknown), and molluscs (>64% un-
known) [5]. Several taxonomic orders of crustaceans also have
projected unknowns that exceed 60%. This bias reflects several
factors [79], including the number of practicing taxonomists
working on a given group, the contributions of amateur taxon-
omists (significant for molluscs and crustaceans), and the chal-
lenge in collecting and analyzing some of the smaller groups, not-
ing the inverse relationship between size and taxonomic comple-
tion [88]. Intriguingly, the excellent mollusc taxonomist Philippe
Bouchet commented that “the taxa for which [taxonomic extrap-
olations] are fairly accurate (fishes, echinoderms, decapods) con-
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tribute little to the global numbers, whereas for the taxa contri-
buting much (parasites, nematodes) the estimates are vague”
[79].

Whence - The Geography of Species Discovery

v

The geography of discovery reflects a combination of patterns of
total biodiversity based on current knowledge (i.e., the available
species pool) and the degree to which different habitats have
been sampled (i.e., the total area of that habitat and proportion
of those habitats sampled). The seafloor generally supports a far
greater diversity of animals than the water column above it, not-
ing that zooplankton account for only an estimated 7000 species
[89] of the ~ 245000 described marine species [46] and spanning
15 of the 34 phyla known to occur in the ocean. But the story for
microbes remains murkier, given the discovery of 1800 genomic
microbial species and 1.2 million new genes in 200 L of Sargasso
Sea surface water [90]. The recent discovery of deep-living mi-
crobes in the ocean crust [8] in tandem with the extraordinary
number of rare species in the microbial realm [12] makes geo-
graphic prediction of unknowns for microbes extremely difficult.
A recent examination of fishes provides some insight into the
habitat types that offer the highest potential for new discovery.
Fishes represent the greatest certainty in terms of knowns and
unknowns because they are the best-known animal group taxo-
nomically other than marine mammals. Examination of species
discovery curves indicates 1000-4000 undiscovered marine
fishes, with the largest gaps in the deep sea [91] and significant
potential in tropical coastal ecosystems [92].

Considering the state of knowledge of biodiversity patterns more
broadly, coastal biodiversity appears highest in the tropical Indo-
Pacific, decreasing towards the poles for better known groups
(fishes, corals, cephalopods), with some notable exceptions
(seals, seagrasses) [93]. Temperate biodiversity peaks appear
more typical for oceanic species such as tunas, squids, cetaceans,
and euphausiids. Decreasing diversity with increasing latitude
has also been reported for deep-sea fauna [94] and for coastal bi-
valve molluscs [95], and linked to temperature [93] and energy
input [94,95]. Most sampling has focussed on northern hemi-
sphere temperate latitudes, decreasing in effort with depth [78]
and decreasing sizes of organisms [88].

But total habitat area and sampling effort add further complica-
tion; coral reef habitats cover a relatively small proportion of
ocean environments (< 0.2%) but harbor significant undescribed
biodiversity because they are so poorly sampled [50,92]. To illus-
trate this point, sampling of brachyuran crabs from just 22 coral
heads from the remote Pacific Northern Line Islands yielded 30%
of the total brachyurans recorded from all of European seas,
which are among the best studied oceans in the world and cover
an immensely larger area than 22 coral heads [50]. Coral reef
biologists have generated projections of ~1 million [96] to 2.5
million [97] species from coral reefs alone based on different ex-
trapolation methods.

Deep-sea environments offer a particularly fertile environment
for species discovery ranging from invertebrates [98] to fishes
[91]. Despite general declines in biomass and abundance related
to strong food limitation, deep-sea benthic ecosystems generally
support many species per number of individuals relative to most
environments [58]. Of particular note, deep-sea ecosystems typ-
ically harbor many rare species [7], which creates a challenge in
trying to fully sample a given region, but rarity also creates op-
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portunities for bioprospecting. Deep-sea environments comprise
some 90% of the global biosphere by volume and > 55% of Earth’s
surface, and science has sampled just a few percent of its im-
mense content [2]. Indeed, the cumulative total of deep seafloor
sampled to date for sedimentary fauna covers just a few square
meters for the smallest animals (meiofauna, or animals
44 -300 microns) [82] and a few football fields for slightly larger
organisms (macrofauna, or animals > 300 microns) [4]. The water
column of the deep ocean also offers a massive volume of habitat
that may represent the least sampled habitat on Earth [78]. Thus,
the potential for species discovery in the deep ocean remains al-
most unlimited for the foreseeable future.

Reduced diversity typically characterizes special deep-sea envi-
ronments such as hydrothermal vents, cold seeps, upwelling re-
gions, and trenches [98], however, as noted earlier, the organisms
that utilize these environments often display unique physiologi-
cal adaptations to cope with the unusual conditions. In some
cases, these adaptations result in organisms distinct from other
habitats at higher taxonomic levels (e.g. family, order). This high
“taxonomic distinctness” may offer particular promise for bio-
prospectors because organisms may differ fundamentally from
any other known relatives [66]. One other aspect of these special
environments merits comment. The relatively discrete, disconti-
nuity of many of these habitats differs from most ocean environ-
ments that are generally perceived as “open” with a free ex-
change of individuals. The relative isolation of these special envi-
ronments can promote genetic and even species divergence from
similar habitats elsewhere in the deep sea, explaining the distinct
biogeography reported for hydrothermal vents and seeps [65] as
well as trenches [99], for example.

Despite reports of generally decreased diversity at higher lati-
tudes [93,100], polar ecosystems may not be as species depau-
perate as previously assumed. Comparison of sampling effort
and species reported for Canadian waters indicates more species
in the Arctic than the Atlantic, despite few samples collected
[101]. Thus, polar systems also offer potential for discovery, par-
ticularly under multiyear ice habitats that remain largely un-
sampled [53,57].

Rarity adds one further complication regarding where to look for
bioactive compounds. Ecologists have long known that some ma-
rine species may be quite common and others quite rare; indeed,
several studies note the frequency of rare species, whether refer-
ring to microbes [12] or deep-sea invertebrates [7]. Rarity may
refer to low numbers of individuals of a species in a region or
total numbers of regions in which a species is found, but either
characteristic adds an additional challenge for bioprospectors in
terms of “missed opportunities” in the form of never sampling a
given rare species. Bioactive compounds have been isolated from
rare as well as common species. For example, the sponge Lisso-
dendoryx sp., known from a single New Zealand peninsula, pro-
duces a strong antitumor compound, whereas the bryozoan Bu-
gula neritina, the source of an cytostatic compound, spans a wide
range of tropical and temperate coastal environments [102]. Ac-
knowledging the challenge of rare species and not knowing
whether a new natural product will come from a common or rare
species adds a challenge to the search for new products.

This document was downloaded for personal use only. Unauthorized distribution is strictly prohibited.



Whence? The Geography of Bioactive Compounds

v

So where do new marine natural product discoveries occur? A re-
cent analysis of marine invertebrate product discoveries since the
1990s reported more than 60% of discoveries from the Northern
Hemisphere, and ~55% from the tropics [6]; the Pacific ac-
counted for ~63%, with ~20% from the Atlantic and ~ 13% from
the Pacific. Not surprisingly, almost half of new marine inverte-
brate natural products came from Asian countries, reflecting high
levels of natural product research activity in Japan, Taiwan, and
China. But this same analysis shows apparent shifts in effort over
time, with increasing proportions of discoveries from the tropics
and decreasing contributions from temperate environments.
Hotspots of natural product discovery also shifted spatially, from
Japan and Australia in the 1990s to Japan, China, and Polynesia-
Micronesia since 2000 [103]. In the context of Large Marine Eco-
systems [104], the Kuroshio and South China Sea lead the way for
marine bioproducts, followed by the Caribbean and East China
Seas, although this pattern partly reflects some countries regis-
tering multiple closely related products.

To some extent, these patterns reflect a shift in effort from waters
of developed nations with a strong science infrastructure (North
America, Mediterranean, Japan) to waters where science capacity
has expanded rapidly (China and, to a lesser extent, Polynesia-
Micronesia), but they also reflect increasing recognition of global
patterns of diversity. Therefore, the unknowns of biodiversity
map loosely onto patterns of new invertebrate natural products
but a clear bias towards accessible shallow waters.

Who - The Taxonomy of Natural Product Discovery

v

Even in the last decades, biodiversity discoveries led taxonomists
to completely redraw the Tree of Life that describes relationships
among life on Earth. In 1990, a three-domain system comprised
of Bacteria, Archaea (superficially similar to bacteria but structur-
ally different), and Eukarya (fungi, plants, animals, single-celled
protistans) replaced the five kingdom system that dominated
textbooks for generations [105]. This realignment created con-
troversy; for example, some key similarities between Archaea
and Eukarya point to a two-domain system [106]. While this re-
alignment debate may appear esoteric from a natural products
point of view, it illustrates that at the very highest level of biolog-
ical diversity - the domain - taxonomists continue to realign re-
lationships based on morphologies, physiologies, and, of course,
genetics. These realignments follow from documentation of fun-
damentally different biological capacities in different organisms.
For example, in the last decade or so, we learned that Archaea, a
group previously thought limited to extreme environments, may
dominate microbial biomass in the deep ocean [107,108]. We al-
so first learned about anammox, a novel metabolic pathway in
marine sediments that oxidizes ammonium, in 2001 [109]. In
short, we know metabolites produced by marine microbes exhib-
it a wide range of bioactive properties [110], and evaluation of
the marine microbial world and its potential for natural products
has really just begun.

Marine animals have already yielded a wide range of natural
products; in decreasing numbers of compounds to date, these in-
clude terpenoids, alkaloids, aliphatics, steroids, carbohydrates,
amino acids and peptides, and others [6]. Although the complex
approval process from natural product discovery to commercial
product has contributed to relatively modest numbers of ma-

Reviews

rine-derived natural products on the market [111], the wide
range of marine organisms from which natural products have
been discovered points to tremendous potential.

A recent analysis of taxonomic distribution of natural product
discovery across groups of animals [6] demonstrates particular
promise in some phyla. The sponges (Porifera) alone account for
almost half of new natural products since 1990, producing a wide
range of bioactive compounds [111], with corals and jellies
(Cnidaria) adding another 30%. Seastars and relatives (Echinoder-
mata), vertebrates (Chordata), and molluscs (Mollusca) add more
than 5% each, with additional discoveries in polychaetes (Anneli-
da), moss animals (Bryozoa), flatworms (Platyhelminthes), acorn
worms and relatives (Hemichordata), lamp shells (Brachiopoda),
and crustaceans (Arthropoda).

Interestingly, new natural products to date suggest contrasting
geographic sources for new marine bioproducts in different taxa
[6]. Since 1990, Porifera and Cnidaria accounted for most temper-
ate (>67%) and tropical (>87%) new marine natural products,
whereas Echinodermata dominates polar natural products
(>40%). Of all taxa, the order Alcyonacea (soft corals and fans)
has contributed more new natural products than any other, irre-
spective of geography (19.6% of polar, 16.5% of temperate, and
34.6% of tropicals).

The taxonomic focus of marine natural product discovery has al-
so shifted over the last decade. A leading focus on Porifera that
began to take off in the early 1980s peaked in discovery of marine
natural products around 2000 and has remained a leading source
of products [112]. Cnidarians, though not an early focus of prod-
uct development, have attracted steadily increasing interest that
has levelled off since 2013 and now rival sponges as a taxonomic
source of products. Around 2000, interest in Ascomycota (Fungi)
and Bacteria began to rise sharply and will likely continue to in-
crease and surpass Porifera and Cnidaria in their proportional
contribution to marine natural products as the natural product
powerhouses.

The Irony of Marine Biodiversity and

Marine Bioproduct Research Needs

v

The remarkable advances in genetics and biochemistry in recent
decades juxtapose significant practical deterrents to marine nat-
ural bioproduct research: (1) As demonstrated during the CoML,
taxonomic effort on new species discovery focuses on larger,
charismatic taxa such as fishes, molluscs, and crustaceans rather
than taxonomic groups that show the greatest promise for ma-
rine products (© Fig. 1). (2) A geographic disconnect in centers
of scientific capacity in taxonomy and biological diversity hot-
spots constrains new species discovery, with the bulk of morpho-
logically and genetically based taxonomy in temperate developed
countries and the bulk of diversity hotspots in tropical environ-
ments of developing nations. (3) A geographic disconnect be-
tween scientific capacity for marine bioproduct development
and the most promising taxa and environments limits new prod-
uct discovery. (4) The retirement of many practicing taxonomists
without replacements reflect a low societal priority for marine
taxonomic research, which hinders rates of new species descrip-
tions [79,80].

In comparing the taxa that show the most promise of new species
with those that show the greatest promise of yielding marine
natural products, several striking gaps emerge. Among inverte-
brates, the sponges and Cnidaria, and to a lesser extend the Echi-
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Fig.2 Comparison of projected unknowns for taxa commonly tested for
bioproduct potential. Note different y-axes. Data on unknown species [2]
and marine products discovered 1990-2012 [3] show that some new prod-
ucts come from relatively well-known phyla such as Chordata, Cnidaria, and
Echinodermata, whereas others come from phyla that are not well known,
such as Mollusca and Porifera.

noderms, offer the most promise for bioproducts based on dis-
coveries to date (© Fig.2), noting that many of these natural
products are derived from microbes associated with these inver-
tebrates and that these microbes may vary in composition over
modest distances. Although these groups include many potential
undiscovered species (Porifera ~ 67 % unknown, Cnidaria 20-40%
unknown, Echinodermata 25-45% unknown) [5], the least
known taxa (e.g., Mollusca, Nematoda, Platyhelminthes, Protista,
some groups of Crustacea, and multiple lesser known phyla) have
not figured greatly in marine bioprospecting (© Fig. 2). Two sepa-
rate lines of evidence support the assertion of a mismatch. The
“star performers” for new products (Porifera, algae, Cnidaria)
clearly differ from the “star performers” for new species discov-
eries (Mollusca, Crustacea, Chordata, and other metazoans),
whether considering the number of species yielding new prod-
ucts or products per phylum. This mismatch extends into the
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projected unknowns of diversity, suggesting no relationship be-
tween bioprospecting focus and unknown species diversity
(CFig. 2). Whether this mismatch between unknown and un-
tapped species reflects a bias in where bioprospectors have
looked or a real paucity of potential products in some taxa is dif-
ficult to assess, but both factors likely contribute.

Geographically, new product discovery and biodiversity hotspots
partially coincide, but with clear differences likely driven by
science capacity and research investment. Not surprisingly, the
majority of product discoveries have come from the Northern
Hemisphere, and particularly from industrialized countries with
a strong science capacity. In the case of some groups of organisms
such as seaweeds, the success in Japan, China, Taiwan, and Korea
corresponds to a region of strong research investment [113] and
high levels of known macroalgal diversity and endemism [114].
Large numbers of bioproduct discoveries coincide with some in-
vertebrate diversity hotspots such as Indonesia and China, but
other biodiversity hotspots such as coastal Africa, South America,
the Red Sea, the Caribbean, and the South Pacific produced mod-
est numbers of marine natural products from 2000-2009 [6],
clearly reflecting undersampling for both biodiversity and for
natural product potential.

Conclusions and Priorities

v

As a marine ecologist bringing a biodiversity perspective on the
future of marine bioprospecting, I believe the potential looks
both compelling and exciting, but points to a need to manage ex-
pectations. The great promise of marine bioproducts built expec-
tations of massive payoffs that, in the vast majority of cases, will
never occur. Marine ecologists themselves helped fuel this expec-
tation in arguing for conservation and sustainable practices for
future economic benefits [115], but this enthusiasm has raised
(legitimate) concerns about biopiracy. These concerns catalyze
protectionism that limits potential discovery in developing na-
tions that may lack the capacity or resources to develop natural
products. In the absence of the benefit of sharing agreements
outlined in the Nagoya Protocol, this concern will seriously limit
future discovery and marine bioprospecting, noting the taxo-
nomic and geographic distribution of many past success stories.
Many opportunities remain for the discovery of marine bioprod-
ucts, but the spatial mismatch between science capacity, hotspots
for biodiversity and bioproducts, and resource access and devel-
opment adds a great challenge. Without question, marine re-
sources offer promise for many developing nations with some of
the richest biodiversity globally in their jurisdictional waters
[113]. Relatively few documented global extinctions in the ocean
[116] juxtapose many local and regional extirpations (and associ-
ated genetic losses) [117] and suggest urgency in stemming the
loss of biodiversity [118,119] and marine bioproduct potential
that threatens “future options”.

For most species that have yielded bioproducts to date, we lack
anywhere near sufficient data to apply the sorts of management
plans developed for fisheries, for example, to ensure species sus-
tainability. Indeed, for future options and marine bioprospecting,
we rarely know which species to protect. The strong call for ma-
rine protected areas (MPAs) from marine scientists [120,121] of-
fers the most promising strategy for maintaining future options,
particularly if efforts include known biodiversity hotspots [122].
By protecting habitats, MPAs offer at least minimal protection for
unknown as well as known species. MPAs may, in some instances,
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encompass a diversity of permitted uses, and marine bioproduct
testing and development often require modest numbers of indi-
viduals compared to activities such as commercial fisheries or
aquaculture. Marine bioprospectors could, therefore, add a con-
trasting and potentially effective voice for ocean conservation
while simultaneously preserving future options.
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