
HyMAC: A Hybrid Matrix Computation System
Zihao Chen

DaSE, East China Normal University†
zhchen@stu.ecnu.edu.cn

Zhizhen Xu
DaSE, East China Normal University†

zhizhxu@stu.ecnu.edu.cn

Chen Xu∗
DaSE, East China Normal University†

cxu@dase.ecnu.edu.cn

Juan Soto
DIMA, Technische Universität Berlin

juan.soto@tu-berlin.de

Volker Markl
DIMA, Technische Universität Berlin

volker.markl@tu-berlin.de

Weining Qian
DaSE, East China Normal University†

wnqian@dase.ecnu.edu.cn

Aoying Zhou
DaSE, East China Normal University†

ayzhou@dase.ecnu.edu.cn

ABSTRACT
Distributed matrix computation is common in large-scale data pro-
cessing and machine learning applications. Iterative-convergent
algorithms involving matrix computation share a common prop-
erty: parameters converge non-uniformly. This property can be
exploited to avoid redundant computation via incremental eval-
uation. Unfortunately, existing systems that support distributed
matrix computation, like SystemML, do not employ incremental
evaluation. Moreover, incremental evaluation does not always out-
perform classical matrix computation, which we refer to as a full
evaluation. To leverage the benefit of increments, we propose a new
system called HyMAC, which performs hybrid plans to balance the
trade-off between full and incremental evaluation at each iteration.
In this demonstration, attendees will have an opportunity to expe-
rience the effect that full, incremental, and hybrid plans have on
iterative algorithms.

PVLDB Reference Format:
Zihao Chen, Zhizhen Xu, Chen Xu, Juan Soto, Volker Markl, Weining Qian,
and Aoying Zhou. HyMAC: A Hybrid Matrix Computation System. PVLDB,
14(12): 2699 - 2702, 2021.
doi:10.14778/3476311.3476323

1 INTRODUCTION
Matrix computation is pervasive in data science, machine learning,
and statistical science. As datasets grow in size, matrix computation
should preferably be performed in a distributed computing envi-
ronment using systems, such as SystemML [2], TensorFlow [1], and
Spark MLlib [4]. Nonetheless, there are other strategies that may
be employed to further improve the performance. Notably, iterative
algorithms over matrices often exhibit the behavior that elements
converge at different rates. Clearly, it is unnecessary to iterate over
those elements that have already converged. Instead, we should

∗Chen Xu is the corresponding author
†Shanghai Engineering Research Center of Big Data Management
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476323

0HPEHU �0HPEHU �

0HPEHU � 0HPEHU �0HPEHU �

0HPEHU��

(a) Network Topology

x

x

)XOO�3ODQ

,QFUHPHQWDO�

3ODQ

s �:Úâ;

s ��:Úâ;

�Ú
��

Ú

:Úâ;

(b) Multiplication in PageRank

Figure 1: PageRank on Network 𝑮

leverage incremental evaluation, to exploit sparse computational
dependencies and accelerate the execution of iterative algorithms.

To ease our discussion and illustrate incremental evaluation,
consider the problem of determining the ranks of members in
a tiny community network, as depicted in Figure 1(a). Under a
full evaluation, the ranks 𝒓 are computed iteratively as follows:
𝒓 (𝑘+1) = 𝑑 × 𝑮 · 𝒓 (𝑘) + 𝜷, where 𝐺 is an 𝑛 × 𝑛 stochastic matrix of
the network, and𝑑 and 𝜷 are constant parameters. In the case of Fig-
ure 1(a), after nineteen iterations we observe that the only difference
between 𝒓 (18) and 𝒓 (19) is the rank of the first member. Hence, there
is no need to recompute the other ranks. Instead, we can re-express
the formula as 𝒓 (𝑘+1) = 𝑑 × 𝑮 · (𝒓 (𝑘) − 𝒓 (𝑘−1) ) + 𝒓 (𝑘) . In our exam-
ple, 𝒓 (19) − 𝒓 (18) = (0.03, 0, 0, 0, 0, 0)𝑇 denoted by Δ𝒓 (19) . Clearly,
evaluating 𝑮 · Δ𝒓 (19) can be simplified to calculate 𝒈1 × Δ𝑟

(19)
1 , as

depicted in Figure 1(b). In this new form, we both optimize compu-
tation efficiency and, more importantly, reduce the communication
costs due to performing multiplication in distributed environments.

In our recent work [3], we have found that incremental evalu-
ation does not always outperform full evaluation. In fact, it can
decrease the performance, due to the additional operations that
are imposed (i.e., adding an increment term). In our experiments,
we have found that incremental evaluation is typically detrimental
when the incrementally updated term is a matrix rather than a
vector. We aim to overcome these limitations by interleaving full
and incremental evaluation.

We have developed a novel system called HyMAC [3] built atop
SystemML, which implements hybrid plans, fully exploits both full

2699

https://doi.org/10.14778/3476311.3476323
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476323


LQSXW

1

WHUPLQDWH
<

RXWSXW

DQ�LWHUDWLRQ�XQGHU

D�IXOO�SODQ

DQ�LWHUDWLRQ�XQGHU�

DQ�LQFUHPHQWDO�SODQ

FRPSDUH

SUHVHUYH�PDWULFHV�DQG�FRPSXWH�LQFUHPHQWV

Figure 2: The Process of a Hybrid Plan

and incremental evaluations, and accelerates iterative computations
over matrices. For each iteration, a hybrid plan chooses either a
full plan or an incremental plan to execute. If the majority of the
elements in the increments are zero, then a hybrid plan will revert
to an incremental plan to reduce the computation costs. However,
the elements in a distributed matrix are physically organized into
blocks. Hence, the overall cost of an incremental plan might be
comparable to the cost of a full plan.

To address this, we optimize the physical layout of matrices
via matrix reorganization. Hybrid plans rely on the statistics of
increments to decide which iteration to execute. However, obtain-
ing these statistics requires the materialization of increments and
introduces overhead. To avoid this, we propose an optimization
approach called selective comparison. In our earlier experiments, we
determined that HyMAC outperforms SystemML by 23%.

In this demonstration, we showcase three aspects: (1) how hy-
brid plans exploit both full and incremental plans to accelerate
distributed matrix computation, (2) howmatrix reorganization lever-
ages increments to reduce communication costs, and (3) how selec-
tive comparison balances the benefits of incremental evaluation and
the comparison overhead.

2 HYMAC OVERVIEW
In this section, we briefly introduce the goals of HyMAC, and ex-
plain the design details.

2.1 System Goals
Incremental plans work reasonably well when most of the elements
do not change, whereas full plans typically outperform incremental
plans when the majority of elements change. Based on these obser-
vations, it is natural to employ a hybrid (i.e., an optimal) plan, since
it can dynamically choose between full and incremental plans for
each iteration. As depicted in Figure 2, for an iterative algorithm,
our hybrid plan repeatedly compares the performance of full and
incremental plans for the next iteration until the algorithm termi-
nates. By doing so, the hybrid plan will outperform both full and
incremental plans over all of the iterations.

2.2 System Design
HyMAC is designed to run on a cluster, where there are two types of
nodes: a master and a worker (as depicted in Figure 3). The master
node generates an execution plan from an input script, and drives
the execution, which is performed by the worker node.

In HyMAC, the master node is comprised of three components:
a compiler, an optimizer, and a runtime. Given a script, the compiler
will produce the corresponding full, incremental, and hybrid plans.
The role of the optimizer is to optimize each plan type. Finally, the

3UHIHUUHG�3DUWLWLRQ�6FKHPHV

XVHU

0DVWHU

0DWUL[�5HRUJDQL]DWLRQ

6HOHFWLYH�&RPSDULVRQ

&RVW�
0RGHO

2SWLPL]HU

DQ�LQFUHPHQWDO�SODQ

D�K\EULG�SODQ

&RPSLOHU

D IXOO�SODQ

5XQWLPH

/RFDO�2SHUDWRU 'LVWULEXWHG�2SHUDWRU

DQ�RSWLPL]HG�SODQV

:RUNHU

([HFXWRU
([HFXWRU([HFXWRU 'DWD

VWDWLVWLFV

:RUNHU

([HFXWRU
([HFXWRU([HFXWRU 'DWD

VXEPLW�D�VFULSW

Figure 3: System Architecture

runtime will execute the hybrid plan in either local or distributed
mode. Next, we dive into each of these three components.
Compiler. The compiler will initially parse a script and create a full
plan. Subsequently, it will transform the full plan to an incremental
plan, to more easily exploit incremental evaluation.

Due to the fact that incremental plans do not always outperform
full plans and vice versa, the compiler will combine the two types
of plans to generate a hybrid plan, as depicted in Figure 2. To
determine which plan is faster (at a given iteration), we require
auxiliary information, i.e., the number of non-zero increments,
in order to analyze the execution costs. Consequently, we store
matrices and compute increments after each iteration.
Optimizer. The optimizer is concerned with the optimization of
each of the plan types. For the full plan, the optimizer employs
preferred partition schemes, a state-of-art technique proposed in
DMac [5], to speedup distributed matrix multiplication.

Similarly, for the incremental plan, the optimizer also employs
preferred partition schemes. However, a key difference is the use
of increments to reduce computational costs. Logically, this occurs
when the majority of the elements in a vector or matrix increment
term are zero. Unfortunately, matrix elements are physically orga-
nized into blocks. Thus, the overall costs due to the incremental
and full plans might be the same, when the non-zero elements are
scattered across blocks. In particular, incremental plans may fail to
reduce the overwhelming communication costs (associated with
distributed matrix multiplication), when they are not optimized.

To address this issue, we propose matrix reorganization. The
main idea is to gather the increments into as few blocks as possible.
For 𝑮 · Δ𝒓 (𝑘) , we first extract the rows containing increments from
Δ𝒓 (𝑘) , and then permute the corresponding columns of 𝑮 . Since
the permutation of the large matrix 𝑮 may be costly, we utilize
the optimization provided by the preferred partition schemes to
achieve an efficient permutation. As a consequence, we can reduce
the communication cost associated with the increment involved
in multiplication (𝑮 · Δ𝒓 (𝑘) ), and thus fully exploit the benefit of
incremental evaluation.

2700



Figure 4: Execution Process

For the hybrid plan, the optimizer seeks to optimize the cost-
based comparison. Since we have to store matrices and compute in-
crements for cost evaluation, the comparison itself is costly. Hence,
it is infeasible to compare a full plan versus an incremental plan
at each iteration. A naive solution would be to require users to
specify a static step 𝜑 , and then HyMAC would selectively perform
a comparison every 𝜑 iterations. However, a short step leads to a
large overhead due to frequent comparisons, whereas a long step
does not maximize the benefits of incremental evaluation. As an
alternative, we propose to dynamically adjust the step at runtime.
First, we estimate the costs of full plans, incremental plans, and the
comparison via matrix statistics, respectively. Then, based on the
estimates, we decide whether applying the comparison is worth-
while, and let the step sequence gradually converge to a finite value
and thereby adapt to different cases. However, in general, the dy-
namic step for selective comparison is initially large and then is
gradually reduced to 1. In this manner, sidestepping the need to
perform unnecessary comparisons at the beginning, and exploiting
incremental evaluation from the middle iterations.
Runtime. The runtime component drives the optimized execution
plan fed by the optimizer. An execution plan consists of two kinds
of operators: local operators (that fit in memory on a single ma-
chine) and distributed operators (that are performed in a distributed
environment). For distributed operators, the runtime component
drives the executors in the workers to perform distributed matrix
computation. Besides executing operators, the runtime component
collects matrix statistics (e.g., the number of non-zero increments)
for the cost-based comparison employed by the optimizer.

3 DEMONSTRATION
In our demonstration, we deploy HyMAC on a seven-node cluster,
where each node has two Intel(R) Xeon(R) E5-2620 0 @ 2.00GHz six-
core processors, 32GB DRAM, a 4TB hard disk and 1Gbps Ethernet.
In particular, we implement a GUI to visualize the execution process
of three different plans, i.e., full, incremental and hybrid plan, on
four algorithms, including PageRank (PR), Hyperlink-Induced Topic
Search (HITS), Alternating Least Squares (ALS), and Gaussian Non-
Negative Matrix Factorization (GNMF). In addition, we demonstrate
the optimization of incremental and hybrid plans.

3.1 Execution Process
Attendees will initially see a UI for the “Execution Process” as de-
picted in Figure 4. Users will choose among four algorithms: PR
(PageRank), HITS (Hyperlinked-Induced Topic Search), ALS (Alter-
nating Least Squares), and GNMF (Gaussian Non-Negative Matrix
Factorization). The UI includes the plan tree of one iteration for
both full and incremental evaluation, respectively, as well as depict-
ing the execution process (represented as a blue square or a yellow
triangle) for the full, incremental and hybrid plans, accordingly. To
execute a particular plan, a user would click on the “run” button.
This enables them to visualize the plan tree and the execution time
per iteration, corresponding to their chosen plan. For hybrid plans,
they can also observe the cost of either full plans or incremental
plans. As depicted in Figure 4, the hybrid plan chooses the plan
tree with the lower cost. Once the execution of a certain plan is
completed, the UI records the entire execution time at the bottom
of the UI so that, after running all of the plans, attendees can dis-
tinguish among the differences in the performance. Due to space
limitations, we do not include this part in Figure 4.

Figure 4 illustrates the execution process for PR. In the figure
we can see the moment, i.e., iteration, when HyMAC detects that
the incremental plan outperforms the full plan, and switches to the
iteration under the incremental plan (e.g., the 19th iteration).

3.2 Optimization of Incremental Plans
Upon clicking on the left hand side, attendees will see a UI for
the “Optimization of Incremental Plans,” which provides insight
into the matrix reorganization, as depicted in Figure 5. The left
and right hand sides of the UI reflect the increment involved in
multiplication (𝑮 · Δ𝒓 (𝑘) ) with and without matrix reorganization,
respectively. Specifically, the UI demonstrates the dispersion of
increments in matrix multiplication and the corresponding costs
at different iterations. Here, the black bordered square represents
a partition of a distributed matrix, and the gray area represents
the portion corresponding to the non-zero increments, i.e., the
blocks involved in the multiplication. In addition, the UI records
the execution time of hybrid plans with and without optimization
for attendees to compare.

2701



Figure 5: Optimization of Incremental Plans

Figure 6: Optimization of Hybrid Plans

For example, Figure 5 illustrates PR at certain iterations. At the
25th iteration, matrix reorganization will extremely reduce the
number of blocks participating in the computation and thus the
cost of multiplication. Consequently, our optimization accelerates
the execution by reducing the involved matrix blocks.

3.3 Optimization of Hybrid Plans
Upon clicking on the left hand side, attendees will see a UI for the
“Optimization of Hybrid Plans,” as depicted in Figure 6. Users will
pick an algorithm and a comparison strategy that is either static
or dynamic. Then, they will experience the process of selective
comparison. The UI will show the iteration number and the next
step for each comparison. Since the cost of full plans, incremental
plans, and the comparison is essential to the dynamic step strategy,
the UI also shows these values. Finally, the UI records the execution
time of the static strategy and the dynamic strategy to demonstrate
the effect of selective comparison.

For ALS, shown in Figure 6, the cost of the full plan is lower
than the overall cost of the incremental plan and the comparison
at the 14th iteration. Since it is unlikely that the incremental plan

will become immediately faster than the full plan, the dynamic
strategy sets the step to four to avoid further comparisons. As the
incremental plan becomes more efficient, the dynamic strategy
reduces the step to one, to utilize incremental evaluation.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China (No. 61902128), Shanghai Sailing Program (No.
19YF1414200), and the German Federal Ministry of Education and
Research (BMBF) as BIFOLD (funding mark 01IS18025A).

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: A System for Large-scale Machine Learning.

In OSDI. 265–283.
[2] Matthias Boehm et al. 2016. SystemML: Declarative Machine Learning on Spark.

PVLDB 9, 13 (2016), 1425–1436.
[3] Zihao Chen, Chen Xu, Juan Soto, Volker Markl, Weining Qian, and Aoying Zhou.

2021. Hybrid Evaluation for Distributed Iterative Matrix Computation. In SIGMOD.
300–312.

[4] Xiangrui Meng et al. 2016. MLlib: Machine Learning in Apache Spark. J. Mach.
Learn. Res. 17, 1 (2016), 1235–1241.

[5] Lele Yu et al. 2015. Exploiting Matrix Dependency for Efficient Distributed Matrix
Computation. In SIGMOD. 93–105.

2702


