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The great advances in mathematical astronomy made during the early years of the
nineteenth century were due in no small part to the development of the method of least
squares. The same method is the foundation for the calculus of errors of observation
now occupying a place of great importance in the scientific study of social, economic,
biological, and psychological problems. Gauss says in his work on theTheory of Mo-
tions of the Heavenly Bodies(1809) that he had made use of this principle since 1795
but that it was first published by Legendre. The first statement of the method appeared
as an appendix entitled “Sur la Méthode des moindres quarr´es” in Legendre’sNouvelles
méthodes pour la d́etermination des orbites des comètes, Paris 1805. The portion of
the work translated here is found on pages 72–75.

Adrien-Marie Legendre (1752–1833) was for five years a professor of mathematics
in theÉcole Militaire at Paris, and his early studies on the paths of projectiles provided
a background for later work on the paths of heavenly bodies. He wrote on astronomy,
the theory of numbers, elliptic functions, the calculus, higher geometry, mechanics and
physics. His work on geometry, in which he rearranged the propositions of Euclid, is
one of the most successful textbooks ever written.

On the Method of Least Squares

In the majority of investigations in which the problem is to get from measures given
by observation the most exact result which they can furnish,there almost always arises
a system of equations of the form

a + bx + cy + fz + &c.

in which a, b, c, f , &c. are the known coefficients which vary from one equation to
another, andx, y, z, &c. are the unknowns which must be determined in accordance
with the condition that the value ofE shall for each equation reduce to a quantity which
is either zero or very small.

If there are the same number of equations as unknownsx, y, z, &c., there is no
difficulty in determining the unknowns, and the errorE can be made absolutely zero.
But more often the number of equations is greater than that ofthe unknowns, and it is
impossible to do away with all the errors.

In a situation of this sort, which is the usual thing in physical and astronomical
problems, where there is an attempt to determine certain important components, a de-
gree of arbitrariness necessarily enters in the distribution of the errors, and it is not
to be expected that all the hypotheses shall lead to exactly the same results; but it is
particularly important to proceed in such a way that extremeerrors, whether positive
or negative, shall be confined within as narrow limits as possible.

Of all the principles which can be proposed for that purpose,I think there is none
more general, more exact, and more easy of application, thatof which we made use
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in the preceding researches, and which consists of rendering the sum of squares of
the errors a minimum. By this means, there is established among the errors a sort of
equilibrium which, preventing the extremes from exerting an undue influence, is very
well fitted to reveal that state of the system which most nearly approaches the truth.

The sum of the squares of the errorsE2 + E′2 + E′′2 + &c. being

(a + bx + cy + fz+ &c.)2

+ (a′ + b′x + c′y + f ′z+ &c.)2

+ (a′′ + b′′x + c′′y + f ′′z+ &c.)2

+ &c.,

if its minimumis desired, when x alone varies, the resulting equation willbe

o =
∫
ab + x

∫
b2 + y

∫
bc + z

∫
bf + &c.,

in which by
∫

ab we understand the sum of similar products, i.e.,ab+a′b′+a′′b′′+&c;
by

∫
b2 the sum of the squares of the coefficients ofx, namelyb2 + b′2 + b′′2 + &c.,

and similarly for the other terms.
Similarly the minimum with respect toy will be

o =
∫

ac + x
∫

bc + y
∫
c2 + z

∫
fc + &c.,

and the minimum with respect toz,

o =
∫
af + x

∫
bf + y

∫
cf + z

∫
f2 + &c.,

in which it is apparent that the same coefficients
∫

bc,
∫

bf , &c. are common to two
equations, a fact which facilitates the calculation.

In general, to form the equation of the minimum with respect to one of the un-
knowns, it is necessary to multiply all the terms of each given equation by the coeffi-
cient of the unknown in that equation, taken with regard to its sign, and to find the sum
of these products.

The number of equations of minimum derived in this manner will be equal to the
number of the unknowns, and these equations are then to be solved by the established
methods. But it will be well to reduce the amount of computation both in multiplication
and in solution, by retaining in each operation only so much signification of figures,
integers or decimals, as are determined by the degree of approximation for which the
inquiry calls.

Even if by a rare chance it were possible to satisfy all the equations at once by mak-
ing all the errors zero, we could obtain the same result from the equations of minimum;
for if after having found the values ofx, y, z, &c. which makeE, E′ , &c. equal to
zero, we letx, y, z vary byδx, δy, δz, &c., it is evident thatE2, which was zero, will
become by that variation(aδx + bδy + cδz + &c.)2. The same will be true ofE′2,
E′′2, &c. Thus we see that the sum of squares of the errors will by variation become
a quantity of the second order with respect toδx, δy, &c., which is in accord with the
nature of a minimum.

If after having determined all the unknownsx, y, z, &c., we substitute their values
in the given equations, we will find the value of the differenterrorsE, E′ , E′′, &c., to
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which the system gives rise, and which cannot be reduced without increasing the sum of
their squares. If among these error are some which appear toolarge to be admissible,
then those equations which produced these errors will be rejected, as coming from
too faulty experiments, and the unknowns will be determinedby means of the other
equations, which will then give much smaller errors. It is further to be noted that
one will not then be obliged to begin the calculations anew, for since the equations
of minimum are formed by the addition of the products made in each of the given
equations, it will suffice to remove from the addition those products furnished by the
equations which would have led to errors that were too large.

The rule by which one finds the mean among the results of difference observations
is only a very simple consequence of our general method, which we will call the method
of least squares.

Indeed, if experiments have given different valuesa, a′, a′′, &c. for a certain
quantity x, the sum of squares of the errors will be(a′

− x)2 + (a′′
− y)2 +(a′′′

−x)2,
and on making that sum a minimum, we have

o = (a′
− x) + (a′′

− y) + (a′′′
− x),

from which it follows that

x =
a′ + a′′ + a′′′ + &c.

n
,

n being the number of the observations.
In the same way, if to determine the position of a point in space, a first experiment

has given the coordinatesa′, b′, c′; a second the coordinatesa′′, b′′, c′′; and so on, and
if the true coordinates of the point are denoted byx, y, z; then the error in the first
experiment will be the distance from the point(a′, b′, c′) to the point(x, y, z). The
square of this distance is

(a′
− x)2 + (a′′

− y)2 + (a′′′
− x)2,

If we make the sum of the squares of all such distances a minimum, we get three
equations which give

x =

∫
a

n
, y =

∫
b

n
, z =

∫
c

n
,

n being the number of points given by the experiments. These formulas are precisely
the ones by which one might find the common centre of gravity ofseveral equal masses
situated at the given points, whence it is evident that the centre of gravity of any body
possesses this general property.

If we divide the mass of a body into particles which are equal and sufficiently small
to be treated as points, the sum of the square of the distancesfrom the particles to the
centre of gravity will be a minimum.

We see then that the method of least squares reveals to us, in afashion, the centre
about which all the results furnished by experiments tend todistribute themselves, in
such a manner as to make their deviations from it as small as possible. The application

3



which we are now about to make of this method to the measurement of the meridian
will display most clearly its simplicity and fertility.1

From D E Smith,A Source Book in Mathematics, McGraw-Hill 1929 and Dover 1959,
Volume II, pages 576–579.

1An application of the method to an astronomical problem follows.
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