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Abstract

Estimation of the dynamic error components model is considered using two alternative
linear estimators that are designed to improve the properties of the standard first-
differenced GMM estimator. Both estimators require restrictions on the initial condi-
tions process. Asymptotic efficiency comparisons and Monte Carlo simulations for the
simple AR(1) model demonstrate the dramatic improvement in performance of the
proposed estimators compared to the usual first-differenced GMM estimator, and
compared to non-linear GMM. The importance of these results is illustrated in an
application to the estimation of a labour demand model using company panel data.
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1. Introduction

In dynamic panel data models where the autoregressive parameter is moder-
ately large and the number of time series observations is moderately small, the
widely used linear generalised method of moments (GMM) estimator obtained
after first differencing has been found to have large finite sample bias and poor
precision in simulation studies (see Alonso-Borrego and Arellano, 1996). Lagged
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levels of the series provide weak instruments for first differences in this case.
Here we consider two alternative estimators that impose further restrictions on
the initial conditions process, designed to improve the properties of the standard
first-differenced GMM estimator.

The first type of restriction justifies the use of an extended linear GMM
estimator that uses lagged differences of y

it
as instruments for equations in levels,

in addition to lagged levels of y
it

as instruments for equations in first differences
(see Arellano and Bover, 1995). Monte Carlo simulations and asymptotic
variance calculations show that this extended GMM estimator offers dramatic
efficiency gains in the situations where the basic first-differenced GMM es-
timator performs poorly. This estimator is also shown to encompass the GMM
estimator based on the non-linear moment conditions available in the dynamic
error components model (see Ahn and Schmidt, 1995), and we find substantial
asymptotic efficiency gains relative to this non-linear GMM estimator.

The second type of restriction validates the use of the error components GLS
estimator on an extended model that conditions on the observed initial values.
This provides a consistent estimator under homoskedasticity which, under
normality, is asymptotically equivalent to conditional maximum likelihood (see
Blundell and Smith, 1991). A Monte Carlo analysis also suggests that this
estimator has good finite sample properties. However, the conditional GLS
estimator requires homoskedasticity, and only extends to a model with re-
gressors if the regressors are strictly exogenous. This is not the case for the
GMM estimators.

Both types of restrictions are satisfied under stationarity but both are also
valid under weaker assumptions. The gain in precision that results from exploit-
ing these initial condition restrictions in these two alternative estimators is
shown to increase for higher values of the autoregressive parameter and as the
number of time series observations gets smaller. Our Monte Carlo analysis finds
both a large downward bias and very low precision for the standard first-
differenced estimator in these cases. The initial condition information not only
greatly improves the precision but also greatly reduces the finite sample bias.

The main contributions of the paper are: to characterise the weak instruments
problem for the first-differenced GMM estimator in terms of the concentration
parameter (cf. Staiger and Stock, 1997); to demonstrate that the levels restric-
tions suggested by Arellano and Bover (1995) remain informative in the cases
where the first-differenced instruments become weak; to relate these restrictions
explicitly to the initial conditions process; to evaluate the asymptotic efficiency
gains that result from exploiting these restrictions compared to both the differ-
enced GMM estimator and the non-linear GMM estimator of Ahn and Schmidt
(1995); to relate the conditions needed for consistency of the Blundell and Smith
(1991) conditional GLS estimator to the initial conditions process; and finally to
evaluate the performance of these estimators using both Monte Carlo simula-
tions and an application to company panel data.

116 R. Blundell, S. Bond / Journal of Econometrics 87 (1998) 115–143



The layout of the paper is as follows. In Section 2 we briefly review the
standard moment conditions for the autoregressive error components model, in
the framework of Anderson and Hsiao (1981), Holtz-Eakin et al. (1988), Arellano
and Bond (1991), and Ahn and Schmidt (1995). In Section 3 we evaluate the
problem of weak instruments in the first-differenced instrumental variable
estimator. Section 4 goes on to consider restrictions on the initial condition
process that render lagged values of Dy

it
valid as instruments for the levels

equations and discusses the extended GMM estimator which is available when
these restrictions are satisfied. In Section 5 we consider the conditional GLS
estimator in which initial conditions are explicitly added to the model. Section 6
presents the results of Monte Carlo simulations which highlight the potential
importance of exploiting the extra moment restrictions relating to the properties
of the initial condition process for the efficiency of the AR coefficient estimators.
Section 7 discusses the extensions to models with strictly exogenous and prede-
termined regressors. An application to a panel data model of labour demand is
presented which illustrates the usefulness of the extended GMM estimator in
practice. Section 8 concludes.

2. The model

We consider an autoregressive panel data model of the form
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In our application to panel data employment equations presented in Sec-
tion 7 we allow for the inclusion of x

it
regressors, but for the evaluation of the

various estimators we use an AR(1) model with unobserved individual-specific
effects

y
it
"ay

i,t~1
#g

i
#v

it
(2.3)

1All of the estimators discussed below and their properties extend in an obvious fashion to
higher-order autoregressive models.
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for i"1,2,N and t"2,2,¹. Since our focus is on the role of initial conditions
we will assume that g

i
and v

it
are independently distributed across i and have the

familiar error components structure in which

E(g
i
)"0, E(v

it
)"0, E(v

it
g
i
)"0 for i"1,2,N and t"2,2,¹ (2.4)

and

E(v
it
v
is
)"0 for i"1,2,N and ∀tOs. (2.5)

In addition, there is the standard assumption concerning the initial conditions
y
i1

(see Ahn and Schmidt, 1995, for example)

E(y
i1
v
it
)"0 for i"1,2,N and t"2,2,¹. (2.6)

Conditions (2.4), (2.5) and (2.6) imply moment restrictions that are sufficient to
(identify and) estimate a for ¹*3.

3. Estimation in first differences

3.1. The standard moment conditions

In the absence of any further restrictions on the process generating the initial
conditions, the autoregressive error components model (2.3)—(2.6) implies the
following m"0.5(¹!1)(¹!2) orthogonality conditions which are linear in
the a parameter

E(y
i,t~s

Dv
it
)"0 for t"3,2,¹ and s*2 (3.1)

where Dv
it
"v

it
!v

i,t~1
. These depend only on the assumed absence of serial

correlation in the time-varying disturbances v
it
, together with the restriction in

Eq. (2.6).
The moment restrictions in Eq. (3.1) can be expressed more compactly as

E(Z@
i
uM
i
)"0

where Z
i
is the (¹!2)]m matrix given by (omitting the i subscripts)

Z
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,

and uM
i
is the (¹!2) vector (Dv

i3
, Dv

i4
,2,Dv

iT
)@.

The generalised method of moments estimator based on these moment
conditions minimises the quadratic distance (uM @ZA

N
Z@uM ) for some metric A

N
,

where Z@ is the m]N(¹!2) matrix (Z@
1
, Z@

2
,2, Z@

N
) and uM @ is the N(¹!2)
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vector (uM @
1
, uM @

2
,2,uM @

N
). This gives the GMM estimator for a as
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where yM @
i
is the (¹!2) vector (Dy

i3
, Dy

i4
,2,Dy
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), yM @
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is the (¹!2) vector

(Dy
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, Dy
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,2,Dy

i,T~1
), and yM and yM

~1
are stacked across individuals in the same

way as uM .
Alternative choices for the weights A

N
give rise to a set of GMM estimators

based on the moment conditions in Eq. (3.1), all of which are consistent for large
N and finite ¹, but which differ in their asymptotic efficiency.2 In general the
optimal weights are given by

A
N
"AN~1

N
+
i/1
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i
uM K
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i
Z
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,

where uM K
i
are residuals from an initial consistent estimator. We refer to this as the

two-step GMM estimator.3 In the absence of any additional knowledge about
the process for the initial conditions, this estimator is asymptotically efficient in
the class of estimators based on the linear moment conditions [Eq. (3.1)] (see
Hansen, 1982; Chamberlain, 1987).

3.1.1. Homoskedasticity
Ahn and Schmidt (1995) show that additional linear moment conditions are

available if the v
it

disturbances are homoskedastic through time, i.e. if

E(v2
it
)"p2

i
for t"2,2,¹. (3.3)

This implies ¹!3 orthogonality restrictions of the form

E(y
i,t~2

Dv
i,t~1

!y
i,t~1

Dv
it
)"0 for t"4,2,¹ (3.4)

2These estimators are all based on the normalisation (2.3). Alonso-Borrego and Arellano (1996)
consider a symmetrically normalised instrumental variable estimator based on the normalisation
invariance of the standard LIML estimator.

3As a choice of A
N

to yield the initial consistent estimator, Arellano and Bond (1991) suggest

A
N
"AN~1

N
+
i/1

Z@
i
HZ

iB~1,

where H is the (¹!2)](¹!2) matrix given by

H"A
2 !1 0 2 0

!1 2 !1 2 0

0 !1 2 2 0

2 2 2 2 .

0 0 0 2 2
B

which can be calculated in one step. Note that when the v
it

are i.i.d., the one-step and two-step
estimators are asymptotically equivalent in this model.
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and allows a further ¹!3 columns to be added to the instrument matrix Z
i
.4

Calculation of the one-step and two-step GMM estimators then proceeds
exactly as described above.

3.2. The problem of weak instruments

The instruments used in the standard first-differenced GMM estimator be-
come less informative in two important cases. First, as the value of a increases
towards unity, and second, as the relative variance of the fixed effects g

i
in-

creases. To examine this further consider the case with ¹"3. For ¹"3,
moment conditions (3.1) reduce to a single orthogonality condition, so that a is
just-identified. The corresponding method of moments estimator aL

$*&
in Eq. (3.2)

reduces to a simple instrumental variable (IV) estimator with reduced form
(instrumental variable regression) equation

Dy
i2
"ny

i1
#r

i
for i"1,2,N. (3.5)

For sufficiently high a or variance of g
i
, the least-squares estimate of the

reduced form coefficient n can be made arbitrarily close to zero. In this case the
instrument y

i1
is only weakly correlated with Dy

i2
. To see this notice that the

model (2.3) implies that

Dy
i2
"(a!1)y

i1
#g

i
#v

i2
for i"1,2,N. (3.6)

The least-squares estimator of (a!1) in Eq. (3.6) is generally biased upwards,
towards zero, since we expect E(y

i1
g
i
)'0. Assuming stationarity and letting

p2g"var(g
i
) and p2

v
"var(v

it
), the plim of nL is given by

plimnL "(a!1)
k

(p2g/p2
v
)#k

with k"
(1!a)2

(1!a2)
.

¹he bias term effectively scales the estimated coefficient on the instrumental
variable y

i1
toward zero. We find that plimnL P0 as aP1 or as (p2g/p2

v
)PR,

which are the cases in which the first stage F-statistic is O
1
(1). A graph showing

both plimnL and a!1 against a is given in Fig. 1, for p2g"p2
v
"1, ¹"3.

Here we have considered taking a towards unity with p2g fixed ("p2
v
). This

seems reasonable for the case where we are asking what happens to the
properties of this IV estimator for specific values of a. An alternative is to

4The additional columns Z
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Fig. 1. plimnL and a!1,p2g fixed.

analyse the limiting sequence of aP1 keeping p2g /(1!a)2 fixed.5 In this case the
plimnL has the form illustrated in Fig. 2, and although there is still substantial
bias towards zero, it is less serious than in Fig. 1.6

We are interested in inferences using this differenced IV estimator when n is
local to zero, that is where the instrument y

i1
is only weakly correlated with Dy

i2
.

Following Nelson and Startz (1990a,b) and Staiger and Stock (1997) we charac-
terise this problem of weak instruments using the concentration parameter. First
note that the F-statistic for the first stage instrumental variable regression
converges to a noncentral chi-squared with one degree of freedom. The concen-
tration parameter is then the corresponding noncentrality parameter which we
label q in this case. The IV estimator performs poorly when q approaches zero.
Assuming stationarity, q has the following simple characterisation in terms of
the parameters of the AR model

q"
(p2

v
k)2

p2g#p2
v
k

where k"
(1!a)2

(1!a2)
. (3.7)

The performance of the aL
$*&

estimator in this AR(1) specification can therefore be
seen to deteriorate as aP1, as well as for decreasing values of p2

v
and for

increasing values of p2g . To examine this further, Fig. 3 provides a plot of

5This would be equivalent to fixing the variance of f
i
in the common factor specification of the

model (2.2).
6Fig. 2 shows the case where p2g/(1!a)2"p2

v
"1, ¹"3.
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Fig. 2. plimnL ,p2g/(1!a)2 fixed.

Fig. 3. Concentration parameter q for ¹"3.

q against a for the case p2g"p2
v
"1, ¹"3. We further investigate the finite

sample properties of the differenced GMM estimator using Monte Carlo experi-
ments in Section 6.

In this special case, it is also interesting to note the following simple relation-
ship between the asymptotic standard error of aL

$*&
and the concentration

122 R. Blundell, S. Bond / Journal of Econometrics 87 (1998) 115–143



parameter

asyse(aL
$*&

)"
p
v

J2qp2
3

where p2
3

is the reduced form error variance E(r2
i
) in Eq. (3.5). We see that the

asymptotic variance of the aL
$*&

estimator explodes as qP0. For higher values of
¹ the precision of aL

$*&
will also be shown to deteriorate as aP1, although at

a slower rate. A comparison of asymptotic variances is given in more detail in
the following section.

4. Non-linear moment conditions and restrictions on the initial conditions process

In this section we consider an additional, but in many cases relatively
mild, restriction on the initial conditions process which allows the use
of additional linear moment conditions for the levels equations in the GMM
framework. This allows the use of lagged differences of y

it
as instruments in

the levels equations. These additional moment conditions are likely to be
important in practice when a is close to unity or when p2g/p2

v
is high, since we

have seen that lagged levels will be weak instruments in the differenced equa-
tions in these cases.

4.1. Non-linear moment conditions

A number of authors have previously suggested using the additional
¹-3 non-linear moment conditions (see, for example, Ahn and Schmidt, 1995,
Eq. (4))

E(u
it
Du

i,t~1
)"0 for t"4,5,2,¹. (4.1)

which are implied by Eqs. (2.4)—(2.6) and which could be expected to improve
efficiency. These conditions relate directly to the absence of serial correlation in
v
it

and do not require homoskedasticity. Under the homoskedasticity through
time restriction (3.3), Ahn and Schmidt (1995, Eq. (11b)) show the existence of an
additional non-linear moment condition

E(uN
i
Du

i3
)"0 where uN

i
"

1

¹!1

T
+
t/2

u
it
. (4.2)

Asymptotic efficiency comparisons reported in Ahn and Schmidt (1995) confirm
that these non-linear moments are particularly informative in cases where a is
close to unity and/or where p2g /p2

v
is high.
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4.2. Initial conditions

In contrast to the non-linear moment restrictions (4.1), we consider the
following ¹-3 linear moment conditions:7

E(u
it
Dy

i,t~1
)"0 for t"4,5,2,¹. (4.3)

The use of lagged differences as possible instruments for equations in levels was
proposed by Arellano and Bover (1995). Clearly, Eq. (4.3) does not imply
Eq. (4.1). However, notice that since Dy

i2
is observed, there is an additional

restriction available, namely

E(u
i3
Dy

i2
)"0. (4.4)

Note also that the validity of this extra moment condition depends on a restric-
tion on the initial conditions process generating y

i1
. Condition (4.4) has two

important implications. First, combining Eq. (4.4) with the model for periods
2,2,¹ set out in Eqs. (2.3)—(2.6) implies the validity of the linear moment
restrictions in Eq. (4.3).8 Second, combining Eq. (4.3) and Eq. (4.4) implies the
non-linear restrictions in Eq. (4.1), and renders these redundant for estimation.
Thus, the complete set of second-order moment restrictions implied by
Eqs. (2.3)—(2.6) and Eq. (4.4) can be implemented as a linear GMM estimator.

To examine the conditions under which Eq. (4.4) will hold, we write y
i1

as

y
i1
"

g
i

1!a
#u

i1
. (4.5)

The model specifies a convergent level for y
it

from t"2 onwards for each
individual, and u

i1
is simply the initial deviation from this convergent level.

Noting that Eq. (4.4) is equivalent to E[(g
i
#v

i3
)(v

i2
#(a!1)u

i1
)]"0, neces-

sary conditions for Eq. (4.4) are then

E(u
i1
g
i
)"E(u

i1
v
i3
)"0 for i"1,2,N. (4.6)

The key requirement is therefore that the deviations of the initial conditions from
g
i
/(1!a) are uncorrelated with the level of g

i
/(1!a) itself.

This condition is clearly satisfied in the fully stationary model, where u
i1

will
be the infinite weighted sum +=

s/~1
(as`1v

i,~s
), and where assumptions (2.4) and

(2.5) are maintained for all s and t. However, stationarity is not necessary for the

7 In this section we focus on moment conditions that remain valid under heteroskedasticity.
8Given Eqs. (2.3)—(2.6), we can write

Dy
it
"at~2Dy

i2
#

t~3
+
s/0

asDv
i,t~s

for t"3,4,2,¹

and the Dv
i,t~s

are uncorrelated with g
i
. Hence E(Dy

it
g
i
)"at~2E(Dy

i2
g
i
).
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Fig. 4. plimnL .

validity of the extra linear moment conditions (4.3) and (4.4). Condition (4.6)
imposes no restriction on the variance of u

i1
, and any entry period ‘disequilib-

rium’ from g
i
/(1!a) which is randomly distributed across agents will preserve

condition (4.4). Other departures from stationarity such as y
i1
"k∀i or

y
i1
&i.i.d.(0, p2

y1
) will violate Eq. (4.6) however, so this restriction is not without

content.
To show that the moment conditions (4.3) and (4.4) remain informative when

a approaches unity or p2g/p2
v

becomes large, we again consider the case of ¹"3.
Here we can use one equation in levels

y
i3
"ay

i2
#(g

i
#v

i3
)

for which the instrument available is Dy
i2
, and the reduced form equation is

y
i2
"nDy

i2
#r

i
.

In this case the plimnL is given by

plimnL "
1

2A
1!a
1!a2B

which is illustrated in Fig. 4.
As was the case for aL

$*&
, the performance of the GMM estimator based on this

levels equation can be seen to deteriorate as aP1. However, with DaD(1, this
moment condition stays informative in clear contrast to the aL

$*&
estimator. The

efficient GMM estimator will combine both sets of orthogonality restrictions, to
which we turn next.
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4.3. A system GMM estimator

Calculation of the GMM estimators using conditions (4.3) and (4.4) can be
based on a stacked system comprising all (¹!2) equations in first differences
and the (¹!2) equations in levels corresponding to periods 3,2,¹, for which
instruments are observed. The instrument matrix for this system can be written

Z`
i
"

Z
i

0 0 2 0

0 Dy
i2

0 2 0

0 0 Dy
i3

2 0

) ) ) 2 0

0 0 0 2 Dy
i,T~1

(4.7)

where Z
i

is as defined in Section 3. The calculation of the two-step GMM
estimator is then analogous to that described above.9

4.4. Asymptotic variance comparisons

To quantify the gains in asymptotic efficiency that result from exploiting the
linear moment conditions (4.3) and (4.4), Table 1 reports the ratio of the
asymptotic variance of the standard first-differenced GMM estimator described
in Section 3.1 to the asymptotic variance of the system GMM estimator de-
scribed in Section 4.3. These asymptotic variance ratios are calculated assuming
both stationarity and homoskedasticity. They are presented for ¹"3 and
¹"4, for two fixed values of p2g /p2

v
, and for a range of values of the autoregres-

sive parameter a. For comparison, we also reproduce from Ahn and Schmidt
(1995) the corresponding asymptotic variance ratios comparing first-differenced
GMM to the non-linear GMM estimator which uses the quadratic moment
conditions (4.1), but not the extra linear moment conditions (4.3) and (4.4). In the
¹"3 case there are no quadratic moment restrictions available. These calcu-
lations suggest that exploiting conditions (4.3) and (4.4) can result in dramatic
efficiency gains when ¹"3, particularly at high values of a and high values of
p2g /p2

v
. These are indeed the cases where we find the instruments used to obtain

the first-differenced estimator to be weak.
In the ¹"4 case we still find dramatic efficiency gains at high values of a.

Comparison to the results for the non-linear GMM estimator also shows that
the gains from exploiting conditions (4.3) and (4.4) can be much larger than the
gains from simply exploiting the non-linear restrictions (4.1).

9 In this case, though, there is no one-step GMM estimator that is asymptotically equivalent to the
two-step estimator, even in the special case of i.i.d. disturbances.
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Table 1
Asymptotic variance ratios

System Non-linear System Non-linear

p2g/p2
v
"1 p2g/p2

v
"1 p2g/p2

v
"0.25 p2g/p2

v
"0.25

a ¹"3 ¹"3
0.0 1.33 n/a 1.33 n/a
0.3 2.15 1.89
0.5 4.00 2.91
0.8 28.00 13.10
0.9 121.33 47.91
a ¹"4 ¹"4
0.0 1.75 1.67 1.40 1.29
0.3 2.31 1.91 1.77 1.33
0.5 3.26 2.10 2.42 1.35
0.8 13.97 2.42 8.88 1.41
0.9 55.40 2.54 30.90 1.45

In the Monte Carlo simulations presented in Section 6 we investigate whether
similar improvements are found in finite samples.

4.5. Homoskedasticity

In the case where the initial conditions satisfy restriction (4.4) and the
v
it

satisfy restriction (3.3), Ahn and Schmidt (1995), (Eq. (12b)) show that the
¹!2 homoskedasticity restrictions (3.4) and (4.2) can be replaced by a set of
¹!2 moment conditions

E(y
it
u
it
!y

i,t~1
u
i,t~1

)"0 for t"3,2,¹ (4.8)

which are all linear in the parameter a. The non-linear condition (4.2) is again
redundant for estimation given Eq. (4.4), and the complete set of second-order
moment restrictions implied by Eqs. (2.3)—(2.6), (3.3) and (4.4) can be imple-
mented in a linear GMM estimator.

5. The conditional GLS estimator

In the autoregressive error components model with homoskedasticity across
both individuals and time,10 restrictions on the initial conditions process can be
used to derive a consistent conditional GLS (CGLS) estimator by including y

i1
in

10 In this section we require E(v2
it
)"p2

v
and E(g2

i
)"p2g for i"1,2,N and t"2,2,¹.
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each of the ¹!1 levels equations and then applying the standard error
components GLS estimator. Under joint normality, this is the conditional ML
estimator (CMLE) proposed by Blundell and Smith (1991).11

To examine this estimator we write the model for each i as a ¹!1 equation
system

y
i
"ay

i,~1
#u

i
"ay

i,~1
#lg

i
#�

i
(5.1)

where y@
i
"(y

i2
,2,y

i,T
), y@

i,~1
"(y

i1
,2,y

i,T~1
), l is the ¹!1-unit vector,

u@
i
"(u

i2
,2,u

iT
) and �@

i
"(v

i2
,2,v

iT
). The error component assumptions imply

E(u
i
u@

i
)"X"p2gJ

T~1
#p2

v
I
T~1

. (5.2)

where J
T~1

is the (¹!1)](¹!1) unit matrix ll@ and I
T~1

the
(¹!1)](¹!1) identity matrix.

The presence of the fixed effect g
i
in u

it
not only implies

E(y@
i,~1

u
i
)O0 (5.3)

but also

E(y@
i,~1

X~1u
i
)O0. (5.4)

As a result the standard OLS, Within Groups and GLS estimators are all
inconsistent (see Hsiao, 1986; Nickell, 1981 and Sevestre and Trognon, 1985,
respectively).

Notice, however, that the system may be written

Ay
i
"ay

i1
#lg

i
#�

i
(5.5)

with A a (¹!1)](¹!1) lower triangular matrix and a@"(a,0,2,0). Since A is
lower triangular the inconsistency of the GLS estimator can be seen to depend
on E(y

i1
g
i
)O0. That is, although diagonalising the (¹!1)](¹!1) error

covariance matrix, premultiplying the ¹!1 system (5.5) by X~1@2 introduces
y
i1

into all ¹!1 equations of the transformed system and induces a correlation
with g

i
. The aim of the conditional GLS estimator is to eliminate this correlation.

Given Eq. (2.6), we have that E(y
i1
u
it
)"E(y

i1
g
i
) for t"2,2,¹. We then

make the following assumption

E(g
i
Dy

i1
)"/y

i1
with E(y2

i1
)"p2

1
for i"1,2,N. (5.6)

Including y
i1

in each equation of the system (5.5) gives an extended system

Ay
i
"ay

i1
#l/y

i1
#lgJ

i
#�

i
(5.7)

11Blundell and Smith (1991) consider a range of CMLE estimators, from the case without the full
error components restrictions, to the fully stationary error components model (which is equivalent
to the ML estimator in Bhagarva and Sargan (1983)).
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in which gJ
i
"g

i
!/y

i1
. From Eq. (5.6) we have E(y

i1
gJ
i
)"0 and var(gJ

i
) is

common across individuals. The conditional model (5.7) therefore retains an
error components structure with homoskedastic errors.

Defining XI to be the (¹!1)](¹!1) error covariance matrix for the errors
uI
i
"lgJ

i
#�

i
in system (5.7), we then have the following moment condition:

E(y@
i,~1

XI ~1uI
i
)"0. (5.8)

As a result error components GLS will be consistent for a in the conditional
model (5.7).12 The parameter / is identified for ¹*3 through the restrictions
between A and a. Under the normality assumption

u
i
&N(lg

i
, X) for all i"1,2,N (5.9)

this CGLS estimator is equivalent to the conditional MLE. For the autoregres-
sive error components model with homoskedastic normal disturbances
and satisfying assumption (5.6), this CGLS estimator is therefore efficient for a
provided there are no cross equation restrictions between a and /.13

6. Monte Carlo results

In this section we report the results of a Monte Carlo study which investigates
the potential gains from exploiting the moment conditions (4.3) and (4.4) in finite
samples, as well as the potential gains from using the conditional GLS es-
timator.

6.1. Design

We consider two data generation processes for y
it
.

Model A:

y
it
"ay

i,t~1
#g

i
#v

it

Model B:

y
it
"ay

i,t~1
#(1!a)g

i
#v

it

12Note that it remains the case that E(y@
i,~1

uI
i
)O0. The orthogonality condition (5.8) is an

example of a GLS transformation which is necessary for consistency and not just efficiency. As
a result, although consistency does not require normality, it does require imposing the correct
restrictions on XI . As indicated in Prucha (1984), this is a situation when the asymptotic covariance
matrix for the feasible conditional GLS estimator of a depends on the distribution of the estimated
XI . Bootstrap methods would, however, be applicable in this parametric autoregressive model, as
described in Horowitz (1997).

13See Blundell and Smith (1991).
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for i"1,2,2,N and t"2, 3,2,¹, where in each case the g
i
and v

it
are drawn as

mutually independent i.i.d. N(0,1) random variables. In model B, the contribu-
tion of the time-invariant component of the error term becomes less important
as the autoregressive parameter a increases.

In both cases we generate the initial conditions y
i1

as:

y
i1
"

g
i

1!a
#u

i1

where u
i1

is an i.i.d. N(0,p2
u1

) random variable, independent of both g
i
and v

it
, and

with the variance of u
i1

chosen to satisfy stationarity. Some models with
non-stationary initial conditions, and non-normal and heteroskedastic distur-
bances, are considered in the appendix. All results are based on 1000 Monte
Carlo replications, with new values for the initial conditions drawn in each
replication.

We present results for three GMM estimators:

DIF: The standard first-differenced GMM estimator, based on moment
conditions (3.1) only.

SYS: The system GMM estimator, based on moment conditions (3.1), (4.3)
and (4.4).

ALL: The system GMM estimator which also exploits the further ¹!2
moment restrictions (4.8) that follow from assumption (4.4) and the
homoskedasticity through time of v

it
.

Note that the linear GMM (ALL) estimator exploits the complete set of
second-order moment restrictions implied by assumptions (2.3)—(2.6), (3.3) and
(4.4).

The results reported below are for conventional two-step GMM estimators.
For GMM (DIF), the choice of A

N
to yield an initial consistent estimator is that

discussed in footnote 3. In our Monte Carlo designs, these one-step and two-step
GMM (DIF) estimators are asymptotically equivalent, and their finite sample
distributions were found to be similar in our simulations. For GMM (SYS) and
GMM (ALL), the choice of A

N
to yield an initial consistent estimator is

A
N
"(N~1+N

i/1
Z`1
i

Z`
i
)~1, which is asymptotically inefficient relative to the

two-step estimators.14 However the finite sample distributions of the one- and
two-step system GMM estimators were found to be similar in most of our
simulations. This is discussed further in the appendix. For comparison, we also
report results for a feasible conditional GLS estimator, which uses residuals
from the one-step GMM (SYS) estimator to estimate the required variance
components.

14Without prior knowledge of, for example, p2g /p2
v
, there is no one-step weight matrix that is

asymptotically equivalent to two-step GMM in these cases.

130 R. Blundell, S. Bond / Journal of Econometrics 87 (1998) 115–143



6.2. Results

The main results are presented in Table 2. We consider sample sizes with
N"100, 200 and 500, and values of a varying from 0.0 to 0.9. Table 2a reports
results for model A with ¹"4, Table 2b reports results for model B with ¹"4,
and Table 2c reports further results for model A with ¹"11.

Our main findings concern the poor performance of the first-differenced
GMM estimator at high values of a, and the dramatic improvement that results
from exploiting the additional moment conditions (4.3) and (4.4) in these cases.

Table 2
(a) Stationary model A, ¹" 4

N a GMM2 GMM2 GMM2 CGLS
(DIF) (SYS) (ALL)

Mean RMSE Mean RMSE Mean RMSE Mean RMSE
SD SD SD SD

100 0.0 !0.0044 0.1227 0.0100 0.0994 0.0060 0.0970 0.0157 0.0986
0.1227 0.0990 0.0969 0.0974

0.3 0.2865 0.1853 0.3132 0.1221 0.3100 0.1216 0.3188 0.1228
0.1849 0.1215 0.1213 0.1215

0.5 0.4641 0.2693 0.5100 0.1333 0.5100 0.1356 0.5182 0.1353
0.2674 0.1330 0.1353 0.1342

0.8 0.4844 0.8805 0.8101 0.1620 0.8169 0.1541 0.8365 0.1396
0.8224 0.1618 0.1533 0.1349

0.9 0.2264 1.0659 0.9405 0.1615 0.9422 0.1415 0.9572 0.1121
0.8264 0.1564 0.1351 0.0964

200 0.0 !0.0037 0.0854 0.0051 0.0670 0.0028 0.0651 0.0083 0.0700
0.0854 0.0669 0.0651 0.0696

0.3 0.2919 0.1272 0.3092 0.0838 0.3061 0.0812 0.3120 0.0895
0.1270 0.0833 0.0810 0.0887

0.5 0.4828 0.1828 0.5098 0.0941 0.5079 0.0925 0.5135 0.1015
0.1821 0.0936 0.0922 0.1006

0.8 0.6362 0.5468 0.8050 0.1196 0.8112 0.1143 0.8259 0.1115
0.5219 0.1195 0.1138 0.1085

0.9 0.3731 1.1000 0.9235 0.1499 0.9308 0.1243 0.9431 0.1022
0.9661 0.1481 0.1205 0.0927

500 0.0 !0.0033 0.0557 0.0012 0.0434 0.0001 0.0421 0.0025 0.0462
0.0556 0.0434 0.0422 0.0461

0.3 0.2936 0.0827 0.3025 0.0552 0.3008 0.0530 0.3030 0.0607
0.0824 0.0552 0.0530 0.0606

0.5 0.4887 0.1177 0.5021 0.0632 0.5006 0.0612 0.5025 0.0710
0.1172 0.0632 0.0612 0.0710

0.8 0.7386 0.3144 0.7939 0.0781 0.7942 0.0770 0.8007 0.0853
0.3085 0.0779 0.0769 0.0853

0.9 0.5978 0.7081 0.9043 0.1000 0.9038 0.0884 0.9172 0.0880
0.6407 0.0999 0.0883 0.0863
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(b) Stationary model B, T "4

N a GMM2 GMM2 GMM2 CGLS
(DIF) (SYS) (ALL)

Mean RMSE Mean RMSE Mean RMSE Mean RMSE
SD SD SD SD

100 0.0 !0.0044 0.1227 0.0100 0.0994 0.0060 0.0970 0.0157 0.0986
0.1227 0.0990 0.0969 0.0974

0.3 0.2895 0.1589 0.3042 0.1134 0.3018 0.1141 0.3075 0.1140
0.1586 0.1134 0.1141 0.1138

0.5 0.4833 0.1901 0.4939 0.1194 0.4931 0.1212 0.4944 0.1200
0.1895 0.1193 0.1211 0.1199

0.8 0.7586 0.2844 0.7737 0.1336 0.7762 0.1326 0.7638 0.1294
0.2816 0.1311 0.1305 0.1242

0.9 0.8115 0.4033 0.8626 0.1494 0.8670 0.1426 0.8505 0.1361
0.3936 0.1447 0.1388 0.1268

200 0.0 !0.0037 0.0854 0.0051 0.0670 0.0028 0.0651 0.0083 0.0700
0.0854 0.0669 0.0651 0.0696

0.3 0.2939 0.1087 0.3046 0.0775 0.3027 0.0764 0.3060 0.0830
0.1086 0.0774 0.0764 0.0828

0.5 0.4915 0.1280 0.5003 0.0816 0.4995 0.0816 0.5003 0.0877
0.1278 0.0816 0.0817 0.0877

0.8 0.7808 0.1842 0.7926 0.0890 0.7927 0.0898 0.7850 0.0920
0.1833 0.0887 0.0896 0.0908

0.9 0.8607 0.2488 0.8883 0.0967 0.8885 0.0967 0.8768 0.0966
0.2458 0.0960 0.0961 0.0938

500 0.0 !0.0033 0.0557 0.0012 0.0434 0.0001 0.0421 0.0025 0.0462
0.0556 0.0434 0.0422 0.0461

0.3 0.2943 0.0708 0.2999 0.0513 0.2991 0.0502 0.3004 0.0563
0.0706 0.0513 0.0502 0.0564

0.5 0.4920 0.0831 0.4969 0.0539 0.4966 0.0535 0.4969 0.0604
0.0828 0.0538 0.0534 0.0604

0.8 0.7851 0.1201 0.7938 0.0550 0.7937 0.0553 0.7888 0.0615
0.1192 0.0547 0.0549 0.0605

0.9 0.8759 0.1619 0.8932 0.0563 0.8930 0.0567 0.8850 0.0619
0.1602 0.0559 0.0563 0.0600
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(c) Stationary model A, T"11

N a GMM2 GMM2 GMM2 CGLS
(DIF) (SYS) (ALL)

Mean RMSE Mean RMSE Mean RMSE Mean RMSE
SD SD SD SD

100 0.0 !0.0138 0.0483 !0.0183 0.0468 !0.0153 0.0467 !0.0071 0.0364
0.0463 0.0431 0.0441 0.0358

0.3 0.2762 0.0591 0.2728 0.0558 0.2795 0.0545 0.2832 0.0424
0.0541 0.0487 0.0506 0.0389

0.5 0.4629 0.0725 0.4689 0.0618 0.4794 0.0592 0.4761 0.0490
0.0623 0.0535 0.0555 0.0428

0.8 0.6812 0.1576 0.7925 0.0655 0.8043 0.0624 0.8025 0.0595
0.1036 0.0651 0.0623 0.0595

0.9 0.6455 0.2996 0.9259 0.0522 0.9302 0.0523 0.9422 0.0623
0.1581 0.0453 0.0428 0.0459

200 0.0 !0.0070 0.0358 !0.0059 0.0310 !0.0057 0.0313 !0.0037 0.0272
0.0352 0.0304 0.0307 0.0270

0.3 0.2883 0.0427 0.2914 0.0345 0.2925 0.0348 0.2907 0.0318
0.0411 0.0335 0.0340 0.0304

0.5 0.4815 0.0503 0.4899 0.0373 0.4922 0.0373 0.4858 0.0369
0.0468 0.0359 0.0365 0.0340

0.8 0.7373 0.0971 0.8025 0.0421 0.8075 0.0430 0.8039 0.0449
0.0742 0.0420 0.0423 0.0448

0.9 0.7256 0.2152 0.9231 0.0435 0.9263 0.0445 0.9345 0.0506
0.1261 0.0369 0.0359 0.0370

500 0.0 !0.0025 0.0201 !0.0010 0.0172 !0.0012 0.0173 !0.0016 0.0169
0.0200 0.0172 0.0173 0.0168

0.3 0.2959 0.0237 0.2986 0.0182 0.2984 0.0183 0.2960 0.0196
0.0233 0.0181 0.0182 0.0192

0.5 0.4934 0.0276 0.4984 0.0189 0.4983 0.0190 0.4937 0.0228
0.0268 0.0189 0.0190 0.0220

0.8 0.7695 0.0536 0.8019 0.0244 0.8027 0.0249 0.8008 0.0316
0.0441 0.0243 0.0248 0.0316

0.9 0.8110 0.1168 0.9120 0.0306 0.9135 0.0312 0.9206 0.0361
0.0757 0.0280 0.0282 0.0296

This is particularly the case for model A, where the permanent effects remain
important even at high values of a, and when only a small number of time-series
observations are available.

Consider first the experiments where a is 0.8 or 0.9 in Table 2a. For GMM
(DIF) we find both a huge downward bias and very imprecise estimates. This is
consistent with our analysis in Section 3.2, where we showed that there was
a serious problem of weak instruments for the GMM (DIF) estimator at values
of a around 0.8 and above, particularly in model A. In contrast, we find both
a much smaller bias and much improved precision for either of the system
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GMM estimators. For example, at a"0.8 and N"200 the root mean squared
error (RMSE) for GMM (SYS) is only 20% of the RMSE for GMM (DIF).
These gains from using conditions (4.3) and (4.4) remain very impressive, even at
N"500.

Consistent with our theoretical analysis, the finite-sample bias of the first-
differenced GMM estimator is less serious in model B, as shown in Table 2b.
The weak instruments problem depends on the persistence in the level of the
series, which decreases both with a and with the importance of the permanent
effects. Even in this case, though, there remain substantial efficiency gains from
exploiting conditions (4.3) and (4.4). For example, at a"0.8 and N"200 the
RMSE for GMM (SYS) is still 50% of the RMSE for GMM (DIF).

Similarly the poor performance of GMM (DIF) improves with the number of
time periods available, as shown for model A in Table 2c. Nevertheless, for high
values of a there remain impressive gains in bias, precision and RMSE, even at
¹"11. For example, at a"0.8 and N"200 the RMSE for GMM (SYS)
remains less than half of the RMSE for GMM (DIF).

The gains from exploiting the homoskedasticity restrictions (4.8) are found to
be much smaller. The biggest gains are found for highly persistent series and low
values of ¹. At a"0.9 and ¹"4, the RMSE for GMM (ALL) is around 85% of
the RMSE for GMM (SYS) in model A. However at ¹"11 we find that there is
no gain from exploiting the homoskedasticity restrictions, and the same is found
in model B even at ¹"4.

Conditional GLS also offers much better performance than the first-differ-
enced GMM estimator. At N"500, the variance of conditional GLS is gener-
ally found to be higher than the variance of the system GMM estimators.15
However at N"100 the finite sample performance of conditional GLS is
generally found to be better than that of the system GMM estimators.16

Table 3 summarises the gains in precision found in Table 2, in the same
format as the asymptotic efficiency comparisons presented in Ahn and Schmidt
(1995, Table 1) and used in Table 1 in Section 4.4. The figures in Table 3 show
the ratio of the empirical variance of the two-step GMM (DIF) estimator in our
simulations to the empirical variance of the two-step GMM (SYS) estimator.
High values of this ratio imply large efficiency gains when the additional
moment conditions (4.3) and (4.4) are exploited.17 As would be expected from
the discussion of Table 1, the efficiency gains are largest at high values of a, low
values of¹, and at higher values of the variance of the permanent effects (relative
to the variance of v

it
). The empirical variance ratios found at N"500 in

15Exceptions are found for a"0.9 in Table 2a and for a"0.0 in Table 2c.
16At ¹"4 this is particularly found at high values of a, although this is not repeated when

¹"11.
17Notice that by neglecting the reductions in bias, these ratios tend to underestimate the

improvement in root mean squared error.
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Table 3
Empirical variance ratios

N a (a) ¹" 4 (b) ¹" 4 (c) ¹" 11
Model A Model B Model B

var(GMM!DIF)

var(GMM!S½S)

var(GMM!DIF)

var(GMM!S½S)

var(GMM!DIF)

var(GMM!S½S)

100 0.0 1.54 1.54 1.15
0.3 2.32 1.96 1.23
0.5 4.04 2.52 1.36
0.8 25.84 4.61 2.53
0.9 27.92 7.40 12.18

200 0.0 1.63 1.63 1.34
0.3 2.32 1.97 1.51
0.5 3.79 2.45 1.70
0.8 19.07 4.27 3.12
0.9 42.55 6.56 11.68

500 0.0 1.64 1.64 1.35
0.3 2.29 1.89 1.66
0.5 3.44 2.37 2.01
0.8 14.91 4.75 3.29
0.9 41.13 8.21 7.31

Table 3a are reasonably close to the corresponding asymptotic variance ratios
given in the ¹"4, p2g /p2

v
"1 results of Table 1.

Further Monte Carlo results presented in the appendix investigate the relia-
bility of inference based on the usual asymptotic variance formulae for the
GMM estimators. The main result is that whilst asymptotic t-tests based on the
one-step GMM estimators are found to have the correct empirical level in our
simulations, the asymptotic t-tests based on the two-step GMM estimators can
be seriously misleading, and tend to reject too frequently. This tendency is
exaggerated when the errors are non-normal or heteroskedastic.

7. An application to employment equations

7.1. The model

In this section we illustrate the benefits of exploiting the additional linear
moment restrictions (4.3) and (4.4) in an application using real data. We consider
a simple dynamic labour demand equation of the form

n
it
"an

i,t~1
#b

0
w

it
#b

1
w
i,t~1

#c
0
k
it
#c

1
k
i,t~1

#(g
i
#v

it
),
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where n
it
is the log of employment in firm i in year t, w

it
is the log of the wage rate

and k
it

is the log of the capital stock. This log-linear model can be derived as the
static conditional labour demand equation for a competitive firm with
Cobb—Douglas technology, with the dynamics resulting from an AR(1) distur-
bance as in model (2.2). However, we do not impose the implied common factor
restrictions, and alternatively the dynamics may be thought of as an empirical
approximation to some more general adjustment process.

In the context of model (2.1) with regressors x
it
, the precise set of moment

conditions available will depend on assumptions made about the correlation
between x

it
and u

it
. To exploit the linear moment conditions in Eqs. (4.3) and

(4.4) an additional requirement is that E(Dx
it
g
i
)"0, which is clearly weaker than

requiring the levels of x
it

to be uncorrelated with the individual effects. This is
precisely the case considered in Arellano and Bover (1995). Together with the
restriction (4.4) on the initial conditions process this allows the use of both
lagged Dy

it
and lagged Dx

it
as instruments in levels equations.

As we do not expect wages and capital to be strictly exogenous in our employ-
ment application, we focus here on moment conditions of the type E(u

it
Dy

i,t~1
)"0

and E(u
it
Dx

i,t~1
)"0. Stricter exogeneity restrictions on the x

it
would allow the use

of further instruments, as detailed in Arellano and Bond (1991), Ahn and Schmidt
(1995) and Arellano and Bover (1995). For the same reason we do not consider
conditional GLS results here. Extension of conditional GLS to models with
regressors requires strict exogeneity, as discussed in Blundell and Smith (1991).

7.2. Data

The data we use is taken from Arellano and Bond (1991). Briefly, this is an
unbalanced panel of 140 UK listed manufacturing companies with between
7 and 9 annual observations over the period 1976—1984. The data starts in 1976
only because Datastream did not report employment in earlier years. Hence,
there is nothing special about the first observation on the firms in this sample,
and we might expect the initial conditions restriction (4.4) to be valid here.

7.3. Results for a short sample period

We first consider omitting the first 3 observations for each firm, leaving an
unbalanced panel with between 4 and 6 observations between 1979 and 1984.
The first two columns of Table 4 report the results for GMM (DIF) and GMM
(SYS) respectively.18 These are the one-step GMM estimators, for which we

18Both wages and capital are treated as potentially endogenous variables, so that for GMM
(DIF) the instrument set contains observations on (n, w, k) dated t-2 and earlier. For GMM (SYS)
the instruments used in the levels equations are the observations on (Dn, Dw, Dk) dated t-1. The
results are obtained using DPD98 for GAUSS, which can be obtained by email from
steve.bond@nuffield.ox.ac.uk.
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Table 4
Employment equations

1979—84 1979—84 1976—84 1976—84
GMM-DIF GMM-SYS GMM-DIF GMM-SYS

n
i,t~1

0.4046 0.8596 0.7075 0.8103
(0.1363) (0.0680) (0.0842) (0.0578)

w
it

!1.1073 !1.0255 !0.7088 !0.7968
(0.3888) (0.1807) (0.1171) (0.1002)

w
i,t~1

0.3947 0.7705 0.5000 0.5488
(0.1643) (0.1527) (0.1113) (0.1488)

k
it

0.5463 0.5625 0.4660 0.4268
(0.2571) (0.2229) (0.1010) (0.0771)

k
i,t~1

!0.4216 !0.4769 !0.2151 !0.2786
(0.2821) (0.2420) (0.0859) (0.0784)

m1 !2.24 !3.94 !5.60 !6.50
m2 1.13 1.04 !0.14 !0.08
Sargan 15.34 43.43 88.80 116.05
(df) (25) (37) (79) (100)

Notes.
1. Year dummies are included in all specifications.
2. Asymptotic standard errors, asymptotically robust to heteroskedasticity, are reported in paren-
theses.
3. m1 and m2 are tests for first-order and second-order serial correlation in the first-differenced
residuals, asymptotically distributed as N(0,1) under the null of no serial correlation.
4. Sargan is a test of the over-identifying restrictions, asymptotically distributed as s2 under the null
of instrument validity, with degrees of freedom reported in parentheses.
5. The instruments used in each equation are
GMM (DIF) — n

i,t~2
, n

i,t~3
,2,n

i1
; w

i,t~2
, w

i,t~3
,2,w

i1
; k

i,t~2
, k

i,t~3
,2,k

i1
.

GMM (SYS) — differenced equations — as GMM (DIF); levels equations — Dn
i,t~1

, Dw
i,t~1

, Dk
i,t~1

.

believe inference based on the asymptotic variance matrix to be more reliable.19
Using the first-differenced GMM estimator in this short panel, the coefficient
on the lagged dependent variable is only 0.4, and the elasticity of employment
with respect to capital is only 0.2, suggesting implausibly low returns to scale.
Using the system GMM estimator which exploits the moment conditions (4.3)
and (4.4), the coefficient on the lagged dependent variable is 0.86, and the
elasticity of employment with respect to capital is a more plausible 0.6. We also
find a substantial improvement in precision, and the extended set of moment
restrictions is not rejected by the Sargan/Hansen test of over-identifying

19See Section 6.2 and the appendix for further discussion. The reported standard errors are
asymptotically robust to heteroskedasticity.
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restrictions. The tests of serial correlation in the first-differenced residuals are
in both cases consistent with the maintained assumption of no serial correlation
in v

it
.

7.4. Results for a longer sample period

The last two columns of Table 4 report the results for the same estimators, but
using the full sample period from 1976 to 1984 as originally used in the Arellano
and Bond (1991) study. The main difference is that the GMM (DIF) estimates
are now much closer to the GMM (SYS) estimates: the coefficient on the lagged
dependent variable is now 0.71, and the elasticity of employment with respect to
capital is found to be around 0.8 for both estimators. There remains a gain in
precision from exploiting the additional moment restrictions, and their validity
is not rejected in this example.

The results of this section appear to be consistent with our earlier analysis.
With short sample periods and persistent series, we find important small sample
biases and imprecision using the standard first-differenced GMM estimator.
These biases can be substantially reduced, and more precise parameter estimates
can be obtained, if restriction (4.4) is satisfied and we exploit the extra moment
conditions that this implies.

8. Summary and conclusions

In this paper we have discussed the importance of exploiting initial condition
information in generating efficient estimators for dynamic panel data models
where the number of time-series observations is small. We have focused on the
individual effects autoregressive model y

it
"ay

i,t~1
#g

i
#v

it
although our re-

sults extend naturally to dynamic models with regressors.
We considered two estimators that can improve the precision of the standard

first-differenced GMM estimator for this model. One approach imposes an
additional restriction on the initial conditions process, under which all the
moment conditions available can be exploited by a linear GMM estimator in
a system of first-differenced and levels equations. The second approach condi-
tions on the observed initial values to obtain a system that under certain
conditions can be estimated consistently by error components GLS.

The finite sample properties of these estimators were studied using Monte
Carlo simulations. Both can improve dramatically on the performance of the
usual first-differenced GMM estimator when the autoregressive parameter is
moderately high and the number of time-series observations is moderately
small. In addition, asymptotic variance comparisons suggest that the system
GMM estimator can be considerably more efficient than non-linear GMM in
this case.
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Appendix A.

In this appendix we present some further Monte Carlo results, which consider
designs with non-stationary initial conditions, non-normal and heteroskedastic
disturbances; and we investigate the reliability of inference based on the usual
asymptotic variance formulae for the GMM estimators. We focus on the case
with ¹"4, N"200, a"0.5, p2g"1 and p2

v
"1.

Table 5 reproduces the base case results for this configuration from Table 2a.
Here we present the one-step GMM estimators as well as the two-step GMM
estimators, and we present OLS levels, within groups and standard error
components GLS results for comparison. As expected in this i.i.d. design, the
one-step GMM(DIF) estimator performs as well as the two-step GMM(DIF)
estimator. More interestingly, the loss in efficiency from using the one-step
GMM(SYS) and GMM(ALL) estimators is quite modest.

For the GMM estimators, we also report the number of rejections (from 1000
replications) of a Wald test of the null hypothesis that a"0.5, and of the
standard Sargan/Hansen test of over-identifying restrictions. The one-step Wald
tests appear to have the correct empirical level, but the two-step Wald tests tend
to reject too frequently, particularly for the system estimators where there are
more over-identifying restrictions. This is primarily because the asymptotic
standard errors for the two-step GMM estimators tend to underestimate the
true dispersion of these estimators in finite samples. For example, the mean
asymptotic standard error (ASE) of the two-step GMM(ALL) estimator is only
89% of its empirical standard deviation.

Table 6 reports an experiment with non-stationary initial conditions, in which
the initial values are mean zero noise. This results in serious biases for the system
GMM estimators. The conventional Sargan test has power to detect these biases.

Table 7 presents a stationary design but with non-normal errors. The
v
it

disturbances are drawn from a skewed s2(1) distribution, then centred and
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Table 5
Stationary, normal, homoskedastic base case

Estimator Mean Std. Dev. Mean ASE RMSE

OLS 0.8745 0.0185 0.3749
Within !0.0346 0.0467 0.5366
GLS 0.6684 0.0961 0.1944
GMM1(DIF) 0.4809 0.1783 0.1822 0.1792
GMM2(DIF) 0.4828 0.1821 0.1798 0.1828
GMM1(SYS) 0.5040 0.1079 0.1104 0.1079
GMM2(SYS) 0.5098 0.0936 0.0892 0.0941
GMM1(ALL) 0.5118 0.1073 0.1106 0.1079
GMM2(ALL) 0.5079 0.0922 0.0820 0.0925
CGLS 0.5135 0.1006 0.1015

Rejection frequencies

Estimator One-Step Wald Two-Step Wald Two-Step Sargan

10% 5% 1% 10% 5% 1% 10% 5% 1%

DIF 83 49 15 97 64 18 110 54 8
SYS 99 56 11 153 95 34 97 59 11
ALL 100 56 14 167 106 43 98 50 13

y
i1
"2g

i
#u

i1
with u

i1
&i.i.d. N(0,4/3).

p2g"1, p2
v
"1, a"0.5, ¹"4, N"200.

Table 6
Non-stationary initial conditions

Estimator Mean Std. Dev. Mean ASE RMSE

OLS 0.7000 0.0331 0.2028
Within 0.2852 0.0356 0.2177
GLS 0.4997 0.0396 0.0396
GMM1(DIF) 0.4972 0.0555 0.0567 0.0555
GMM2(DIF) 0.4972 0.0563 0.0561 0.0564
GMM1(SYS) 0.7006 0.0726 0.0602 0.2133
GMM2(SYS) 0.6866 0.1041 0.0542 0.2137
GMM1(ALL) 0.7032 0.0759 0.0600 0.2169
GMM2(ALL) 0.6852 0.1017 0.0523 0.2113
CGLS 0.5020 0.0482 0.0482

Rejection Frequencies

Estimator One-Step Wald Two-Step Wald Two-Step Sargan

10% 5% 1% 10% 5% 1% 10% 5% 1%

DIF 91 49 15 98 52 18 110 55 7
SYS 927 883 728 832 791 672 1000 1000 1000
ALL 923 875 731 838 801 679 1000 1000 1000

y
i1
&i.i.d. N(0,16/3).

p2g"1, p2
v
"1, a"0.5, ¹"4, N"200.
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Table 7
Non-normal errors

Estimator Mean Std Dev Mean ASE RMSE

OLS 0.8740 0.0203 0.3746
Within !0.0343 0.0565 0.5373
GLS 0.6659 0.0965 0.1919
GMM1(DIF) 0.4867 0.1844 0.1775 0.1848
GMM2(DIF) 0.4911 0.1840 0.1700 0.1841
GMM1(SYS) 0.4999 0.1082 0.1068 0.1081
GMM2(SYS) 0.5032 0.0938 0.0825 0.0938
GMM1(ALL) 0.5067 0.1109 0.1078 0.1111
GMM2(ALL) 0.5045 0.0981 0.0762 0.0981
CGLS 0.5124 0.1030 0.1037

Rejection frequencies

Estimator One-Step Wald Two-Step Wald Two-Step Sargan

10% 5% 1% 10% 5% 1% 10% 5% 1%

DIF 103 55 10 124 65 12 94 44 8
SYS 105 59 19 171 102 41 84 45 4
ALL 108 70 25 228 155 75 116 55 8

v
it
"(e

it
!1)/J2 where e

it
&s2(1).

p2g"1, p2l"1, a"0.5, ¹"4, N"200.

Table 8
Heteroskedastic errors across individuals

Estimator Mean Std Dev Mean ASE RMSE

OLS 0.8748 0.0228 0.3754
Within !0.0351 0.0537 0.5378
GLS 0.6644 0.1117 0.1988
GMM1(DIF) 0.4585 0.2410 0.2368 0.2444
GMM2(DIF) 0.4715 0.2388 0.2253 0.2404
GMM1(SYS) 0.5011 0.1248 0.1258 0.1248
GMM2(SYS) 0.5127 0.1116 0.0976 0.1122
GMM1(ALL) 0.5145 0.1254 0.1266 0.1262
GMM2(ALL) 0.5148 0.1076 0.0868 0.1086
CGLS 0.5114 0.1161 0.1166

Rejection frequencies

Estimator One-Step Wald Two-Step Wald Two-Step Sargan

10% 5% 1% 10% 5% 1% 10% 5% 1%

DIF 114 64 19 127 71 25 114 56 5
SYS 118 62 18 194 125 58 101 48 4
ALL 118 66 25 214 156 69 114 50 10

v
it
&N(0,p2

i
) where p2

i
"0.5#0.5(y2

i1
/var(y

i1
)).

p2g"1, a"0.5, ¹"4, N"200.
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Table 9
Heteroskedastic errors over time

Estimator Mean Std Dev Mean ASE RMSE

OLS 0.8998 0.0199 0.4003
Within 0.1214 0.0683 0.3798
GLS 0.7502 0.0755 0.2613
GMM1(DIF) 0.4478 0.2165 0.2111 0.2226
GMM2(DIF) 0.4636 0.1952 0.1894 0.1985
GMM1(SYS) 0.5023 0.1157 0.1158 0.1157
GMM2(SYS) 0.5182 0.0804 0.0754 0.0824
GMM1(ALL) 0.4313 0.1199 0.1117 0.1382
GMM2(ALL) 0.5854 0.0999 0.0732 0.1314
CGLS 0.6110 0.0903 0.1430

Rejection Frequencies

Estimator One-Step Wald Two-Step Wald Two-Step Sargan

10% 5% 1% 10% 5% 1% 10% 5% 1%

DIF 102 41 6 95 54 11 108 54 10
SYS 102 55 20 148 78 28 103 47 10
ALL 157 85 11 403 311 180 1000 1000 1000

v
it
&N(0,p2

t
) where p2

2
"0.2, p2

3
"1 and p2

4
"1.8.

p2g"1, a"0.5, ¹"4, N"200.

scaled to have mean zero and variance one. Comparing Tables 5 and 7 suggest
that this non-normality has little impact on the means and standard deviations
of these estimators. However, there is a further deterioration in the quality of
inference based on the asymptotic standard errors for the two-step GMM
estimators. The mean ASE for the two-step GMM(ALL) estimator falls to just
78% of its empirical standard deviation in this design.

Table 8 presents a design with heteroskedasticity across individuals, in which
the variance of v

it
is dependent on y2

i1
. These disturbances are again scaled such

that they have variance one across the whole sample. This form of heteroskedas-
ticity considerably increases the variance of the GMM(DIF) estimators, but has
a smaller impact on the variance of the system GMM estimators. There is
a small improvement in the precision of the two-step GMM estimators relative
to the one-step GMM estimators. More striking again is the downward bias in
the (heteroskedasticity consistent) asymptotic standard errors for the two-step
GMM estimators. Inference based on the one-step GMM estimators appears to
be much more reliable when either non-normality or heteroskedasticity is
suspected.
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Finally, Table 9 presents a design with heteroskedasticity over time. As
expected, this results in serious biases for both the GMM(ALL) estimator and
for conditional GLS. In the former case, the conventional Sargan test has power
to detect the invalidity of the overidentifying restrictions in this design.
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