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ABSTRACT

Ordinary least-squares regression models the relationship between one or more covariates X and the con-
ditional mean of a response variable Y given X = x. In contrast, quantile regression models the relationship
between X and the conditional quantiles of Y given X = x, so it is especially useful in applications where
extremes are important, such as environmental studies where upper quantiles of pollution levels are critical
from a public health perspective. Quantile regression also provides a more complete picture of the condi-
tional distribution of Y given X = x when both lower and upper or all quantiles are of interest, as in the
analysis of body mass index where both lower (underweight) and upper (overweight) quantiles are closely
watched health standards. This paper describes the new QUANTREG procedure in SAS 9.1, which com-
putes estimates and related quantities for quantile regression by solving a modification of the least-squares
criterion.

INTRODUCTION

This paper introduces the QUANTREG procedure, which computes estimates and related quantities for
quantile regression. For SAS 9.1, an experimental version of the procedure can be downloaded from
Software Downloads at support.sas.com.

Ordinary least-squares regression models the relationship between one or more covariates X and the
conditional mean of the response variable Y given X = x. Quantile regression, which was introduced
by Koenker and Bassett (1978), extends the regression model to conditional quantiles of the response
variable, such as the 90th percentile. Quantile regression is particularly useful when the rate of change in
the conditional quantile, expressed by the regression coefficients, depends on the quantile.

As an example of data with this structure, consider the scatterplot in Figure 1 of body mass index (BMI)
against age for 8,250 men from a four-year (1999–2002) survey by the National Center for Health Statistics.
More details about the data can be found in Chen (2004). Body mass index, defined as the ratio of weight
(kg) to squared height (m2), is a measure of overweight or underweight. The percentiles of BMI for specified
ages are of particular interest. As age increases, these percentiles provide growth patterns of BMI not only
for the majority of the population, but also for underweight or overweight extremes of the population. In
addition, the percentiles of BMI for a specified age provide a reference for individuals at that age with
respect to the population.

The curves in Figure 1 represent fitted conditional quantiles of BMI, including the median, computed with
the QUANTREG procedure for a polynomial regression model in age. During the quick growth period (ages
2 to 20), the dispersion of BMI increases dramatically; it becomes stable during middle age, and then it
contracts after age 60. This pattern suggests that an effective way to control overweight in a population is
to start in childhood.

Note that ordinary least-squares regression can be used to estimate conditional percentiles by making
a distributional assumption such as normality for the error term in the model. However, it would not be
appropriate here since the difference between each fitted percentile curve and the mean curve would be
constant with age. Least-squares regression assumes that the covariates affect only the location of the
conditional distribution of the response, and not its scale or any other aspect of its distributional shape.

The main advantage of quantile regression over least-squares regression is its flexibility for modeling data
with heterogeneous conditional distributions. Data of this type occur in many fields, including economet-
rics, survival analysis, and ecology; refer to Koenker and Hallock (2001). Quantile regression provides a
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complete picture of the covariate effect when a set of percentiles is modeled, and it makes no distributional
assumption about the error term in the model.

Figure 1. BMI with Growth Percentile Curves

The next section provides a more formal definition of quantile regression, followed by a closer look at the use
of the QUANTREG procedure in the BMI example. A second example introduces nonparametric quantile
regression. Subsequent sections discuss various aspects of quantile regression, including algorithms for
estimating regression coefficients, confidence intervals, statistical tests, detection of leverage points and
outliers, and quantile process plots. These aspects are illustrated with a third example using economic
growth data. The last section discusses the scalability of the QUANTREG procedure.

QUANTILE REGRESSION

Quantile regression generalizes the concept of a univariate quantile to a conditional quantile given one or
more covariates.

For a random variable Y with probability distribution function

F (y) = Prob (Y ≤ y)

the τ th quantile of Y ∗ is defined as the inverse function

Q(τ) = inf {y : F (y) ≥ τ}

∗Recall that a student’s score on a test is at the τ th quantile if his (or her) grade is better than 100τ% of the students who took the
test. The score is also said to be at the 100τ th percentile.
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where 0 < τ < 1. In particular, the median is Q(1/2).

For a random sample {y1, ..., yn} of Y , it is well known that the sample median is the minimizer of the sum
of absolute deviations

min
ξ∈R

n∑
i=1

|yi − ξ|

Likewise, the general τ th sample quantile ξ(τ), which is the analogue of Q(τ), may be formulated as the
solution of the optimization problem

min
ξ∈R

n∑
i=1

ρτ (yi − ξ)

where ρτ (z) = z(τ − I(z < 0)), 0 < τ < 1. Here I(·) denotes the indicator function.

Just as the sample mean, which minimizes the sum of squared residuals

µ̂ = argminµ∈R

n∑
i=1

(yi − µ)2

can be extended to the linear conditional mean function E(Y |X = x) = x′β by solving

β̂ = argminβ∈Rp

n∑
i=1

(yi − x′iβ)2

the linear conditional quantile function, Q(τ |X = x) = x′β(τ), can be estimated by solving

β̂(τ) = argminβ∈Rp

n∑
i=1

ρτ (yi − x′iβ)

for any quantile τ ∈ (0, 1). The quantity β̂(τ) is called the τ th regression quantile. The case τ = 1/2,
which minimizes the sum of absolute residuals, corresponds to median regression, which is also known as
L1 regression.

USING THE QUANTREG PROCEDURE

The QUANTREG procedure computes the quantile function Q(τ |X = x) and conducts statistical inferences
on the estimated parameters β̂(τ). This section introduces the QUANTREG procedure by revisiting the
body mass index example and by applying nonparametric quantile regression to ozone data.

Growth Charts with Body Mass Index

Smooth quantile curves have been widely used for reference charts in medical diagnosis to identify unusual
subjects, whose measurements lie in the tails of the reference distribution. This example explains how to
use the QUANTREG procedure to create growth charts for BMI.

A SAS data set named bmimen was created by merging and cleaning the 1999–2000 and 2001–2002
survey results for men published by the National Center for Health Statistics. This data set contains the
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variables WEIGHT (kg), HEIGHT (m), BMI(kg/m2), AGE (year), and SEQN (respondent sequence number)
for 8,250 men.

The logarithm of BMI is used as the response (although this does not help the quantile regression fit, it
helps with statistical inference.) A preliminary median regression is fitted with a parametric model, which
involves six powers of AGE.

The following statements invoke the QUANTREG procedure:

proc quantreg data=bmimen algorithm=interior ci=resampling;
model logbmi = inveage sqrtage age sqrtage*age age*age age*age*age

/ diagnostics cutoff=4.5 quantile=.5;
id seqn age weight height bmi;
test_age_cubic: test age*age*age / wald lr;

run;

The MODEL statement provides the model, and the option QUANTILE=0.5 requests median regression,
which computes β̂( 1

2 ) using the interior point algorithm as requested with the ALGORITHM= option (see
the next section for details about this algorithm).

Figure 2 displays the estimated parameters and 95% confidence intervals, which are computed by the
resampling method as requested by the CI= option. All of the parameters are considered significant since
the confidence intervals do not contain zero.

The QUANTREG Procedure

Parameter Estimates

Parameter DF Estimate 95% Confidence Limits

Intercept 1 6.41816705 5.28206683 7.55426727
inveage 1 -1.1339904 -1.7752615 -.49271930
sqrtage 1 -3.7649349 -4.7275936 -2.8022763
age 1 1.46718520 1.13480543 1.79956496
sqrtage*age 1 -.24610559 -.30024265 -.19196854
age*age 1 0.01643716 0.01279510 0.02007923
age*age*age 1 -.00003114 -.00003836 -.00002392

Figure 2. Parameter Estimates with Median Regression: Men

The QUANTREG Procedure

Tests

TEST_AGE_CUBIC

Test Chi-
Test Statistic DF Square Pr > ChiSq

Wald 66.6839 1 66.68 <.0001
Likelihood Ratio 56.2815 1 56.28 <.0001

Figure 3. Test of Significance for Cubic Term

The TEST statement requests Wald and likelihood ratio tests for the significance of the cubic term in AGE.
The test results, shown in Figure 3, indicate that this term is significant. Higher-order terms are not signifi-
cant.

Median regression and, more generally, quantile regression are robust to extremes of the response variable.
The DIAGNOSTICS option in the MODEL statement requests a diagnostic table of outliers, shown in Figure
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4, which uses a cutoff value specified with the CUTOFF= option. The variables specified in the ID statement
are included in the table.

The QUANTREG Procedure

Diagnostics

Standardized
Obs SEQN age weight height bmi Residual Outlier

1337 13275 8.916667 73.6000 142.1000 36.4500 4.5506 *
1376 2958 9.166667 67.5000 130.5000 39.6400 5.0178 *
1428 19390 9.416667 70.3000 138.1000 36.8600 4.5122 *
1572 19814 10.250000 72.9000 133.8000 40.7200 4.9485 *
1903 15305 12.000000 143.600 162.6000 54.3100 6.3591 *
2356 12567 13.500000 114.900 162.3000 43.6200 4.6933 *
2562 6177 14.333333 123.200 166.1000 44.6600 4.6809 *
2746 18352 14.916667 117.100 158.2000 46.7900 4.8641 *
2967 710 15.750000 130.440 165.3000 47.7400 4.8448 *
3090 2079 16.166667 148.600 171.7000 50.4100 5.1141 *
3342 1874 17.000000 168.800 181.8000 51.0700 5.0644 *
3424 17793 17.166667 176.000 182.1000 53.0800 5.2791 *
3486 7095 17.416667 153.700 171.3000 52.3800 5.1599 *
3559 903 17.666667 174.600 172.6000 58.6100 5.8216 *
3686 10568 18.083333 153.700 175.6000 49.8500 4.7583 *
3858 12027 18.666667 171.500 180.4000 52.7000 5.0257 *
4347 14686 21.000000 196.800 193.7000 52.4500 4.7264 *
5273 2304 35.000000 193.300 178.2000 60.8700 4.9920 *
5669 9031 40.000000 177.200 174.6000 58.1300 4.6614 *
6209 17923 46.000000 174.100 174.0000 57.5000 4.5603 *
6282 19911 47.000000 188.300 172.9000 62.9900 5.1203 *
6366 11309 49.000000 171.300 163.4000 64.1600 5.2209 *

Diagnostics Summary

Observation
Type Proportion Cutoff

Outlier 0.0027 4.5000

Figure 4. Diagnostics with Median Regression: Men

With CUTOFF=4.5, 22 men are identified as outliers. All of these men have large positive standardized
residuals, which indicates that they are overweight for their age. The cutoff value 4.5 is ad hoc; it corre-
sponds to a probability less than 0.5E−5 if normality is assumed, but the standardized residuals for median
regression usually do not meet this assumption.

In order to construct the chart shown in Figure 1, the same model used for median regression is used for
other quantiles. Note that the QUANTREG procedure computes fitted values only for a single quantile at a
time. When fitted values are required for multiple quantiles, you can use the following macro.

%macro quantiles(NQuant, Quantiles);
%do i=1 %to &NQuant;

proc quantreg data=bmimen ci=none algorithm=interior;
model logbmi = inveage sqrtage age sqrtage*age age*age age*age*age

/ quantile=%scan(&Quantiles,&i,’’,’’);
output out=outp&i pred=p&i;

run;
%end;

%mend;

The following statements request fitted values for 10 quantiles ranging from 0.03 to 0.97.

%let quantiles = %str(.03,.05,.10,.25,.5,.75,.85,.90,.95,.97);
%quantiles(10,&quantiles);
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The 10 output data sets are merged, and the fitted BMI values together with the original BMI values are
plotted against AGE to create the display shown in Figure 1.

The fitted quantile curves reveal important information. Compared to the 97th percentile in reference growth
charts published by CDC in 2000, the 97th percentile for 10-year-old boys in Figure 1 is 6.4 BMI units higher
(an increase of 27%). This can be interpreted as a warning of overweight or obesity. Refer to Chen (2004)
for a detailed analysis.

Ozone Levels in Pittsburgh, Pennsylvania

Tracing seasonal trends in the level of tropospheric ozone is essential for predicting high-level periods,
observing long-term trends, and discovering potential changes in pollution. Traditional methods for modeling
seasonal effects are based on the conditional mean of ozone concentration; however, the upper conditional
quantiles are more critical from a public health perspective. In this example, the QUANTREG procedure
fits conditional quantile curves for seasonal effects using nonparametric quantile regression with cubic B-
splines.

Figure 5. Time Series of Ozone Levels in Pittsburgh, Pennsylvania

The data used here are from Chock, Winkler, and Chen (2000), who studied the association between daily
mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. The data set ozone contains
the following variables: OZONE (daily-maximum one-hour ozone concentration (ppm)), T (daily maximum
temperature (oC)), and DAY (index of 1095 days (3 years)).

Figure 5, which displays the time series plot of ozone concentration for the three years, shows a clear
seasonal pattern. Cubic B-splines are used to fit the seasonal effect. These splines are generated with 11
knots, which split the 3 years into 12 seasons.

The following statements construct 15 basis functions for DAY using the TRANSREG procedure.

proc transreg design data=ozone details;
model bspline(day / knots=90 182 272 365 455 547 637 730 820 912 1002);
output out=bs(drop=_: int:);

run;

The 15 basis functions (include the implicit intercept) are saved in the output data set bs, which is merged
with ozone to create a data set named ozbs.
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The following statements fit the conditional mean using the REG procedure by least-squares regression.

proc reg data=ozbs;
model ozone = x1-x15 / noint;
output out=outp0 pred=p0;

run;

From the conditional mean, parallel conditional quantile curves can be generated based on a distributional
assumption (such as normality). However, these parallel curves provide a poor fit of the heteroscedasticity
in the data.

The conditional quantiles can be fitted with quantile regression by using the QUANTREG procedure. You
can use the following macro to compute fitted values for multiple quantiles.

%macro quantiles(NQuant, Quantiles);
%do i=1 %to &NQuant;

proc quantreg data=ozbs algorithm=smooth;
model ozone = x1-x15 / noint quantile=%scan(&Quantiles,&i,’’,’’);
output out=outp&i pred=p&i;

run;
%end;

%mend;

The following statements request fitted values for the median and three upper quantiles.

%let quantiles = %str(.5,.75,.90,.95);
%quantiles(4,&quantiles);

Figure 6. Quantiles and Mean Ozone Levels in Pittsburgh, Pennsylvania

Figure 6 displays the conditional mean curve obtained with the REG procedure and the quantile curves
obtained with the QUANTREG procedure.

The curves show that peak ozone levels occur in the summer. The median curve (labeled 50%) and the
mean curve (labeled LS) are close. This indicates that the distribution of ozone concentration is roughly
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symmetric. For the three years (1989–1991), these two curves do not cross the 0.08 ppm line, which is the
1997 EPA 8-hour standard. These two curves and the 75% curve show a drop for the ozone concentration
levels in 1990. However, with the 90% and 95% curves, peak ozone levels tend to increase. This indicates
that there might have been more low ozone concentration days in 1990, but the top 10% and 5% tend to
have higher ozone concentration levels.

The quantile curves also show that high ozone concentration in 1989 had a longer duration than in 1990
and 1991. This is indicated by the wider spread of the quantile curves in 1989.

The following section provides some theoretical background for regression quantile estimates and infer-
ences.

REGRESSION QUANTILE ESTIMATES

Let A = (x1, ..., xn) denote the matrix consisting of n observed vectors of the random vector X, and let
y = (y1, ..., yn) denote the n observed responses. The model for linear quantile regression is

y = A′β + ε

where θ = (θ1, ..., θp)′ is the unknown p-dimensional vector of parameters and ε = (ε1, ..., εn)′ is the n-
dimensional vector of unknown errors.

As discussed earlier, the τ th regression quantile is a solution of

min
β∈Rp

[
∑

i∈{i:yi≥x′
iβ}

τ |yi − x′iβ|+
∑

i∈{i:yi<x′
iβ}

(1− τ)|yi − x′iβ|]

The special case τ = 1
2 is equivalent to L1 (median) regression.

Since the early 1950s it has been recognized that median regression can be formulated as a linear pro-
gramming (LP) problem and solved efficiently with some form of the simplex algorithm. In particular, the
algorithm of Barrodale and Roberts (1973) has been used extensively.

The simplex algorithm is computationally demanding in large statistical applications. In theory, the number
of iterations can increase exponentially with the sample size. However, this algorithm is still popularly used
when the data set contains less than tens of thousands of observations.

Several alternatives have been developed to handle L1 regression for larger data sets. The interior point
approach of Karmarkar (1984) solves a sequence of quadratic problems in which the relevant interior of the
constraint set is approximated by an ellipsoid. The worst-case performance of the interior point algorithm
has been proved to be better than that of the simplex algorithm. More important, experience has shown
that the interior point algorithm is advantageous for larger problems.

Like L1 regression, general quantile regression fits nicely into the standard primal-dual formulations of linear
programming.

Besides the interior point method, various heuristic approaches have been provided for computing L1-type
solutions. Among these, the finite smoothing algorithm of Madsen and Nielsen (1993) is the most useful.
It approximates the L1-type objective function with a smoothing function, so that the Newton-Ralphon algo-
rithm can be used iteratively to obtain the solution after a finite number of loops. The smoothing algorithm
extends naturally to general quantile regression.

The QUANTREG procedure implements the simplex, interior point, and smoothing algorithms. The details
are described in the Appendix.
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CONFIDENCE INTERVALS

The QUANTREG procedure provides three methods to compute confidence intervals for the regression
quantile parameter β(τ): sparsity, rank, and resampling. The sparsity method is the most direct and the
fastest, but it involves estimation of the sparsity function, which is not robust for data that are not indepen-
dently and identically distributed. To deal with this problem, the QUANTREG procedure computes a Huber
sandwich estimate using a local estimate of the sparsity function. The rank method, which computes con-
fidence intervals by inverting the rank score test, does not suffer from this problem, but it uses the simplex
algorithm and is computationally expensive with large data sets. The resampling method, which uses the
bootstrap, can overcome all of these problems, but it is unstable for small data sets. Based on these prop-
erties, the QUANTREG uses a combination of the rank method and the resampling method as the default.
The three methods are described in the Appendix.

COVARIANCE AND CORRELATION OF PARAMETER ESTIMATES

The QUANTREG procedure provides two methods to compute the covariance and correlation matrices of
the estimated parameters: an asymptotic method and a bootstrap method. Bootstrap covariance and corre-
lation matrices are computed when resampling confidence intervals are computed. Otherwise, asymptotic
covariance and correlation matrices are computed.

Asymptotic Covariance and Correlation

This method corresponds to the SPARSITY method for the confidence intervals. For the sparsity function in
the computation of the asymptotic covariance and correlation, both i.i.d. and non i.i.d. estimates are com-
puted. By default, the QUANTREG procedure computes non i.i.d. estimates. Since the rank method does
not provide a covariance-correlation estimate, the asymptotic covariance-correlation is computed when the
confidence intervals are computed using this method.

Bootstrap Covariance-Correlation

This method corresponds to the resampling method for the confidence intervals. The Markov chain marginal
bootstrap (MCMB) method is used.

LINEAR TEST

Two tests are available in the QUANTREG procedure for the linear null hypothesis H0 : β2 = 0. Here β2 de-
notes a subset of the parameters, where the parameter vector β(τ) is partitioned as β′(τ) = (β′1(τ), β′2(τ)),
and the covariance matrix Ω for the parameter estimates is partitioned correspondingly as Ωij with
i = 1, 2; j = 1, 2; and Ω22 = (Ω22 − Ω21Ω−1

11 Ω12)−1.

The Wald test, which is based on the estimated coefficients for the unrestricted model, is given by

TW (τ) = β̂′2(τ)Σ̂(τ)
−1

β̂2(τ)

where Σ̂(τ) is an estimator of the covariance of β̂2(τ). The QUANTREG procedure provides two estimators
for the covariance as described in the previous section. The estimator based on the asymptotic covariance
is

Σ̂(τ) =
1
n

ω̂(τ)2Ω22

where ω̂(τ) =
√

τ(1− τ)ŝ(τ) and ŝ(τ) is the estimated sparsity function. The estimator based on the
bootstrap covariance is the empirical covariance of the MCMB samples.
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The likelihood ratio test is based on the difference between the objective function values in the restricted
and unrestricted models. Let D0(τ) =

∑
ρτ (yi − xiβ̂(τ)), D1(τ) =

∑
ρτ (yi − x1iβ̂1(τ)), and set

TLR(τ) = 2(τ(1− τ)ŝ(τ))−1(D1(τ)−D0(τ))

where ŝ(τ) is the estimated sparsity function. Refer to Figure 3 for an example of these tests.

Koenker and Machado (1999) prove that these two tests are asymptotically equivalent and that the distribu-
tions of the test statistics converge to χ2

q under the null hypothesis, where q is the dimension of β2.

LEVERAGE POINT AND OUTLIER DETECTION

The QUANTREG procedure uses robust multivariate location and scale estimates for leverage point detec-
tion.

Mahalanobis distance is defined as

MD(xi) = [(xi − x̄)′C̄(A)−1(xi − x̄)]1/2

where x̄ = 1
n

∑n
i=1 xi and C̄ = 1

n−1

∑n
i=1(xi − x̄)′(xi − x̄). Here, xi = (xi1, ..., xi(p−1))′ does not include

the intercept variable. The relationship between the Mahalanobis distance MD(xi) and the hat matrix
H = (hij) = A′(AA′)−1A is

hii =
1

n− 1
MD2

i +
1
n

Robust distance is defined as

RD(xi) = [(xi − T (A))′C(A)−1(xi − T (A))]1/2

where T (A) and C(A) are robust multivariate location and scale estimates computed with the minimum
covariance determinant (MCD) method of Rousseeuw and Van Driessen (1999).

These distances are used to detect leverage points. You can use the DIAGNOSTICS and LEVERAGE
options in the MODEL statement to request leverage point and outlier diagnostics. Two new variables,
LEVERAGE and OUTLIER, are created and saved in an output data set specified in the OUTPUT statement.

Let C(p) =
√

χ2
p;1−α be the cutoff value. The variable LEVERAGE is defined as

LEVERAGE =
{

0 if RD(xi) ≤ C(p)
1 otherwise

You can specify a cutoff value with the LEVERAGE option in the MODEL statement.

Residuals ri, i = 1, ..., n based on quantile regression estimates are used to detect vertical outliers. The
variable OUTLIER is defined as

OUTLIER =
{

0 if |ri| ≤ kσ
1 otherwise

You can specify the multiplier k of the cutoff value with the CUTOFF= option in the MODEL statement. You
can specify the scale σ with the SCALE= option in the MODEL statement. By default, k = 3 and the scale
σ is computed as the corrected median of the absolute residuals σ = median{|ri|/β0, i = 1, ..., n}, where
β0 = Φ−1(.75) is an adjustment constant for consistency with the normal distribution.

Refer to Figure 4 for an example of outlier detection.
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The following example illustrates how the QUANTREG procedure provides statistical inference. It also
illustrates how the procedure computes quantile processes and creates graphical displays.

ECONOMETRIC GROWTH STUDY

This example uses a SAS data set named growth, which contains economic growth rates for countries
during two time periods, 1965–1975 and 1975–1985. The data come from a study by Barro and Lee (1994)
and have also been analyzed by Koenker and Machado (1999).

There are 161 observations and 15 variables in the data set. The variables, which are listed in the following
table, include the national growth rates (GDP) for the two periods, 13 covariates, and a name variable
(Country) for identifying the countries in one of the two periods.

Variable Description
Country Country’s Name and Period
GDP Annual Change Per Capita GDP
lgdp2 Initial Per Capita GDP
mse2 Male Secondary Education
fse2 Female Secondary Education
fhe2 Female Higher Education
mhe2 Male Higher Education
lexp2 Life Expectancy
lintr2 Human Capital
gedy2 Education/GDP
Iy2 Investment/GDP
gcony2 Public Consumption/GDP
lblakp2 Black Market Premium
pol2 Political Instability
ttrad2 Growth Rate Terms Trade

The goal is to study the effect of the covariates on GDP. First, median regression is used for a preliminary
exploration.

ods graphics on;
proc quantreg data=growth;

model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2
lintr2 gedy2 Iy2 gcony2 lblakp2 pol2 ttrad2
/ quantile=.5 diagnostics leverage(cutoff=8)

plots=(rdplot ddplot reshistogram);
id Country;
test_lgdp2: test lgdp2 / lr wald;

run;
ods graphics off;

The QUANTREG procedure employs the default simplex algorithm to estimate the parameters. Since this
is a relatively small data set, the rank method is used to compute confidence limits.

Figure 7 displays model information and summary statistics for the variables in the model. Six summary
statistics are computed, including the median and the median absolute deviation (MAD), which are robust
measures of univariate location and scale, respectively. For the variable lintr2 (Human Capital), both the
mean and standard deviation are much larger than the corresponding robust measures, median and MAD.
This indicates that this variable may have outliers.
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The QUANTREG Procedure

Model Information

Data Set MYLIB.GROWTH
Dependent Variable GDP
Number of Independent Variables 13
Number of Observations 161
Optimization Algorithm Simplex
Method for Confidence Limits Inv_Rank

Summary Statistics

Standard
Variable Q1 Median Q3 Mean Deviation MAD

lgdp2 6.9893 7.7454 8.6084 7.7905 0.9543 1.1572
mse2 0.3160 0.7230 1.2675 0.9666 0.8574 0.6835
fse2 0.1270 0.4230 0.9835 0.7117 0.8331 0.5011
fhe2 0.0110 0.0350 0.0890 0.0792 0.1216 0.0400
mhe2 0.0400 0.1060 0.2060 0.1584 0.1752 0.1127
lexp2 3.8670 4.0639 4.2428 4.0440 0.2028 0.2734
lintr2 0.00159 0.5604 1.8804 1.4625 2.5492 1.0064
gedy2 0.0247 0.0343 0.0465 0.0359 0.0141 0.0150
Iy2 0.1395 0.1955 0.2671 0.2010 0.0877 0.0982
gcony2 0.0479 0.0767 0.1276 0.0914 0.0617 0.0566
lblakp2 0 0.0696 0.2407 0.1915 0.3071 0.1031
pol2 0 0.0500 0.2429 0.1683 0.2409 0.0741
ttrad2 -0.0241 -0.0101 0.00731 -0.00569 0.0375 0.0241
GDP 0.00293 0.0196 0.0351 0.0191 0.0248 0.0237

Figure 7. Model Information and Summary Statistics

Figure 8 displays parameter estimates and 95% confidence intervals computed with the rank method.

The QUANTREG Procedure

Parameter Estimates

95% Confidence
Parameter DF Estimate Limits

Intercept 1 -0.0433 -0.2453 0.0811
lgdp2 1 -0.0268 -0.0389 -0.0175
mse2 1 0.0109 0.0000 0.0329
fse2 1 -0.0009 -0.0300 0.0116
fhe2 1 0.0120 -0.0830 0.0375
mhe2 1 0.0052 -0.0237 0.0789
lexp2 1 0.0666 0.0276 0.1335
lintr2 1 -0.0022 -0.0052 0.0010
gedy2 1 -0.0503 -0.4308 0.1264
Iy2 1 0.0750 0.0158 0.1148
gcony2 1 -0.0930 -0.2116 0.0042
lblakp2 1 -0.0267 -0.0545 -0.0189
pol2 1 -0.0301 -0.0471 -0.0015
ttrad2 1 0.1640 0.0392 0.2943

Figure 8. Parameter Estimates

Diagnostics for the median regression fit are displayed in Figure 9 and Figure 10, which are requested with
the PLOTS= option. Figure 9 plots the standardized residuals from median regression against the robust
MCD distance. This display is used to diagnose both vertical outliers and horizontal leverage points. Figure
10 plots the robust MCD distance against the Mahalanobis distance. This display is used to diagnose
leverage points.
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Figure 9. Residual-Robust Distance Plot

Figure 10. Robust Distance-Mahalanobis Distance Plot

The cutoff value 8 specified with the LEVERAGE option is close to the maximum of the Mahalanobis dis-
tance. Eighteen points are diagnosed as high leverage points, and almost all are countries with high Human
Capital, which is the major contributor to the high leverage as observed from the summary statistics. Four
points are diagnosed as outliers using the default cutoff value of 3. However, these are not extreme outliers.
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A histogram of the standardized residuals from median regression and two fitted density curves are dis-
played in Figure 11. This shows that median regression fits the data well.

Figure 11. Histogram for Residuals

Tests of significance for the initial per-capita GDP (LGDP2) are shown in Figure 12.

The QUANTREG Procedure

Tests

TEST_LGDP2

Test Chi-
Test Statistic DF Square Pr > ChiSq

Wald 45.3228 1 45.32 <.0001
Likelihood Ratio 36.4985 1 36.50 <.0001

Figure 12. Tests for Regression Coefficient

The QUANTREG procedure computes entire quantile processes for covariates when the option
QUANTILE=ALL is specified in the MODEL statement. The regression quantile β̂(τ), as a function of τ ,
is called a quantile process when τ varies continuously in (0, 1). Confidence intervals for quantile pro-
cesses can be computed with the sparsity or resampling methods, but not the rank method because the
computation would be prohibitively expensive.

ods graphics on;
proc quantreg ci=sparsity data=growth;

model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2 lintr2 gedy2 Iy2 gcony2
lblakp2 pol2 ttrad2 / quantile=all plot=quantplot;

run;
ods graphics off;
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A total of 14 quantile process plots are computed. Figure 13 and Figure 14 display two panels of eight
selected process plots. The 95% confidence bands are shaded.

Figure 13. Quantile Processes with 95% Confidence Bands

Figure 14. Quantile Processes with 95% Confidence Bands

As pointed out by Koenker and Machado (1999), previous studies of the Barro growth data have focused
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on the effect of the initial per-capita GDP on the growth of this variable (annual change per-capita GDP). A
single process plot for this effect can be requested with the following statements:

ods graphics on;
proc quantreg ci=sparsity data=growth;

model GDP = lgdp2 mse2 fse2 fhe2 mhe2 lexp2 lintr2 gedy2 Iy2 gcony2
lblakp2 pol2 ttrad2 / quantile=all plot=quantplot(lgdp2);

run;
ods graphics off;

The plot is shown in Figure 15.

Figure 15. Quantile Process Plot for LGDP2

The confidence bands here are computed using the sparsity method with the non i.i.d. assumption, unlike
Koenker and Machado (1999), who used the rank method for a few selected points. The figure suggests
that the effect of the initial level of GDP is relatively constant over the entire distribution, with a slightly
stronger effect in the upper tail.

The effects of other covariates are quite varied. An interesting covariate is public consumption/GDP
(gcony2) (first plot in second panel), which has a constant effect over the upper half of the distribution
and a larger effect in the lower tail. For the analysis of effects of other covariates, refer to Koenker and
Machado (1999).

SCALABILITY

The QUANTREG procedure implements algorithms for parallel computing, which can be used when you
are running on a machine with multiple processors. You can use the global SAS option CPUCOUNT to
specify the number of threads. For example, the following statement specifies eight threads:

options cpucount = 8;
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Figure 16. Speedup of the Interior Point Algorithm

Figure 16 displays the speedup achieved in the implementation of a parallel version of the interior point
algorithm, together with the Amdahl limit and the linear speedup. The simulation was run on a Sun Solaris
8 configured with 12 processors for data sets with 10,000 observations and 200 variables. The Amdahl limit
is based on the parallelizable fraction of 0.9, which is close to the empirical percentage of time spent on
cross products. The achieved speedup is close to the Amdahl limit.

More details about optimization and multithreading in computation for quantile regression can be found in
Chen and Wei (2005).

APPENDIX

Simplex Algorithm

Let µ = [y −A′β]+, ν = [A′β − y]+, φ = [β]+, and ϕ = [−β]+, where [z]+ is the nonnegative part of z.

Let DLAR(β) =
∑n

i=1 |yi − x′iβ|. For the L1 problem, the simplex approach solves minβ DLAR(β) by the
reformulation

min
β
{e′µ + e′ν|y = A′β + µ− ν, {µ, ν} ∈ Rn

+}

where e denotes an n-vector of ones.

Let B = [A′ − A′ I − I], θ = (φ′ ϕ′ µ′ ν′)′, and d = (0′ 0′ e′ e′)′ where 0′ = (0 0 ... 0)p. The reformulation
presents a standard LP problem:

(P) min
θ

d′θ

subject to Bθ = y

θ ≥ 0
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This problem has the dual formulation

(D) max
z

y′z

subject to B′z ≤ d

which can be simplified as maxz{y′z|Az = 0, z ∈ [−1, 1]n}. By setting η = 1
2z + 1

2e, b = 1
2Ae, it becomes

maxη{y′η|Aη = b, η ∈ [0, 1]n}. For quantile regression, the minimization problem is minβ

∑
ρτ (yi − x′iβ),

and a similar set of steps lead to the dual formulation

max
z
{y′z|Az = (1− τ)Ae, z ∈ [0, 1]n}

The QUANTREG procedure solves this LP problem using the simplex algorithm of Barrodale and Roberts
(1973). This algorithm solves the primary LP problem (P) by two stages, which exploit the special structure
of the coefficient matrix B. The first stage only picks the columns in A′ or −A′ as pivotal columns. The
second stage only interchanges the columns in I or −I as basis or nonbasis columns. The algorithm
obtains an optimal solution by executing these two stages interactively. Moreover, because of the special
structure of B, only the main data matrix A is stored in the current memory.

This special version of the simplex algorithm for median regression can be naturally extended to quantile
regression for any given quantile, even for the entire quantile process (Koenker and d’Orey 1993). It greatly
reduces the computing time required by a general simplex algorithm, and it is suitable for data sets with
less than 5,000 observations and 50 variables.

Interior Point Algorithm

There are many variations of interior point algorithms. The QUANTREG procedure uses the Primal-Dual
with Predictor-Corrector algorithm as implemented in Lustig, Marsden, and Shanno (1992). More informa-
tion about this particular algorithm and related theory can also be found in the text by Roos, Terlaky, and
Vial (1997).

To be consistent with the conventional LP setting, let c = −y, b = (1− τ)Ae, and let u be the general upper
bound. The linear program to be solved is

min{c′z}
subject to Az = b

0 ≤ z ≤ u

To simplify the computation, this is treated as the primal problem. The problem has n variables. The index
i denotes a variable number, k denotes an iteration number, and if used as a subscript or superscript it
denotes “of iteration k”.

Let v be the primal slack so that z + v = u. Associate dual variables w with these constraints. The Interior
Point solves the system of equations to satisfy the Karush-Kuhn-Tucker (KKT) conditions for optimality:

Az = b

z + v = u

A′t + s− w = c

ZSe = 0

V We = 0

z, s, v, w ≥ 0

where W = diag(w), (that is, Wi,j = wi if i = j, Wi,j = 0 otherwise)
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V = diag(v), Z = diag(z), S = diag(s)

These are the conditions for feasibility, with the addition of complementarity conditions ZSe = 0 and V We =
0. c′z = b′t − u′w must occur at the optimum. Complementarity forces the optimal objectives of the primal
and dual to be equal, c′zopt = b′topt − u′wopt.

The duality gap, c′z − b′t + u′w, is used to measure the convergence of the algorithm. You can specify a
tolerance for this convergence criterion with the TOLERANCE= option in the PROC statement.

The Interior Point algorithm works by using Newton’s method to find a direction (∆zk,∆tk,∆sk,∆vk,∆wk)
to move from the current solution (zk, tk, sk, vk, wk) toward a better solution.

To do this, two steps are used. The first step is called an affine step, which solves a linear system using
Newton’s method to find a direction (∆zk

aff , ∆tkaff , ∆sk
aff , ∆vk

aff , ∆wk
aff ) to reduce the complementarity

toward zero. The second step is called a centering step, which solves another linear system to determine a
centering vector (∆zk

c , ∆tkc , ∆sk
c , ∆vk

c , ∆wk
c ) to further reduce the complementarity. The centering step may

not reduce too much of the complementarity; however, it builds up the central path and makes substantial
progress toward the optimum in the next iteration. With these two steps, then

(∆zk,∆tk,∆sk,∆vk,∆wk) = (∆zaff ,∆taff ,∆saff ,∆vaff ,∆waff ) + (∆zc,∆tc,∆sc,∆vc,∆wc)

(zk+1, tk+1, sk+1, vk+1, wk+1) = (zk, tk, sk, vk, wk) + κ(∆zk,∆tk,∆sk,∆vk,∆wk)

where κ is the step length assigned a value as large as possible but not so large that a zk+1
i , sk+1

i , vk+1
i ,

or wk+1
i is “too close” to zero. You can control the step length with a parameter specified by the KAPPA=

option in the PROC statement.

Although the Predictor-Corrector variant entails solving two linear systems instead of one, fewer iterations
are usually required to reach the optimum. The additional overhead of calculating the second linear system
is small, as the factorization of the (AΘ−1A′) matrix has already been performed to solve the first linear
system.

You can specify the starting point with the INEST= option in the PROC statement. By default, the starting
point is set to be the least-squares estimate.

Smoothing Algorithm

The finite smoothing algorithm was used by Clark and Osborne (1986) and by Madsen and Nielsen (1993)
for the L1 regression. It can be naturally extended to compute regression quantiles. What follows is a brief
description of this algorithm; more details can be found in Chen (2003).

The nondifferentiable function

Dρτ
(β) =

n∑
i=1

ρτ (yi − x′iβ)

can be approximated by the smooth function

Dγ,τ (β) =
n∑

i=1

Hγ,τ (ri(β))

where ri(β) = yi − x′iβ and

Hγ,τ (t) =


t(τ − 1)− 1

2 (τ − 1)2γ if t ≤ (τ − 1)γ
t2

2 γ if (τ − 1)γ ≤ t ≤ τγ
tτ − 1

2τ2γ if t ≥ τγ
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See Figure 17 for a plot of Hγ,τ and ρτ .

Figure 17. Objective Functions Hγ,τ and ρτ

The function Hγ,τ is determined by whether ri(β) ≤ (τ − 1)γ, ri(β) ≥ τγ, or (τ − 1)γ ≤ ri(β) ≤ τγ.
These inequalities divide Rp into subregions separated by the parallel hyperplanes ri(β) = (τ − 1)γ and
ri(β) = τγ. The set of all such hyperplanes is denoted by Bγ,τ :

Bγ,τ = {β ∈ Rp|∃i : ri(β) = (τ − 1)γ or ri(β) = τγ}.

Define the sign vector sγ,τ (β) = (s1(β), ..., sn(β))′ by

si = si(β) =

 −1 if ri(β) ≤ (τ − 1)γ
0 if (τ − 1)γ ≤ ri(β) ≤ τγ
1 if ri(β) ≥ τγ

and introduce wi = wi(β) = 1− s2
i (β). Thus,

Dγ,τ (β) =
1
2
γr′Wγ,τr + v′(s)r + c(s),

where Wγ,τ is the diagonal n by n matrix with diagonal elements wi(β), v′(s) = (s1((2τ − 1)s1 + 1)/
2, ..., sn((2τ − 1)sn + 1)/2), c(s) =

∑
[ 14 (1− 2τ)γsi − 1

4s2
i (1− 2τ + 2τ2)γ], and r(β) = (r1(β), ..., rn(β))′.

The gradient of Dγ,τ is given by

D(1)
γ,τ (β) = −A[

1
γ

Wγ,τ (β)r(β) + g(s)]

and for β ∈ Rp\Bγ,τ the Hessian exists and is given by

D(2)
γ,τ (β) =

1
γ

AWγ,τ (β)A′.

The gradient is a continuous function in Rp, whereas the Hessian is piecewise constant.

The smoothing algorithm for minimizing Dρτ is based on minimizing Dγ,τ for a set of decreasing γ. The
essential advantage of the smoothing algorithm is that the solution β0,τ can be detected when γ > 0 is
small enough, i.e., it is not necessary to let γ converge to zero in order to find a minimizer of Dρτ

. For every
new value of γ, information from the previous solution is utilized. The algorithm stops before going through
the whole sequence of γ, which is generated by the algorithm itself. The convergence is indicated by no
change of the status while γ goes through this sequence. Therefore, the algorithm is usually called the finite
smoothing algorithm.
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For a given threshold γ, a modified Newton iteration is used. Starting from an initial estimator βγ(τ), the
search direction h is found by solving the equation

D(2)
γ,τ (βγ(τ))h = D(1)

γ,τ (βγ(τ))

Another advantage of the smoothing algorithm is that when solving the above equation for a new threshold
γ′, the factorization only needs a partial update instead of a full update as in the interior point algorithm.
This saves time with large p.

Each of the previous three algorithms has its own advantages. None of them can fully dominate the others.
Although the simplex algorithm is slow with a large number of observations, it is the most stable of the
algorithms. For various kinds of data, especially data with a large portion of outliers and leverage points, the
simplex algorithm always find a solution, while the other two algorithms might fail with floating point errors.
The interior point algorithm is very fast for slender data sets, which have a large number of observations
and a small number of covariates. The algorithm has a simple structure and might be easily adopted to
other situations, e.g., constrained quantile regression. The finite smoothing algorithm is simple in theory for
quantile regression, and has the advantage in computing speed with a large number of covariates.

Sparsity

Consider the linear model

yi = x′iβ + εi

and assume that {εi}, i = 1, ..., n, are i.i.d. with a distribution F and a density f = F ′, where f(F−1(τ)) > 0
in a neighborhood of τ . Under some mild conditions

√
n(β̂(τ)− β(τ)) → N(0, ω2(τ, F )Ω−1)

where ω2(τ, F ) = τ(1− τ)/f2(F−1(τ)) and Ω = limn→∞ n−1
∑

xix
′
i. See Koenker and Bassett (1982).

This asymptotic distribution for the regression quantile β̂(τ) can be used to construct confidence intervals.
However, the reciprocal of the density function

s(τ) = [f(F−1(τ))]−1

which is called the sparsity function, must be estimated first.

Available estimators of the sparsity function are very sensitive to the i.i.d. assumption. Alternately, Koenker
and Machado (1999) considered the non i.i.d. case. By assuming the local linearity of the conditional quan-
tile function Q(τ |x) in x, they proposed a local estimator of the density function using difference quotient. A
Huber sandwich estimate of the covariance and standard error is used to construct the confidence intervals.

By default, the QUANTREG procedure computes the non i.i.d. confidence intervals. The i.i.d. confidence
intervals can be requested with the IID option in the PROC statement.

Inversion of Rank Tests

The classical theory of rank tests can be extended to the test of the hypothesis H0: β2 = η in the linear
regression model y = X1β1 + X2β2 + ε. Here (X1, X2) = A′. See Gutenbrunner and Jureckova (1992). By
inverting this test, confidence intervals for the regression quantile estimates of β2 may be computed.

The rankscore function ân(t) = (ân1(t), ..., ânn(t)) can be solved from the dual

max{(y −X2η)′a|X ′
1a = (1− t)X ′

1e, a ∈ [0, 1]n}
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For a fixed quantile τ , integrating âni(t) with respect to the τ -quantile score function

ϕτ (t) = τ − I(t < τ)

yields the τ -quantile scores:

b̂ni = −
∫ 1

0

ϕτ (t)dâni(t) = âni(τ)− (1− τ)

Under the null hypothesis H0: β2 = η

Sn(η) = n−1/2X ′
2b̂n(η) → N(0, τ(1− τ)Ωn)

where Ωn = n−1X ′
2(I −X1(X ′

1X1)−1X ′
1)X2.

Let

Tn(η) =
1√

τ(1− τ)
Sn(η)Ω−1/2

n

then Tn(β̂2(τ)) = 0 from the constraint Aâ = (1 − τ)Ae in the full model. A critical value can be specified
for Tn. The dual vector ân(η) is a piecewise constant in η and η may be altered without compromising the
optimality of ân(η) as long as the signs of the residuals in the primal quantile regression problem do not
change. When η gets to such a boundary the solution does change, but may be restored by taking one
simplex pivot. The process may continue in this way until Tn(η) exceeds the specified critical value. Since
Tn(η) is piecewise constant, interpolation can be used to obtain the desired level of confidence interval; see
Koenker and d’Orey (1993).

Resampling

The bootstrap can be implemented to compute confidence intervals for regression quantile estimates. As
in other regression applications, both the residual bootstrap and the xy-pair bootstrap can be used. The
former assumes i.i.d. random errors and resamples from the residuals, while the later resamples xy pairs
and accommodates some forms of heteroscedasticity. Koenker (1994) considered a more interesting re-
sampling mechanism, resampling directly from the full regression quantile process, which he called the
Heqf bootstrap.

Unlike these bootstrap methods, Parzen, Wei, and Ying (1994) observed that

S(b) = n−1/2
n∑

i=1

xi(τ − I(yi ≤ x′ib))

which is the estimating equation for the τ th regression quantile, is a pivotal quantity for the true τ th quantile
regression parameter βτ , i.e., its distribution may be generated exactly by a random vector U which is a
weighted sum of independent, re-centered Bernoulli variables. They further showed that for large n the
distribution of β̂(τ)− βτ can be approximated by the conditional distribution of β̂U − β̂n(τ), where β̂U solves
an augmented quantile regression problem with n + 1 observation and xn+1 = −n−1/2u/τ and yn+1 is
sufficiently large for a given realization of u. This approach, by exploiting the asymptotically pivot role of the
quantile regression “gradient condition,” also achieves some robustness to certain heteroscedasticity.

Although the bootstrap method by Parzen, Wei, and Ying (1994) is much simpler, it is still too time consum-
ing for relatively large data sets, especially for high-dimensional data sets. He and Hu (2002) developed a
new general resampling method, referred to as the Markov chain marginal bootstrap (MCMB). For quantile
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regression, the MCMB method has the advantage that it solves p one-dimensional equations instead of
p-dimensional equations, as do the previous bootstrap methods. This greatly improves the feasibility of the
resampling method in computing confidence intervals for regression quantiles. Since resampling methods
achieve stability only for relatively large data sets, they are not recommended for small data sets (n < 5000
and p < 20).

The QUANTREG procedure implements the MCMB resampling methods due to the work of He and Hu
(2002).
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