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         Vitamins as Hormones    

teristic for vitamin A. The current defi nition of 
retinoids as it was defi ned by the IUPAC-IUB Joint 
Commission on Biochemical Nomenclature in 
1982, i.e., the  “ four isoprenoid units joined in a 
head-to-tail manner ”  structure, does not require 
a chemical analogy to vitamin A. In general, retin-

 Vitamin A, natural retinoids and the 
skin 
  &  
 The term  “ Retinoids ”  includes both naturally 
occurring molecules and synthetic compounds 
showing biological activities, which are charac-
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  Abstract 
  &  
 Vitamins A and D are the fi rst group of substances 
that have been reported to exhibit properties of 
skin hormones, such as organized metabolism, 
activation, inactivation, and elimination in spe-
cialized cells of the tissue, exertion of biological 
activity, and release in the circulation. Vitamin A 
and its two important metabolites, retinaldehyde 
and retinoic acids, are fat-soluble unsaturated 
isoprenoids necessary for growth, differentiation 
and maintenance of epithelial tissues, and also 
for reproduction. In a reversible process, vitamin 
A is oxidized  in vivo  to give retinaldehyde, which 
is important for vision. The dramatic effects of 
vitamin A analogues on embryogenesis have been 
studied by animal experiments; the clinical mal-
formation pattern in humans is known. Retinoic 
acids are major oxidative metabolites of vitamin 
A and can substitute for it in vitamin A-defi cient 
animals in growth promotion and epithelial dif-
ferentiation. Natural vitamin A metabolites are 
vitamins, because vitamin A is not synthesized in 
the body and must be derived from carotenoids 
in the diet. On the other hand, retinoids are also 
hormones  –  with intracrine activity  –  because 
retinol is transformed in the cells into molecules 
that bind to and activate specifi c nuclear recep-
tors, exhibit their function, and are subsequently 
inactivated. The mechanisms of action of natural 
vitamin A metabolites on human skin are based 
on the time- and dose-dependent infl uence 
of morphogenesis, epithelial cell proliferation 
and differentiation, epithelial and mesenchy-
mal synthetic performance, immune modula-

tion, stimulation of angiogenesis and inhibition 
of carcinogenesis. As drugs, vitamin A and its 
natural metabolites have been approved for the 
topical and systemic treatment of mild to mod-
erate and severe, recalcitrant acne, photoaging 
and biologic skin aging, acute promyelocytic 
leukaemia and Kaposi ’ s sarcoma. On the other 
hand, the critical importance of the skin for the 
human body ’ s vitamin D endocrine system is 
documented by the fact that the skin is both the 
site of vitamin D 3 - and 1,25-dihydroxyvitamin D 3  
[1,   25(OH) 2 D 3 ]-synthesis and a target organ for 
1,25(OH) 2 D 3 . 1,25(OH) 2 D 3  is not only essential 
for mineral homeostasis and bone integrity, but 
also for numerous further physiologic functions 
including regulation of growth and differentia-
tion in a broad variety of normal and malignant 
tissues, including cells derived from prostate, 
breast and bone. In keratinocytes and other cell 
types, 1,25(OH) 2 D 3  regulates growth and differ-
entiation. Consequently, vitamin D analogues 
have been introduced for the treatment of the 
hyperproliferative skin disease psoriasis. Other 
newly detected functions of vitamin D analogues 
include profound effects on the immune system 
as well as protection against cancer and other 
diseases, including autoimmune and infectious 
diseases, in various tissues. Current investigation 
of the biological effects of vitamin D analogues 
are likely to lead to new therapeutic applications 
that, besides cancer prevention, may include the 
prevention and treatment of infectious as well as 
of infl ammatory skin diseases. This review sum-
marizes existing knowledge on vitamins A and D, 
the major vitamin-hormones of the skin.         
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oids bind and activate specifi c nuclear receptors, although this 
may not be a necessary precondition for parts of their action. 
The fi rst part of this review is dedicated to existing knowledge 
on the activity of natural retinoids, namely vitamin A and its 
metabolites, as hormones. 
 Vitamin A (retinol) and its two important metabolites, retinalde-
hyde and retinoic acids, are fat-soluble unsaturated isoprenoids 
necessary for growth, differentiation and maintenance of epi-
thelial tissues, and also for reproduction. In a reversible process, 
retinol is oxidized  in vivo  to give retinaldehyde, which is impor-
tant for vision. The normal plasma concentration of vitamin A in 
humans is 0.35 – 0.75    � g / ml  [1] . 
 Retinoic acids are a major oxidative metabolite of retinol and can 
substitute for retinol in vitamin A-defi cient animals in growth 
promotion and epithelial differentiation. However, they cannot 
substitute for retinol completely in maintaining reproduction. 
The stereoisomers all- trans -retinoic acid (atRA), 13- cis -retinoic 
acid (13cRA) and 9- cis -retinoic acid (9cRA) are normal constitu-
ents of human serum  [2] . Unlike the retinol esters, which repre-
sent the storage form for retinol and are deposited in the liver, 
retinoic acids are not stored but are rapidly excreted. The normal 
levels in human plasma are 0.55 – 1.20   ng / ml for atRA, 0.80 –
 2.40   ng / ml for 13cRA and traces for 9cRA  [3] . 
 Endogenous retinoids are unlikely to be involved in the patho-
genesis of common skin diseases, such as acne and psoriasis 
 [1,   3] ; in contrast, hypervitaminosis A is associated with a broad 
spectrum of symptoms resembling the mucocutaneous side 
effects of oral treatment with synthetic retinoids. Humans 
require 0.8 – 1   mg or 2400 – 3000   I.U. vitamin A per day (1
   I.U.    =    0.3    � g). However, vitamin A intoxication only occurs when 
daily dietary intake of vitamin A exceeds 18000 to 60000   I.U. per 
day in children and 50000 to 100000   I.U. in adults, given over a 
period of several months  [4] . In the case of restricted liver meta-
bolic capacity, symptoms of intoxication may appear much ear-
lier, within a few months, and when smaller doses are taken 
(10000   I.U. per day). Hypervitaminosis A is signaled by an 
increase in retinol ester levels (normal value is 5 – 8    %  of retinol) 
in serum. The retinol values rarely increase. Pregnant women 
and women of childbearing age should not exceed oral intake of 
8000 to 10000   I.U. vitamin A per day.   

 Molecular mechanisms of action 
  &  
 Although retinol is assumed to enter the cells by non-receptor-
mediated endocytosis  [5] , the exact mechanism of retinoid-
induced membrane-associated signal transduction is still 
unknown. Intracellularly, atRA and 9cRA are transported by 
cytosolic proteins, bind to specifi c nuclear receptors, induce 
expression of genes which bear specifi c DNA sequences recog-
nizing the retinoid / receptor complex  [6,   7] , and are fi nally inac-
tivated  [8] . These pathways have been well investigated for atRA, 
but they may not be valid for all retinoid compounds. 
 The discovery of the specifi c cellular retinoid binding proteins 
and the nuclear retinoid receptors has extended the understand-
ing for the broad spectrum of the biological activity of retinoids 
 [9] . These observations have also thrown light on the complex 
interactions between retinoids and further hormonal signal 
transduction molecules. atRA is transported by the cellular 
retinoic acid-binding proteins (CRABP) from the cytoplasm to 
the nucleus. The dominant CRABP in the skin is CRABP II, whereas 
expression of low quantities of CRABP I was also found. The 

expression of CRABP II is high-adjusted by the local use of atRA. 
CRABP II is considered as an early marker of retinoid activity on 
the skin and probably can control the bioavailability of retinoids. 
 Retinoid receptors are members of the nuclear receptor super-
family and are classifi ed in two families; the retinoic acid recep-
tors (RARs) and the retinoid X receptors (RXRs)  [10] . They act as 
ligand-dependent transcription factors. RARs can bind both atRA 
and 9cRA with high affi nity, while RXRs selectively interact with 
9cRA. Both types of retinoid receptors exhibit  � ,  �  and  �  subtypes, 
whereby each type includes a number of isoforms. The retinoid 
nuclear receptor complex activates genes, which possess spe-
cifi c short DNA sequences in their promoter regions, known as 
retinoid-response elements. The fact that not all retinoids com-
bine biological activity and affi nity for and / or activation of the 
receptors has led to suggestions for existence of additional 
unknown retinoid signaling pathways. 13cRA shows low affi nity 
for RARs and 14-hydroxy- retro -retinol, which specifi cally 
induces lymphocyte proliferation, and does not bind to or acti-
vate retinoid receptors  [10] . However, the knowledge that reti-
nol activation requires its metabolism to the receptor-binding 
retinoic acids, particularly atRA, and the elucidation of the 
mechanism of 13cRA action on human sebocytes corroborate 
the signifi cance of retinoid receptors for biological retinoid 
activity; 13cRA is a pro-drug, activated in human sebocytes 
through a selective intracellular isomerization to high levels of 
atRA and subsequent binding to RARs  [11] . 
 Retinoid receptors bind retinoids in the form of dimers, as 
homodimers (RXR / RXR) or heterodimers (RAR / RXR)  [10] . Het-
erodimers can be also formed between RXR and the vitamin D 
receptor (VDR / RXR) as well as between RXR and 13 other mem-
bers of the nuclear receptor superfamily. This discovery has 
thrown light on the complex interactions between retinoids and 
further hormonal signal transduction molecules. Following this 
concept, RXR selective retinoids may infl uence vitamin D and 
other nuclear hormone target genes, in addition to the RXR 
responsive ones. On the other hand, vitamin D and other nuclear 
hormones may also regulate RXR responsive genes. Clinically, 
combinations of RXR selective retinoids and vitamin D deriva-
tives may potentate the expected therapeutic result and decrease 
toxicity of each single compound  [12] . 
 RAR �  and  �  and RXR � ,  � ,  �  are expressed in epidermal keratinoc-
ytes of the stratum granulosum, follicular keratinocytes, sebo-
cytes, and endothelial cells, while only the RXR �  isotype is 
present in melanocytes, fi broblasts and infl ammatory cells 
 [11,   13 – 16]  (    �  �     Fig. 1  ).   

 Natural retinoids are not only vitamins but also 
hormones 
  &  
 Natural retinoids are vitamins because retinol is not synthesized 
in the body and must be derived from carotenoids in the diet 
 [17] . On the other hand, retinoids are also hormones  –  with 
intracrine activity  [18]   –  because retinol is transformed in the 
cells into molecules that bind to nuclear receptors, exhibit their 
activity, and are subsequently inactivated (    �  �     Fig. 1  ). The intrac-
rine concept implies an intracellular control of the amount of 
ligand available to nuclear receptors. Because the intracellular 
amount of the ligand required for exhibiting normal activity is 
low, homeostasis is guarantied by the ability of the system to 
inactivate excessive retinoid amounts. Molecules shown to con-
trol the bioavailability of retinoic acid are cytochrome P450 
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isoenzymes and CRABP II  [19] . Recently, 13cRA was shown to 
competitively inhibit 3 � -hydroxysteroid oxidation by retinol 
dehydrogenase, a mechanism that may contribute to an anti-
androgenic effect of 13cRA in sebaceous glands  [20] .   

 Pharmacokinetics and cutaneous metabolism 
  &  
 Transport mechanisms and pharmacokinetics of retinol are 
known to a large extent  [17,   21] . Retinol is transported in plasma 
by the specifi c retinol-binding protein (RBP) to the peripheral 
tissues. The intracellular absorption of retinol takes place via 
diffusion without the assistance of receptors. Intracellularly, cel-
lular retinol-binding proteins (CRBP) take over the function of 
the RBP. Retinol is naturally oxidized to retinaldehyde by CRBP I 
and the NADP     +     -dependent retinol dehydrogenase.  � -Carotenes, 
which are taken up by food, can be converted to retinaldehyde. 
Retinaldehyde is further oxidized with the help of the NAD     +     -
dependent retinal dehydrogenase to atRA, which is the most 
active natural retinoid. Excessive retinol is converted intracellu-
larly with the help of the enzyme lecithin retinol acetyl trans-
ferase to retinyl esters, which can be oxidized with the help of 
the retinyl ester hydrolase back to retinol. 
 Retinoid metabolism in human skin is likely to be a cell-specifi c 
event, since sebocytes exhibit a distinct metabolic pattern com-
pared to epidermal keratinocytes  [15] . Excess retinol is mainly 
esterifi ed  [22] ; application of retinol to human skin  in vivo  does 
not lead to measurable retinoic acid levels  [23] . Human kerati-
nocytes  in vivo  regulate the levels of intracellular atRA by induc-
tion of retinoic acid 4-hydroxylase  [24] , preventing the 
accumulation of atRA in the epidermis. Human keratinocytes  in 
vitro  rapidly take up and also initially convert retinol to retinyl 
esters and then to low amounts of atRA with time  [8,   25] . In con-
trast to atRA, retinol, retinaldehyde, 9cRA and 13cRA are not able 
to regulate their own hydroxylation. 3,4-Didehydroretinol can 
also be detected  [26] . However, ester formation, especially of 
retinyl oleate (18:1) and retinyl palmitate (16:0), remains the 
main route by which excess retinol is also handled by human 
keratinocytes  in vitro . 
 atRA is photochemically unstable. With its topical application it 
is partially isomerized into 13cRA and 9cRA as well as to a 
number of further retinoid metabolites in the epidermis  [26] . 
Approximately 80    %  of the substance remains at the skin surface. 
Topically applied retinoids penetrate the epidermis through the 

stratum corneum and the follicular epithelium, whereby their 
penetration index is dependent on the basis of the preparation 
used. The diffusion of retinoids in the stratum corneum is rapid; 
they form within few minutes a substance reserve in the horny 
layer. Penetration into the deeper epidermis and into the dermis 
is usually slower. The percutaneous absorption of atRA is 
between 0.1 and 7.2    % . Inactivation of topical atRA seems to take 
place via the induction of cytochrome P450-retinoic acid hydrox-
ylase activity, which catalyzes the metabolism to 4-hydrox-
yretinoic acid. Another inactivation product is 5,6-epoxyretinoic 
acid. The metabolic pathways of 13cRA and 9cRA  in vivo  are still 
unclear, whereas  –  in addition to its possible isomerization to 
atRA  [11]   –  the 4-oxo metabolism of 13cRA could be another 
activation pathway, since 4-oxoretinoids were shown to be func-
tionally active in human keratinocytes and fi broblasts by their 
ability to induce changes in gene expression  [27] . Alternatively, 
13cRA has been suggested to act in a receptor-independent 
manner by infl uencing cellular signaling pathways by direct 
protein interactions as demonstrated with other retinoids or by 
enzyme inhibition  [20] . Topically applied 13cRA is partially con-
verted by UV light to atRA  [21] .   

 Cellular mechanisms of action 
  &  
 The cellular mechanisms of action of natural retinoids are based 
on the time- and dose-dependent infl uence of morphogenesis, 
epithelial cell proliferation and differentiation, epithelial and 
mesenchymal synthetic performance, immune modulation, 
stimulation of angiogenesis and inhibition of carcinogenesis. 
The dramatic effects of retinoids on embryogenesis were stud-
ied by animal experiments; the clinical malformation pattern in 
humans is known  [28,   29] . 
 Retinoids promote cell proliferation in normal epidermis by 
shortening the mitotic phase of cell cycle, but act towards nor-
malization in hyperproliferative epithelia. Proliferation of rap-
idly proliferating keratinocytes, such as psoriatic ones, is 
down-regulated by retinoids.  In vitro , atRA was shown to either 
stimulate or inhibit epidermal keratinocyte proliferation, 
depending on the growth-culture conditions. Stimulation of 
keratinocyte proliferation is associated with induction of cAMP, 
epidermal growth factor (EGF)-receptor binding, protein kinase 
C and tumor growth factor (TGF)- �   [30,   31] . Epidermal thicken-
ing with voluminous stratum spinosum and stratum granulo-

   Fig. 1           Active vitamin-hormone receptors and 
synthesis of vitamin-hormones in human skin 
cells. RAR    =    retinoic acid receptors; RXR    =    retinoid 
X receptors; RXR �     =    retinoid X receptor type  � , 
VDR    =    vitamin D receptors; atRA    =    all- trans  retinoic 
acid.  

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



Review74

 Reichrath J et al. Vitamins as Hormones    …    Horm Metab Res 2007; 39: 71 – 84 

sum is the histological correlate. On the other hand, 
TGF- �  2 -regulated inhibition of EGF-binding to its receptor leads 
to downregulation of cell growth. The effect of atRA on EGF 
receptor-binding is on a region of the EGF promoter regulated by 
RAR � . A biphasic effect of natural retinoids on human sebocytes 
is also detected. Under normal conditions, atRA and 13cRA 
inhibit sebocyte proliferation  [32] , while atRA substitutes the 
nutritional effect of retinol after cell maintenance under retinol-
depleted conditions  [33] . 
 Parallel to these effects, retinoids alter terminal keratinocyte 
differentiation towards a metaplastic, non-keratinizing, mucosa-
like epithelium, whereas the glycosylation pattern of normal 
skin treated with atRA resembles that of a mucosal epithelium, 
with reduction of tonofi laments, decreased cohesiveness of the 
stratum corneum, impaired function of the permeability barrier, 
and increased transepidermal water loss, causing the keratolytic 
effect of retinoids in hyperkeratotic disorders. In contrast, oral 
and topical retinoids stimulate terminal differentiation of human 
epidermal cells, e.g., in the psoriatic plaque  [17,   21] .  In vitro , most 
markers of terminal differentiation (loricrin, transglutaminase, 
involucrin, fi laggrin, keratins 1 and 10) are down-regulated by 
atRA in a dose-dependent manner and keratins 19 and 13, mark-
ers of nonstratifi ed and wet stratifi ed epithelia, respectively, are 
induced  [34] . In contrast, natural atRA restores the architecture 
of the  “ epidermis ”  in the air-medium interface model, which 
exhibits excessive hyperkeratosis in vitamin A-depleted medium 
 [35] . 
 atRA up-regulated hyaluronan synthase 2 ( Has2 ) gene expres-
sion 4-fold within two hours in rat epidermal keratinocytes and 
even 8-fold in HaCaT human immortal keratinocytes  [36] . 
Hyaluronan is an abundant and rapidly turned over matrix mol-
ecule between the vital cell layers of the epidermis and subject 
to large concentration changes associated with keratinocyte 
proliferation, migration and differentiation induced by paracrine 
and endocrine factors like EGF and atRA. The fi rst 10   kB of the 
human  Has2  promoter were scanned  in silico  and  in vitro  for 
potential retinoic acid response elements (RAREs) and a com-
plex of two of these RAREs was found approximately 1200   bp 
upstream of the transcription start site. Moreover, chromatin 
immunoprecipitation assays using antibodies against nine 
nuclear proteins monitored atRA-dependent binding of RAR, 
RXR, mediator protein and RNA polymerase II and also histone 4 
acetylation to a promoter region containing the complex RARE. 
This indicates that the human  Has2  gene is a potent primary EGF 
and atRA responding gene with a complex regulation. 
 Retinoic acids exhibit earlier and stronger biological effects on 
keratinocytes than retinol, probably due to their early high cel-
lular accumulation and their slower inactivation  [8,   17] . These 
fi ndings support the assumption that the intensity of retinoid 
signaling is dependent, in part, on the intracellular concentra-
tions of retinoic acid. This assumption is supported by the tight 
autoregulatory mechanism in human keratinocytes offering 
protection against excessive accumulation of cellular retinoic 
acid, e.g., the induction of CRABP II  [14,   17] . Most actions of atRA 
are recognized to be mediated through activation of RARs, 
whereas in epithelial skin cells RARs modulate cell proliferation, 
while RXRs rather infl uence cell differentiation  [11] . Retinoids 
regulate proliferation and differentiation of skin epithelial cells 
towards a homeostatic status  [17,   21] . 
 13cRA is the most effective retinoid in reducing sebaceous gland 
size (up to 90    % ), by decreasing proliferation of basal sebocytes, 
and suppressing sebum production  in vivo . Marked decrease of 

wax esters, light decrease of squalene and relative increase of 
cholesterol concentration has been detected in skin surface lip-
ids. Orally administered 13cRA was also shown to decrease glyc-
eride fraction, whereas free sterols and total ceramides were 
increased in comedonal lipids  [37] . 9cRA was found to be infe-
rior to 13cRA in sebum suppression  [38] .  In vitro  studies con-
fi rmed the pronounced, direct inhibitory effects of 13cRA on 
proliferation, lipid synthesis, and differentiation of human sebo-
cytes  in vitro   [39 – 41] . Current data indicate that in sebocytes, 
13cRA causes inhibition of cell proliferation after intracellular 
metabolism to atRA by a RAR-mediated pathway and cell cycle 
arrest and apoptosis by a RAR-independent mechanism, which 
contributes to its sebosuppressive effect  [11,   42]  (  Table 1  ). 
 Multiple effects of retinoids on the cellular and humoral immu-
nity  –  probably by activating phospholipase C and phosphoki-
nase C as well as by stimulating the antigen-presenting capacity 
of the Langerhans cells and inducing ICAM-1 expression on 
keratinocytes  –  lead to immune-modulatory effects. 14-Hydroxy-
 retro -retinol was identifi ed to be an essential growth factor for 
lymphoblastoid cells  [43] . Retinoids can enhance antibody pro-
duction, increasing peripheral blood T helper cells, but not natu-
ral killer cells. Topically applied atRA was shown to prevent 
Langerhans cell depletion in human epidermis due to UV light 
 [44] .  In vitro , cell-surface antigens of T- and natural killer cells 
have been reported to increase after retinoid exposure  [45] . 
Interaction of retinoids and cytokines has been suggested on 
account of the stronger differentiation response of HL-60 cells to 
combined atRA and cytokines, particularly IFN � , as compared to 
the single compounds  [46] . At the molecular level, the modula-
tion of RAR �  gene expression in chicken T lymphocytes by reti-
nol and atRA indicates that antigen-specifi c proliferative 
responses of T lymphocytes may be directly infl uenced by atRA 
via modulation of RAR �  expression  [47] . 
 Retinoids also exhibit anti-infl ammatory activities. Topical 
13cRA was found to be more potent in inhibiting leukotriene B 4 -
induced migration of neutrophils into human skin than atRA 
 [48] . 13cRA and atRA inhibited nitric oxide and tumor necrosis 
factor- �  (TNF � ) production by human keratinocytes and reduced 
inducible nitric oxide synthase mRNA levels  [49] . 
 There is some early information concerning the activity of retin-
oids on the endothelium. Retinoids are probably able to induce 

  Table 1       Effectiveness of 13- cis -retinoic acid on human epithelial cells 

 Cellular 

function 

 Effect  Cellular 

mechanism 

 Molecular 

mechanism 

 Proliferation   *     Inhibition  Intracellular 
isomerization 
in tretinoin 

 RAR-mediated 

 Proliferation /
 Apoptosis   *    

 Inhibition /
 Induction 

 Cell cycle arrest  Retinoid receptor-
independent 

 Lipid synthesis   *     Reduction  Inhibition of 
terminal dif-
ferentiation 

 RAR- and RXR-
mediated 

 Lipid synthesis    Decreased 
androgen 
synthesis 

 Inhibition of 
3 � -hydroxysteriod 
activity of retinol 
dehydrogenase 

 Infl ammation  Inhibition  Inhibition of 
the migration 
of neutrophils 

 Reduction of 
metalloproteinase 
expression 

    *       Specifi c effect on sebocytes. RAR    =    retinoic acid receptor; RXR    =    retinoid X receptor   
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angiogenesis and increase the skin blood-fl ow. On the other 
hand, 13cRA was shown to inhibit the proliferation of microvas-
cular endothelial cells growing  in vitro , without infl uencing the 
expression of HLA-DR and ICAM-1  [50] . 
 Retinoids exhibit a direct pro-differentiating effect on tumor 
cells  [51] . The example of tumor cell differentiation in the trans-
location-associated acute promyelocytic leukaemia of mature 
neutrophils under the infl uence of atRA makes possible that 
retinoids may modulate gene expression in tumor cells. Another 
possible mechanism of the antitumor effect of retinoids can be 
discussed in the inhibition of ornithin decarboxylase and of the 
expression of cytochrome P4501A1.   

 Toxicology of natural retinoids 
  &  
 Characteristic adverse effects of hypervitaminosis A, such as alo-
pecia, elevation of serum triglycerides, hyperostosis, and 
extraskeletal calcifi cation, can also be observed under treatment 
with other oral retinoids  [17,   21] . During embryogenesis, retin-
oids are highly teratogenic. Because of these adverse effects, oral 
retinoid treatment appears today strictly contraindicated in 
pregnancy, during lactation, and in severe hepatic and renal dys-
function, whereas new restrictive guidelines for the use of 13cRA 
in acne treatment have been released in Europe and the U.S.A. in 
order to avoid pregnancies under the drug  [52] . Before drug 
administration, it is strictly recommended to explain the risk of 
fetal malformations. Hyperlipidemia, diabetes mellitus, and 
severe osteoporosis are relative contraindications. Limiting con-
ditions for retinoids are gastrointestinal diseases and patient 
non-compliance. Co-medication with tetracyclines (cranial 
hypertension) and high doses of aspirin (potentation of mucosal 
damage) should be avoided. The mucocutaneous adverse effects 
of oral retinoids include skin and mucosal dryness (xerosis, 
cheilitis, conjuctivitis, urethritis), skin fragility and / or stickiness, 
retinoid dermatitis, palmoplantar desquamation, pruritus, and 
hair loss. Apart from embryotoxicity, the incidence and severity 
of these signs are dose-dependent; they are fully reversible upon 
discontinuation of treatment. 
 In contrast to the teratogenic effect of systemic retinoids, topical 
retinoids have shown no mutagenicity, carcinogenesis and tera-
togenicity in animals. Also in pregnant animals no infl uence of 
topical retinoids on the fetus could be observed. An epidemio-
logical study assessed no increased embryopathy risk under 
topical tretinoin application during pregnancy in humans  [53] . 
Moreover, the daily variation of natural retinoids plasma levels 
is larger than the plasma levels occurring under topical retinoid 
application for the treatment of skin diseases. However, an indi-
vidual embryopathy risk under topical retinoid application can-
not be securely excluded, therefore, the topical application of 
retinoids should be strictly avoided during the fi rst trimester of 
pregnancy. Skin irritation, xerosis, scaling and itching of the skin 
are characteristic cutaneous adverse effects of topical retinoids. 
They occur, depending on retinoid concentration and the type of 
the vehicle used, during the fi rst month of treatment and spon-
taneously vanish under continued application.   

 Therapeutic indications of natural retinoids 
  &  
 Among natural retinoids, retinoic acids have been approved or 
are under investigation for the systemic treatment of certain 

disorders shown in   Table 2  , whereas almost all natural retinoids 
are used as topical therapeutic compounds  [17,   21,   54] .   

 Retinoids in wound healing 
  &  
 Retinoid effects on connective tissue metabolism are considered 
to be of paramount importance for a number of therapeutic 
indications, including their administration in preventing or 
repairing skin aging (    �  �     Fig. 2  ). In addition, changes in epidermal 
and vascular functions, as mentioned before, probably contrib-
ute to benefi cial retinoid effects in the skin. Given the regenera-
tive effects of retinoid use on various components of the skin, it 
is not surprising that retinoids should be considered for use as 
wound-preventive or wound-healing agents. 
 Retinol and retinoic acids, applied topically, counteract atrophic 
dermal changes by inducing the synthesis of types I and III pro-
collagen  [55,   56]  and suppressing the major collagen-degrading 
enzymes in the skin  [57] . These retinoid effects on the skin 
refl ect multiple mechanisms. Retinoids directly infl uence gene 
transcription and, in addition, alter signaling cascades that regu-
late gene transcription  [58,   59] . In the case of metalloproteinase 
reduction, retinoids not only down-regulate enzyme production 
at the molecular level in different skin cells  [57,   60]  but also up-
regulate tissue inhibitor of metalloproteinases-1  [61] , the major 
metalloproteinase inhibitor in the skin. Retinoids also induce an 
increased production of water-adsorbing glycosaminoglycans 
 [62] . 
 Along with these specifi c effects on collagen metabolism, retin-
oid treatment also stimulates proliferation of dermal fi broblasts, 
thus fostering additional collagen production. Retinoid-medi-
ated effects on cell function can be seen in human skin after as 
little as 4 – 7 days of topical treatment  [63]  (    �  �     Fig. 2  ), although, 
not surprisingly, marked improvements in connective tissue 
structure are not observed until much longer  [64 – 66] . atRA used 
in skin that has been severely damaged by chronic, excessive 
sun-exposure has been convincingly shown to improve skin 
appearance  [64,   65] . More recent studies have shown that intrin-
sically (chronologically) damaged sun-protected skin is also 
amenable to improvement through retinoid treatment  [66] . 
 Several past studies have demonstrated retinoid effi cacy in 
wound healing  [67 – 70] . In most of the studies where retinoid 
use has been found benefi cial, the biologically active retinoid 
was applied in a pre-treatment mode. Subsequently, when 
wounds were formed in the retinoid-treated tissue and in the 
untreated control tissue, wound-healing was superior in the 

  Table 2       Topical (T) and systemic (S) natural retinoids in clinical use (U) or 
clinical trials (TR) 

 Topical retinoids 

 Substance  Major indications 

 Retinol  Cosmetic indications (T-U), acute promyelocytic 
leukemia (S-U) 

 Retinol palmitate  Cosmetic indications (T-U) 
 Retinaldehyde  Cosmetic indications (T-U) 
 All- trans -retinoic acid  Mild / moderate acne (T-U), photoaging and 

biologic skin aging (T-U) 
 13- cis -retinoic acid  Mild / moderate acne (T-U), severe, recalcitrant 

acne (S-U) 
 9- cis -retinoic acid  Kaposi’s sarcoma (T-U), recalcitrant hand 

eczema (S-TR) 
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treated tissue  [68,   69] . In studies where retinoids, including reti-
nol and atRA, have been used to treat acutely injured tissue, 
results have been concurrent. Thus, there is consensus, that use 
of retinoid improves tissue structure and function in such a way 
as to increase the wound-healing capacity in tissue that subse-
quently suffers injury. There is, however, no consensus on the 
value of retinoid application in the treatment of acutely-injured 
tissue. However, several experimental studies have shown that 
healthy skin heals rapidly following acute wounding, and under 
such conditions, pre-treatment with atRA is of limited value. 
Benefi t from retinoid pretreatment is achieved in at-risk skin  –  
i.e., skin that has pre-existing defects that make it susceptible to 
chronic ulcer formation  [68,   70] . Indeed, in most of the studies 
that have shown a benefi cial effect of retinoid use in a pre-treat-
ment mode, the predominant end-point has been a reduction in 
the time to wound closure  [68 – 70] . Other studies have shown, in 
addition, that retinoid pretreatment increases the strength of 
the healed wound. Where retinoid use increases wound strength, 
there is always a concomitant increase in collagen production 
 [67] .   

 Vitamin D3 and the skin     
  &  
 The skin represents one of the key tissues of the human body ’ s 
vitamin D endocrine system, which is of critical importance for 
a broad variety of independent physiological functions  [71 – 74] . 
It is well known that 1,25(OH) 2 D 3 , the biologically most active 
naturally occurring vitamin D 3  metabolite, is essential for min-
eral homeostasis and bone integrity  [71] . The critical importance 
of the skin for the human body ’ s vitamin D endocrine system is 
documented by the fact that the skin is, fi rst the site of vitamin 
D 3  and 1,25(OH) 2 D 3  synthesis, and second a target organ for 
1,25(OH) 2 D 3 . 1,25(OH) 2 D 3  is not only essential for mineral home-
ostasis and bone integrity, but also for a broad variety of other 
physiological functions including regulation of growth and dif-
ferentiation in a broad variety of normal and malignant tissues, 
including cells derived from prostate, breast and bone  [72 – 74] .   

 Vitamin D3 metabolism in human skin     
  &  
 A photochemical reaction with maximum spectral effectiveness 
at about 297   nm results in the generation of previtamin D3 from 
7-dehydrocholesterol (provitamin D 3 , 7-DHC) in basal and 
suprabasal layers of the skin  [71] . Depending on temperature 
and time, previtamin D3 is then isomerized to vitamin D. After 
binding to carrier proteins, in particular vitamin D-binding pro-
tein (DBP), vitamin D is transported to the liver where it is enzy-
matically hydroxylated by CYP27A1 (vitamin D-25-hydroxylase; 
25OHase) at the C25 position, generating 25-hydroxyvitamin D 3  
(calcidiol, 25OHD 3 ). More recently, it has been found that all six 
cytochrome P450 isoforms (CYP27A1, CYP2R1, CYP2C11, CYP3A4, 
CYP2D25 and CYP2J3) exhibit vitamin D 25-hydroxylation activ-
ities  [75,   76] . 25-Hydroxyvitamin D 3 , bound to DBP, is then trans-
ported to the kidney, and is fi nally hydroxylated by CYP27B1 
(25-hydroxyvitamin D-1 � -hydroxylase; 1 � OHase) at C1 �  posi-
tion to hormonally active calcitriol [1 � ,   25-dihydroxyvitaminD3,   
1 � ,   25(OH) 2 D 3 ]. Calcitriol acts in the kidney and is also trans-
ported by DBP to vitamin D receptor (VDR) positive target tis-
sues (mainly bone, intestine and parathyroid gland) to act in a 
genomic or nongenomic manner. There is substantial evidence 
for additional extrarenal sites of calcitriol synthesis.  In vitro , 
many nonrenal cells, including bone, placenta, prostate, kerati-
nocytes, macrophages, T-lymphocytes and several cancer cells 
(e.g., from lung, prostate and skin) can enzymatically convert 
25OHD 3  to 1 � ,25(OH) 2 D 3 . A fi ve-step inactivation pathway from 
calcitriol to calcitroic acid is attributed to a single multifunc-
tional CYP, CYP24A1, which is transcriptionally induced by the 
action of calcitriol in a very sensitive manner. The physiological 
importance of a second catabolic pathway which includes the 
conversion of 1 � ,25(OH) 2 D 3  to 1 � ,25(OH) 2 D-3epi-D 3  is less 
clear. 
 Skin cells (keratinocytes, fi broblasts and other cells) express 
VDR, an absolute prerequisite for regulation of genomic effects 
of calcitriol and other synthetic vitamin D analogues. Experi-
mental and clinical fi ndings have shown that the serum concen-
tration of calcitriol (10     −    11  to 10     −    10    M) is too low to induce 
VDR-mediated hormonal effects in the skin  [77,   78] . More than 
99    %  of the total circulating 1 � ,25(OH) 2 D 3  is bound to carriers 
such as DBP and albumin. In the normal human only 0.4    %  of the 
circulating 1 � ,25(OH) 2 D 3  is free  [79] . According to the  “ free hor-

   Fig. 2           Histological effects of all- trans -retinoic 
acid (atRA) on sun-protected skin. Upper panels: 
Histological features of sun-protected skin treated 
for 7 days with vehicle alone (panel A) or with 
1    %  all- trans -retinol (panel B). The epidermis of 
retinoid-treated skin is thicker than the epidermis 
of vehicle treated skin (hematoxylin and eosin, 
120X). Lower panels: Keratinocytes and fi broblasts 
were counted in blocked sections from vehicle-
treated and retinol-treated skin. Numbers of both 
cell types were increased in retinoid-treated skin. 
There was no apparent change (not surprising) in 
dermal connective tissue structure after short-term 
retinoid treatment (See reference 62 for details).  
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mone hypothesis ”   [80]  only the free, and not total 1 � ,25(OH) 2 D 3  
regulates genomic processes within keratinocytes. This suggests 
that free plasma calcitriol approximates around 6 × 10     −    13    M. It 
has been shown in several studies that calcitriol, at concentra-
tions higher than 10     −    8    M (equivalent to a highly unphysiological 
concentration of approximately 2.5 × 10     −    6    M total calcitriol in the 
circulating blood), is a potent growth inhibitor of normal human 
keratinocytes  in vitro . In addition, cutaneous metabolism of cir-
culating 25OHD 3  to 1 � ,25(OH) 2 D 3  is suggested not to play a sig-
nifi cant role  in vivo  because the amount of free 25OHD 3 , which 
penetrates the cell membrane of epidermal keratinocytes is too 
small to induce formation of suffi cient amounts of 1 � ,25(OH) 2 D 3 . 
25OHD 3  is very tightly bound to DBP (K d     =    5 × 10     −    8    M) in circulat-
ing blood  [81] . Due to this tight binding and the high plasma 
concentration of DBP (0.3 to 0.5   mg / ml), virtually all 25OHD 3  
molecules in the circulation are present as a complex with DBP. 
Only approximately 0.03    %  of the metabolite is found in free 
form  [82] . Furthermore, the deeper layers of the epidermis are 
not vascularized, which additionally impairs the passage of 
25OHD 3  from blood to epidermal keratinocytes. Accordingly, no 
therapeutic effects were observed in UV-protected involved pso-
riatic skin after whole body UVB irradiation, in spite of clearly 
increased 25OHD 3  level in circulating blood  [78] . On the other 
hand, cultured keratinocytes can metabolize exogenously added 
(free) 25OHD 3  to substantial amounts of 1 � ,25(OH) 2 D 3 , which is 
subsequently catabolized in these cells  [83] . Human keratinoc-
ytes  in vitro   [84 – 86]  and  in vivo   [87]  exhibit an autonomous vita-
min D pathway. This pathway encloses not only the well known 
UVB-induced synthesis of vitamin D but also its further enzy-
matically regulated metabolism, which results in the generation 
of hormonally active calcitriol (    �  �     Fig. 3  ). 25-Hydroxylation of 
vitamin D3, the rate-limiting step, is subsequently followed by 
1 � -hydroxylation. Generated calcitriol is fi nally catabolized by 
24-hydroxylation, which means that keratinocytes are the only 
cells in the body with the whole pathway from 7-DHC to 
1 � ,25(OH) 2 D 3 . Cutaneous production of calcitriol may exert 
intracrine and / or autocrine effects on keratinocytes and para-
crine effects on neighboring cells. This hormone may regulate 
growth, differentiation, apoptosis and other biological proc-
esses. There are a number of genes in keratinocytes which are 
regulated by calcitriol  [86] . Regulation of genes associated with 
growth and differentiation of keratinocytes argues in particular 
for a link of therapeutic effect of UVB radiation in the treatment 

of psoriasis with the cutaneous vitamin D3 pathway. Interest-
ingly, Su et al.  [88]  have previously demonstrated that free con-
centrations of calcitriol as low as 10     −    12    M (equivalent to 
approximately 2.5 × 10     −    10    M total calcitriol in circulating blood) 
increased involucrin and transglutaminase mRNA levels in 
keratinocytes  in vitro . This sensitive effect of calcitriol might pri-
marily contribute to increased differentiation of keratinocytes  in 
vitro  and  in vivo . 
 Recently,  in vitro  investigations have shown that dermal fi brob-
lasts express one of the potential 25-hydroxylases (CYP27A1), 
but not the 1 � -hydroxylase (CYP27B1). Therefore, fi broblasts 
might play an important role in the supply of calcitriol precur-
sors (vitamin D3 and 25OHD 3 ) to keratinocytes and possibly to 
circulating blood  [89] . 
 In recent studies with an  in vitro  system of reconstituted cyto-
chrome P450 side-chain cleavage system (P450scc), 7-DHC and 
vitamin D3 were found to serve as alternative substrates for 
P450scc  [90] . Furthermore, it has been demonstrated that 
P450scc located in mitochondria from skin cells and other tis-
sues can transform 7-DHC to 7-dehydropregnenolone (7-DHP) 
 [91] . 7-DHP may serve as a substrate for further conversions into 
hydroxy derivatives through steroidogenic enzymes. In the skin, 
5,7-steroidal dienes (7-DHP and its hydroxy derivatives) may 
undergo UVB-induced isomerization to vitamin D-like deriva-
tives. This novel pathway can generate a variety of compounds 
depending on local steroidogenic activity and exposure to UVB. 
The physiological importance of this pathway remains, however, 
to be clarifi ed. 
 It is commonly assumed that most of calcitriol formed by extra-
renal cells serves an intracrine, autocrine or paracrine regulation 
within the cells in which it is produced. In particular, the epider-
mal keratinocyte is both: the site of calcitriol synthesis and tar-
get of this hormone. However, it remains to be shown whether 
and to what extent epidermal synthesis of calcitriol modulates 
cellular proliferation, differentiation, apoptosis, and immuno-
logical processes.   

 Gene regulatory effects of vitamin D3 receptor in 
keratinocytes 
  &  
 1,25(OH) 2 D 3  exerts its biological effects in keratinocytes and 
other cell types both via non-genomic and genomic mecha-

Skin surface

Epidermis (Keratinocytes)

7-DHC [PreD3]

UVB (280-320 nm)

(∆, t)

Vitamin D3

Inactive sterols

CYP27A1

25OHD3

CYP27B1

1α,25(OH)2D3

1α,24R,25(OH)3D324R,25(OH)2D3

CYP24A1

CHOL

∆7-R

Basal membrane

Dermis (Fibroblasts)7-DHC [PreD3] Vitamin D3

(∆, t) CYP27A1
25OHD3

CYP27B1∅
CYP24A1

24R,25(OH)2D3

1α,25(OH)2-3-epi-D3

Epimerase ?

  Fig. 3           Vitamin D 3  pathway in epidermal 
keratinocytes (7-DHC: 7-dehydrocholesterol; 
CHOL: cholesterol; preD 3 : previtamin D 3 ; 25OHD 3 : 
25-hydroxyvitamin D 3 ; 1 � ,25(OH) 2 D 3 : 1 � ,25-
dihydroxyvitamin D 3 ; 24 R ,25(OH) 2 D 3 : 24 R ,25-
dihydroxyvitamin D 3 ; 1 � ,24 R ,25(OH) 3 D 3 : 1 � ,24R,25-
trihydroxyvitamin D 3 ; 1 � ,25(OH) 2 -3-epi-D 3 : 
1 � ,25-dihydroxy-3-epivitamin D 3 ;  CYP27A1 : (27)25-
hydroxylase;  CYP27B1 : 1 � -hydroxylase;  CYP24A1 : 
24-hydroxylase;   �    7   -R : 7-DHC-  �   7 -Reductase.).  
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nisms. Genomic effects are mediated via binding to the nuclear 
receptor VDR which is the only nuclear protein that binds the 
hormone with high affi nity (K d     =    0.1   nM)  [92] . The VDR is one of 
11 members of the nuclear receptor superfamily that exert their 
function as classical endocrine receptors. These include the 
already mentioned RARs, RXRs and the receptors for the nuclear 
hormones, thyroid hormone, estradiol, progesterone, testoster-
one, cortisol and aldosterol, which bind their specifi c ligand 
with a K d  of 1   nM or less  [93] . Like most members of the nuclear 
receptor superfamily, the VDR contains two zinc fi nger struc-
tures that form a characteristic DNA-binding domain of 66 
amino acids  [94] . In addition, the carboxy-terminal of the pro-
tein contains a ligand-binding domain (LBD) of approximately 
300 amino acids formed by 12    � -helices  [95] . Ligand binding 
causes a conformational change within the LBD, whereby helix 
12, the most carboxy-terminal  � -helix, closes the ligand-binding 
pocket via a  “ mouse-trap like ”  intramolecular folding event  [96] . 
The LBD is also involved in a variety of interactions with nuclear 
proteins, such as other members of the nuclear receptor super-
family, CoA and co-repressor proteins  [97] . Co-repressor pro-
teins, such as NCoR, SMRT and Alien, link non-liganded, 
DNA-bound VDR to enzymes with histone deacetylase activity 
that cause chromatin condensation  [98] . This provides VDR with 
intrinsic repressive properties comparable to retinoic acid and 
thyroid hormone receptors. The conformational change within 
VDR ’ s LBD after binding of 1,25(OH) 2 D 3  results in the replace-
ment of co-repressor molecules by a CoA protein of the p160-
family, such as SRC-1, TIF2 and RAC3  [99] , in complex with more 
general CoAs, such as CREB binding protein (CBP)  [100] . These 
CoA complexes have histone acetyltransferase activity, whose 
action on their major nuclear substrate, histone N-terminus 
tails, have the net effect of causing chromatin relaxation  [101] . 
In a subsequent step, ligand-activated VDR changes rapidly from 
interacting with the CoAs of the p160-family to those of media-
tor complexes, such as thyroid hormone receptor-associated 
protein 220 (TRAP220)  [102] . The mediator complexes, which 
consist of approximately 15 – 20 proteins, build a bridge to the 
basal transcription machinery  [103] . In this way ligand-activated 
VDR executes two tasks, the modifi cation of chromatin and the 
regulation of transcription. These ligand-triggered protein-pro-
tein interactions are the central molecular events of nuclear 
receptor dependent 1,25(OH) 2 D 3  signaling. 
 An essential prerequisite for the direct modulation of transcrip-
tion by 1,25(OH) 2 D 3  is the location of at least one activated VDR 
protein close to the transcription start site (TSS) of the respec-
tive primary 1,25(OH) 2 D 3  target gene. In the vast majority of 
cases identifi ed so far, this is achieved through the specifi c bind-
ing of VDR to discrete DNA sequences in promoter regions of 

target genes, referred to as 1,25(OH) 2 D 3  response elements 
(VDREs)  [92]  (    �  �     Fig. 4  ). In detail, the DNA-binding domain of the 
VDR contacts the major grove of a hexameric sequence, referred 
to as core binding motif, with the consensus sequence RGKTSA 
(R    =    A or G, K    =    G or T, S    =    C or G). The affi nity of monomeric VDR 
to a single core binding motif is not suffi cient for the formation 
of a stable protein-DNA complex and thus VDR requires forma-
tion of homo- and / or heterodimeric complexes with a partner 
nuclear receptor in order to allow effi cient DNA binding  [104] . 
As already mentioned, RXR is the preferential heterodimeric 
partner of VDR  [92] . 
 VDR binds well to two hexameric core binding motifs in a direct 
repeat (DR)-type orientation with 3 intervening nucleotides 
 [104 – 106] . DR3-type response elements (REs) are therefore 
widely accepted as the classical VDRE structure. However, effec-
tive VDR binding has also been observed on DR4-type REs 
 [104,   107]  and on everted repeat (ER)-type VDREs with 7 to 9 
nucleotides (ER7, ER8, ER9)  [108,   109] . Additionally, most of the 
presently known natural VDREs also have a DR3-type structure 
and are located within the fi rst 1000   bp of promoter sequence 
upstream of the TSS with a consensus VDR core binding motif of 
RGKTSA. 
 Simultaneous communication of individual promoter regions 
with the Pol II complex may occur through a discrete 3-dimen-
sional organization of the promoter and that this is achieved via 
a large protein conglomeration such as the mediator complex 
(    �  �     Fig. 5  ). This arrangement would therefore allow the close 
contact of distant regions.   

 Primary VDR target genes with impact in 
keratinocyte growth 
  &  
 In recent years 1,25(OH) 2 D 3  and its low-calcemic analogues have 
emerged as promising agents for the treatment of hyperprolif-
erative diseases including psoriasis and cancer  [110] . However, 
the mechanisms of the anti-proliferative, pro-differentiating 
and pro-apoptotic effects of VDR ligands vary and are cell-spe-
cifi c. They are mediated by the up-regulation of a broad variety 
of target genes, such as the cyclin-dependent kinase (CDK) 
inhibitors p21 and p27  [111]  and the down-regulation of other 
target gene products including Bcl-2  [112]  and Myc  [113] . The 
 p21   (waf1 / cip1)   gene was suggested fi rst by Jiang et al.  [114]  to be a 
key gene for understanding the anti-proliferative action of 
1,25(OH) 2 D 3 . Moreover, the  CYP24  gene was shown to be involved 
in vitamin D mediated growth control  [115] , since its expression 
signifi cantly regulates 1,25(OH) 2 D 3  levels in keratinocytes and 
other cell types. The  CYP24  gene is the most responsive human 

VDR-RXR         VDR-RXR  VDR-RXR                  VDR-RXR
 protein X

CYP24

cyclin C

p21(waf1/cip1)

VDR-RXR      VDR-RXR    VDR-RXR                              VDR-RXR
 

VDR-RXR                     VDR-RXR                VDR-RXR
p53              p53           p53

  Fig. 4           1 � ,25(OH) 2 D 3 -responsive regions in 
the promoters of the human  CYP24 ,  cyclin C  and 
 p21   (waf1 / cip1)   genes. Summary of the location of VDR-
RXR heterodimer-associated regions as detected 
by the whole promoter ChIP approach. In case of 
the  p21   (waf1 / cip1)   gene, p53 binding sites were also 
mapped and indicated.  
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primary VDR target gene and shows at the mRNA level up to 
1000-fold inducibility by 1,25(OH) 2 D 3   [116] . Most other known 
primary 1,25(OH) 2 D 3  target genes, such as  cyclin C  and  p21   (waf1 /

 cip1)  , are much less responsive and often show an inducibility of 
2-fold or less after short-term treatment with 1,25(OH) 2 D 3  
 [117,   118] .   

 1 � ,25-Dihydroxyvitamin D 3  [1,25(OH) 2 D 3 , 
calcitriol] and analogues modulate epidermal 
proliferation and differentiation 
  &  
 Numerous  in vitro  and  in vivo  studies demonstrate dose-depend-
ent effects of vitamin D analogues on proliferation and differen-
tiation in keratinocytes and other cell types. At low 
concentrations, 1,25(OH) 2 D 3  stimulates proliferation of kerati-
nocytes  in vitro , while at higher pharmacological doses (    ≥    10     −    8    M) 
keratinocyte proliferation is inhibited  [119] . Consequently, vita-
min D analogues are effective in the treatment of the hyperpro-
liferative skin disease psoriasis. Immunohistochemical and 
biochemical analysis have demonstrated profound antiprolifera-
tive and differentiation-inducing effects in epidermal keratinoc-
ytes of lesional psoriatic skin along with treatment with vitamin 
D analogues  in vivo   [72,   73,   120,   121] . It has been shown that the 
immunohistochemical staining pattern for various markers of 
epidermal proliferation (e.g., proliferating cell nuclear antigen 
[PCNA], Ki-67-antigen) and diifferentiation (e.g. involucrin, 
transglutaminase K, fi laggrin, cytokeratin 10) changes in lesional 
psoriatic skin along with topical treatment with vitamin D ana-
logues almost completely to the staining pattern characteristic 
for nonlesional psoriatic or normal skin  [120,   121] . Effects of 
topical treatment with vitamin D analogues on dermal infl am-
mation in psoriatic skin are less pronounced. One reason for this 
observation may be that the bioavailability of this potent hor-
mone in the dermal compartment may be markedly reduced as 
compared to the epidermal compartment  [120] . Although the 
mechanisms that underlie the antiproliferative and differentia-

tion-inducing effects of vitamin D analogues on keratinocytes 
are not completely understood, it is well known that these 
effects are at least in part genomic and mediated via VDR. It has 
been shown that keratinocytes from VDR-defi cient mice do not 
respond to the antiproliferative effects of vitamin D analogues. 
The target genes of topical 1,25(OH) 2 D 3  that are responsible for 
its therapeutical effi cacy in psoriasis are still unknown. Major 
candidates for 1,25(OH) 2 D 3  target genes that are responsible for 
the 1,25(OH) 2 D 3 -induced terminal differentiation in keratinoc-
ytes are distinct cell cycle associated proteins (e.g., INK4 family), 
including p21  [72,   111]  and mitogens, such as insulin-like growth 
factors, that have also been reported to be down-regulated by 
1,25(OH) 2 D 3   [122] . Recently, the binding factors for insulin-like 
growth factors (IGFBPs), which control the actions of mitogens, 
have been found to be primary mediators of the anti-prolifera-
tive actions of 1,25(OH) 2 D 3  in some cells, but dependent on cel-
lular context, IGFBPs can also have a mitogenic effect. The  IGFBP3  
gene was shown to be a primary VDR target  [123]  and is there-
fore of special interest for understanding the mechanisms of the 
cell-regulatory actions of 1,25(OH) 2 D 3 .   

 Immunomodulatory effects of 1,25(OH) 2 D 3  and 
analogues in the skin 
  &  
 During the last years, potent new immunomodulatory effects of 
vitamin D analogues have been characterized  [124 – 126] . It has 
been demonstrated that various cell types involved in immuno-
logic reactions (e.g., monocytes, T- and B-lymphocytes, Langer-
hans cells) do not only express VDR, but moreover possess the 
enzymatic machinery (25-hydroxyvitamin D 3 -1 � -hydroxylase) 
for the local synthesis of 1,25(OH) 2 D 3   [126] . Today, the local syn-
thesis of 1,25(OH) 2 D 3  in immune cells is considered to be of 
critical importance for the regulation and control of immune 
responses. 1,25(OH) 2 D 3  inhibits activation of T-cells and induces 
the generation of CD25    +     / CD4    +     regulatory T-cells  [124] . In den-
dritic cells, 1,25(OH) 2 D 3  inhibits maturation and induces a phe-
notype that promotes tolerance and inhibits immunity after 
stimulation with antigen  [124,   125] . Moreover, 1,25(OH) 2 D 3  sup-
presses expression of MHC II molecules and of co-stimulatory 
molecules including CD40, CD80 and CD86 in dendritic cells 
 [126] . In these cells, production of interleukin (IL)-10 is stimu-
lated and production of IL-12 inhibited, resulting in suppression 
of T-cell activation. At present, a connection between vitamin D 
and pathogenesis of atopic dermatitis is discussed. Epidemio-
logic studies have demonstrated that patients with atopic der-
matitis have a lower vitamin D intake as compared to controls 
 [127] . Additionally, it has been reported that vitamin D ana-
logues suppress  in vitro  IgE-production and IgE-mediated cuta-
neous reactions  [128,   129] . These immunomodulatory effects 
identify vitamin D analogues, most likely new vitamin D ana-
logues with selective immunomodulatory activity, as promising 
new drugs for the prevention and therapy of infl ammatory skin 
diseases including atopic dermatitis and allergic contact derma-
titis  [130] .   

 1,25(OH) 2 D 3  and analogues as skin protecting 
agents 
  &  
 Recently, a new physiological function of the cutaneous photo-
synthesis of vitamin D has emerged: its putative role as an evo-
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  Fig.  5           A model of multiple VDRE action on a single promoter. Simultaneous 
communication of the individual promoter regions with the Pol II complex 
occurs through a discrete 3-dimensional organization of the promoter and 
that this is achieved via a large protein conglomeration such as the mediator 
complex. This arrangement would therefore allow the close contact of distant 
regions.
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lutionary highly conserved hormonal system that protects the 
skin and other tissues against environmental hazards including 
ionizing and UV-radiation, microbial infections, and oxidative 
stress. 
 The hazardous effects of solar ultraviolet (UV) radiation, in par-
ticular of UVB with a wavelength range between 290 and 320   nm, 
represent the most important etiological factor in the develop-
ment of non-melanoma skin cancer  [131,   132] . UVB induces pho-
tochemical changes in the skin that may lead to acute effects 
such as DNA-damage, sunburn and immune suppression or 
chronic effects like premature skin aging and skin cancer  [131] . 
 It has been demonstrated that 1,25(OH) 2 D 3  protects human skin 
cells from UV-induced cell death and apoptosis  [133,   134] . In 
these laboratory investigations, cytoprotective effects of 
1,25(OH) 2 D 3  on UVB-irradiated keratinocytes were seen mor-
phologically and using a colorimetric cell survival assay  [133] . 
Additionally, using an ELISA that detects DNA fragmentation, it 
was demonstrated that pretreatment with 1,25(OH) 2 D 3  sup-
pressed UVB-induced apoptotic cell death  [133] . Pretreatment 
of keratinocytes with 1,25(OH) 2 D 3  (1    � M) for 24 hours reduced 
UVB-stimulated apoptosis by 55 – 70    % . Moreover, it was shown 
that pretreatment with 1,25(OH) 2 D 3  also inhibited mitochon-
drial cytochrome c release (90    % ), a well known hallmark event 
of UVB-induced apoptosis  [133] . Furthermore, it was demon-
strated that 1,25(OH) 2 D 3  suppressed two important mediators 
of the UV-response, namely, c-Jun NH 2 -terminal kinase (JNK) 
activation and IL-6 production  [133] . Recent laboratory investi-
gations have shown that pretreatment of keratinocytes with 
1,25(OH) 2 D 3  (1    � M for 24   h) effi ciently inhibited UVB-induced 
PARP-cleavage  [133] . Taken together, these fi ndings indicate the 
existence of a photoprotective effect of active vitamin D ana-
logues and open new perspectives for the potential pharmaco-
logical use of active vitamin D compounds in the prevention of 
UVB-induced skin damage and carcinogenesis  [133 – 136] . Skin 
photocarcinogenesis is caused largely by DNA damage, most 
importantly mutations at sites of incorrectly repaired DNA pho-
toproducts, of which the most common are the cyclobutane 
pyrimidine dimers (CPDs)  [132] . It has been reported that 
1,25(OH) 2 D 3  protects primary human keratinocytes against the 
induction of CPDs by UVB  [136] . These molecules may, therefore, 
represent promising candidates for the chemoprevention of 
UVB-induced skin cancer  [136] . Additionally, topical application 
of 1,25(OH) 2 D 3  reduces solar simulated UV-radiation (SSUVR)-
induced pyrimidine dimers in the epidermis of irradiated hair-
less Skh:HR1 mice  [137] . Furthermore, UV-induced 
immunosuppression in the mice was markedly reduced by topi-
cal application of 1,25(OH) 2 D 3   [137] . Altogether, these labora-
tory investigations convincingly demonstrate a protective effect 
of vitamin D compounds against UVB-induced photodamage  in 
vitro  and  in vivo . It is tempting to speculate that the UVB-induced 
cutaneous production of vitamin D may represent an evolution-
ary highly conserved hormonal feedback mechanism that pro-
tects the skin from the hazardous effects of solar UV-radiation. 
 The activation of the stress-activated protein kinases (SAPKs), 
such as c-Jun NH 2 -terminal kinase (JNK) and p38, represents an 
early cellular response to stress signals and an important deter-
minant of cell fate. Modulation of these SAPKs is associated with 
the effects of 1,25(OH) 2 D 3  on keratinocytes under stress. When 
HaCaT keratinocytes were exposed to heat shock, hyperosmotic 
concentrations of sorbitol, the EGF receptor tyrosine kinase 
inhibitor AG1487, the pro-infl ammatory cytokine TNF � , or H 2 O 2 , 
both SAPKs were activated  [138] . Pretreatment with 1,25(OH) 2 D 3  

suppressed the activation of JNK by all stresses and the activa-
tion of p38 by heat shock, AG1478, or TNF �   [138] . Under the 
same conditions, treatment with 1,25(OH) 2 D protected HaCaT 
keratinocytes from cytotoxicity induced by exposure to H 2 O 2  or 
hyperosmotic shock  [138] . It has been suggested that inhibition 
of SAPK activation may account for some of the well-docu-
mented protective actions of 1,25(OH) 2 D 3  on epidermal cells 
during exposure to UV or chemotherapy and may also be related 
to the anti-infl ammatory effects of the hormone in skin  [138] . 
 Interestingly, 1,25(OH) 2 D 3  inhibits caspase-3-like activation in 
HaCaT keratinocytes exposed to hyperosmotic or oxidative 
stresses, heat shock, or the infl ammatory cytokine TNF �   [139] . 
The respective laboratory investigation has shown that the hor-
mone also protected HaCaT keratinocytes from caspase-inde-
pendent cell death induced by hyperosmotic or oxidative 
stresses. The protection against hyperosmotic stress was not 
affected by inhibitors of the EGF receptor, ERK or PI13 kinase 
pathways, neither was it due to reduced activity of the proapop-
totic p38 MAP kinase. In conclusion, these results are in agree-
ment with previous  in vivo  observations that 1,25(OH) 2 D 3  
protects epidermal keratinocytes from apoptosis due to UV radi-
ation or chemotherapy. 
 Recently, 1,25(OH) 2 D 3  has been shown to represent a direct reg-
ulator of antimicrobial innate immune responses  [140 – 142] . The 
innate immune system of mammals is of high importance pro-
viding a rapid response to repel assaults from numerous infec-
tious agents including bacteria, viruses, fungi, and parasites. A 
major component of this system is a diverse combination of 
cationic antimicrobial peptides that are produced in various cell 
types, which include the  � - and  � -defensins and cathelicidins. 
Molecular mechanisms controlling the expression of CAMP are 
still poorly understood. Interestingly, the promoters of the 
human CAMP and defensin 2 ( defB2 ) genes contain consensus 
VDRE that mediate 1,25(OH) 2 D 3 -dependent gene expression 
 [141] . 1,25(OH) 2 D 3  induces antimicrobial peptide gene expres-
sion in isolated human keratinocytes, monocytes and neu-
trophils, and human cell lines, and 1,25(OH) 2 D 3  along with 
lipopolysaccharides synergistically induce CAMP expression in 
neutrophils  [141] . Moreover, 1,25(OH) 2 D 3  induces correspond-
ing increases in antimicrobial proteins and secretion of antimi-
crobial activity against pathogens including  Pseudomonas 
aeruginosa   [140 – 142] . The induction of CAMP expression 
occurred via a consensus VDRE in the CAMP promoter that was 
bound by the VDR. In conclusion, there is convincing evidence 
that 1,25(OH) 2 D 3  and its analogues directly regulate antimicro-
bial peptide gene expression in humans, revealing the potential 
of these compounds for the treatment of opportunistic infec-
tions.   

 Future therapeutic applications of vitamin D3 and 
its analogues in skin diseases 
  &  
 As outlined above, a broad variety of skin diseases including 
infl ammatory skin diseases, infectious skin diseases and skin 
diseases with altered epidermal proliferation or differentiation 
represent promising targets for future therapeutic applications 
of vitamin D and its analogues. Besides studies to clarify the role 
of vitamin D analogues in the chemoprevention of cancer, clini-
cal and laboratory studies are on their way to evaluate the safety 
and effi cacy of several vitamin D analogues in the treatment of 
skin malignancies, including actinic keratoses and malignant 
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melanoma  [143] . At present, large efforts are made by the phar-
maceutical industry to develop new vitamin D analogues that do 
not activate all vitamin D signaling pathways, but exert selective 
activity  [143] . These new concepts for the development of new 
vitamin D analogues that exert selective activities (and most 
importantly reveal no or little systemic side effects) are based on 
recent progress in independent lines of investigation, demon-
strating that vitamin D analogues may differ in their intracellu-
lar metabolism, nongenomic actions, pharmacokinetics, 
interaction with the DBP or the VDR  [143] .   

 Selective activity of vitamin D3 compounds via 
co-stimulation with synergistic acting drugs 
  &  
 Several  in vitro  and  in vivo  studies have shown that biological 
effects of 1,25(OH) 2 D 3  can be selectively modulated by combina-
tion with various other drugs  [143] . Interesting candidates to 
accelerate the effects of vitamin D compounds on cell prolifera-
tion and differentiation may be combination therapy of 
1,25(OH) 2 D 3  with ligands of nuclear VDR partner proteins, most 
importantly 9cRA  [12,   92] . It has been shown that in the presence 
of 9cRA, 1,25(OH) 2 D 3  predominantly activates heterodimers of 
VDR and RXR, while in contrast stimulation 1,25(OH) 2 D 3  alone 
induces preferentially the formation of VDR homodimers (Rei-
chrath, unpublished data). In conclusion, combination therapy of 
1,25(OH) 2 D 3  with ligands of nuclear VDR partner proteins may 
selectively activate distinct classes of VDR dimers, thereby selec-
tively modulating nuclear signaling pathways of vitamin D.   

 Tissue-selective potentiation of vitamin D3 activity 
via inhibition of vitamin D3 metabolizing enzymes 
  &  
 As explained above, 1,25(OH) 2 D 3  levels are tightly controlled by 
its synthesis via the 1 � -hydroxylase and its catabolism through 
hydroxylations mediated by specifi c cytochrome P-450 enzymes 
such as the 24-hydroxylase for 1,25(OH) 2 D 3   [75] . Laboratory 
investigations have shown that a potential mechanism for the 
selectivity of vitamin D compounds is tissue-specifi c metabo-
lism. Precedent for this has been demonstrated for other steroid 
hormone systems. Inhibition of 1,25(OH) 2 D 3 -catabolizing 
hydroxylation slows down catabolism and results in increased 
levels of 1,25(OH) 2 D 3 . Consequently, vitamin D activity in vari-
ous target tissues can be potentiated by cytochrome P-450 
enzyme-inhibiting drugs such as ketoconazole. Therefore, the 
expression of 1,25(OH) 2 D 3 -metabolizing cytochrome P-450 
enzymes in target tissues is of high importance and deserves 
systematic analysis. Combination therapy of vitamin D ana-
logues with inhibitors of vitamin D metabolizing enzymes may 
potentiate the biological effects of 1,25(OH) 2 D 3  and analogues 
on cell proliferation and differentiation in target tissues that 
strongly express the 1,25(OH) 2 D 3 -metabolizing enzyme 24-
hydroxylase without inducing substantial calcemic effects.              
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