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INTRODUCTION
‘I have a protein of interest but don’t know its structure/function’ 
is one of the most common problems that many molecular and 
cell biologists face in their research. This impediment has been 
aggravated in recent years owing to the fact that the percent-
age of protein sequences in UniProtKB/TrEMBL1, with a solved  
protein structure in the Protein Data Bank (PDB) library2, plunged 
to 0.6% by the end of the year 2009; this number was 2% in the  
year 2004 and 1.2% in the year 2007. Recent advances in compu-
ter algorithms for predicting protein structure and function have  
alleviated this problem and provide biologists with valuable  
information about their proteins of interest3.

Computational methods for predicting three-dimensional 
(3D) protein structures have been historically divided into three 
categories, based on the availability of template structures in the  
PDB library. In comparative modeling (CM)4, evolutionarily related 
homologous templates are identified by sequence or sequence  
profile comparisons5, and high-resolution models can be generated 
by simply copying the framework of the template structures or  
by satisfying the spatial restraints collected from the template 
structures. As proteins from different evolutionary origins may 
have similar structure, threading methods6,7 are designed to match 
the query sequence directly onto the 3D structures of other solved 
proteins, with the goal of recognizing folds similar to the query 
even when there is no evolutionary relationship between the  
query and the template protein. Finally, for query proteins that 
have no structurally related protein in the PDB library, the struc-
ture must be built from scratch by ab initio modeling8–10. This is  
the hardest case and success is limited to small proteins with  
 < 120 amino acids3,11.

As a general trend, the boundaries between the conventional 
categories of protein structure prediction methods have become 
increasingly blurred. Although both CM and threading methods 
use sequence profile and profile–profile alignments for identifying 
the templates, many ab initio modeling algorithms use evolutionary 
or knowledge-based information for collecting spatial restraints10,12 
or for identifying local structural building blocks9. Recent com-
munity-wide critical assessment of protein structure prediction 

(CASP) experiments11,13–15 have shown significant advantages 
of composite approaches in protein structure prediction, which 
combine various techniques such as threading, ab initio modeling 
and atomic-level structure refinement approaches3,16–18. I-TASSER 
(iterative threading assembly refinement)10 is one example of the 
composite approaches and has been ranked as the best method  
for the automated protein structure prediction in the last two  
CASP experiments13,17,19,20.

The biological usefulness of the predicted protein models relies 
on the accuracy of the structure prediction21. For example, high-
resolution models with root mean square deviation (RMSD) values 
in the range of 1–2 Å, typically generated by CM using close homo
logous templates, usually meet the highest structural requirements 
and are sometimes suitable for computational ligand-binding  
studies and virtual compound screening22–24. Medium-resolution 
models, roughly in the RMSD range of 2–5 Å and typically gene
rated by threading and CM from distantly homologous templates, 
can be used for identifying the spatial locations of functionally 
important residues such as active sites and the sites of disease- 
associated mutations25–28. However, many of the functionally 
important sites are located on the loop regions that show large 
structural variability, although the scaffold of the protein structures 
is conserved. Thus, accurate modeling of loop regions is still an 
important, yet unsolved, problem in template-based modeling29,30. 
Finally, even models with the lowest resolution, from an otherwise 
meaningful prediction, i.e., models with an approximately correct  
topology, predicted using either ab initio approaches or based  
on weak hits from threading, have a number of uses including  
protein domain boundary identification31,32, topology recognition 
and family/superfamily assignment33,34.

As the biological function of protein molecules is determined  
by their 3D shape (which dictates how the protein interacts with  
ligands or other protein molecules)35, one of the most common moti-
vations for predicting the protein structure is to use the structural 
information to gain insight into the protein’s biological function. 
A convenient approach to the structure-based functional assign-
ment involves global structural comparison of protein pairs for fold  
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recognition and family assignment33,34, which  
in many cases can be directly used to infer 
function21,36. However, it is increasingly 
recognized that the relationship between 
structure and function is not always straight-
forward, as many protein folds/families are 
known to be functionally promiscuous37, 
and different folds can perform the same 
function38. When the global structures are 
not similar, functional similarity may arise 
owing to the conserved local structural motifs  
that perform the same biochemical function,  
although in different global structural frame
works. In a recent development of I-TASSER 
(Roy, A., Kucukural, A., Mukherjee, S., Hefty, 
P.S. & Zhang, Y., unpublished observations), 
the methodology was extended for anno-
tating the biological function using the 
predicted protein structures, based on a 
combination of local and global structural 
similarities with proteins of known function. Using this method, 
the biological functions (including ligand-binding sites, Enzyme 
Commission (EC) numbers and Gene Ontology (GO) terms) of a 
substantial number of protein targets were correctly identified based 
on similarities to nonhomologous proteins, which otherwise could 
not have been inferred from sequence or profile-based searches5.

The success of the I-TASSER method in the blind CASP experi-
ments17,19 and the large-scale benchmarking tests10,34,39,40 makes it a 
useful tool for automated protein structure and function annota-
tion. In the past 24 months, the online I-TASSER server has gene
rated  > 30,000 full-length structure and function predictions for 
over 6,000 registered biologists from 82 countries. Compared with 
a number of other useful online structure prediction tools41–49, the 
uniqueness of the I-TASSER server is in the significant accuracy and 
reliability of full-length structure prediction for protein targets of 
varying difficulty and the comprehensive structure-based function 
predictions. Especially, the inherent template fragment reassembly 
procedure has the power to consistently drive the initial template 
structures closer to the native structure10,13,15. For example, in CASP8, 
the final models generated by the I-TASSER server had a lower RMSD 
to the native structure than the best threading template for 139 out of 
164 domains, with an overall RMSD reduction by 1.2 Å (on average  
from 5.45 Å in templates to 4.24 Å in the final models)19. Here, one 
purpose of this protocol is to provide detailed guidelines to help 
the biologists to use the I-TASSER server in designing their online 
structure and function prediction experiments. Meanwhile, as the 
I-TASSER system is based on the general sequence-to-structure- 
to-function paradigm, the described protocol can be valuable to  
the developers of other similar bioinformatics systems.

I-TASSER server
Detailed descriptions of the I-TASSER methodology for protein struc-
ture and function prediction have been provided elsewhere10,19 (Roy, A.,  
Kucukural, A., Mukherjee, S., Hefty, P.S. & Zhang, Y., unpublished 
observations). For the sake of completeness, here we give a brief outline 
of the method, which is divided into four general stages (Fig. 1).

Stage 1: threading.  Threading refers to a bioinformatics procedure 
for identifying template proteins from solved structure databases 
that have a similar structure or similar structural motif as the query 

protein sequence. In the first stage of I-TASSER, the query sequence 
is matched against a nonredundant sequence database by posi-
tion-specific iterated BLAST (PSI-BLAST)5, to identify evolution-
ary relatives. A sequence profile is then created based on multiple 
alignment of the sequence homologs, which is also used to predict  
the secondary structure using PSIPRED50. Assisted by the sequence 
profile and the predicted secondary structure, the query sequence is 
then threaded through a representative PDB structure library using 
LOMETS51, a locally installed meta-threading server combining  
seven state-of-the-art threading programs (FUGUE52, HHSEARCH44, 
MUSTER53, PROSPECT54, PPA10, SP3 (ref. 55) and SPARKS56). In  
the individual threading programs, the templates are ranked by 
a variety of sequence-based and structure-based scores. The top 
template hits from each threading program are then selected for 
further consideration. The quality of the template alignments (and 
therefore the difficulty of modeling the targets) is judged based on 
the statistical significance of the best threading alignment, i.e., the 
Z-score, which is defined as the energy score in standard deviation 
units relative to the statistical mean of all alignments.

Stage 2: structural assembly.  In the second stage, continuous 
fragments in threading alignments are excised from the template 
structures, and are used to assemble structural conformations of 
the sections that aligned well, with the unaligned regions (mainly 
loops/tails) built by ab initio modeling10,12. To improve the effi-
ciency of conformational search, I-TASSER adopts a reduced model 
to represent the protein chain, with each residue described by its 
Cα atom and side-chain center of mass. Because the regions not 
aligned during the threading process usually have a lower modeling  
accuracy, the structure modeling in these regions is confined to a 
lattice system of grid size 0.87 Å12, which helps to reduce the entropy 
of conformational search. Although this grid size may introduce 
considerable uncertainty of conformational representations in CM 
(which usually has an error range of 1–2 Å), it does not generate 
observable effect in the ab initio modeling, as it often has an error 
range of 4–6 Å. The threading-aligned regions usually have a higher 
accuracy. The modeling in these regions is therefore off lattice  
and the template fragments are kept rigid during the simulations, 
which helps to maintain the fidelity of the high-resolution struc-
tures in these regions. The fragment assembly is performed using 
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Figure 1 | A schematic representation of the I-TASSER protocol for protein structure and function 
predictions. The protein chains are colored from blue at the N-terminus to red at the C-terminus.
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a modified replica-exchange Monte Carlo simulation technique57, 
which implements several replica simulations in parallel at different 
temperatures, with the temperatures periodically exchanged between 
the replicas; the energy barriers are flattened by a hyperbolic func-
tion to speed up the jumps of simulations between different energy 
basins. The overall simulation is guided by a composite knowl-
edge-based force field, which includes: (1) general statistical terms 
derived from the PDB (Cα/side-chain correlations12, H-bonds58 and 
hydrophobicity59); (2) spatial restraints from threading templates51; 
and (3) sequence-based contact predictions from SVMSEQ60. Partly 
because of the consideration of the hydrophobic interactions and 
the bias toward radius of gyration in the energy force field, the cur-
rent I-TASSER procedure is designed to best fold single-domain 
globular proteins (the procedure for modeling multiple-domain 
proteins using I-TASSER will be discussed in the following section). 
The conformations generated in the low-temperature replicas dur-
ing the refinement simulation are clustered by SPICKER61, with the 
purpose of identifying low free-energy states. Cluster centroids are 
then obtained by averaging the 3D coordinates of all the clustered 
structural decoys. For further details of the structural assembly pro-
cedure, the readers are advised to read references 10 and 40 for the 
on-and-off lattice system, references12,17 and 19 for the force field 
development and reference 57 for the MC search engine.

Stage 3: model selection and refinement.  In the third stage, the 
fragment assembly simulation is performed again starting from the 
selected cluster centroids. Although the inherent I-TASSER poten-
tial remains unchanged in the second run, external constraints 
are pooled from the LOMETS threading alignments and the PDB 
structures that are structurally closest to the cluster centroids, as 
identified by TM-align62. The purpose of the second iteration is 
to remove steric clashes and to refine the global topology of the 
cluster centroids. The decoys generated during the second round of 
simulations are clustered again, and the lowest energy structures are 
selected as input for REMO63, which generates the final structural 
models by building all-atom models from Cα traces through the 
optimization of hydrogen bonding networks.

Stage 4: structure-based functional annotation.  In the last 
stage, the function of the query protein is inferred by structurally 
matching the predicted 3D models against the proteins of known 
structure and function in the PDB. For this purpose, three protein 
structure/function libraries have been constructed independently and 
biweekly updated; at present, these include a library of 5,798 nonre-
dundant entries with known EC numbers64, a library of 26,045 non-
redundant entries with known GO terms65 and a library of 19,658  
nonredundant entries with known ligand-binding sites. The structural 
analogs of the query protein in the GO library are mainly matched based 
on the global topology using TM-align62, and a consensus is derived 
based on the frequency of occurrence of the GO terms. The struc-
tural analogs in the EC and binding site libraries are matched based  
on both global and local structural similarity (Roy, A., Kucukural, 
A., Mukherjee, S., Hefty, P.S. & Zhang, Y., unpublished observations). 
Although the global structural similarity search is used for recog-
nizing proteins with similar global fold, the local similarity search 
provides a complementary method, identifying analogs that have a 
different fold but perform similar function because of the conserva-
tion of active/binding sites. The functional analogs from the global 
search results are ranked based on the conserved structural patterns 

present in the model, measured using a scoring scheme that combines  
template modeling score (TM-score)66, RMSD, sequence identity and 
coverage of the structure alignment (Roy, A., Kucukural, A., Mukherjee, 
S., Hefty, P.S. & Zhang, Y., unpublished observations). Here, TM-score 
is defined to assess the topological similarity of protein structure pairs, 
with a value in the range of [0, 1], a higher score indicating better 
structural match. Statistically, a TM-score  < 0.17 means a randomly 
selected protein pair with the gapless alignment taken from PDB;  
TM-score  > 0.5 corresponds to the protein pairs of similar folds (Xu, J.R.  
& Zhang, Y., unpublished observations). The statistical meaning of 
TM-score is independent of protein size66. The local similarity search 
looks for conserved spatial motifs in the predicted I-TASSER model, 
with the candidates ranked based on their structure and sequence 
similarity to functional cavities (binding pockets) in known structures. 
Finally, the results from the global and local search are combined to 
present a comprehensive list of functional analogs.

Estimation of prediction accuracy.  Assessing the quality of a 
prediction is important because this assessment eventually deter-
mines how biologists will use the prediction in their research. For 
estimating the accuracy of the structure predictions, a confidence 
score named C-score is defined based on the quality of the thread-
ing alignments and the convergence of the I-TASSER’s structural 
assembly refinement simulations, i.e., 
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0
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specified Z-score cutoff for distinguishing between good and bad 
templates. The C-score scheme has been extensively tested in large-
scale benchmarking tests40,67 (Roy, A., Kucukural, A., Mukherjee, 
S., Hefty, P.S. & Zhang, Y., unpublished observations). When tested 
on predicted structures, the Pearson correlation between C-score 
and the TM-score (the absolute difference between model to the 
native structure) was found to be 0.91, which is a significantly high 
value, having in mind that the mathematic range of the Pearson 
correlation is between 0 (for random variables) and 1 (for identical 
variables). When a C-score cutoff of  − 1.5 is used to select models 
of correct topology, both the false-positive and the false-negative 
rates are below 0.1, which means that more than 90% of the quality 
predictions are correct. Combining C-score and protein length, the 
accuracy of the I-TASSER models can be predicted with an average  
error of 0.08 for the TM-score and 2 Å for the RMSD67. Again, 
considering the big quality variations of protein structure predic-
tions (i.e., TM-score in 0–1 and RMSD in 0–30 Å), these estimation 
errors are very low, and the assessments should provide quantitative 
guidance of model quality for the users.

For the function predictions, the confidence score is defined based 
on the C-score of the structure prediction and the global and/or 
local structural similarity between the predicted models and their 
structural analogs in the PDB (Roy, A., Kucukural, A., Mukherjee, 
S., Hefty, P.S. & Zhang, Y., unpublished observations). For the EC  
numbers, using an EC-score cutoff of 1.1, the first three EC digits 
can be correctly assigned in 72.4% cases. Similarly for the GO terms, 

(1)(1)
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using a GO-score cutoff of 0.5, 85.1% of molecular functions, 76.9%  
of biological processes and 74.6% of cellular locations can be cor-
rectly assigned. These values are consistently higher than traditional 
sequence-based methods, whereas the top hit from the PSI-BLAST 
search (using E-value  < 0.001) results in an overall precision of 
56.2% for EC number, 81.1% for molecular function, 64.8% for 
biological process and 68.2% for the cellular component GO 
terms (Roy, A., Kucukural, A., Mukherjee, S., Hefty, P.S. & Zhang, 
Y., unpublished observations). The predicted binding sites in the 
modeled structure are evaluated based on the binding site (BS) 
score, which measures the fitness of the ligand–model complex. 
Using a BS-score cutoff of 0.5, the success rate for identifying the 
correct binding site in the predicted model is 72.3%, which is also 
higher than that by the PSI-BLAST search (with an overall success 
rate of 62.2%) in our benchmark test.

It needs to be mentioned that despite extensive benchmark tests17,19,67 
(Roy, A., Kucukural, A., Mukherjee, S., Hefty, P.S. & Zhang, Y., unpub-
lished observations), there can be considerable uncertainty and error 
in the automated estimation of the quality of structure and function 
predictions. The final and essential validation of the predictions should 
therefore be made based on the experimental data collected by the 
users. Before the entire structure becomes available, other indirect 
structural information from the data, such as mutagenesis experiments, 
affinity labeling, nuclear magnetic resonance (NMR) dipolar coupling, 
cryoelectron microscopy and circular dichroism and dual polariza-
tion interferometry experiments, can provide important information  
for validating the predicted models and help in deciding whether the 
predictions can be useful for further experimental design and study.

Experimental design
Modeling of multidomain proteins.  As the I-TASSER force field 
has been designed for modeling single-domain proteins, the pro-
cedure for modeling multiple-domain protein is slightly different 
from that of single-domain proteins, but is fully automated. First, 
the domain boundaries are defined based on the LOMETS thread-
ing programs, i.e., if a segment of query sequence of  > 80 residues 
have no alignment with template proteins in top two threading hits, 
the target is treated as a multiple-domain protein and the domain 
boundary is defined at the borders of the aligned/unaligned sec-
tions. Next, two types of assembly simulations are implemented: 
one simulation is conducted for modeling the whole-chain structure 
that provides a guide for domain orientations, another simulation is 
carried out for modeling the single-domain structures individually. 
Finally, to obtain the full-length model, the models of individual 
domains are docked together using the whole-chain I-TASSER model 
as a template. The docking simulation is performed using a quick 
Metropolis Monte Carlo simulation in which the energy is defined 
as the RMSD of the individual domain models to the whole-chain  
I-TASSER template plus the reciprocal of the number of inter-
domain steric clashes. The purpose is to generate a global model 
that has a similar domain orientation to the whole-chain I-TASSER 
model, but with minimum number of steric clashes. This proce-
dure is applied only to proteins that have some domains that are 
not aligned in the top-scoring templates. If multidomain templates 
are available and all domains of query protein are aligned, the whole 
chain will be modeled in I-TASSER using the full-chain template.

If the domain boundary information is available to the user, 
e.g., from some experimental data, it is recommended that the 
user should first split the sequence into individual domains and 

then submit each domain individually to the server. This will not 
only speed up the I-TASSER prediction process but also result in 
a more reliable structure and function prediction, as the current 
pipeline of the I-TASSER methodology has been optimized for 
modeling single-domain proteins19. Domain boundaries in protein 
sequences can also be predicted by using freely available external 
online programs such as NCBI CDD (http://www.ncbi.nlm.nih.
gov/Structure/cdd/cdd.shtml) or PFAM.

Specifying external restraints.  Spatial information, including resi-
due–residue contacts and distances, can be used as restraints to guide 
the I-TASSER structure assembly simulations. I-TASSER normally 
collects restraints from the threading templates, but these often con-
tain errors because of the uncertainty of templates and alignments. 
Nevertheless, threading-based restraints have been proven to be essen-
tial for the I-TASSER structure assembly17,19. The new version of the  
I-TASSER server allows the user to specify additional restraints based 
on experimental evidence or biological insights (Fig. 2). Because 
restraints from experiments normally have a higher accuracy than those 
derived from threading alignments, user-specified spatial information 
can be very useful for improving the quality of the structure assembly, 
especially for the nonhomologous protein targets. Our benchmark 
test shows that by using as few as N/8 NOE restraints, obtained from  
the NMR experiments (where N is the length of the protein), the  
current simulation procedure is able to successfully fold 75% of the 
proteins of up to 200 residues, which could not be folded without  
using spatial restraints because of the lack of appropriate templates68.

There are two methods by which the user can input restraints to 
the I-TASSER server.
a.	 Specifying a set of atomic distances and contacts: Restraint  

data from NMR or crosslinking experiments can be specified 
by uploading a restraint file. A typical example is shown in 
Figure 2a. Column 1 specifies the type of restraint, i.e., ‘DIST’ 
or ‘CONTACT’. For distance restraints (DIST), columns 2 
and 4 contain the residue positions (i, j) and columns 3 and  
5 contain atom names in the residues. Column 6 contains  
the distance between the two atoms in Å. I-TASSER will  
try to bring these atom pairs close to the specified distance 
during the structure refinement simulations. For contact  
restraints (CONTACT), columns 2 and 3 contain the posi-
tions (i, j) of residues that should be in contact. I-TASSER 
will try to draw the side-chain centers of mass of these two 
residues into contact during the simulations.

b.	 Designating a specific PDB structure as template: I-TASSER 
normally starts with a set of protein templates identified by 
the LOMETS threading programs, in which the template 
library consists of a representative PDB subset at a pair-wise 
sequence identity cutoff of 70%. Users can specify a solved 
protein structure as the template, as the desired template may 
not be included in our library or the desired template may 
not be identified by LOMETS even though it is in the library. 
To specify a template, users can either upload a PDB- 
formatted structure file or input a PDB ID and the I-TASSER 
server will obtain the structure from the PDB library. Once a 
template is specified, the I-TASSER simulation will start from 
the template with restraints mainly collected from it; but 
the simulation will also use the threading-based LOMETS 
restraints with the purpose to model the unaligned regions  
as well as adjust the reassembly of aligned regions.
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The weight of the LOMETS restraints varies depending on the 
target type. Here, the query proteins are categorized into easy or 
hard targets based on the statistical significance of the thread-
ing alignments (see Step 17 for detail). The templates for easy  
targets are usually from homologous proteins and the  
alignments have a higher accuracy, whereas templates for hard 
targets are mostly from nonhomologous proteins and the 
alignments have a lower accuracy. Because the accuracy of the 
LOMETS restraints is different for different targets, the weight 
of implementing the LOMETS restraints is stronger for easy  
targets than that in the case of hard targets, which have 
been systematically tuned based on large-scale benchmark  
training51.

When I-TASSER uses a template, it needs to know both the 3D 
structure and the alignment between the query and the template 
sequence. If users upload a template structure without specifying 
the alignment, I-TASSER will generate the query–template align-
ment using the MUSTER program53, an algorithm to align protein 
sequences to structures based on multiple information sources 

including secondary structure, sequence profile, solvent accessi-
bility and structure fragment profiles.

Users can also specify their own query–template alignments. 
The I-TASSER server accepts alignment in two formats: the FASTA 
format (Fig. 2b) and the 3D format (Fig. 2c). The FASTA format 
is standard and described at http://www.ncbi.nlm.nih.gov/blast/
fasta.shtml. The 3D format is similar to the standard PDB format 
(http://www.wwpdb.org/documentation/format32/sect9.html), but 
two columns derived from the templates are added to the ATOM 
records (see Fig. 2c):

Columns 1–30: Atom (Cα only) and residue names for  
the query sequence.

Columns 31–54: Coordinates of Cα atoms of the query  
copied from the corresponding atoms in  
the template.

Columns 55–59: Corresponding residue number in the  
template based on alignment.

Columns 60–64: Corresponding residue name in the template.

MATERIALS
EQUIPMENT SETUP
A personal computer with an Internet connection and a web browser.
Data  Amino acid sequence of the protein of interest in FASTA format.

Software  A molecular visualizing software, such as RASMOL or PYMOL,  
for viewing the 3D structure of the modeled protein and the predicted 
functional sites.

PROCEDURE
Sequence submission and restraint specification
1|	 To submit a protein sequence, visit the I-TASSER webpage (http://zhanglab.ccmb.med.umich.edu/I-TASSER).
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Figure 2 | Example of external restraint files. (a–c)These files can be used to 
specify (a) residue–residue contact/distance restraints; (b) query–template 
alignment in FASTA format; and (c) query–template alignment in 3D format.
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2|	 Copy and paste the amino acid sequence of a single protein chain into the provided form or directly upload the  
sequence from the computer by clicking the ‘Browse’ button. At present, the I-TASSER server accepts protein sequences  
with a length between 10 and 1,500 amino acids.
? TROUBLESHOOTING

3|	 Provide an e-mail address. The results will be mailed to the user at this address once the job is completed.

4|	 Provide a name for the protein. This is optional and is provided for the user’s convenience. If no name is provided,  
a default name (‘your protein’) will be assigned to the submitted sequence.

5|	 To add external residue contact/distance restraints or to specify a solved protein structure as a template, prepare  
a restraint file and upload it using the corresponding button or provide the PDB ID and chain ID in the provided form.  
Read about adding restraints in the Experimental design section of this protocol or click on ‘More explanation on how  
to add restraints’.

6|	 To eventually submit the sequence with/without additional restraints, click the ‘Run I-TASSER’ button. On clicking  
the button, the browser will be directed to an acknowledgement page that will display a confirmation of the submitted  
sequence, a job identification number, restraint information and a link to the page that will contain the detailed results  
once the job is completed. The user may choose to bookmark this link for future reference. On completion of structure and 
function predictions for the submitted query sequence, an e-mail notification containing image of the predicted structures 
and a link to the result page on the server is sent to the user.
 PAUSE POINT Once the sequence is successfully submitted, it is stored in a database until all other sequences in the  
server queue are processed. However, if the same sequence was submitted earlier on the server by another user within the  
last 30 d, the result will be copied from the previous run and sent to the user without rerunning the protein. If the previous 
result was generated more than 30 d ago, a new run will be initiated because new template proteins may have become 
available since the last run.

Availability of the results
7|	 Track the modeling status (optional). Users can track the status of all the submitted jobs on the I-TASSER server by 
visiting the queue page (http://zhanglab.ccmb.med.umich.edu/I-TASSER/queue.php). An estimated time for completion of  
the running jobs is also displayed in this page, wherein the time is counted from the time point when the visitor opens  
the page and is updated every 10 min.
? TROUBLESHOOTING

8|	 Search submitted/completed targets (optional). Users can click on the ‘Search’ tab, displayed in the navigation bar of 
the queue page, to visit a new webpage at http://zhanglab.ccmb.med.umich.edu/I-TASSER/search.html. This page allows 
the user to search through the I-TASSER server using: (a) a job ID (e.g., ‘S12345’, the search will return a link to the result 
page of this target); (b) a query sequence (the search will return all homologous proteins with the sequence identity to the 
query protein  > 40%); or (c) an e-mail address (the search will return all the targets that have been submitted by the user 
within the last year). The search for homologs of the query protein is helpful for the users to make comparisons between the 
modeling result of the query protein and homologous targets. It can also save user’s time, if the same protein is found to 
have been modeled previously. To maintain the privacy and confidentiality of users, searching by e-mail requires a password, 
which can be easily obtained at http://zhanglab.ccmb.med.umich.edu/I-TASSER/registration.html.

9|	 Visit the page containing the prediction results by clicking on the link provided in the e-mail-notification or open the link 
bookmarked in Step 6. An example result page is available at http://zhanglab.ccmb.med.umich.edu/I-TASSER/output/example.
! CAUTION To maintain sufficient free space on the server, the results will be deleted 365 days after they are made  
available to the user. The user can keep a copy of the result page locally in his/her computer by saving the complete  
webpage.

Sequence and predicted secondary structure
10| View the top of the result page to check the submitted amino acid sequence in FASTA format (Fig. 3a) and the predicted 
secondary structures (Fig. 3b). If the user has specified experimental restraints, a link is provided to the page containing 
user-specified restraint information. A typical secondary structure prediction contains three states: alpha helix (H), beta 
strand (S) and coil (C), with confidence scores for each residue. The secondary structure shown here is the state with the 
highest confidence score. The confidence score for each residue is shown in the next row with values ranging between  
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0 and 9, in which a higher score 
indicates a prediction with higher 
confidence50. The predicted secondary 
structure can be used for estimating 
the number of secondary structure  
elements and the tertiary structure 
class of the query protein.

Predicted 3D structures
11| Scroll down further to see GIF 
images of up to five predicted models, with highlighted regular secondary structures (see Fig. 3c). This will help in quickly 
ascertaining the tertiary structure class and topology of the query protein from the modeled structure(s).
? TROUBLESHOOTING

12| Download the coordinate file (in PDB format) of the predicted structures by clicking on the ‘Download Model’ link below 
the image of each individual model. To interactively view the modeled structure on the computer, open these files by any 
molecular visualization program. Some of the freely available programs commonly used for the visualization of protein  
structures are listed in the MATERIALS section.

13| View the confidence score of the structure modeling, shown as C-scores displayed below the download link for each 
model. As described in the I-TASSER server section, C-score is an estimate of the quality of the predicted models, and is 
calculated based on the significance (i.e., Z-score) of the threading alignments in LOMETS and the convergence (i.e., cluster 
density) of the I-TASSER simulations (see Eq. 1). C-score is typically in the range [ − 5, 2], wherein a higher score reflects a 
model of better quality. In general, models with C-score  >  − 1.5 have a correct fold. Here, the C-score of the model should 
not be confused with the TM-score67. Whereas TM-score is a measure of structural similarity between the predicted model  
and the native structure, C-score is an estimate of the confidence of structure prediction.
? TROUBLESHOOTING

14| View the estimated TM-score and RMSD to the native structure for the first model, shown as ‘Estimated accuracy of the 
first model’.
? TROUBLESHOOTING

15| Click on the ‘more about C-score of generated models’ link to open a new page containing further information about the 
estimated TM-score and RMSD values for the first model, as well as the cluster size and cluster density for all the predicted 
models. The estimated TM-score and RMSD values reported here are values calculated based on the correlation of C-score 
with TM-score and RMSD in the benchmark test67. Nevertheless, C-score is listed for all the models as a reference. The quality 
of the lower-ranked models can be assessed partially based on their cluster density and the cluster size, wherein the models 
associated with clusters of larger size and higher density are on average closer to the native structure.
? TROUBLESHOOTING

Threading templates
16| View the next section of the result page to analyze the top ten threading templates for the query protein sequence,  
as identified by the LOMETS threading program (an example is shown in Fig. 4a). The threading-aligned regions of these 
templates provide the building blocks and the spatial restraints in the I-TASSER fragment assembly simulations.
? TROUBLESHOOTING

a

b

c

Submitted sequence

Predicted secondary structure

Top five models predicted by l-TASSER

User-specified restraint

Download model 1

C-score = 0.66

Estimated accuracy of model 1: 0.80±0.09 (TM-score) 2.5 ± 1.9Å (RMSD)

Sequence

20 40 60 80 100

Prediction
Conf. score

C-score = –0.34 C-score = –1.11 C-score = –2.44 C-score = –3.34

Download model 2 Download model 3

(Read more about C-score of generated models)

Download model 4 Download model 5

Figure 3 | An illustrative example of the  
I-TASSER result page. (a–c) The page shows (a) 
query sequence in FASTA format and a link to the 
user-specified restraints; (b) predicted secondary 
structure of the query protein; and (c) image 
of the top five predicted models and links for 
downloading the PDB-formatted structure files. 
The confidence score for estimating the model 
quality is reported as C-score. The secondary 
structures in the model are highlighted in red  
(for α-helices) and yellow (for β-strands).
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17| View the ‘Norm. Z-score’ column of the table to analyze the quality of threading alignments (highlighted in orange  
rectangle in Fig. 4a). The quality of the threading alignment is usually estimated based on the Z-score of the alignment, 
which reflects how significant the alignment is as compared with the average. However, in LOMETS meta-server, the Z-score 
scale is different in different threading programs, which renders the comparison of Z-scores among different threading 
programs based on their absolute values meaningless. Instead, a normalized Z-score is presented in this column and is equal 
to the Z-score of the alignment divided by a program-specific cutoff Z0, where Z0 has been determined based on large-scale 
threading benchmark tests51 for differentiating ‘good’ and ‘bad’ templates, i.e., a template with a Z-score greater than Z0  
usually implies that the alignment corresponds to a correct fold. Similarly, an alignment with a normalized Z-score  > 1  
reflects a confident alignment.
 CRITICAL STEP If most of the top threading alignments have a normalized Z-score  > 1, the accuracy of the final model 
is usually high. However, if the coverage of the top threading alignments is low and the alignments are confined to only a 
small region of query protein, then a high-normalized Z-score is not a good indicator of modeling accuracy for the full-length 
model. In these cases, the query protein usually contains more than one domain and it is recommended to split the sequence 
into individual domains based on predicted domain boundaries and then submit each domain individually to the server.
? TROUBLESHOOTING

18| View the percentage sequence identity in the threading-aligned region (column ‘Iden. 1’) and in the whole chain 
(column ‘Iden. 2’) to judge the homology level between the query and the template proteins. A higher sequence identity is 
an indicator of evolutionary relatedness between the query and template proteins. A sequence identity that is high in the 
threading-aligned region, but low for the whole-chain alignment, indicates a conserved structural motif/domain present  
in the query and the template protein.

19| View the threading alignments to identify conserved residues/motifs/regions in the query and the template proteins.  
The aligned residues in the template that are identical to the corresponding query residues are colored based on their  
amino acid property in the alignment. In many cases, these regions/residues are of functional significance.

20| Click on the PDB code and chain identifier of the templates in the ‘PDB Hit’ column. The browser will be directed to  
the Research Collaboratory for Structural Bioinformatics (RCSB) website showing information about the template protein.  
On the RCSB webpage, scroll down and click the links shown in the ‘Derived Data’ field to see SCOP, CATH and PFAM  
classifications of the template protein and the associated GO terms for analyzing the function.

21| Download the threading alignment (optional). Users can download PDB-formatted threading alignment file by  
clicking on the ‘Download Align’ link. The alignment file can be opened in any molecular visualization program listed in  
the MATERIALS section, and can also be used for adding additional restraints during the structure modeling, as described  
in Step 5 and repeating Steps 1–18.

Structural analogs of the predicted model
22| View the structural analogs of the top-scoring I-TASSER model in the PDB library as identified by the structural  
alignment program TM-align62 (an example is shown in Fig. 4b). The structural analogs are ranked based on the TM-score 
(highlighted in green rectangle) between the I-TASSER model and the TM-align templates. Detected structural analogs  
with a TM-score  > 0.5 can be used for determining the structure class/protein family of the predicted query protein  
structure (Xu, J.R. & Zhang, Y., unpublished observations).

23| View the ‘RMSD’, ‘IDEN’ and ‘Cov.’ columns in the table to analyze the parameters derived from the structural alignment. 
RMSD and IDEN are the RMSD and the sequence identity in the regions structurally aligned by TM-align, and reflects the  
conservation of spatial motifs in the model and the structural analog.

24| Analyze the structural alignment obtained from TM-align62 to identify the structural conservation/variations that are 
present in the query protein and the structural analogs. Structurally aligned residue pairs in the alignment are highlighted  
in color based on their amino acid property, whereas the unaligned regions are indicated by ‘ − ’.

Function prediction based on the predicted structure
25| View the identified functional analogs of the query protein and the confidence scores of the predictions based on  
the predicted 3D model. The function prediction result (an example is shown in Fig. 5) is divided into three subsections: 
Enzyme Commission (EC) numbers, GO terms and ligand-binding sites.
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26| View the ‘TM-score’, ‘RMSD’, ‘IDEN’ 
and ‘Cov.’ columns in each subsection 
to quantitatively evaluate the global 
structure similarity and conservation of 
spatial patterns between the I-TASSER 
model and the functional analogs.

27| Function subsection 1: EC number 
predictions (Steps 27–29) View the  
top five potential enzyme analogs 
along with their EC numbers that  
are displayed in the ‘Predicted EC  
numbers’ table. An example is shown  
in Figure 5a.

28| View the confidence score shown 
in ‘EC-score’ column to determine 
whether the EC number of the analog 
can be used for functional annotation 
of the query protein. On the basis of a 
large-scale benchmarking test on the predicted models for 97 enzymes with unique functions, in which homologous  
templates were excluded from both the threading and the enzyme library, we found (Roy, A., Kucukural, A., Mukherjee, S., 
Hefty, P.S. & Zhang, Y., unpublished observations) that the first three digits of EC numbers can be correctly predicted from 
the first identified functional analog for 51 proteins; 38 of these analogs had an EC-Score  > 1.1.
 CRITICAL STEP Although an EC-score  > 1.1 is a good indicator of the functional similarity between the query and  
the identified enzyme analogs, the users are advised to consult both the EC-score and the consensus of the EC numbers  
associated with the analogs of the similar fold (i.e., TM-score  > 0.5). For example, if most of the identified functional analogs 
with similar folds have the same first three EC number digits (shown as an example in Fig. 5a) and the EC-score is higher 
than 1.1, the likelihood of the prediction to be correct is very high. On the contrary, if the EC-score is high but there is no 
consensus of the EC numbers among the identified analogs, the prediction will become less reliable and users are advised to 
consult the GO term predictions, presented in the next subsection, because retooling of active sites can cause drastic shifts 
in function, as expressed by the EC number, even in very closely related enzymes37. In most of these cases, the proteins  
usually bind a similar ligand or are part of the same biological pathway (Roy, A., Kucukural, A., Mukherjee, S., Hefty, P.S. & 
Zhang, Y., unpublished observations). For cases when all EC-scores are  < 1.1, it is possible that the query protein is either 
not an enzyme or the confidence level of the structure prediction and therefore the predictability of the function is low.

29| Click on the EC numbers to visit the ExPASy enzyme database. This database provides a detailed description of the  
enzyme families, namely, the reactions catalyzed by the enzyme, the cofactor required and the metabolic pathway.

30| Function subsection 2: GO term predictions (Steps 30–32). View the functional analogs and their associated GO terms  
in the table describing ‘Predicted GO terms’ (an example is shown in Fig. 5b). Most of the analogs are associated with  
multiple GO terms, which describe their highest level of molecular function, biological process and cellular location in the  
GO hierarchy. Click on each of these terms to visit the Amigo website for analyzing the definition and lineage of each term.

Top ten templates used by I-TASSER

Ten proteins in PDB, which are structurally closest to the first I-TASSER model (identified by TM-align) 
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0.93

0.87

0.89

0.82

0.72

0.71

0.69

a

b

Figure 4 | An illustrative example of the  
I-TASSER result page. (a,b) The page shows  
(a) top ten threading templates and the 
alignments for the query protein identified by 
LOMETS; and (b) structural analogs and their 
alignment with the I-TASSER model, as identified 
by TM-align from the PDB library. The quality of 
the threading alignment in a is evaluated based 
on their normalized Z-score (highlighted in 
orange), wherein a normalized Z-score  > 1 reflects 
a good alignment. The ranking of the analogs 
shown in b is based on the TM-score (highlighted 
in green) of the structural alignment.
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31| View the Fh-score (functional 
homology score) associated with the 
analogs to get a partial estimation of 
the confidence level of transferring 
functional annotation from these  
analogs. On the basis of our bench-
marking study of 218 modeled protein  
structures using nonhomologous 
templates (Roy, A., Kucukural, A., 
Mukherjee, S., Hefty, P.S. & Zhang, Y., 
unpublished observations), we found 
that 50% of the native GO terms could 
be correctly identified from the first 
identified analogs for 122 test proteins 
using an Fh-score cutoff of 0.8,  
achieving an overall accuracy of 56%.
 CRITICAL STEP In the benchmark-
ing study (Roy, A., Kucukural, A., 
Mukherjee, S., Hefty, P.S. & Zhang, Y., 
unpublished observations), we found that Fh-score is a strong indicator of functional similarity between the predicted  
structure and detected analogs. However, because the function of proteins is multi-faceted and the unanimity of functionali-
ties of the identified analogs usually yields a more reliable prediction, a consensus between a GO term and its ancestor  
terms in the ontology has been proven to be a more reliable indicator of the GO terms, which is therefore provided in the  
next table. It is recommended that the user analyses the consensus prediction shown in the table.

32| View the ‘Consensus prediction of GO terms’ table for the consensus prediction of GO terms. This table is collected from the 
functional analogs having an Fh-score  > 1.0. If no analogs have an Fh-score greater than the cutoff score, the consensus predic-
tion is derived from top ten analogs regardless of the Fh-score. The table contains the GO terms and the associated confidence 
scores for the predicted molecular function, biological process and cellular localization. The confidence score (GO-score) for each 
term is derived based on weighted frequencies of occurrence of each term, wherein the weights are taken from the Fh-score  
of the templates from which the function is derived. On the basis of the benchmarking test, the best false-positive and false-
negative rates are obtained for the GO terms associated with a GO-score cutoff of 0.5, with decreasing coverage of prediction  
at deeper ontology levels (Roy, A., Kucukural, A., Mukherjee, S., Hefty, P.S. & Zhang, Y., unpublished observations).

33| Function subsection 3: Ligand-binding site predictions (Steps 33–36). View the best identified ligand-binding site in the 
predicted structure, shown as a GIF image at the bottom of the result page (illustrated in Fig. 5c). The backbone of the 
model in the image is shown as white solid lines, whereas the binding site residues of the query protein are highlighted  
as transparent green spheres in the image. Ligand atoms are shown as ‘ball and stick’ in magenta. The N- and C-terminus 

Predicted EC numbers

Predicted Go terms

Predicted binding site

Rank
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1.33
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1.08
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0.82
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0.57
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Consensus prediction of Gene Ontology terms

Identified analogs with similar binding site:

Molecular function

GO term GO term GO termGO-score
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0.822

0.822

0.822

0.822

0.250

0.988

0.302

0.130

0.066

0.066

1.124

GO score GO score High confidence consensus prediction of Gene Ontology terms:

1. Molecular function: acyl-carrier protein synthase, Mg2+ binding

3. Cellular location: cytoplasm

2. Biological process: macromolecule anabolism, fatty acid
             metabolism, fatty acid formation, carboxylic acid biosynthesis

Biological process Cellular location

2
3
4
5

6
7
8
9
10

1

2

0.7626 2.25 0.24 0.85 0.76 21,22,23,24,25,27,29,42,44,74,96,97,98,99
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Figure 5 | Illustrative examples of the I-TASSER 
function predictions.  (a–c) These are with 
respect to (a) Enzyme Commission (EC) numbers;  
(b) Gene Ontology (GO) terms; and (c) ligand-
binding sites. The confidence level of the 
function prediction on EC number and binding 
site is shown in EC-score and BS-score columns 
(highlighted in red and blue rectangles, 
respectively). For GO, the analogs are first sorted 
based on Fh-score (in orange rectangle) and  
then a consensus of the predictions is derived 
from the top-scoring analogs, and the confidence 
score of the GO prediction is defined as the  
‘GO-score’ shown in green. The image in c shows 
the top-scoring binding site prediction in 3D 
model along with the bound ligand (in magenta), 
wherein the binding residues in protein are  
shown as transparent green spheres. The  
N-terminus and C-terminus residues are marked  
by blue and red spheres, respectively.
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residues are depicted by blue and red spheres, respectively. The residue number and amino acid type of the highlighted  
binding site residues are shown beneath the image.

34| View the list of the top ten identified functional analogs and the derived binding site residues on the model in the table 
(right of the image). The bound ligands in these structures can be tracked by clicking on the PDB links.

35| Analyze the confidence level of the predictions based on the BS-score. The BS-score is based on the local structural  
similarity of the ligand-binding sites and the sequence identity between the I-TASSER model and the structural analogs  
(Roy, A., Kucukural, A., Mukherjee, S., Hefty, P.S. & Zhang, Y., unpublished observations). When the BS-score of the analogs 
is  > 0.5 and the predicted binding site residues are clustered together, the confidence level of the prediction is usually high.

36| Download ligand–protein complex (optional). Users can download the PDB-formatted file containing the model and  
the bound ligand by clicking on the ‘Download’ link. The binding site and the docked ligand on the model can be viewed 
interactively by opening these files in any molecular visualization program. Rendering the ligand as a space-filling model or 
depicting predicted binding site residues as a surface will aid in visualizing the binding site cleft and help with analyzing  
the ligand–protein interactions.

● TIMING
The procedure of structure and function prediction by the I-TASSER server takes 6–10 h for a typical medium-size protein 
(~200–400 residues), although larger proteins require a longer Monte Carlo simulation and hence longer waiting time. When 
a user submits a sequence, however, the actual processing time also depends on the number of jobs in the queue. We have 
currently devoted a cluster of 2,000 HP DL1000h (Nehalem) processors to the I-TASSER server, and in most cases, users can 
receive the results within 1–2 d. For getting an even faster response on structure modeling, see TROUBLESHOOTING (Step 7).

? TROUBLESHOOTING
Step 2: How to handle large/multidomain proteins?
At present, the I-TASSER server accepts protein sequences of length up to 1,500 amino acids. For sequences longer than 
1,500 amino acids, as these are predominantly multidomain proteins, the user should split the sequence into domains and 
separately submit the sequence of the individual domains. See the Experimental design section for tips on how to identify 
domain boundaries in multidomain protein sequences.

Step 7: How to speed up the modeling procedure?
The major time-consuming part of the I-TASSER modeling process is the Monte Carlo simulation for structure refinement  
assembly. If the user needs a quicker response and/or the structural refinement is unnecessary, we provide two threading 
servers, the LOMETS meta-threading server (http://zhanglab.ccmb.med.umich.edu/LOMETS) and the MUSTER single thread-
ing server (http://zhanglab.ccmb.med.umich.edu/MUSTER), from which results can be obtained within about an hour. These 
threading servers build full-length models by MODELLER69, which aims at constructing a 3D model close to the template 
without performing extensive structure refinement. For an even faster structure prediction, users are recommended to use  
the PSI-BLAST servers (http://blast.ncbi.nlm.nih.gov, http://www.ebi.ac.uk/Tools/psiblast). Although PSI-BLAST is less sen-
sitive than the state-of-art threading algorithms in detecting distantly homologous templates, it is very robust in  
identifying highly accurate alignment if close homologous protein exists in the databases.

Step 11: Why is the number of generated models less than five?
The I-TASSER server normally outputs top five structure models as ranked on the confidence score. There are some cases in 
which the number of final models is less than five. This is because the top templates identified by LOMETS are very similar to 
each other, and the I-TASSER simulations converge. Therefore, the number of structure clusters is less than five, even when 
the RMSD cutoff in SPICKER61 is set to the minimum (3.5 Å). In these cases, the C-score is usually high, which indicates a 
high-quality structure prediction.

Step 13: What can I do if the C-score of my model is low?
Similar to the majority of template-based methods in the field, the quality of the predicted model from I-TASSER relies on 
the availability and quality of the threading templates, as identified by LOMETS. In CASP8, e.g., the correlation between the 
RMSD of the final models by I-TASSER and the initial templates by LOMETS is around 0.89 (ref. 19). Therefore, a prediction 
with low C-score values usually indicates lack of good templates in the protein structure library, whereas ab initio modeling 
of medium-to-large size proteins without using templates is the major challenge in the field. For these cases, we suggest the 
users to seek for other sources of structural information, such as data from mutagenesis or crosslinking experiments on the 
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target protein, which can provide residue–residue contact and distance information. The information from these sources can 
be specified as external restraints to improve the modeling quality while using the convenient interface of I-TASSER server 
(see Experimental design and Step 5 of PROCEDURE).

Despite of dependence of modeling results on templates, we note significant advantage of I-TASSER methodology in both 
template structure refinement and ab initio structure modeling for small proteins, which makes the I-TASSER server unique 
and different from many of other widely used homology modeling tools such as PSI-BLAST5 and MODELLER69. For example,  
in CASP819, I-TASSER drew the best threading templates closer to the native structure in 139 out of 164 cases. In CASP7 
(ref. 17), the ab initio procedure of I-TASSER generated correct models with RMSD in the range of 3–6 Å for 7 of 19 New Fold 
targets with sequence up to 132 residues long. These data show the significant ability of the I-TASSER server in modeling 
protein targets in the ‘twilight zone’ that have no or weakly homologous templates.

Step 14: Why does only the first model have quality estimation?
TM-score and RMSD to native of the first model are predicted based on their strong correlation with the C-score, as observed 
in the large-scale benchmark test67. However, the correlation of C-score and quality of lower-ranked models (i.e., second to 
fifth models) is much weaker than that for the first model, which cannot result in a meaningful estimation of the absolute 
quality for the lower-rank models. This is understandable because the conformational space covered by the I-TASSER  
simulations is limited. For easy targets, almost all decoys are near native and the structures are mainly aggregated in the 
first cluster. After removing the structures in the first cluster, the size of the lower-ranked clusters will be much smaller than 
the first one and comparable with that of hard targets. But the quality of the lower-rank clusters from the easy targets is  
still on average better than that from hard targets, because most of the decoys generated for hard targets are incorrect.  
This makes the overall correlation between C-score and the lower-ranked clusters very weak when combining data from both 
easy and hard targets.

Nevertheless, there is a correlation between the relative rank and the quality of the clusters for the same target. In the 
large-scale benchmark test67, e.g., the average TM-score (RMSD) of the top five models are 0.501 (9.6 Å), 0.468 (10.6 Å), 
0.466 (10.7 Å), 0.461 (11.1 Å) and 0.454 (11.3 Å), respectively. Thus, having the expected quality of the first model and  
the C-score of each model, the users can estimate the relative quality of lower-rank models based on the relative rank and 
their C-score information.

Step 15: Should I trust TM-score or RMSD in the model quality estimation?
It can be professedly confusing when the server’s quality estimation shows a high RMSD value, but with a good or reasonable 
TM-score. This often happens when the protein is big. In these situations, we suggest that the users should judge the  
quality of the predicted model based on the expected TM-score rather than the expected RMSD.

First, it is well-known that RMSD is not a good measure for the protein structural similarity, especially when RMSD is high, 
because RMSD weights all residue pairs equally and a local structural change or tail disorientation can result in a big RMSD, 
although the topology of the core structure is the same. In addition, the average RMSD of random structure pairs depends  
on the length of proteins70, which renders the absolute value of RMSD less meaningful for comparing proteins of different 
size. TM-score66 has been designed to specifically alleviate these issues by weighting small distance stronger than the large 
distance. Therefore, TM-score is more sensitive to the topology change than RMSD. As TM-score adopts a length-dependent 
scale to normalize the distance, the average TM-score of random protein pairs does not depend on the protein size, with  
TM-score  < 0.17 meaning random predictions and TM-score  > 0.5 meaning correct topology for all sizes of proteins  
(Xu, J.R. & Zhang. Y., unpublished observations).

Second, as a consequence of the sensitivity of TM-score on structural topology, we found in our benchmark test66 that  
the correlation coefficient of C-score and TM-score (0.91) is much higher than that of C-score and RMSD (0.75). Therefore, 
the estimation of TM-score is usually more reliable than that of RMSD for the I-TASSER models, i.e., TM-score estimation  
has usually a much smaller systematic error than RMSD in our estimation.

Step 16: What can I do if no significant templates are identified?
In most cases, this means that there is no good template that has been solved so far for this target. We therefore suggest 
the users to seek for other experimental studies that can provide information for collecting additional spatial restraints and 
use it to improve the I-TASSER modeling results. As the threading programs in LOMETS use representative PDB libraries to 
build template alignments for the query protein, in some rare cases, it is possible that a good template for the query protein 
may not have been included in the library or the template may not have been correctly identified by LOMETS threading  
programs, even though it is present in the library. In these cases, the users are encouraged to try the possibility of  
identifying templates on their own using specific tools or functional analysis. I-TASSER allows users to specify templates 
with or without alignment. Read more about adding external spatial restraints or specifying protein structure as a template 
in the Experimental design section of this protocol.
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Step 17: Should I trust Z-score or C-score for judging final modeling result?
Z-score measures the statistical significance of the threading alignment and is strongly correlated with the quality of the 
threading template. C-score is a combination of the Z-score of threading templates and the structural density of SPICKER 
cluster that reflects the convergence of the I-TASSER simulations. C-score is therefore more strongly correlated with the  
quality of the final model than the Z-score of the templates. Accordingly, TM-score and RMSD of the model is estimated  
based on the C-score and the length of the query sequence.

ANTICIPATED RESULTS
Once the job is completed, the user is notified by an e-mail message that contains the images of the predicted structures 
and a link to the I-TASSER website wherein the complete result is deposited. The result page contains:
(1)	 Predicted secondary structures.
(2)	 Up to five full-length atomic models along with the estimated accuracy (TM-score and RMSD to the native) of the  

models.
(3)	 The top ten templates and alignments that have been identified by LOMETS and used in the assembly of the  

full-length model.
(4)	 The top ten structural analogs that are structurally closest to the predicted 3D model.
(5)	 Functional predictions for the query protein in terms of EC numbers, GO terms and ligand-binding sites, with a  

confidence estimate provided for each prediction.
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