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Abstract— The popularity of peer-to-peer (P2P) networks
makes them an attractive target to the creators of viruses and
other malicious code. Recently a number of viruses designed
specifically to spread via P2P networks have emerged. Pollution
has also become increasingly prevalent as copyright holders inject
multiple decoy versions in order to impede item distribution. In
this paper we derive deterministic epidemiological models for
the propagation of a P2P virus through a P2P network and
the dissemination of pollution. We report on discrete simulations
that provide some verification that the models remain sufficiently
accurate despite variations in individual peer conduct to provide
insight into the behaviour of the system. The paper examines
the steady-state behaviour and illustrates how the models may
be used to estimate in a computationally efficient manner how
effective object reputation schemes will be in mitigating the
impact of viruses and preventing the spread of pollution.

I. I NTRODUCTION

Peer-to-peer (P2P) networks have become increasingly vul-
nerable to malicious behaviour, including the dissemination of
pollutedversions of files and the release of P2P viruses. Early
P2P networks such as Napster focussed exclusively on media
files, so propagation of viruses was difficult to achieve [1].
Contemporary P2P networks such as Kazaa / Fastrack [2]
and eDonkey2000 [3] can be used to disseminate executable
files and are hence much more susceptible, particularly as the
mainstream adoption of P2P file exchange—the eDonkey2000
network alone typically has over 2 million users connected at
any given time [4]—means that a significant fraction of users
lack the technical knowledge to detect suspicious files or scan
for viruses.

The phenomenon of pollution, the presence of corrupted
(or “bad”) versions of items (songs, movies or multimedia
files) in P2P networks, has become increasingly prevalent.
Some of these versions are made available by accident, as
users make errors in file generation. But the dominant cause is
deliberate dissemination of decoy files, termeditem poisoning
in [5], a technological mechanism employed by copyright
holders and their agents to impede the distribution of content.
These decoy files have names and metadata matching those
of the genuine item, but contain corrupted, unreadable or
inappropriate data. Whether accidental or deliberate, pollution
has rendered a substantial portion of the files on popular P2P

networks unusable.

In this paper we examine the behaviour of viruses and
pollution in P2P networks. We adopt an epidemiological ap-
proach, developing dynamic models to describe the evolution
of infection/pollution. We consider the stochastic natureof
the system during our development of the models, but our
models are deterministic and focus on the expected behaviour
of the system. We illustrate that these deterministic models are
sufficiently accurate to capture the behaviour of P2P networks,
by comparison with more realistic simulations that model
individual peers.

Our initial purpose is to model the impact of malicious code
on a P2P network, but a primary motivation is to examine how
effective the introduction of mitigation techniques mightbe.
In particular, we focus onobject reputationschemes (such as
Credence [6]) and methods that increase the rate of elimination
of infected files. Our model provides an analytical method
for determining (at least approximately) how widespread the
adoption of such schemes must be, and how effective they
must be, in order that specific targets of residual pollutionor
infection be achieved. We validate these specifications through
more accurate simulation of the networks.

The paper is structured as follows. In the remainder of the
introduction, we highlight the salient features of P2P networks,
viruses and pollution, and discuss related work. Section II
presents a model for the expected evolution of a virus in the
system. In Section III, we analyze the steady-state behaviour of
our P2P virus model. Section IV presents an epidemiological
model for the proliferation of pollution. Section V examines
the impact of object reputation schemes. Section VI reports
on an empirical study of the e-Donkey network, which we
conducted to identify suitable parameters for the examination
of our models. Section VII reports on discrete-time simulations
of the P2P network, which provide a validation that the
deterministic models capture the primary characteristicsof
system evolution despite ignoring the variability in behaviour
of individual peers. Finally, Section VIII draws conclusions
based on our analysis and results.



A. Peer-to-peer networks, viruses and pollution

This section highlights the key features shared by pop-
ular P2P Networks, including Kazaa, eDonkey2000, and
Gnutella [7]. Every peer connected to the network has ashared
folder containing all the files the user wishes to make publicly
available for download by others on the network. When a
user wants to download a file, he begins by sending out a
search request. In response he receives a list of files matching
the search criteria. The specific manner in which this list is
generated varies among the various P2P networks, but in all
cases the query response is the result of the examination of
the shared folders of a subset of all peers connected to the
network. Once the user elects to download one of the files from
the list, his client attempts to set up a connection to a peer
sharing the file and begins receiving the file. Depending on
the specific network, the client may attempt to simultaneously
download different parts of the file from a number of peers
in order to expedite the operation. P2P clients typically save
new downloaded files in the shared folder – making them
immediately available to other users.

A number of worms and viruses that exploit P2P networks
have already surfaced. The majority of these behave in a
similar fashion. Specifically, when a user downloads a file
containing the virus and executes it, a number of new files
containing the virus are created and placed in the client’s
shared directory. Some types of viruses, including Achar [8]
and Gotorm [9], generate a fixed list of filenames when
executed. More advanced viruses, such as Bare [10] and
Krepper [11], randomly pick the list of filenames from a large
pool of candidates.

Pollution is a more widespread phenomenon, as indicated by
the empirical study performed in [12]. The study indicated that
the number of versions of relatively popular items is generally
substantial (on the order of tens or hundreds). It was also
observed that the pollution level (the fraction of bad versions)
for a specific item remained approximately constant over time.

B. Related Work

The advent of mathematical Epidemiology – the field of
biology which models how diseases spread in a population
– is generally credited to McKendrick and his seminal 1926
paper [13]. Previous work in applying epidemiology to model-
ing how computer viruses and other malware spreads between
machines dates back to the late 1980s/early 1990s [14], [15].
More recently, several authors have utilized epidemiological
models to study the spread of worms and e-mail viruses in
the Internet [16]–[20].

There have been a number of recent papers which model
file propagation in P2P networks [21]–[24]. Dumitriu et al. [5]
model the spread of polluted files in P2P networks, and Liang
et al. report on an empirical study of pollution in P2P networks
in [12]. The behaviour of object reputation mechanisms has
been discussed in [6].

Contribution: We believe that our paper is the first to
develop a epidemiological model for peer-to-peer viruses.
Although these viruses share similarities with Internet worms

and e-mail viruses, there are sufficient differences in their
spreading mechanics to necessitate the development of a new
model. The dynamic pollution model developed in [5] is
closely related to our epidemiological pollution model, and
produces similar behaviour. Phrasing the model in an epi-
demiological framework provides an alternative understanding
of system behaviour. The deterministic models are reason-
ably accurate even with substantial variation in individual
peer behaviour, and we illustrate how they can be used to
estimate in a computationally efficient manner the impact of
an object reputation scheme in mitigating P2P viruses and
pollution. Conversely, the models can be used to determine
how widespread the usage of a reputation scheme must be and
how much it must dampen the probability of downloading an
infected or polluted file in order to achieve a target level of
pollution/infection.

II. P2P VIRUS MODEL

The intent of our model is to predict the expected behaviour
of a virus which spreads through a P2P network in the form of
malicious code embedded in executable files shared by peers.
We make the simplifying assumption that all users download
files to their shared folder. We are not concerned with the
transfer of media files which cannot contain malicious code,
and do not model them. Note that we use the termuser in
this paper to refer to a person using a P2Pclient program.
The termpeer is used to collectively refer to a P2P client and
the user directing its behaviour.

This model classifies all peers as falling into one of three
classes:Susceptible, Exposed, or Infected:

Susceptible– Peers that are not sharing any infected files,
but are at risk of downloading infected files. The number of
peers in this category at timet is denoted byS(t).

Exposed – Peers that have downloaded one or more
infected files, but have not executed them. The number of
peers in this category at timet is denoted byE(t). The
Exposed category is included in the model to allow for a
delay between download of an infected file and execution.

Infected– Peers that have executed an infected file. Upon
execution, a total of ofc infected files reside in the peer’s
shared folder. The number of peers in this category at timet
is denoted byI(t).

An Infected client may be detected by the user, who will
then proceed to remove all the infected files, thereby returning
the state of the peer to Susceptible. At all times, every one of
theN peers making up the network falls into one of the three
categories. Thus, for all values oft, N = S(t) + E(t) + I(t).

We assume that the total number of uninfected files in
the network is fixed atM . The total number of infected
files at timet is given byK(t). The expected proportion of
infected files in the network,q(t), is thereforeq(t) = K(t)

K(t)+M
.



Event Variables Affected

File downloaded q(t), S(t), E(t)
File executed q(t), E(t), I(t)
Peer recovers q(t), I(t), R(t)

TABLE I

P2P VIRUS MODEL VARIABLES THAT ARE POTENTIALLY AFFECTED BY

EACH POSSIBLE EVENT IN THE NETWORK.

When a user downloads a file, we assume the probability of
choosing an infected file will be dependent on the prevalence
of infected files in the network. The probability will vary
to some degree for different peers, according to whether the
peer has updated virus-detection software or is aware of the
common characteristics of virus files (such files are often
much smaller than genuine versions of the item). In our
model, we are interested in the average probability of choosing
an infected file, and we denote this probability byh(t). In
Section III, where we examine steady-state behaviour, we set
h(t) = αq(t), for some constantα, to reflect the fact that the
probability is closely tied to virus prevalence and to simplify
our analysis.

There are three distinct events that may occur in the
network which affect one or more of the time-varying
variables described above. These events include a peer
downloading a file from another, a peer executing a shared
file, and an Infected peer recovering. Although individual
peers conduct these activities at (potentially very) different
rates, we develop our model based on average behaviour. Our
simulation results in Section VII indicate that this modelling
choice does not produce substantially erroneous behaviour.
The average rates at which each of these events occurs are
governed by three parameters:

λS : Average rate, in files per minute, at which each peer
downloads new files (this includes time spent searching and
setting up the connection to another peer).

λE : Average rate, in files per minute, at which each peer
executes shared files. We assume that a peer executes files in
the order in which they are downloaded.

λR: Average rate, in “recoveries per minute”, at which
Infected peers recover. A recovery occurs when all infected
files are removed, returning the peer state to Susceptible.

A. Model Equations

Table I summarizes which time-varying variables are af-
fected by each of the three events that may occur in the
network. The state progression for all peers in our model is
S → E → I → S.... We now derive the differential equations
that govern the evolution of our P2P model.

Rate at which the number of Infected peers changes: When
an Infected peer recovers, the number of Infected peers de-
creases by one. Recoveries occur at rateλRI(t). When an

Exposed peer executes an infected file, the number of Infected
peers increases by one. Since files are executed in order of
download, the file executed by an Exposed peer will always be
the infected file which it had downloaded to become Exposed.
This occurs at a rate ofλEE(t). Therefore,

dI(t)

dt
= −λRI(t) + λEE(t) (1)

Rate at which the number of Exposed peers changes: The
rate at which the number of Exposed peers decreases due to
infection is given by the negative of the second term in (1). The
rate at which previously Susceptible peers become Exposed is
dependent on the aggregate rate at which they download files,
λSS(t), multiplied by the probability that a downloaded file
is infected,h(t). The overall rate is therefore:

dE(t)

dt
= −λEE(t) + λSS(t)h(t) (2)

Rate at which the number of Susceptible peers changes:
SinceN is fixed, it always holds thatdS(t)

dt
+ dE(t)

dt
+ dI(t)

dt
= 0.

Therefore,dS(t)
dt

is the negative sum of (1) and (2):

dS(t)

dt
= −λSS(t)h(t) + λRI(t) (3)

Rate at which the number of infected files in the network
changes: There are three events which result in a change in
the number of infected files in the network: a peer downloads
an infected file, an Exposed peer becomes Infected, and an
Infected peer recovers. We assume that all downloaded files
are executed, and that a peer does not download any additional
files prior to executing the most recently downloaded file.

Peers cannot share more than one copy of a file with the
same name. If the number of unique infected filenames is
limited to c, only Susceptible peers can download infected
files. Exposed peers do not download any additional files
before becoming Infected, and Infected peers are sharing all
c possible infected files. Thus, the rate of change due to
downloads isS(t)λSh(t).

An Exposed peer always has one infected file before be-
coming Infected, meaning in all casesc− 1 new infected files
are created when an Exposed peer becomes Infected. The rate
of change is thusE(t)λS(c − 1).

An Infected peer will always sharec files, so a recovery
results in a reduction ofc infected files. The rate is therefore
−I(t)λRc. The overall rate of change ofK is therefore:

dK(t)

dt
= S(t)λSh(t) + E(t)λE(c − 1) − I(t)λRc (4)

We note that if the names of generated files are chosen from
a pool of names much larger thanc, Infected peers can con-
tinue to download infected files and the above equation does
not hold. The model and analysis in this case becomes more
involved. See [25] for a discussion on this and other variations
of the model, including cases where not all downloaded files
are executed and where multiple downloads are possible prior
to execution.



B. Model Extensions

1) Modeling On-line/Off-line Behaviour:In a real P2P net-
work, individual peers are only on-line for limited durations.
In order to capture this behavior, we present an extension
of our model that includes both on-line and off-line users.
Each of the three variables specifying how many peers are in
each category –S,E, I – is partitioned into two variables to
account for how many peers in the category are on and off-
line. So, for instance,I(t) = IN (t) + IF (t), whereIN (t) is
the number of Infected peers on-line, andIF (t) is the number
of Infected peers offline. Peers that are off-line go on-lineat
a certain rateλN , and on-line peers go off-line at rateλF .
The differential equation governing the change in the number
of on-line Infected peers at timet is:

dIN (t)

dt
= IF (t)λN − IN (t)λF (5)

The equations governing the rates of change inSN (t) and
EN (t) are analogous. We assume here that peers go on and
off-line at the same rate regardless of their state. It wouldalso
be simple to expand the model to include different rates for
each state.

To complete the specification of the extended model, all
the previously defined differential equations are changed as
follows: every instance ofS(t), E(t), and I(t) is replaced,
respectively, bySN (t), EN (t), andIN (t).

2) Modeling Peers that Remain Infected:One can argue
that a certain proportion of P2P users, when their client
becomes Infected, will never detect that this has occurred and
not take any action to remedy this problem. In order to include
this behaviour in our model, we classify all peers as “aware”
or “oblivious”. Aware peers behave as those in our basic model
described in II-A, while oblivious peers progressS → I and
then remain Infected. The number of peers in each group is
fixed: N = NA+NO whereNA is the number of aware peers,
andNO is the number of oblivious peers.

As in Section II-B.1, the number of peers falling into each
of the four categories at timet is partitioned into two groups;
in this case the number of aware users in categoryX at time
t whereX ∈ {S,E, I}, is denoted byXA(t) and the number
of oblivious users in each category is denoted byXO(t). The
behaviour of aware users is determined by equations (1), (2),
and (3), withXA(t) replacingX(t) for all X ∈ {S,E, I}.
Oblivious users are governed by (1), (2), and (3), withX0(t)
replacingX(t), and λR set to zero (reflecting the fact that
oblivious peers never recover). Finally,dK(t)

dt
is governed by

a modified version of (4), withS(t) replaced bySA(t)+SO(t),
E(t) replaced byEA(t)+EO(t), andI(t) replaced byIA(t).

III. A NALYSIS - STABILITY RESULTS

If the P2P network reaches a steady-state equilibrium by
some timet = T , then dE(T )

dt
= dI(T )

dt
= dS(T )

dt
= 0. In

this section, we assume that the probability of downloadingan
infected file is a function of the proportion of infected files, i.e.,

h(t) = f(q(t)). DefiningẼ, Ĩ, S̃, as the steady-state values of,
respectively,E(t), I(t), andS(t), Equation (1) implies that:

Ĩ = Ẽ
λE

λR

(6)

If we defineτ andµ as, respectively, the expected number
of infected files each Exposed and Infected peer is sharing in
steady-state, theñq, the proportion of infected files in steady-
state may be expressed as:

q̃ =
Ẽτ + Ĩµ

M + Ẽτ + Ĩµ
(7)

Substituting (6) into (7) provides:

q̃ =
Ẽ(τλR + µλE)

MλR + Ẽ(τλR + µλE)
(8)

If f(q̃) > 0, equation (2) implies that, in steady state:

S̃ = Ẽ
λE

λSf(q̃)
(9)

SinceS̃ = N−Ĩ−Ẽ, equation (6) can be utilized to express
N as:

S̃ = N − Ẽ(1 +
λE

λR

) (10)

If h(t) is proportional toq(t), h(t) = αq(t), we can obtain
a closed-form expression for̃E by substituting (8) into (9),
equating with (10), and solving for̃E:

Ẽ =
λRα(NλS(µλE + τλR) − MλEλR)

(τλR + µλE)(λSα(λR + λE) + λEλR)
; q̃ > 0 (11)

The expression for̃I follows trivially from (11) and (6):

Ĩ =
λEα(NλS(µλE + τλR) − MλEλR)

(τλR + µλE)(λSα(λR + λE) + λEλR)
; q̃ > 0 (12)

If q̃ = 0, it follows from (7) thatẼ = Ĩ = 0. It is of interest
to consider Equation (12) as it approaches 0. In the limiting
case, approached from above, we have the equality

NλS(µλE + τλR) = MλEλR (13)

Since we assume that all downloaded files are eventually
executed, it follows that it is reasonable to equate the rates
of download and execution,λE = λS . Under this assump-
tion, (13) provides the following minimum average recover
rate, λmin

R in order for all infected files to eventually be
removed from a P2P network:

λmin
R =

NµλE

M − Nτ
;M > Nτ (14)

This equation indicates that, ifh(t) = αq(t), thenλmin
R is

a linearly increasing function ofλE .
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Fig. 1. The transition diagram for peers indicating the actions that trigger
movement between the three classes of susceptible (S), infected (I) and
recovered (R)

IV. P2P POLLUTION MODEL

We assume thatMi peers are interested in itemi, and that
there are a multitude of versions of the item, classified as
“good” or “bad”. Initially the P2P network is seeded with
Ng(0) good files andNb(0) bad files. The peers who provided
these seed files do not number among theMi peers we
consider in our model. We model the peers as belonging to
three classes:Susceptible, Infected, andRecovered. S(t) is the
number of susceptible peers at timet; this class includes all
peers who will attempt to download another version of the file
in the future. InitiallyS(0) = Mi, as all interested peers are
susceptible.I(0) = 0 and R(0) = 0, because no files have
been downloaded from the seeds.

A peer transitions between the three states as depicted in
the transition diagram in Figure 1. Each peer is susceptible
when it intends to download a file. When a susceptible peer
downloads a file, it joins the Infected class if the file is bad
and the Recovered class if the file is good. A peer may leave
the Infected class by testing the downloaded file and electing
to retry at some stage in the future. In this case, the peer
rejoins the Susceptible class. Alternatively, an infectedpeer
may decide to give up and join the Recovered class, despite
not being successful in acquiring a good version of the item.
A peer may dwell in the infected state for some period of
time before choosing to give up or to retry. This represents
the period of time before an infected peer tests a downloaded
file.

Eventually all peers will belong to the Recovered class.
We label this class “recovered” primarily to highlight the
parallels with standard epidemiological models. In our model
the distinguishing feature of a recovered peer is that it is no
longer actively seeking the item of interest. Note that in our
model, any susceptible or infected peer may be sharing none
or several polluted files, but cannot be sharing a good file. A
recovered peer may share at most one good file and may share
several polluted files.

The number of good shared versions of the item varies over
time, as does the number of bad. When a peer transitions

from the susceptible to recovered state by downloading a
good version, it shares the file with probabilitypsg. When
a peer transitions from the susceptible to infected state by
downloading a bad file, it shares the file with probabilitypsb.
When a peer transitions from the infected to susceptible state
or recovered state, it removes the polluted file with probability
pdb. We model the probability of downloading a polluted file
at time t, pb(t), as being equal to the fraction of polluted
files. This probability is the same for a peer irrespective of
how many times it has been infected. This is a reasonable
approximation because the number of versions of an item is
anticipated to be much larger than the number of re-tries.

We model the expected behaviour of a large group of peers.
At time t, a fraction of the susceptible peersλs download a
file. This is effectively the download rate. A fractionλr of the
infected peers decide to retry and hence rejoin the susceptible
pool. A fractionλx of the infected peers choose to give up and
enter the recovered state. We make the simplifying assumption
that the download rate, and the rates of trying again and giving
up (λr andλx) do not vary over time. A constant value ofλs

produces the approximately exponential decay in the number
of downloads of an item as time elapses and its popularity
declines. It is reasonable to assume that the variation of the
rates of trying again or giving up do not change substantially
over time.

With these modelling choices, we arrive at the following
set of equations that describe the evolution of pollution inthe
system.

pb(t) =
Nb(t)

Nb(t) + Ng(t)
(15)

dS(t)

dt
= −λsS(t) + λrI(t) (16)

dI(t)

dt
= pb(t)λsI(t) − (λr + λx)I(t) (17)

dR(t)

dt
= (1 − pb(t))λsS(t) + λxI(t) (18)

dNb(t)

dt
= λs pb(t) psb S(t) − (λr + λx) pdb psbI(t) (19)

dNg(t)

dt
= λs(1 − pb(t)) psg S(t) (20)

As with the P2P virus model, these equations are derived
under the assumption that all peers have common behaviour;
variability in individual behaviour means that this will not
be a completely accurate model of the system. In addition,
the model does not address any notion of memory in user
behaviour; it is probable that a peer’s downloading behaviour
would change substantially if it has already received several
bad versions of an item. In simulations in Section VII, we
account for variability in peer behaviour and a limited notion
of memory; our results indicate that the deterministic model
described above, despite its limitations and assumptions,pro-
vides a good indication of the evolution of the extent of
pollution in the P2P network (for a specific item).



V. THE IMPACT OF OBJECTREPUTATION SCHEMES

The possibility of downloading an infected or polluted file
may be reduced through the use of anobject reputationscheme
which allows P2P users to rate individual files and share this
information with others in the network. The standard Kazaa
client [2] includes such a feature, allowing users to assignone
of four possible rankings to each file. However, this simplistic
implementation has been ineffective in combatting the number
of polluted files in the network [26]. A recently introduced
object-reputation scheme for the Gnutella network named
Credence [6] appears promising because of its robustness
in the face of malicious peers which intentionally give high
ratings to polluted or Infected files. In this section we model
the effect that an effective object-reputation scheme suchas
Credence has on virus propagation in a P2P network.

A. Effect on P2P Virus Propagation

As in Section II-B.2, peers are divided into two groups,
“smart” peers which utilize an object-reputation system, and
“regular” peers which do not. The number of regular peers
falling in a categoryX at timet, is denoted byXR(t) and the
number of smart users in each category is denoted byXS(t).
Regular peer behaviour is governed by equations (1), (2),
and (3). Smart peer behaviour is determined by equation (1)
and modified versions of equations (2) and (3) withh(t)
replaced byg(t). In order to reflect the fact that smart users
are less likely to download infected files, we require that
g(t) ≤ h(t) ∀t. In the case of a perfect object-reputation
system, in which smart peers never download infected files,
g(t) = 0 ∀t and henceSS(t) = NS ∀t. Finally, equation (4)
is replaced by

dK(t)

dt
= SR(t)λSht + SS(t)λSgt+

(ER(t) + ES(t))λE(c − 1) − (IR(t) + IS(t))λRc
(21)

B. Effect on Pollution Dissemination

We model the effect on pollution dissemination in a similar
fashion, decomposing the set of interest peers into the two
groups of “smart” and “regular” peers. The object reputation
scheme is assumed to reduce the probability of downloading
a bad version of a file by a fixed proportion. Smart peers now
download a bad version with probability

pb,S(t) =
βNb(t)

Nb(t) + Ng(t)
(22)

for some constantβ < 1. Regular peers download bad versions
with the same probability as before (proportional to the extent
of pollution). The modified epidemiological model now keeps
track of the number of smart and regular peers in each class
and can hence determine the rates of change of the number of

good and bad files in the network. We have:

dNb(t)

dt
= λs psb(pb,S(t)SS(t) + pb,R(t)SR(t))

− (λr + λx) pdb psb I(t) (23)

dNg(t)

dt
= λs psg((1 − pb,S(t))SS(t) + (1 − pb,R(t))SR(t)).

(24)

VI. P2P MEASUREMENTS

In order to choose a realistic value ofλS for simulation
experiments with our model, we sought to acquire appropriate
measurement data from an actual P2P network. A number of
previous empirical studies have explored the behaviour of the
Gnutella Network [27]–[30] and the Kazaa Network [26], [30],
and the eDonkey network [31]. The statistics presented have
included the number of files shared by peers, latency between
peers, the amount of time spent on and off-line, the degree of
peer connectivity, and mean bandwidth usage. However, we
are not aware of any previous work directly analyzing the rate
at which peers download files.

We chose to conduct our measurements on the eDon-
key2000 network because of its popularity and the appar-
ently limited amount of research conducted on the network.
BayTSP [32], a company which monitors Internet file-trading,
indicates that as of September, 2004 the eDonkey2000 network
has, on average, the most users of any P2P network [33].

The eDonkey2000 network is comprised of a number of
servers [4] to which a peer can connect. Each server keeps a
list of all the files shared by connected peers, and uses this
information to respond to keyword-based search queries. The
search results returned by the server include a 16-byte MD4
hash [34] value for each file in order to uniquely identify it.
When the user elects to download a specific file, his client
sends the hash value of the desired file to the server, and the
server responds with a list of IP addresses and ports of peers
sharing the file.

Our experiment consisted of two phases. In the first part,
we collected a list of eDonkey2000 peer IP addresses/ports.
We achieved this by first conducting searches for keywords
likely to return a significant number of results, for example:
“.exe”, and “.iso”, and then initiating the download of files
shared by a large number of peers. Next, we made use of
the Ethereal network protocol analyzer [35] to capture and
analyze the packets returned by the server containing the peer
IP addresses. We initiated the download of approximately
500 files to harvest over 20 thousand peer addresses. For
the next phase of the experiment, we developed a scanner
program which attempts to connect to every peer and retrieve
its list of shared files. We made use of previous work carried
out to reverse-engineer the eDonkey2000 protocol [36], and
conducted further analysis using Ethereal.

Users of eDonkey2000 have the option of configuring
their clients to block requests by other peers to view their
list of shared files. Our work was complicated by the fact
that approximately 95% of peers to which we attempted to
connect did not permit viewing of their shared files. There are
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Fig. 2. Empirical CDFs based on eDonkey measurement data.

two obvious factors that contribute to this high percentage:
eMule [37], the most popular eDonkey2000 client, has the
blocking option enabled by default, and the advent of RIAA
(Recording Industry Association of America) lawsuits directed
against P2P users [38] based on the scanning of shared
directories has likely motivated many users to actively disallow
the viewing of their files. Nevertheless, we managed to connect
to one thousand peers and retrieve their lists of shared files. We
repeated this procedure three more times, in 48-hour intervals.
Each scan required approximately two hours to carry out. In
order to deduce the rate at which users were downloading files,
we tracked the addition of any new shared files every time the
scanner connected to a peer. We assume that any new file is
the result of a download. Admittedly, the possibility exists that
a new shared file was not downloaded, but instead added to
the shared directory by the user from a source outside the
eDonkey2000 network. However, we are unable to distinguish
such files and therefore our calculated download rate may be
a slight over-estimate. Table II provides the results of our
measurements. The overall average download rate is 37.7 files
per 48-hour period. Figure 2 provides the empirical cumulative
density functions (CDFs) of the number of files shared per
peer, the number of downloads per peer per 48 hour interval,
and the net change in number of files each peer changes per 48
hour interval. All three plots suggest heavy-tailed distributions,
indicating that there are a small percentage of “power-peers”,
which are much more active and share many more files. This
phenomenon has been observed in other empirical studies
conducted on P2P networks [30], [31].

We calculated the rate at which peers removed files from
their shared folder, by counting all files peers had made avail-
able during a given run of our scanner program which were no
longer present during a subsequent scan. The average removal
rate is 29.1. Although this does not entirely validate our
Section II assumption of a zero net increase in the total number
of files, it indicates that files are removed from the network at
a similar rate to which new ones are downloaded. Furthermore,
a website [4] tracking eDonkey2000 server statistics over one-

Interval % of % of % of % of Average
Peers Peers Peers Peers Down-
with with with with load

0 1-10 10-100 ≥ 101 Rate
new new new new (Files/
Files Files Files Files 48 hrs.)

1 11 50 33 6 41.2
2 12 47 33 8 35.8
3 7 39 48 6 36.0

TABLE II

OBSERVED EDONKEY2000 PEER DOWNLOAD BEHAVIOUR OVER THREE

DISJOINT 48-HOUR INTERVALS.

month intervals indicates that, while there are significantdaily
fluctuations in the number of files available, the month-long
trend is fairly constant.

As stated in Section II, we are only concerned about
modeling executable files in P2P networks. To estimate the
proportion of these files in the eDonkey2000 network, we
analyzed the aggregate list of approximately 230 thousand
files initially shared by the one thousand peers we tracked.
From this list, we removed all files with extensions known to
indicate a media file, e.g. “.mp3” and “.avi”.

This left just over 55 thousand files that were likely to
be executable. Therefore, we estimate that the proportion of
files on the eDonkey2000 network that can potentially contain
malicious code lies at 24%. We note that this value may be
a slight over-estimate, due to the fact that some of the shared
files were compressed (“.zip” or “.rar”), and therefore we could
not identify them as executable with total certainty.

VII. S IMULATION RESULTS

A. Virus Model Behaviour

In this section we provide some examples of virus behaviour
in a P2P network as predicted by our model. Figure 3 illus-
trates how the number of peers falling into each of the three
categories evolve over time, and eventually reach a steady
state. In this case,λE = λS = 3.47 × 10−3 files per minute,
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Fig. 3. Example of the dynamic behaviour of a P2P network exposed to a virus (with model parameters set to the values described in Section VII-A). The
network reaches steady-state after about 600 hours, at which point approximately twenty percent of the peers are infected.
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Fig. 4. The effect of the initial infection on the evolution of the number of
infected peers. The solid line corresponds to 10 000 infected files initially in
the network, the dashed line: 100 000 initial infected files,the dotted line:
1000000 initial infected files.

which corresponds to 5 downloads/executions per day. The
average time for a peer to recover is 24 hours, meaningλR is
6.94 × 10−4. The number of peers,N , is 2 million and there
are 60 million clean filesM . This example makes use of the
model in which the number of unique infected files is limited
to c, and c is 10. Finally,h(t) = 0.5q(t). Initially, there are
10 000 Exposed peers, each sharing one infected file.

In Figure 4 we examine the effect of varying the initial
extent of infection on the evolution of the number of infected
peers in the network. For high initial infection (1 million files),
there is an initial overshoot in the number of infected peers
beyond the steady state. The medium initial infection case
converges most quickly to the steady state value, since, out
of the three cases, the number of initially infected peers is
closest to the eventual steady state value. After about 700
hours, the three networks reach the same steady-state. Thisis
also the behaviour implicitly predicted by equation 12, since
it is independent of any initial condition (as long as at least
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Fig. 6. The impact of variability in individual peer downloadrates. The solid, dotted and dashed lines show the predictedbehaviour according to the dynamic
model of infected, susceptible and exposed peers, respectively. The hashed lines show the results achieved in discrete-time simulations. (a) Download rate
drawn from a uniform distribution; (b) download rate drawn from a normal distribution; (c) interval between downloads drawn from a normal distribution.
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Fig. 7. The impact of variability in individual peer recoveryrates. The solid, dotted and dashed lines show the predictedbehaviour according to the dynamic
model of infected, susceptible and exposed peers, respectively. The hashed lines show the results achieved in discrete-time simulations. (a) Recovery rate
drawn from a normal distribution; (b) interval between recoveries drawn from a normal distribution; and (c) Recovery rate, download rate and susceptibility
to infection (α) drawn from normal distributions.

one infected file initially exists in the network).
Figure 5 examines how the steady-state proportion of in-

fected files is affected as model parameters are varied. The
panels in the figure display the effect of changing (i)c, the
number of virus files inserted in the shared directory upon
infection; (ii) α, the constant that governs the probability of
downloading an infected file; and (iii)λS , the download rate of
peers in the network. These plots indicate that an increasing
α and download rate have a limited effect on the infection
level of the network, whereas an increase in the number of
files created by a virus can significantly raise the steady-state
infection of the network. However, in a practical setting, the
more new files a virus creates, the more likely a user is to
notice them and delete them. Thus, in reality, the recovery
rate would likely be an increasing function ofc and the high
level of infection for viruses creating 50 or more new files
upon execution would be unlikely to occur.

B. Virus simulations with varying peer behaviour

The propagation of a virus in a P2P network predicted
by our model is based only on the expected values of peer

recovery rates:λR, peer download rate:λS and peer execution
network: λE . Realistically, one may expect these values to
differ significantly among peers. Since our equations do not
incorporate the notion of a random distribution of these param-
eters for each peer, we are essentially modeling a P2P network
in which all peers take on the same deterministic parameter
values. Therefore, it is of interest to consider how closelythe
results predicted by our model mirror those which would be
seen in a P2P network in which individual peer parameters
are randomly distributed. To this end, we present a number of
discrete-time simulation results for a peer-to-peer network in
which individual recovery and download/execution rates are
chosen according to several different probability distributions.

All figures illustrate the evolution of the number of Infected,
Exposed, and Susceptible peers over time. The non-hashed
lines are the values predicted by our model, and the hashed
lines represent the values obtained via our simulations. We
consider 20 000 users sharing 600 000 clean files. Parameters
not explicitly mentioned below are set to the same values as
in Section VII-A. In Figure 6(a), the download/execution rate
is uniformally distributed about the mean value of5

24 files per



day, with individual rates varying from 0 to1024 . Figure 6(b)
illustrates the case where the download rate is normally
distributed with mean5

24 and standard deviation 0.05. Finally,
in Figure 6(c), the average length of time between downloads
is normally distributed, with mean245 and standard deviation
5. In figure 7(a) the recovery rate is normally distributed with
mean 1/24 recoveries per day, and standard deviation 0.1.
In figure 7(b) the length of the interval between recoveries
is normally distributed with mean24 and standard deviation
5. Finally, in Figure 7(c) both the download and recovery
intervals are normally distributed. The key observation from
these figures is that the simulation results converge to steady-
state values, and that these values are within 10% of the values
predicted by our model. Given these facts, we assert that our
model provides a good approximation of a P2P network in
which individual peer behaviour may vary significantly.

C. Pollution model behaviour and simulations

In order to verify our pollution model, we conducted a
discrete-time simulation of a P2P network with polluted files,
and compared it to the results predicted by our model. As with
our other simulations, we used exponentially-distributedde-
lays between the various events governed by rate parameters.
We setpsg = psb = pdb = 0.3, Ng(0) = 10, Nb(0) = 100,
Mi = 20000, λS = 5

24 , λX = 1
24 , λr = 2

24 . Figure 8(a)
shows the number of Susceptible, Infected and Recovered
peers versus time for both the simulation and the model.
Figure 8(b) shows howpb varies with time and reaches a
steady state. The model and the simulation track each other
well, with the steady-statepb varying by less than 10%.

In Figure 8(c), we examine the impact that the initial number
of seeded polluted files has on the steady-state value ofpb. All
other parameters are as described above. This plot indicates
that the initial number of polluted files seeded will indeed
have a significant effect on the long term pollution level of
the network.

D. Impact of Object Reputation Schemes on P2P virus prop-
agation

We now report on simulation and model results for the
impact of an object reputation scheme such as Credence
on the evolution of P2P viruses. Figure 9(a) illustrates how
the steady-state proportion of infected files changes as the
effectiveness of Credence (as reflected byβ, the factor by
which the probability of download of an infected file is re-
duced) increases. Figure 9(b) depicts the reduction in residual
infection as the number of peers using Credence increases.
These results are obtained for the model parameters described
in Section VII-A. The results indicate that if Credence reduces
the probability of downloading an infected file by a factor
of 0.7 and fifty percent of the peers use Credence, then the
residual infection is halved.

Figure 10 compares the behaviour of the deterministic
model with a discrete time simulation of the propagation
of a virus in a P2P network consisting of 20 000 peers.
Fifty percent of the users employ Credence and it has an
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Fig. 8. Examining the behaviour of the pollution model. Hashedlines are
simulation results. (a) The evolution of susceptible (dotted), infected (solid)
and recovered (dashed) peers. (b) The percentage of polluted files versus time.
(c) The steady-state percentage of polluted files as a function of the number
of initially “bad” files (with 100 good files).

effectiveness ofβ = 0.7. The figure illustrates that there is
a good match between the expected behaviour and that of the
simulated system.

VIII. C ONCLUSION

We have presented a deterministic epidemiological model
of how a P2P virus spreads infection in a P2P network, and
derived expressions for the steady-state behaviour in the case
where the probability of a peer downloading an infected file
is proportional to the prevalence of infection. We have also
described an equivalent model for the evolution of pollution
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Fig. 10. A comparison between the predicted behaviour according to the
epidemiological model and a discrete time simulation. The hashed lines are
the results of the simulator (number of susceptible, infectedand exposed peers
from top to bottom). These lines cover the predicted results for most of the
display.

in a P2P network. Discrete-time simulations with varying indi-
vidual peer behaviour indicates that the models are sufficiently
accurate to provide insight into system dynamics despite
being based on average behaviour. Our goal in developing
these models was to provide a basis for understanding virus
and pollution evolution, but also to construct a computation-
ally efficient platform for estimating the efficacy of object
reputation systems. In future work we will perform more
extensive validation of the models using further empirical
measurements of P2P networks and more accurate simulators
of P2P networks that fully incorporate the subtleties of object
reputation schemes.
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