
Wolfram Mathematica ® Tutorial Collection

SYSTEMS INTERFACES
AND DEPLOYMENT

For use with Wolfram Mathematica® 7.0 and later.

For the latest updates and corrections to this manual:
visit reference.wolfram.com

For information on additional copies of this documentation:
visit the Customer Service website at www.wolfram.com/services/customerservice
or email Customer Service at info@wolfram.com

Comments on this manual are welcomed at:
comments@wolfram.com

Printed in the United States of America.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

©2008 Wolfram Research, Inc.

All rights reserved. No part of this document may be reproduced or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the copyright
holder.

Wolfram Research is the holder of the copyright to the Wolfram Mathematica software system ("Software") described
in this document, including without limitation such aspects of the system as its code, structure, sequence,
organization, “look and feel,” programming language, and compilation of command names. Use of the Software unless
pursuant to the terms of a license granted by Wolfram Research or as otherwise authorized by law is an infringement
of the copyright.

Wolfram Research, Inc. and Wolfram Media, Inc. ("Wolfram") make no representations, express,

statutory, or implied, with respect to the Software (or any aspect thereof), including, without limitation,

any implied warranties of merchantability, interoperability, or fitness for a particular purpose, all of

which are expressly disclaimed. Wolfram does not warrant that the functions of the Software will meet

your requirements or that the operation of the Software will be uninterrupted or error free. As such,

Wolfram does not recommend the use of the software described in this document for applications in

which errors or omissions could threaten life, injury or significant loss.

Mathematica, MathLink, and MathSource are registered trademarks of Wolfram Research, Inc. J/Link, MathLM,
.NET/Link, and webMathematica are trademarks of Wolfram Research, Inc. Windows is a registered trademark of
Microsoft Corporation in the United States and other countries. Macintosh is a registered trademark of Apple
Computer, Inc. All other trademarks used herein are the property of their respective owners. Mathematica is not
associated with Mathematica Policy Research, Inc.

Contents

Global Aspects of Mathematica Sessions
The Main Loop . 1

Dialogs . 7

Date and Time Functions . 10

Memory Management . 17

Global System Information . 20

Mathematica Sessions . 23

The Internals of Mathematica
Why You Do Not Usually Need to Know about Internals . 29

Basic Internal Architecture . 33

The Algorithms of Mathematica . 35

The Software Engineering of Mathematica . 36

Testing and Verification . 38

Security and Connectivity
Mathematica Internet Connectivity . 40

Notebook Security . 43

MathLink and External Program Communication
Introduction to MathLink . 49

How MathLink Is Used . 50

Installing Existing MathLink-Compatible Programs . 52

Setting Up External Functions to Be Called from Mathematica 53

Handling Lists, Arrays, and Other Expressions . 59

Portability of MathLink Programs . 72

Using MathLink to Communicate between Mathematica Sessions 76

Calling Subsidiary Mathematica Processes . 80

Two-Way Communication with External Programs . 85

Running Programs on Remote Computers . 88

Running External Programs under a Debugger . 89

Manipulating Expressions in External Programs . 90

Error and Interrupt Handling . 95

Running Mathematica from Within an External Program . 96

MathLink Interface 3 . 100

Global Aspects of Mathematica Sessions

The Main Loop

In any interactive session, Mathematica effectively operates in a loop. It waits for your input,

processes the input, prints the result, then goes back to waiting for input again. As part of this

“main loop”, Mathematica maintains and uses various global objects. You will often find it useful

to work with these objects.

You should realize, however, that if you use Mathematica through a special front end, your

front end may set up its own main loop, and what is said here may not apply.

In@nD the expression on the nth input line

InString@nD the textual form of the nth input line

% n or Out@nD the expression on the nth output line

Out@8n1,n2,…<D a list of output expressions

%% … % (n times) or Out@-nD the expression on the nth previous output line

MessageList@nD a list of messages produced while processing the nth line

$Line the current line number (resettable)

Input and output expressions.

In a standard interactive session, there is a sequence of input and output lines. Mathematica

stores the values of the expressions on these lines in In@nD and Out@nD.

As indicated by the usual In@nD := prompt, the input expressions are stored with delayed

assignments. This means that whenever you ask for In@nD, the input expression will always be

reevaluated in your current environment.

This assigns a value to x.

In[1]:= x = 7

Out[1]= 7

Now the value for x is used.

In[2]:= x - x^2 + 5 x - 1

Out[2]= -8

This removes the value assigned to x.

In[3]:= x =.

This is reevaluated in your current environment, where there is no value assigned to x.

In[4]:= In@2D

Out[4]= -1 + 6 x - x2

This gives the textual form of the second input line, appropriate for editing or other textual
manipulation.

In[5]:= InString@2D êê InputForm

Out[5]//InputForm= "\\(x - \\(x^2\\) + \\(5 x\\) - 1\\)"

$HistoryLength the number of previous lines of input and output to keep

Specifying the length of session history to keep.

Mathematica by default stores all your input and output lines for the duration of the session. In

a very long session, this may take up a large amount of computer memory. You can neverthe-

less get rid of the input and output lines by explicitly clearing the values of In and Out, using

Unprotect@In, OutD, followed by Clear@In, OutD. You can also tell Mathematica to keep only

a limited number of lines of history by setting the global variable $HistoryLength.

Note that at any point in a session, you can reset the line number counter $Line, so that, for

example, new lines are numbered so as to overwrite previous ones.

2 Systems Interfaces and Deployment

$PreRead a function applied to each input string before being fed to
Mathematica

$Pre a function applied to each input expression before
evaluation

$Post a function applied to each expression after evaluation

$PrePrint a function applied after Out@nD is assigned, but before the
result is printed

$SyntaxHandler a function applied to any input line that yields a syntax
error

Global functions used in the main loop.

Mathematica provides a variety of “hooks” that allow you to insert functions to be applied to

expressions at various stages in the main loop. Thus, for example, any function you assign as

the value of the global variable $Pre will automatically be applied before evaluation to any

expression you give as input.

For a particular input line, the standard main loop begins by getting a text string of input.

Particularly if you need to deal with special characters, you may want to modify this text string

before it is further processed by Mathematica. You can do this by assigning a function as the

value of the global variable $PreRead. This function will be applied to the text string, and the

result will be used as the actual input string for the particular input line.

This tells Mathematica to replace listHead by 8…< in every input string.

In[6]:= $PreRead = HReplaceAll@Ò, "listHead" ß "List"D &L

Out[6]= Ò1 ê. listHead ß List &

You can now enter lists as listHead expressions.

In[7]:= listHead@a, b, cD

Out[7]= 8a, b, c<

You can remove the value for $PreRead like this, at least so long as your definition for
$PreRead does not modify this very input string.

In[8]:= $PreRead =.

Once Mathematica has successfully read an input expression, it then evaluates this expression.

Before doing the evaluation, Mathematica applies any function you have specified as the value

of $Pre, and after the evaluation, it applies any function specified as the value of $Post. Note

that unless the $Pre function holds its arguments unevaluated, the function will have exactly

the same effect as $Post.

Systems Interfaces and Deployment 3

Once Mathematica has successfully read an input expression, it then evaluates this expression.

Before doing the evaluation, Mathematica applies any function you have specified as the value

of $Pre, and after the evaluation, it applies any function specified as the value of $Post. Note

that unless the $Pre function holds its arguments unevaluated, the function will have exactly

the same effect as $Post.

$Post allows you to specify arbitrary “postprocessing” to be done on results obtained from

Mathematica. Thus, for example, to make Mathematica get a numerical approximation to every

result it generates, all you need do is to set $Post = N.

This tells Mathematica to apply N to every result it generates.

In[9]:= $Post = N

Out[9]= N

Now Mathematica gets a numerical approximation to anything you type in.

In[10]:= Sqrt@7D

Out[10]= 2.64575

This removes the postprocessing function you specified.

In[11]:= $Post =.

As soon as Mathematica has generated a result, and applied any $Post function you have

specified, it takes the result, and assigns it as the value of Out@$LineD. The next step is for

Mathematica to print the result. However, before doing this, it applies any function you have

specified as the value of $PrePrint.

This tells Mathematica to shorten all output to two lines.

In[12]:= $PrePrint = Short@Ò, 2D &;

Only a two-line version of the output is now shown.

In[13]:= Expand@Hx + yL^40D

Out[13]= x40 + 40 x39 y + 780 x38 y2 + 9880 x37 y3 + 91390 x36 y4 +

658008 x35 y5 + á30à + 91390 x4 y36 + 9880 x3 y37 + 780 x2 y38 + 40 x y39 + y40

This removes the value you assigned to $PrePrint.

In[14]:= $PrePrint =.

There are various kinds of output generated in a typical Mathematica session. In general, each

kind of output is sent to a definite output channel, as discussed in "Streams and Low-Level

Input and Output". Associated with each output channel, there is a global variable which gives a

list of the output streams to be included in that output channel.

4 Systems Interfaces and Deployment

There are various kinds of output generated in a typical Mathematica session. In general, each

kind of output is sent to a definite output channel, as discussed in "Streams and Low-Level

Input and Output". Associated with each output channel, there is a global variable which gives a

list of the output streams to be included in that output channel.

$Output standard output and text generated by Print

$Echo an echo of each input line (as stored in InString@nD)

$Urgent input prompts and other urgent output

$Messages standard messages and output generated by Message

Output channels in a standard Mathematica session.

By modifying the list of streams in a given output channel, you can redirect or copy particular

kinds of Mathematica output. Thus, for example, by opening an output stream to a file, and

including that stream in the $Echo list, you can get each piece of input you give to Mathematica

saved in a file.

Streams@D list of all open streams

Streams@"name"D list of all open streams with the specified name

$Input the name of the current input stream

Open streams in a Mathematica session.

The function Streams shows you all the input, output and other streams that are open at a

particular point in a Mathematica session. The variable $Input gives the name of the current

stream from which Mathematica input is being taken at a particular point. $Input is reset, for

example, during the execution of a Get command.

$MessagePrePrint a function to be applied to expressions that are given in
messages

$Language list of default languages to use for messages

Parameters for messages.

There are various global parameters which determine the form of messages generated by

Mathematica.

As discussed in "Messages", typical messages include a sequence of expressions which are

combined with the text of the message through StringForm. $MessagePrePrint gives a func-

tion to be applied to the expressions before they are printed. The default for $MessagePrePrint

uses Short for text formatting and a combination of Short and Shallow for typesetting.

Systems Interfaces and Deployment 5

As discussed in "Messages", typical messages include a sequence of expressions which are

combined with the text of the message through StringForm. $MessagePrePrint gives a func-

tion to be applied to the expressions before they are printed. The default for $MessagePrePrint

uses Short for text formatting and a combination of Short and Shallow for typesetting.

As discussed in "International Messages", Mathematica allows you to specify the language in

which you want messages to be produced. In a particular Mathematica session, you can assign

a list of language names as the value of $Language.

Exit@D or Quit@D terminate your Mathematica session

$Epilog a global variable to be evaluated before termination

Terminating Mathematica sessions.

Mathematica will continue in its main loop until you explicitly tell it to exit. Most Mathematica

interfaces provide special ways to do this. Nevertheless, you can always do it by explicitly

calling Exit or Quit.

Mathematica allows you to give a value to the global variable $Epilog to specify operations to

perform just before Mathematica actually exits. In this way, you can for example make Mathe-

matica always save certain objects before exiting.

$IgnoreEOF whether to ignore the end-of-file character

A global variable that determines the treatment of end-of-file characters.

As discussed in "Special Characters: Strings and Characters", Mathematica usually does not

treat special characters in a special way. There is one potential exception, however. With the

default setting $IgnoreEOF = False, Mathematica recognizes end-of-file characters. If Mathemat -

ica receives an end-of-file character as the only thing on a particular input line in a standard

interactive Mathematica session, then it will exit the session.

Exactly how you enter an end-of-file character depends on the computer system you are using.

Under Unix, for example, you typically press Ctrl+D.

Note that if you use Mathematica in a “batch mode”, with all its input coming from a file, then it

will automatically exit when it reaches the end of the file, regardless of the value of $IgnoreEOF.

6 Systems Interfaces and Deployment

Dialogs

Within a standard interactive session, you can create "subsessions" or dialogs using the Mathe-

matica command Dialog. Dialogs are often useful if you want to interact with Mathematica

while it is in the middle of doing a calculation. As mentioned in "Tracing Evaluation",

TraceDialog for example automatically calls Dialog at specified points in the evaluation of a

particular expression. In addition, if you interrupt Mathematica during a computation, you can

typically "inspect" its state using a dialog.

Dialog@D initiate a Mathematica dialog

Dialog@exprD initiate a dialog with expr as the current value of %

Return@D return from a dialog, taking the current value of % as the
return value

Return@exprD return from a dialog, taking expr as the return value

Initiating and returning from dialogs.

This initiates a dialog.

In[1]:= Dialog@D

You can do computations in a dialog just as you would in any Mathematica session.

In[2]:= 2^41

Out[2]= 2199023255552

You can use Return to exit from a dialog.

In[3]:= Return@D

Out[3]= 2199023255552

When you exit a dialog, you can return a value for the dialog using Return@exprD. If you do not

want to return a value, and you have set $IgnoreEOF = False, then you can also exit a dialog

simply by giving an end-of-file character, at least on systems with text-based interfaces.

To evaluate this expression, Mathematica initiates a dialog.

In[4]:= 1 + Dialog@D^2

Systems Interfaces and Deployment 7

The value a + b returned from the dialog is now inserted in the original expression.

In[5]:= Return@a + bD

Out[5]= 1 + Ha + bL2

In starting a dialog, you will often find it useful to have some “initial expression”. If you use

Dialog@exprD, then Mathematica will start a dialog, using expr as the initial expression, accessi-

ble for example as the value of %.

This first starts a dialog with initial expression a^2.

In[6]:= Map@Dialog, 8a^2, b + c<D

Out[6]= a2

% is the initial expression in the dialog.

In[7]:= %^2 + 1

Out[7]= 1 + a4

This returns a value from the first dialog, and starts the second dialog, with initial expression
b + c.

In[8]:= Return@%D

Out[8]= b + c

This returns a value from the second dialog. The final result is the original expression, with
values from the two dialogs inserted.

In[9]:= Return@444D

Out[9]= 91 + a4, 444=

Dialog effectively works by running a subsidiary version of the standard Mathematica main

loop. Each dialog you start effectively "inherits" various values from the overall main loop.

Some of the values are, however, local to the dialog, so their original values are restored when

you exit the dialog.

Thus, for example, dialogs inherit the current line number $Line when they start. This means

that the lines in a dialog have numbers that follow the sequence used in the main loop. Never-

theless, the value of $Line is local to the dialog. As a result, when you exit the dialog, the

value of $Line reverts to what it was in the main loop.

If you start a dialog on line 10 of your Mathematica session, then the first line of the dialog will

be labeled In[11]. Successive lines of the dialog will be labeled In[12], In[13] and so on.

Then, when you exit the dialog, the next line in your main loop will be labeled In[11]. At this

point, you can still refer to results generated within the dialog as Out[11], Out[12] and so on.

These results will be overwritten, however, when you reach lines In[12], In[13], and so on in

the main loop.

8 Systems Interfaces and Deployment

If you start a dialog on line 10 of your Mathematica session, then the first line of the dialog will

be labeled In[11]. Successive lines of the dialog will be labeled In[12], In[13] and so on.

Then, when you exit the dialog, the next line in your main loop will be labeled In[11]. At this

point, you can still refer to results generated within the dialog as Out[11], Out[12] and so on.

These results will be overwritten, however, when you reach lines In[12], In[13], and so on in

the main loop.

In a standard Mathematica session, you can tell whether you are in a dialog by seeing whether

your input and output lines are indented. If you call a dialog from within a dialog, you will get

two levels of indentation. In general, the indentation you get inside d nested dialogs is deter-

mined by the output form of the object DialogIndent@dD. By defining the format for this

object, you can specify how dialogs should be indicated in your Mathematica session.

DialogSymbols:>9x,y,…= symbols whose values should be treated as local to the
dialog

DialogSymbols:>8x=x0,y=y0,…<

symbols with initial values

DialogProlog:>expr an expression to evaluate before starting the dialog

Options for Dialog.

Whatever setting you give for DialogSymbols, Dialog will always treat the values of $Line,

$Epilog and $MessageList as local. Note that if you give a value for $Epilog, it will automati-

cally be evaluated when you exit the dialog.

When you call Dialog, its first step is to localize the values of variables. Then it evaluates any

expression you have set for the option DialogProlog. If you have given an explicit argument to

the Dialog function, this is then evaluated next. Finally, the actual dialog is started.

When you exit the dialog, you can explicitly specify the return value using Return@exprD. If you

do not do this, the return value will be taken to be the last value generated in the dialog.

Systems Interfaces and Deployment 9

Date and Time Functions

DateList@D give the current local date and time in the form
8year, month, day, hour, minute, second<

DateListATimeZone->zE give the current date and time in time zone z

$TimeZone give the time zone assumed by your computer system

Finding the date and time.

This gives the current date and time.

In[1]:= DateList@D

Out[1]= 82005, 3, 31, 19, 21, 29.566769<

The Mathematica DateList function returns whatever your computer system gives as the

current date and time. It assumes that any corrections for daylight saving time and so on have

already been done by your computer system. In addition, it assumes that your computer

system has been set for the appropriate time zone.

The variable $TimeZone returns the current time zone assumed by your computer system. The

time zone is given as the number of hours which must be added to Greenwich Mean Time

(GMT) to obtain the correct local time. Thus, for example, U.S. Eastern Standard Time (EST)

corresponds to time zone -5. Note that daylight saving time corrections must be included in the

time zone, so U.S. Eastern Daylight Time (EDT) corresponds to time zone -4.

This gives the current time zone assumed by your computer system.

In[2]:= $TimeZone

Out[2]= -6.

This gives the current date and time in time zone +9, the time zone for Japan.

In[3]:= DateList@TimeZone -> 9D

Out[3]= 82005, 4, 1, 10, 21, 29.579505<

10 Systems Interfaces and Deployment

AbsoluteTime@D total number of seconds since the beginning of January 1,
1900

SessionTime@D total number of seconds elapsed since the beginning of
your current Mathematica session

TimeUsed@D total number of seconds of CPU time used in your current
Mathematica session

$TimeUnit the minimum time interval recorded on your computer
system

Time functions.

You should realize that on any computer system, there is a certain “granularity” in the times

that can be measured. This granularity is given as the value of the global variable $TimeUnit.

Typically it is either about 1
100

 or 1
1000

 of a second.

Pause@nD pause for at least n seconds

Pausing during a calculation.

This gives various time functions.

In[4]:= 8AbsoluteTime@D, SessionTime@D, TimeUsed@D<

Out[4]= 93.321285689607146µ109, 6.125768, 2.24=

This pauses for 10 seconds, then reevaluates the time functions. Note that TimeUsed@D is not
affected by the pause.

In[5]:= Pause@10D; 8AbsoluteTime@D, SessionTime@D, TimeUsed@D<

Out[5]= 93.321285699616089µ109, 16.134709, 2.24=

AbsoluteTime@dateD convert from date to absolute time

DateList@timeD convert from absolute time to date

Converting between dates and absolute times.

This sets d to be the current date.

In[6]:= d = DateList@D

Out[6]= 82005, 3, 31, 19, 21, 39.625914<

Systems Interfaces and Deployment 11

This adds one month to the current date.

In[7]:= DateList@D + 80, 1, 0, 0, 0, 0<

Out[7]= 82005, 4, 31, 19, 21, 39.629234<

This gives the number of seconds in the additional month.

In[8]:= AbsoluteTime@%D - AbsoluteTime@dD

Out[8]= 2.678400003320µ106

DateList@"string"D convert a date string to a date list

DateList@
8"string",8"e1","e2",…<<D

give the date list obtained by extracting elements "ei"
from "string"

Converting from different date formats.

You can use DateList@"string"D to convert a date string into a date list, as long as the date

format is sufficiently unambiguous.

This attempts to interpret the string as a date.

In[9]:= DateList@"June 23, 1988 - 3:55 pm"D

Out[9]= 81988, 6, 23, 15, 55, 0.<

For more control of the conversion, you can specify the order and type of date elements appear-

ing in the string. The elements can be strings like "Year", "Quarter", "Month", "MonthName",

"Day", "DayName", "Hour", "AMPM", "Minute", or "Second".

This extracts a date using the specified elements.

In[10]:= DateList@8"3ê5ê2001", 8"Month", "Day", "Year"<<D

Out[10]= 82001, 3, 5, 0, 0, 0<

If the date element delimiters contain letters or digits, these must also be specified as part of

the date elements.

This extracts a date containing a letter as a separator.

In[11]:= DateList@8"Jun Y1988", 8"MonthName", " Y", "Year"<<D

Out[11]= 81988, 6, 1, 0, 0, 0<

12 Systems Interfaces and Deployment

DateString@D give a string representing current local date and time

DateString@datespec, elemsD give elements elems of date and time given by datespec

Converting to different date formats.

DateString is used to give a nice string representation of a date and time. The exact output

format can be specified from a long list of date elements, such as "DateTime", "DayName",

"HourShort", etc.

This gives the current date and time in the default format.

In[12]:= DateString@D

Out[12]= Fri 15 Dec 2006 13:27:47

This specifies a format for the given date.

In[13]:= DateString@81988, 6, 23, 15, 55, 0<, 8"MonthName", " ", "DayShort", ", ",
"Year", " - ", "Hour12Short", ":", "Minute", " ", "AMPMLowerCase"<D

Out[13]= June 23, 1988 - 3:55 pm

DatePattern@elemsD string pattern matching a date with the given elements

Extracting dates from a string.

You can use DatePattern@elemsD as a string pattern in string matching functions. The date

elements are the same as used in DateList, although the default date element delimiters are

restricted to the ê, -, : or . characters. Other delimiters can be given explicitly in the list of

date elements.

This extracts dates of the given format from a string.

In[14]:= StringCases@"abc 12ê5ê2005 def 1ê15ê2002 ghi",
x : DatePattern@8"Month", "Day", "Year"<D ß DateList@xDD

DateList::ambig : Warning: the interpretation of the string 12ê5ê2005 as a date is ambiguous. à

Out[14]= 882005, 12, 5, 0, 0, 0.<, 82002, 1, 15, 0, 0, 0.<<

This extracts dates with explicit delimiters.

In[15]:= StringCases@"abc Mar 2002 def Aug 2005 ghi",
x : DatePattern@8"MonthName", " ", "Year"<D ß DateList@xDD

Out[15]= 882002, 3, 1, 0, 0, 0.<, 82005, 8, 1, 0, 0, 0.<<

Systems Interfaces and Deployment 13

DateListPlot@listD generate a plot from a list of data with date coordinates

DateListPlot@list,datespecD generate a plot from a list of data with dates specified by
datespec

DateListLogPlot@listD generate a linear-log plot from a list of data with date
coordinates

DateListLogPlot@list,datespecD generate a linear-log plot from a list of data with dates
specified by datespec

Plotting data with date coordinates.

DateListPlot can be used to plot data with date or time horizontal coordinates. Dates can be

lists, strings, or absolute times as with DateList, DateString, and AbsoluteTime. A date

specification datespec can be given to associate dates with data given as 8y1, y2, …<.

DateListLogPlot allows you to plot the data with a logarithmic vertical scale.

This gathers some financial time series data.

In[16]:= fd = FinancialData@"GE", 881980<, 82005<<D;

This plots the financial data.

In[17]:= DateListPlot@fdD

Out[17]=

This plots the same data on a logarithmic scale.

In[18]:= DateListLogPlot@fdD

Out[18]=

14 Systems Interfaces and Deployment

This plots monthly data which does not contain explicit dates.

In[19]:= DateListPlot@81, 2, 4, 5, 7, 6, 10, 8, 12, 10, 15<, 882008<, Automatic, "Month"<D

Out[19]=

Timing@exprD evaluate expr, and return a list of the CPU time needed,
together with the result obtained

AbsoluteTiming@exprD evaluate expr, giving the absolute time taken

Timing Mathematica operations.

Timing allows you to measure the CPU time associated with the evaluation of a single Mathemat -

ica expression. Timing corresponds to the increase in TimeUsed. Note that only CPU time

associated with the actual evaluation of the expression within the Mathematica kernel is

included. The time needed to format the expression for output, and any time associated with

external programs, is not included.

AbsoluteTiming allows you to measure absolute total elapsed time. You should realize, how-

ever, that the time reported for a particular calculation by both AbsoluteTiming and Timing

depends on many factors.

First, the time depends in detail on the computer system you are using. It depends not only on

instruction times, but also on memory caching, as well as on the details of the optimization

done in compiling the parts of the internal code of Mathematica used in the calculation.

The time also depends on the precise state of your Mathematica session when the calculation

was done. Many of the internal optimizations used by Mathematica depend on details of preced-

ing calculations. For example, Mathematica often uses previous results it has obtained, and

avoids unnecessarily reevaluating expressions. In addition, some Mathematica functions build

internal tables when they are first called in a particular way, so that if they are called in that

way again, they run much faster. For all of these kinds of reasons, it is often the case that a

particular calculation may not take the same amount of time if you run it at different points in

the same Mathematica session.

Systems Interfaces and Deployment 15

This gives the CPU time needed for the calculation. The semicolon causes the result of the
calculation to be given as Null.

In[20]:= Timing@100000!;D

Out[20]= 80.49 Second, Null<

Now Mathematica has built internal tables for factorial functions, and the calculation takes no
measurable CPU time.

In[21]:= Timing@100000!;D

Out[21]= 80. Second, Null<

However, some absolute time does elapse.

In[22]:= AbsoluteTiming@100000!;D

Out[22]= 80.000102 Second, Null<

Note that the results you get from Timing are only accurate to the timing granularity

$TimeUnit of your computer system. Thus, for example, a timing reported as 0 could in fact be

as much as $TimeUnit.

TimeConstrained@expr,tD try to evaluate expr, aborting the calculation after t seconds

TimeConstrained@expr,t, failexprD

return failexpr if the time constraint is not met

Time-constrained calculation.

When you use Mathematica interactively, it is quite common to try doing a calculation, but to

abort the calculation if it seems to be taking too long. You can emulate this behavior inside a

program by using TimeConstrained. TimeConstrained tries to evaluate a particular expression

for a specified amount of time. If it does not succeed, then it aborts the evaluation, and returns

either $Aborted, or an expression you specify.

You can use TimeConstrained, for example, to have Mathematica try a particular approach to a

problem for a certain amount of time, and then to switch to another approach if the first one

has not yet succeeded. You should realize however that TimeConstrained may overrun the

time you specify if Mathematica cannot be interrupted during a particular part of a calculation.

In addition, you should realize that because different computer systems run at different speeds,

programs that use TimeConstrained will often give different results on different systems.

Memory Management

16 Systems Interfaces and Deployment

Memory Management

MemoryInUse@D number of bytes of memory currently being used by
Mathematica

MaxMemoryUsed@D maximum number of bytes of memory used by Mathemat -
ica in this session

Finding memory usage.

Particularly for symbolic computations, memory is usually the primary resource which limits the

size of computations you can do. If a computation runs slowly, you can always potentially let it

run longer. But if the computation generates intermediate expressions which simply cannot fit

in the memory of your computer system, then you cannot proceed with the computation.

Mathematica is careful about the way it uses memory. Every time an intermediate expression

you have generated is no longer needed, Mathematica immediately reclaims the memory allo-

cated to it. This means that at any point in a session, Mathematica stores only those expres-

sions that are actually needed; it does not keep unnecessary objects which have to be "garbage

collected" later.

This gives the number of bytes of memory currently being used by Mathematica.

In[1]:= MemoryInUse@D

Out[1]= 947712

This generates a 10000-element list.

In[2]:= Range@10 000D êê Short

Out[2]= 81, 2, 3, 4, 5, 6, 7, 8, á9985à, 9994, 9995, 9996, 9997, 9998, 9999, 10000<

Additional memory is needed to store the list.

In[3]:= MemoryInUse@D

Out[3]= 989616

This list is kept because it is the value of Out@2D. If you clear Out@2D, the list is no longer
needed.

In[4]:= Unprotect@OutD; Out@2D =.

Systems Interfaces and Deployment 17

The memory in use goes down again.

In[5]:= MemoryInUse@D

Out[5]= 954408

This shows the maximum memory needed at any point in the session.

In[6]:= MaxMemoryUsed@D

Out[6]= 1467536

One issue that often comes up is exactly how much memory Mathematica can actually use on a

particular computer system. Usually there is a certain amount of memory available for all pro-

cesses running on the computer at a particular time. Sometimes this amount of memory is

equal to the physical number of bytes of RAM in the computer. Often, it includes a certain

amount of "virtual memory", obtained by swapping data on and off a mass storage device.

When Mathematica runs, it needs space both for data and for code. The complete code of

Mathematica is typically several megabytes in size. For any particular calculation, only a small

fraction of this code is usually used. However, in trying to work out the total amount of space

available for Mathematica data, you should not forget what is needed for Mathematica code. In

addition, you must include the space that is taken up by other processes running in the com-

puter. If there are fewer jobs running, you will usually find that your job can use more memory.

It is also worth realizing that the time needed to do a calculation can depend very greatly on

how much physical memory you have. Although virtual memory allows you in principle to use

large amounts of memory space, it is usually hundreds or even thousands of times slower to

access than physical memory. As a result, if your calculation becomes so large that it needs to

make use of virtual memory, it may run much more slowly.

MemoryConstrained@expr,bD try to evaluate expr, aborting if more than b additional
bytes of memory are requested

MemoryConstrained@expr,b, failexprD return failexpr if the memory constraint is not met

Memory-constrained computation.

MemoryConstrained works much like TimeConstrained. If more than the specified amount of

memory is requested, MemoryConstrained attempts to abort your computation. As with

TimeConstrained, there may be some overshoot in the actual amount of memory used before

the computation is aborted.

18 Systems Interfaces and Deployment

ByteCount@exprD the maximum number of bytes of memory needed to store
expr

LeafCount@exprD the number of terminal nodes in the expression tree for
expr

Finding the size of expressions.

Although you may find ByteCount useful in estimating how large an expression of a particular

kind you can handle, you should realize that the specific results given by ByteCount can differ

substantially from one version of Mathematica to another.

Another important point is that ByteCount always gives you the maximum amount of memory

needed to store a particular expression. Often Mathematica will actually use a much smaller

amount of memory to store the expression. The main issue is how many of the subexpressions

in the expression can be shared.

In an expression like f@1 + x, 1 + xD, the two subexpressions 1 + x are identical, but they may or

may not actually be stored in the same piece of computer memory. ByteCount gives you the

number of bytes needed to store expressions with the assumption that no subexpressions are

shared. You should realize that the sharing of subexpressions is often destroyed as soon as you

use an operation like the ê. operator.

Nevertheless, you can explicitly tell Mathematica to share subexpressions using the function

Share. In this way, you can significantly reduce the actual amount of memory needed to store

a particular expression.

Share@exprD share common subexpressions in the storage of expr

Share@D share common subexpressions throughout memory

Optimizing memory usage.

On most computer systems, the memory used by a running program is divided into two parts:

memory explicitly allocated by the program, and "stack space". Every time an internal routine is

called in the program, a certain amount of stack space is used to store parameters associated

with the call. On many computer systems, the maximum amount of stack space that can be

used by a program must be specified in advance. If the specified stack space limit is exceeded,

the program usually just exits.

In Mathematica, one of the primary uses of stack space is in handling the calling of one Mathe-

matica function by another. All such calls are explicitly recorded in the Mathematica Stack

discussed in "The Evaluation Stack". You can control the size of this stack by setting the global

parameter $RecursionLimit. You should be sure that this parameter is set small enough that

you do not run out of stack space on your particular computer system.

Systems Interfaces and Deployment 19

In Mathematica, one of the primary uses of stack space is in handling the calling of one Mathe-

matica function by another. All such calls are explicitly recorded in the Mathematica Stack

discussed in "The Evaluation Stack". You can control the size of this stack by setting the global

parameter $RecursionLimit. You should be sure that this parameter is set small enough that

you do not run out of stack space on your particular computer system.

Global System Information

In order to write the most general Mathematica programs you will sometimes need to find out

global information about the setup under which your program is being run.

Thus, for example, to tell whether your program should be calling functions like

NotebookWrite, you need to find out whether the program is being run in a Mathematica ses-

sion that is using the notebook front end. You can do this by testing the global variable

$Notebooks.

$Notebooks whether a notebook front end is being used

Determining whether a notebook front end is being used.

Mathematica is usually used interactively, but it can also operate in a batch mode~say taking

input from a file and writing output to a file. In such a case, a program cannot for example

expect to get interactive input from the user.

$BatchInput whether input is being given in batch mode

$BatchOutput whether output should be given in batch mode, without
labeling, etc.

Variables specifying batch mode operation.

The Mathematica kernel is a process that runs under the operating system on your computer.

Within Mathematica there are several global variables that allow you to find the characteristics

of this process and its environment.

20 Systems Interfaces and Deployment

$CommandLine the original command line used to invoke the Mathematica
kernel

$ParentLink the MathLink LinkObject specifying the program that
invoked the kernel (or Null if the kernel was invoked
directly)

$ProcessID the ID assigned to the Mathematica kernel process by the
operating system

$ParentProcessID the ID of the process that invoked the Mathematica kernel

$UserName the login name of the user running the Mathematica kernel

Environment@"var"D the value of a variable defined by the operating system

Variables associated with the Mathematica kernel process.

If you have a variable such as x in a particular Mathematica session, you may or may not want

that variable to be the same as an x in another Mathematica session. In order to make it possi-

ble to maintain distinct objects in different sessions, Mathematica supports the variable

$SessionID, which uses information such as starting time, process ID and machine ID to try to

give a different value for every single Mathematica session, whether it is run on the same

computer or a different one.

$SessionID a number set up to be different for every Mathematica
session

A unique number different for every Mathematica session.

Mathematica provides various global variables that allow you to tell which version of the kernel

you are running. This is important if you write programs that make use of features that are,

say, new in Version 6. You can then check $VersionNumber to find out if these features will be

available.

$Version a string giving the complete version of Mathematica in use

$VersionNumber the Mathematica kernel version number (e.g. 6.0)

$ReleaseNumber the release number for your version of the Mathematica
kernel on your particular computer system

$CreationDate the date, in DateList format, on which your particular
Mathematica release was created

Variables specifying the version of Mathematica used.

Mathematica itself is set up to be as independent of the details of the particular computer

system on which it is run as possible. However, if you want to access external aspects of your

computer system, then you will often need to find out its characteristics.

Systems Interfaces and Deployment 21

Mathematica itself is set up to be as independent of the details of the particular computer

system on which it is run as possible. However, if you want to access external aspects of your

computer system, then you will often need to find out its characteristics.

$System a full string describing the computer system in use

$SystemID a short string specifying the computer system in use

$ProcessorType the architecture of the processor in your computer system

$MachineType the general type of your computer system

$ByteOrdering the native byte ordering convention on your computer
system

$OperatingSystem the basic operating system in use

$SystemCharacterEncoding the default raw character encoding used by your operating
system

Variables specifying the characteristics of your computer system.

Mathematica uses the values of $SystemID to label directories that contain versions of files for

different computer systems, as discussed in "Reading and Writing Mathematica Files: Files and

Streams" and "Portability of MathLink Programs". Computer systems for which $SystemID is the

same will normally be binary compatible.

$OperatingSystem has values such as "Windows" or "Unix". By testing $OperatingSystem you

can determine whether a particular external program is likely to be available on your computer

system.

This gives some characteristics of the computer system on which the input is evaluated.

In[1]:= 8$System, $ProcessorType, $OperatingSystem<

Out[1]= 8Linux x86 H32-bitL, x86, Unix<

$MachineAddresses the list of current IP addresses

$MachineName the name of the computer on which Mathematica is running

$MachineDomains the current network domains for the computer

$MachineID the unique ID assigned by Mathematica to the computer

Variables identifying the computer on which Mathematica is running.

22 Systems Interfaces and Deployment

$LicenseID the ID for the license under which Mathematica is running

$LicenseExpirationDate the date on which the license expires

$NetworkLicense whether this is a network license

$LicenseServer the full name of the machine serving the license

$LicenseProcesses the number of Mathematica processes currently being run
under the license

$MaxLicenseProcesses the maximum number of processes provided by the license

$PasswordFile password file used when the kernel was started

Variables associated with license management.

Mathematica Sessions

Command-Line Options and Environment Variables

-pwfile Mathematica password file

-pwpath path to search for a Mathematica password file

-run Mathematica input to run (kernel only)

-initfile Mathematica initialization file

-initpath path to search for initialization files

-noinit do not run initialization files

-mathlink communicate only via MathLink

Typical command-line options for Mathematica executables.

If the Mathematica front end is called with a notebook file as a command-line argument, then

this notebook will be made the initial selected notebook. Otherwise, a new notebook will be

created for this purpose.

Mathematica kernels and front ends can also take additional command-line options specific to

particular window environments.

Systems Interfaces and Deployment 23

MATHINIT command-line environment for the Mathematica front end

MATHKERNELINIT command-line environment for the Mathematica kernel

MATHEMATICA_BASE setting for $BaseDirectory

MATHEMATICA_USERBASE setting for $UserBaseDirectory

Environment variables.

Mathematica will read the values of operating system environment variables, and will use these

values in addition to any command-line options explicitly given.

Initialization

On startup, the Mathematica kernel does the following:

† Performs license management operations.

† Runs Mathematica commands specified in any -run options passed to the kernel executable.

† Runs the Mathematica commands in the systemwide initialization file
$BaseDirectory ê Kernel ê init.m.

† Runs the Mathematica commands in the user-specific initialization file
$UserBaseDirectory ê Kernel ê init.m.

† Loads init.m and Kernel ê init.m files in Autoload directories.

† Begins running the main loop.

The Main Loop

All Mathematica sessions repeatedly execute the following main loop:

† Read in input.

† Apply $PreRead function, if defined, to the input string.

† Print syntax warnings if necessary.

24 Systems Interfaces and Deployment

† Apply $SyntaxHandler function if there is a syntax error.

† Assign InString@nD.

† Apply $Pre function, if defined, to the input expression.

† Assign In@nD.

† Evaluate expression.

† Apply $Post function, if defined.

† Assign Out@nD, stripping off any formatting wrappers.

† Apply $PrePrint function, if defined.

† Assign MessageList@nD and clear $MessageList.

† Print expression, if it is not Null.

† Increment $Line.

† Clear any pending aborts.

Note that if you call Mathematica via MathLink from within an external program, then you must

effectively create your own main loop, which will usually differ from the one described above.

Messages

During a Mathematica session messages can be generated either by explicit calls to Message, or

in the course of executing other built-in functions.

f::name::lang a message in a specific language

f::name a message in a default language

General::name a general message with a given name

Message names.

Systems Interfaces and Deployment 25

If no language is specified for a particular message, text for the message is sought in each of

the languages specified by $Language. If f::name is not defined, a definition for General::name

is sought. If still no message is found, any value defined for $NewMessage is applied to f and

"name".

Quiet@exprD evaluates expr while preventing messages from being printed during the evaluation.

Off@messageD prevents a specified message from ever being printed. Check allows you to deter-

mine whether particular messages were generated during the evaluation of an expression.

$MessageList and MessageList@nD record all the messages that were generated during the

evaluation of a particular line in a Mathematica session.

Messages are specified as strings to be used as the first argument of StringForm.

$MessagePrePrint is applied to each expression to be spliced into the string.

Termination

Exit@D or Quit@D terminate Mathematica

$Epilog symbol to evaluate before Mathematica exits

$IgnoreEOF whether to exit an interactive Mathematica session when
an end-of-file character is received

end.m file to read when Mathematica terminates

Mathematica termination.

There are several ways to end a Mathematica session. If you are using Mathematica interac-

tively, typing Exit@D or Quit@D on an input line will always terminate Mathematica.

If you are taking input for Mathematica from a file, Mathematica will exit when it reaches the

end of the file. If you are using Mathematica interactively, it will still exit if it receives an end-of-

file character (typically Ctrl+d). You can stop Mathematica from doing this by setting

$IgnoreEOF = True.

26 Systems Interfaces and Deployment

Network License Management

single-machine license a process must always run on a specific machine

network license a process can run on any machine on a network

Single-machine and network licenses.

Copies of Mathematica can be set up with either single-machine or network licenses. A network

license is indicated by a line in the mathpass file starting with ! name, where name is the name of

the server machine for the network license.

Network licenses are controlled by the Mathematica license management program mathlm,

which is run on the server machine. This program must be running whenever a Mathematica

with a network license is being used. Typically you will want to set up your system so that

mathlm is started whenever the system boots.

† Type . î mathlm directly on the command line

† Add mathlm as a Windows service

Ways to start the network license manager under Microsoft Windows.

† Type . ê mathlm directly on the Unix command line

† Add a line to start mathlm in your central system startup script

Ways to start the network license manager on Macintosh and Unix systems.

When mathlm is not started directly from a command line, it normally sets itself up as a back-

ground process, and continues running until it is explicitly terminated. Note that if one mathlm

process is running, any other mathlm processes you try to start will automatically exit immedi-

ately.

Systems Interfaces and Deployment 27

-logfile file write a log of license server actions to file

-loglevel n how verbose to make log entries (1 to 4)

-logformat string use a log format specified by string

-language name language to use for messages (default English)

-pwfile file use the specified mathpass file (default . ê mathpass)

-timeout n suspend authorization on stopped Mathematica jobs after n
hours

-restrict file use the specified restriction file

-mathid print the MathID for the license server, and exit

-foreground run mathlm in the foreground, logging to stdout

-install install mathlm as a Windows service (Microsoft Windows
only)

-uninstall uninstall mathlm as a Windows service (Microsoft Windows
only)

Some command-line options for mathlm.

For more detailed information on mathlm, see "System Administration for Network Licenses".

monitorlm a program to monitor network license activity

monitorlm name monitor activity for license server name

Monitoring network license activity.

If monitorlm is run in an environment where a web browser can be started, it will automatically

generate HTML output in the browser. Otherwise it will generate plain text.

-file file write output to a file

-format spec use the specified format (text, html or cgi)

-template file use the specified file as a template for the output

Some command-line options for monitorlm.

28 Systems Interfaces and Deployment

The Internals of Mathematica

Systems Interfaces and Deployment 29

Why You Do Not Usually Need to Know about
Internals

Most of the documentation provided for Mathematica is concerned with explaining what Mathe-

matica does, not how it does it. But the purpose of this is to say at least a little about how

Mathematica does what it does. "Some Notes on Internal Implementation" gives more details.

You should realize at the outset that while knowing about the internals of Mathematica may be

of intellectual interest, it is usually much less important in practice than you might at first

suppose.

Indeed, one of the main points of Mathematica is that it provides an environment where you

can perform mathematical and other operations without having to think in detail about how

these operations are actually carried out inside your computer.

Thus, for example, if you want to factor the polynomial x15 - 1, you can do this just by giving

Mathematica the command Factor@x^15 - 1D; you do not have to know the fairly complicated

details of how such a factorization is actually carried out by the internal code of Mathematica.

Indeed, in almost all practical uses of Mathematica, issues about how Mathematica works inside

turn out to be largely irrelevant. For most purposes it suffices to view Mathematica simply as an

abstract system which performs certain specified mathematical and other operations.

You might think that knowing how Mathematica works inside would be necessary in determining

what answers it will give. But this is only very rarely the case. For the vast majority of the

computations that Mathematica does are completely specified by the definitions of mathemati-

cal or other operations.

Thus, for example, 3^40 will always be 12 157 665 459 056 928 801, regardless of how Mathemat-

ica internally computes this result.

There are some situations, however, where several different answers are all equally consistent

with the formal mathematical definitions. Thus, for example, in computing symbolic integrals,

there are often several different expressions which all yield the same derivative. Which of these

expressions is actually generated by Integrate can then depend on how Integrate works

inside.

Here is the answer generated by Integrate.

In[1]:= Integrate@1 ê x + 1 ê x^2, xD

Out[1]= -
1

x
+ Log@xD

This is an equivalent expression that might have been generated if Integrate worked differ-
ently inside.

In[2]:= Together@%D

Out[2]=
-1 + x Log@xD

x

In numerical computations, a similar phenomenon occurs. Thus, for example, FindRoot gives

you a root of a function. But if there are several roots, which root is actually returned depends

on the details of how FindRoot works inside.

This finds a particular root of cos HxL + sin HxL.

In[3]:= FindRoot@Cos@xD + Sin@xD, 8x, 10.5<D

Out[3]= 8x Ø 14.9226<

With a different starting point, a different root is found. Which root is found with each starting
point depends in detail on the internal algorithm used.

In[4]:= FindRoot@Cos@xD + Sin@xD, 8x, 10.8<D

Out[4]= 8x Ø 11.781<

The dependence on the details of internal algorithms can be more significant if you push approxi -

mate numerical computations to the limits of their validity.

30 Systems Interfaces and Deployment

Thus, for example, if you give NIntegrate a pathological integrand, whether it yields a meaning-

ful answer or not can depend on the details of the internal algorithm that it uses.

NIntegrate knows that this result is unreliable, and can depend on the details of the internal
algorithm, so it prints warning messages.

In[5]:= NIntegrate@Sin@1 ê xD, 8x, 0, 1<D

NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following: singularity, value

of the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :
NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in x near

8x< = 80.0053386<. NIntegrate obtained 0.5038782627066661` and
0.0011134563535424439` for the integral and error estimates. à

Out[5]= 0.503878

Traditional numerical computation systems have tended to follow the idea that all computations

should yield results that at least nominally have the same precision. A consequence of this idea

is that it is not sufficient just to look at a result to know whether it is accurate; you typically

also have to analyze the internal algorithm by which the result was found. This fact has tended

to make people believe that it is always important to know internal algorithms for numerical

computations.

But with the approach that Mathematica takes, this is rarely the case. For Mathematica can

usually use its arbitrary-precision numerical computation capabilities to give results where

every digit that is generated follows the exact mathematical specification of the operation being

performed.

Even though this is an approximate numerical computation, every digit is determined by the
mathematical definition for p.

In[6]:= N@Pi, 30D

Out[6]= 3.14159265358979323846264338328

Once again, every digit here is determined by the mathematical definition for sin HxL.

In[7]:= N@Sin@10^50D, 20D

Out[7]= -0.78967249342931008271

Systems Interfaces and Deployment 31

If you use machine-precision numbers, Mathematica cannot give a reliable result, and the
answer depends on the details of the internal algorithm used.

In[8]:= Sin@10.^50D

Out[8]= 0.669369

It is a general characteristic that whenever the results you get can be affected by the details of

internal algorithms, you should not depend on these results. For if nothing else, different ver-

sions of Mathematica may exhibit differences in these results, either because the algorithms

operate slightly differently on different computer systems, or because fundamentally different

algorithms are used in versions released at different times.

This is the result for sin I1050M on one type of computer.

In[9]:= Sin@10.^50D

Out[9]= 0.669369

Here is the same calculation on another type of computer.

In[10]:= Sin@10.^50D

Out[10]= 0.669369

And here is the result obtained in Mathematica Version 1.

In[11]:= Sin@10.^50D

Out[11]= 0.669369

Particularly in more advanced applications of Mathematica, it may sometimes seem worthwhile

to try to analyze internal algorithms in order to predict which way of doing a given computation

will be the most efficient. And there are indeed occasionally major improvements that you will

be able to make in specific computations as a result of such analyses.

But most often the analyses will not be worthwhile. For the internals of Mathematica are quite

complicated, and even given a basic description of the algorithm used for a particular purpose,

it is usually extremely difficult to reach a reliable conclusion about how the detailed implementa-

tion of this algorithm will actually behave in particular circumstances.

A typical problem is that Mathematica has many internal optimizations, and the efficiency of a

computation can be greatly affected by whether the details of the computation do or do not

allow a given internal optimization to be used.

Basic Internal Architecture

32 Systems Interfaces and Deployment

Basic Internal Architecture

numbers sequences of binary digits

strings sequences of character code bytes or byte pairs

symbols pointers to the central table of symbols

general expressions sequences of pointers to the head and elements

Internal representations used by Mathematica.

When you type input into Mathematica, a data structure is created in the memory of your

computer to represent the expression you have entered.

In general, different pieces of your expression will be stored at different places in memory.

Thus, for example, for a list such as 82, x, y + z< the “backbone” of the list will be stored at

one place, while each of the actual elements will be stored at a different place.

The backbone of the list then consists just of three “pointers” that specify the addresses in

computer memory at which the actual expressions that form the elements of the list are to be

found. These expressions then in turn contain pointers to their subexpressions. The chain of

pointers ends when one reaches an object such as a number or a string, which is stored directly

as a pattern of bits in computer memory.

Crucial to the operation of Mathematica is the notion of symbols such as x. Whenever x appears

in an expression, Mathematica represents it by a pointer. But the pointer is always to the same

place in computer memory~an entry in a central table of all symbols defined in your Mathemat-

ica session.

This table is a repository of all information about each symbol. It contains a pointer to a string

giving the symbol’s name, as well as pointers to expressions which give rules for evaluating the

symbol.

† Recycle memory as soon as the data in it is no longer referenced.

The basic principle of Mathematica memory management.

Every piece of memory used by Mathematica maintains a count of how many pointers currently

point to it. When this count drops to zero, Mathematica knows that the piece of memory is no

longer being referenced, and immediately makes the piece of memory available for something

new.

This strategy essentially ensures that no memory is ever wasted, and that any piece of memory

that Mathematica uses is actually storing data that you need to access in your Mathematica

session.

Systems Interfaces and Deployment 33

This strategy essentially ensures that no memory is ever wasted, and that any piece of memory

that Mathematica uses is actually storing data that you need to access in your Mathematica

session.

† Create an expression corresponding to the input you have given.

† Process the expression using all rules known for the objects in it.

† Generate output corresponding to the resulting expression.

The basic actions of Mathematica.

At the heart of Mathematica is a conceptually simple procedure known as the evaluator which

takes every function that appears in an expression and evaluates that function.

When the function is one of the thousand or so that are built into Mathematica, what the evalua-

tor does is to execute directly internal code in the Mathematica system. This code is set up to

perform the operations corresponding to the function, and then to build a new expression

representing the result.

† The built-in functions of Mathematica support universal computation.

The basic feature that makes Mathematica a self-contained system.

A crucial feature of the built-in functions in Mathematica is that they support universal computa-

tion. What this means is that out of these functions you can construct programs that perform

absolutely any kinds of operations that are possible for a computer.

As it turns out, small subsets of Mathematica’s built-in functions would be quite sufficient to

support universal computation. But having the whole collection of functions makes it in practice

easier to construct the programs one needs.

The underlying point, however, is that because Mathematica supports universal computation

you never have to modify its built-in functions: all you have to do to perform a particular task is

to combine these functions in an appropriate way.

Universal computation is the basis for all standard computer languages. But many of these

languages rely on the idea of compilation. If you use C or Fortran, for example, you first write

your program, then you compile it to generate machine code that can actually be executed on

your computer.

Mathematica does not require you to go through the compilation step: once you have input an

expression, the functions in the expression can immediately be executed.

Often Mathematica will preprocess expressions that you enter, arranging things so that subse-

quent execution will be as efficient as possible. But such preprocessing never affects the results

that are generated, and can rarely be seen explicitly.

34 Systems Interfaces and Deployment

Often Mathematica will preprocess expressions that you enter, arranging things so that subse-

quent execution will be as efficient as possible. But such preprocessing never affects the results

that are generated, and can rarely be seen explicitly.

The Algorithms of Mathematica

The built-in functions of Mathematica implement a very large number of algorithms from com-

puter science and mathematics. Some of these algorithms are fairly old, but the vast majority

had to be created or at least modified specifically for Mathematica. Most of the more mathemati-

cal algorithms in Mathematica ultimately carry out operations which at least at some time in the

past were performed by hand. In almost all cases, however, the algorithms use methods very

different from those common in hand calculation.

Symbolic integration provides an example. In hand calculation, symbolic integration is typically

done by a large number of tricks involving changes of variables and the like.

But in Mathematica symbolic integration is performed by a fairly small number of very system-

atic procedures. For indefinite integration, the idea of these procedures is to find the most

general form of the integral, then to differentiate this and try to match up undetermined coeffi-

cients.

Often this procedure produces at an intermediate stage immensely complicated algebraic expres-

sions, and sometimes very sophisticated kinds of mathematical functions. But the great advan-

tage of the procedure is that it is completely systematic, and its operation requires no special

cleverness of the kind that only a human could be expected to provide.

In having Mathematica do integrals, therefore, one can be confident that it will systematically

get results, but one cannot expect that the way these results are derived will have much at all

to do with the way they would be derived by hand.

The same is true with most of the mathematical algorithms in Mathematica. One striking fea-

ture is that even for operations that are simple to describe, the systematic algorithms to per-

form these operations in Mathematica involve fairly advanced mathematical or computational

ideas.

Thus, for example, factoring a polynomial in x is first done modulo a prime such as 17 by find-

ing the null space of a matrix obtained by reducing high powers of x modulo the prime and the

original polynomial. Then factorization over the integers is achieved by “lifting” modulo succes-

sive powers of the prime using a collection of intricate theorems in algebra and analysis.

Systems Interfaces and Deployment 35

Thus, for example, factoring a polynomial in x is first done modulo a prime such as 17 by find-

ing the null space of a matrix obtained by reducing high powers of x modulo the prime and the

original polynomial. Then factorization over the integers is achieved by “lifting” modulo succes-

sive powers of the prime using a collection of intricate theorems in algebra and analysis.

The use of powerful systematic algorithms is important in making the built-in functions in

Mathematica able to handle difficult and general cases. But for easy cases that may be fairly

common in practice it is often possible to use simpler and more efficient algorithms.

As a result, built-in functions in Mathematica often have large numbers of extra pieces that

handle various kinds of special cases. These extra pieces can contribute greatly to the complex-

ity of the internal code, often taking what would otherwise be a five-page algorithm and making

it hundreds of pages long.

Most of the algorithms in Mathematica, including all their special cases, were explicitly con-

structed by hand. But some algorithms were instead effectively created automatically by com-

puter.

Many of the algorithms used for machine-precision numerical evaluation of mathematical func-

tions are examples. The main parts of such algorithms are formulas which are as short as

possible but which yield the best numerical approximations.

Most such formulas used in Mathematica were actually derived by Mathematica itself. Often

many months of computation were required, but the result was a short formula that can be

used to evaluate functions in an optimal way.

The Software Engineering of Mathematica

Mathematica is one of the more complex software systems ever constructed. It is built from

several million lines of source code, written in C/C++, Java and Mathematica.

The C code in Mathematica is actually written in a custom extension of C which supports certain

memory management and object-oriented features. The Mathematica code is optimized using

Share and DumpSave.

In the Mathematica kernel the breakdown of different parts of the code is roughly as follows:

language and system: 30%; numerical computation: 20%; algebraic computation: 20%; graph-

ics and kernel output: 30%.

Most of this code is fairly dense and algorithmic: those parts that are in effect simple proce-

dures or tables use minimal code since they tend to be written at a higher level~often directly

in Mathematica.

36 Systems Interfaces and Deployment

Most of this code is fairly dense and algorithmic: those parts that are in effect simple proce-

dures or tables use minimal code since they tend to be written at a higher level~often directly

in Mathematica.

The source code for the kernel, save a fraction of a percent, is identical for all computer

systems on which Mathematica runs.

For the front end, however, a significant amount of specialized code is needed to support each

different type of user interface environment. The front end contains about 700,000 lines of

system-independent C++ source code, of which roughly 200,000 lines are concerned with

expression formatting. Then there are between 50,000 and 100,000 lines of specific code cus-

tomized for each user interface environment.

Mathematica uses a client-server model of computing. The front end and kernel are connected

via MathLink~the same system as is used to communicate with other programs. MathLink

supports multiple transport layers, including one based upon TCP/IP and one using shared

memory.

The front end and kernel are connected via three independent MathLink connections. One is

used for user-initiated evaluations. A second is used by the front end to resolve the values of

Dynamic expressions. The third is used by the kernel to notify the front end of Dynamic objects

which should be invalidated.

Within the C code portion of the Mathematica kernel, modularity and consistency are achieved

by having different parts communicate primarily by exchanging complete Mathematica expres-

sions.

But it should be noted that even though different parts of the system are quite independent at

the level of source code, they have many algorithmic interdependencies. Thus, for example, it

is common for numerical functions to make extensive use of algebraic algorithms, or for graph-

ics code to use fairly advanced mathematical algorithms embodied in quite different Mathemat-

ica functions.

Since the beginning of its development in 1986, the effort spent directly on creating the source

code for Mathematica is about a thousand developer-years. In addition, a comparable or some-

what larger effort has been spent on testing and verification.

The source code of Mathematica has changed greatly since Version 1 was released. The total

number of lines of code in the kernel grew from 150,000 in Version 1 to 350,000 in Version 2,

600,000 in Version 3, 800,000 in Version 4, 1.5 million in Version 5 and 2.5 million in Version

6. In addition, at every stage existing code has been revised~so that Version 6 has only a few

percent of its code in common with Version 1.

Systems Interfaces and Deployment 37

The source code of Mathematica has changed greatly since Version 1 was released. The total

number of lines of code in the kernel grew from 150,000 in Version 1 to 350,000 in Version 2,

600,000 in Version 3, 800,000 in Version 4, 1.5 million in Version 5 and 2.5 million in Version

6. In addition, at every stage existing code has been revised~so that Version 6 has only a few

percent of its code in common with Version 1.

Despite these changes in internal code, however, the user-level design of Mathematica has

remained compatible from Version 1 on. Much functionality has been added, but programs

created for Mathematica Version 1 will almost always run absolutely unchanged under Version 6.

Testing and Verification

Every version of Mathematica is subjected to a large amount of testing before it is released. The

vast majority of this testing is done by an automated system that is written in Mathematica.

The automated system feeds millions of pieces of input to Mathematica, and checks that the

output obtained from them is correct. Often there is some subtlety in doing such checking: one

must account for different behavior of randomized algorithms and for such issues as differences

in machine-precision arithmetic on different computers.

The test inputs used by the automated system are obtained in several ways:

† For every Mathematica function, inputs are devised that exercise both common and
extreme cases.

† Inputs are devised to exercise each feature of the internal code.

† All the examples in Mathematica's documentation system are used, as well as those from
many books about Mathematica.

† Tests are constructed from mathematical benchmarks and test sets from numerous
websites.

† Standard numerical tables are optically scanned for test inputs.

† Formulas from standard mathematical tables are entered.

† Exercises from textbooks are entered.

† For pairs of functions such as Integrate and D or Factor and Expand, random expressions
are generated and tested.

When tests are run, the automated testing system checks not only the results, but also side

effects such as messages, as well as memory usage and speed.

There is also a special instrumented version of Mathematica which is set up to perform internal

consistency tests. This version of Mathematica runs at a small fraction of the speed of the real

Mathematica, but at every step it checks internal memory consistency, interruptibility, and so

on.

38 Systems Interfaces and Deployment

There is also a special instrumented version of Mathematica which is set up to perform internal

consistency tests. This version of Mathematica runs at a small fraction of the speed of the real

Mathematica, but at every step it checks internal memory consistency, interruptibility, and so

on.

The instrumented version of Mathematica also records which pieces of Mathematica source code

have been accessed, allowing one to confirm that all of the various internal functions in Mathe-

matica have been exercised by the tests given.

All standard Mathematica tests are routinely run on current versions of Mathematica, on each

different computer system. Depending on the speed of the computer system, these tests take

from a few hours to a few days of computer time.

Even with all this testing, however, it is inevitable in a system as complex as Mathematica that

errors will remain.

The standards of correctness for Mathematica are certainly much higher than for typical mathe-

matical proofs. But just as long proofs will inevitably contain errors that go undetected for

many years, so also a complex software system such as Mathematica will contain errors that go

undetected even after millions of people have used it.

Nevertheless, particularly after all the testing that has been done on it, the probability that you

will actually discover an error in Mathematica in the course of your work is extremely low.

Doubtless there will be times when Mathematica does things you do not expect. But you should

realize that the probabilities are such that it is vastly more likely that there is something wrong

with your input to Mathematica or your understanding of what is happening than with the

internal code of the Mathematica system itself.

If you do believe that you have found a genuine error in Mathematica, then you should contact

Wolfram Research Technical Support, so that the error can be corrected in future versions.

Systems Interfaces and Deployment 39

Security and Connectivity

Mathematica Internet Connectivity

Introduction

Mathematica provides important functionality through accessing the internet. Most Mathematica

functions that provide computable data operate by loading data over the internet. Some func-

tions require real-time access to the internet; others update a local data repository by access-

ing the internet when required. Mathematica also requires internet access when you explicitly

use Import to read from a URL, or when you use web services. The Mathematica documenta-

tion system also supports automatic updating via the internet.

When you call a data function like FinancialData, Mathematica gets the data it needs from the

internet. When you click a link to a documentation notebook or call a data function like

CountryData, Mathematica knows whether a newer version of the information is available on a

Wolfram Research Paclet Server, and if so it will download and install the update automatically.

In the case of smaller paclets like documentation notebooks, this is often so fast that you will

not even notice it happening.

Mathematica acts like a web browser when it accesses the internet, so if you can browse the

web from your computer, you should be able to use Mathematica's internet connectivity fea-

tures, although in some cases additional configuration may be required.

Internet Connectivity Dialog

The Internet Connectivity dialog, accessed from the Help menu, allows you to configure a

number of settings related to the paclet system, and Mathematica's use of the internet in

general.

The Allow Mathematica to access the Internet checkbox can be turned off to prevent

Mathematica from even attempting to use the internet. You will not be able to get load-on-

demand updates to documentation, and some data collection functions will not operate.

The Test Internet Connectivity button is useful to see if Mathematica is properly configured

for internet use. After clicking the button, you should see a dialog within a few seconds

(perhaps slightly longer if it fails) reporting success or failure. If the test succeeds, then Mathe-

matica's internet functionality should work properly. If it fails, consult "Troubleshooting Connec-

tivity Problems".

40 Systems Interfaces and Deployment

The Test Internet Connectivity button is useful to see if Mathematica is properly configured

for internet use. After clicking the button, you should see a dialog within a few seconds

(perhaps slightly longer if it fails) reporting success or failure. If the test succeeds, then Mathe-

matica's internet functionality should work properly. If it fails, consult "Troubleshooting Connec-

tivity Problems".

The Proxy Settings section allows you to specify a proxy server if necessary. In many cases,

Mathematica is able to inherit the proxy settings configured globally for your system or

browser. This is the default setting, and most users will leave it as is. If you know that you do

not need to go through a proxy server to access the internet, you can click the Direct connec-

tion to the Internet checkbox. You can also manually configure proxy settings if necessary.

Contact your system administrator for the values to use. Most users will only need to set the

HTTP proxy.

The Automatically check for documentation updates checkbox and the Automatically

check for data updates checkbox can be turned off to disable load-on-demand updates to

documentation and data files. This will not interfere with the operation of Mathematica, except

that you will not receive updates to the documentation or data paclets as they become available.

The Update Local Indices from the Wolfram Research Server button will cause Mathemat-

ica to read information from the Wolfram Research Paclet Server that describes the versions of

the paclets that are available. Mathematica uses this information to decide whether an update

is available to a given resource when you access that resource. Mathematica reads this informa-

tion on a weekly basis automatically, but you can force an update using this button. You might

want to do this to be sure you will get the absolute latest data from data collection functions

like CountryData, ChemicalData, AstronomicalData, etc.

Troubleshooting Connectivity Problems

If you get error messages or dialogs that report internet connectivity problems while running

Mathematica, the first thing to do is try the Test Internet Connectivity button in the Inter-

net Connectivity dialog, accessible from the Help menu. If the test succeeds, then Mathemat-

ica is correctly configured for general internet use, and the problem probably lies elsewhere

(such as trying to access an incorrect URL). If the test fails, try the following steps:

1. Test network connectivity by seeing if other programs on your computer can access the
internet. For example, launch a web browser and see if it works. If it fails, then the net-
work might be unavailable, or you might have connectivity problems beyond what can be
configured in Mathematica.

Systems Interfaces and Deployment 41

1.

Test network connectivity by seeing if other programs on your computer can access the
internet. For example, launch a web browser and see if it works. If it fails, then the net-
work might be unavailable, or you might have connectivity problems beyond what can be
configured in Mathematica.

2. Check proxy settings, as in "Proxy Settings".

3. Check firewall settings, as in "Firewall Settings".

Proxy Settings

Incorrect proxy settings are a common cause of problems with internet connectivity. Many

users on a company network cannot directly access the internet, but instead must pass through

a proxy server, which acts like a gateway to the internet. By default, Mathematica will attempt

to use systemwide proxy settings, if your operating system has such settings. For example, on

Windows, Mathematica will use the proxy settings configured for Internet Explorer. On Mac OS

X, proxy settings are configured in the Network Preferences panel.

Mathematica's proxy settings are configured in the Internet Connectivity dialog. The default

setting, described in "Internet Connectivity Dialog", is Use proxy settings from my system

or browser. If this does not work for you, try the Direct connection to the Internet choice.

If that does not work, then contact your system administrator for proxy settings to enter into

the text fields. If you can successfully surf the web with a web browser, you can find its proxy

settings dialog and read the values it is using. Many users will only need to set the HTTP proxy.

If your system or browser is configured to get proxy settings from a configuration script, then

Mathematica will not be able to use these settings, and you will have to manually configure its

proxy settings.

If Mathematica is configured to Use proxy settings from your system or browser, and your

browser functions but Mathematica cannot connect, see if your system proxy settings have a

Use same proxy server for all protocols checkbox and try unchecking it. Mathematica will

attempt to use a SOCKS proxy if one is set, and if your HTTP proxy does not also handle SOCKS

traffic, Use same proxy server for all protocols is not a correct setting for your system. An

incorrectly configured SOCKS proxy can cause very long timeouts, so if the Test Network

Connectivity button fails after a minutes-long delay, an incorrect SOCKS proxy configuration is

likely the problem. Mathematica does not require a SOCKS proxy, so the SOCKS Host field can

be left blank, but if you supply a value, either manually or via the system setting Use the

same proxy server for all protocols, it must be correct.

42 Systems Interfaces and Deployment

1.

Firewall Settings

Because Mathematica acts like a web browser when it accesses the internet, most company

firewalls will not interfere with it. Some users, however, have so-called "personal" firewalls on

their machines (ZoneAlarm, Norton, etc., or the one built into Microsoft Windows). If configured

with strict settings, these firewalls might interfere with Mathematica's attempts to use the

internet.

These types of firewalls will generally display a dialog box warning you that a program is trying

to use the internet and allow you to accept or reject it. If you see such a dialog, it might report

that the program is the Mathematica kernel or the Java Runtime Environment that is bundled in

the Mathematica layout. Configure the firewall to always allow such requests.

Further Information

If the information in this document is not sufficient to help you solve connectivity problems,

consult the Wolfram Research Technical Support troubleshooting guide at

http://support.wolfram.com/technotes/networkconnectivityissues.html

Notebook Security

Mathematica provides users with access to their computer's file system (Files), interprocess

communication (MathLink Mathematica Functions), evaluation of data as code (Converting

between Expressions and Strings), and the ability to run arbitrary external programs (Calling

External Programs). While these features enable Mathematica users to create powerful pro-

grams that can perform truly useful tasks, they bring with them the potential for misuse.

The Mathematica notebook front end provides three mechanisms for evaluating code:

Shift+Return evaluations, initialization cells, and dynamic content.

Note that this tutorial contains live controls, so if you change anything it will imme-

diately change the settings on your system.

Systems Interfaces and Deployment 43

 Shift +Return Evaluations

Because Shift+Return evaluations require user interaction to start them, Mathematica provides

no safeguards against potentially malicious code that is evaluated using this mechanism. Users

should ensure that they do not perform Shift+Return evaluations on code from untrusted

sources. When writing their own code, users should take great care to ensure that the code

does not have unintended consequences. For example, Mathematica will not provide a warning

when the user evaluates a program to delete files from his or her computer.

Initialization Cells

Initialization cells provide users with a convenient way to evaluate startup code needed by a

given notebook when the user first evaluates any input in that notebook. Since this code will be

automatically evaluated, likely without the user ever seeing the initialization code, Mathematica

will display an alert prompt asking the user to confirm his or her intent to run the initialization

code. Users should not evaluate initialization code in a notebook that was obtained from an

untrusted source unless the code has been determined to be safe.

† Clicking the Yes button will first evaluate all of the initialization cells in the notebook, then
evaluate the selected cells.

† Clicking the No button will not evaluate any of the initialization cells, but will still evaluate
the selected cells. Note that this may cause errors in the evaluations since they may rely on
startup code that has not yet been evaluated.

† Clicking the Cancel button will cause neither the initialization cells nor the selected cells to
be evaluated.

44 Systems Interfaces and Deployment

Dynamic Content

Mathematica 7 has amazing dynamic interactivity features. Notebooks containing interactive

Dynamic content can automatically evaluate code without any additional action by the user,

aside from opening the notebook file. Many times this is exactly what the user will want, while

other times the user should be alerted before this sort of automatic evaluation takes place.

When the user opens a notebook containing dynamic content, Mathematica will first determine

whether the notebook's directory is trusted, untrusted, or neither.

† If the notebook's directory is trusted, the notebook will be allowed to automatically perform
dynamic evaluations without alerting the user.

† If the notebook's directory is untrusted, the user will be alerted upon any attempt by the
notebook to perform dynamic evaluations.

† If the notebook's directory is neither trusted nor untrusted, the behavior will depend on the
value of the TrustByDefault option explained as follows.

Mathematica provides some options which can be used to configure which notebooks will alert

the user about automatic evaluations and which notebooks will not.

TrustedPath

The value of the TrustedPath option is a list of directories that are always trusted by Mathemat-

ica. Any notebook file located in any directory in TrustedPath is trusted by Mathematica. Mathe-

matica will never display an alert when a trusted notebook is opened, and the notebook can

automatically perform dynamic evaluations.

Systems Interfaces and Deployment 45

By default, the TrustedPath option value contains $InstallationDirectory, $BaseDirectory,

and $UserBaseDirectory so that Mathematica installation files and additional installed applica-

tions will be able to display dynamic content without alerting the user.

Here are the directories on your computer that are currently trusted by Mathematica:

Dynamic@Column@ToFileName êü
CurrentValue@$FrontEnd, 8“NotebookSecurityOptions“, “TrustedPath“<DDD

êApplicationsêMathematica.appê
êLibraryêMathematicaê
êhomeêusr2êlarryaêLibraryêMathematicaê

Edit TrustedPath ...

UntrustedPath

The value of the UntrustedPath option is a list of directories that are always untrusted by

Mathematica. Any notebook file located in any directory in UntrustedPath is untrusted by

Mathematica. Mathematica will always display an alert when an untrusted notebook is opened

and attempts to perform dynamic evaluations.

By default, the UntrustedPath option value contains the user's desktop folder (where web

browser downloads are likely to be stored), the user's configuration folder (where email attach-

ments are likely to be stored), and the computer's temporary directory. If the user has config-

ured his or her web browser or email program to save downloaded files in nonstandard loca-

tions, then the user is encouraged to add these locations to the UntrustedPath option value.

Here are the directories on your computer that are currently untrusted by Mathematica:

Dynamic@Column@ToFileName êü
CurrentValue@$FrontEnd, 8“NotebookSecurityOptions“, “UntrustedPath“<DDD

êhomeêusr2êlarryaêDesktopê
êhomeêusr2êlarryaêDownloadsê
êhomeêusr2êlarryaêLibraryê
êtmpê
êvarê
êprivateê

Edit UntrustedPath...

46 Systems Interfaces and Deployment

Nesting

Directories in TrustedPath and UntrustedPath can be nested. A notebook is trusted if the

most deeply nested directory containing the notebook is trusted. Consider the following

example:

† FrontEnd`FileName[{$HomeDirectory, “Desktop“}] is untrusted.

† FrontEnd`FileName[{$HomeDirectory, “Desktop“, “SafeNotebooks“}] is trusted.

† FrontEnd`FileName[{$HomeDirectory, “Desktop“}, “SomeDownload.nb“] would be
untrusted because “Desktop“ is untrusted.

† FrontEnd`FileName[{$HomeDirectory, “Desktop“, “SafeNotebooks“},
“MyNotebook.nb“] would be trusted because “SafeNotebooks“ is trusted.

TrustByDefault

The TrustByDefault option determines whether Mathematica should display an alert when the

user opens notebooks with dynamic content whose containing directories are neither trusted

nor untrusted. Below are the possible values for the TrustByDefault option.

True a notebook which is not located in a directory in
UntrustedPath is considered to be trusted and will not
display an alert when opened

False a notebook which is not located in a directory in
TrustedPath is considered to be untrusted and will
display an alert when opened

Automatic a notebook which is not located in any directory in either
TrustedPath or UntrustedPath will display an alert
when opened only if the notebook contains unsafe dynamic
content (see below)

Values for TrustByDefault option.

The current value of the TrustByDefault option is: Automatic

Unsafe Dynamic Content

Dynamic content is considered unsafe if it:

† uses File operations

† uses interprocess communication via MathLink Mathematica Functions

† uses J/Link or .NET/Link

† uses Low-Level Notebook Programming

Systems Interfaces and Deployment 47

†

† uses data as code by Converting between Expressions and Strings

† uses Namespace Management

† uses Options Management

† uses External Programs

Changing Option Values

TrustedPath, UntrustedPath, and TrustByDefault are options in the

NotebookSecurityOptions category. They can be changed using the Preferences... dialog or

the Option Inspector... .

Any attempt to change the value of the TrustedPath, UntrustedPath, or TrustByDefault

options will cause Mathematica to prompt the user to confirm the change. Mathematica does

this as a security precaution so that malicious code cannot change the value of these options

without the user's knowledge.

48 Systems Interfaces and Deployment

† uses Low-Level Notebook Programming

MathLink and External Program
Communication

Systems Interfaces and Deployment 49

Introduction to MathLink

In many cases, you will find it convenient to communicate with external programs at a high

level, and to exchange structured data with them.

On almost all computer systems, Mathematica supports the MathLink communication standard,

which allows higher-level communication between Mathematica and external programs. In

order to use MathLink, an external program has to include some special source code and a

MathLink library, which are usually distributed with Mathematica.

MathLink allows external programs both to call Mathematica, and to be called by Mathematica.

"MathLink and External Program Communication" discusses some of the details of MathLink. By

using MathLink, you can, for example, treat Mathematica essentially like a subroutine embed-

ded inside an external program. Or you can create a front end that implements your own user

interface, and communicates with the Mathematica kernel via MathLink.

You can also use MathLink to let Mathematica call individual functions inside an external pro-

gram. As described in "MathLink and External Program Communication", you can set up a

MathLink template file to specify how particular functions in Mathematica should call functions

inside your external program. From the MathLink template file, you can generate source code to

include in your program. Then when you start your program, the appropriate Mathematica

definitions are automatically made, and when you call a particular Mathematica function, code

in your external program is executed.

Install@"command"D start an external program and install Mathematica defini -
tions to call functions it contains

Uninstall@linkD terminate an external program and uninstall definitions for
functions in it

Calling functions in external programs.

This starts the external program simul, and installs Mathematica definitions to call various
functions in it.

In[1]:= Install@"simul"D

Out[1]= LinkObject[simul, 5, 4]

Here is a usage message for a function that was installed in Mathematica to call a function in
the external program.

In[2]:= ? srun

srun[{a, r, gamma}, x] performs a simulation with the
 specified parameters.

When you call this function, it executes code in the external program.

In[3]:= srun@83, 0, 7<, 5D

Out[3]= 6.78124

This terminates the simul program.

In[4]:= Uninstall@"simul"D

Out[4]= simul

You can use MathLink to communicate with many types of programs, including with Mathemat-

ica itself. There are versions of the MathLink library for a variety of common programming

languages. The J/Link system provides a standard way to integrate Mathematica with Java,

based on MathLink. With J/Link you can take any Java class, and immediately make its methods

accessible as functions in Mathematica.

How MathLink Is Used

MathLink provides a mechanism through which programs can interact with Mathematica.

† Calling functions in an external program from within Mathematica.

† Calling Mathematica from within an external program.

† Setting up alternative front ends to Mathematica.

† Exchanging data between Mathematica and external programs.

† Exchanging data between concurrent Mathematica processes.

Some typical uses of MathLink.

MathLink provides a general interface for external programs to communicate with Mathematica.

Many standard software systems now have MathLink compatibility either built in or available in

add-on modules.

50 Systems Interfaces and Deployment

MathLink provides a general interface for external programs to communicate with Mathematica.

Many standard software systems now have MathLink compatibility either built in or available in

add-on modules.

In addition, the MathLink Developer Kit bundled with most versions of Mathematica provides

the tools you need to create your own MathLink-compatible programs.

Once you have a MathLink-compatible program, you can transparently establish a link between

it and Mathematica.

The link can either be on a single computer, or it can be over a network, potentially with a

different type of computer at each end.

† Implementing inner loops in a low-level language.

† Handling large volumes of data external to Mathematica.

† Sending Mathematica graphics or other data for special processing.

† Connecting to a system with an existing user interface.

A few uses of MathLink-compatible programs.

MathLink-compatible programs range from very simple to very complex. A minimal MathLink-

compatible program is just a few lines long. But it is also possible to build very large and sophis-

ticated MathLink-compatible programs. Indeed, the Mathematica notebook front end is one

example of a sophisticated MathLink-compatible program.

† MathLink is a mechanism for exchanging Mathematica expressions between programs.

The basic idea of MathLink.

Much of the power of MathLink comes from its use of Mathematica expressions. The basic idea

is that MathLink provides a way to exchange Mathematica expressions between programs, and

such expressions can represent absolutely any kind of data.

† An array of numbers.

† A collection of geometrical objects.

† A sequence of commands.

† A stream of text.

† Records in a database.

† The cells of a Mathematica notebook.

A few examples of data represented by Mathematica expressions in MathLink.

The MathLink library consists of a collection of routines that allow external programs to send

and receive Mathematica expressions using the fundamental C data types.

Systems Interfaces and Deployment 51

The MathLink library consists of a collection of routines that allow external programs to send

and receive Mathematica expressions using the fundamental C data types.

The MathLink Developer Kit provides utilities for incorporating these routines into external

programs. Utilities are included for a variety of languages, although here we discuss mainly the

case of C.

An important feature of the MathLink library is that it is completely platform independent: it can

transparently use any interprogram communication mechanism that exists on your computer

system.

Installing Existing MathLink-Compatible Programs

One of the most common uses of MathLink is to allow you to call functions in an external pro-

gram from within Mathematica. Once the external program has been set up, all you need do to

be able to use it is to “install” it in your current Mathematica session.

Install@"prog"D install a MathLink-compatible external program

Uninstall@linkD uninstall the program

Setting up external programs with functions to be called from within Mathematica.

This installs a MathLink-compatible external program called bitprog.

In[1]:= Install@"bitprog"D

Out[1]= LinkObject@.êbitprog, 6, 5D

BitShift is one of the functions inside bitprog.

In[2]:= BitShift@111, 3D

Out[2]= 13

You can use it just as you would a function within Mathematica.

In[3]:= Table@BitShift@111, iD, 8i, 3, 8<D

Out[3]= 813, 6, 3, 1, 0, 0<

When you have a package written in the Mathematica language a single version will run

unchanged on any computer system. But external programs typically need to be compiled

separately for every different type of computer.

Mathematica has a convention of keeping versions of external programs in directories that are

named after the types of computers on which they will run. And assuming that this convention

has been followed, Install@"prog"D should always install the version of prog appropriate for the

particular kind of computer that you are currently using.

52 Systems Interfaces and Deployment

Mathematica has a convention of keeping versions of external programs in directories that are

named after the types of computers on which they will run. And assuming that this convention

has been followed, Install@"prog"D should always install the version of prog appropriate for the

particular kind of computer that you are currently using.

Install@"name`"D install a program found anywhere on $Path

Using context names to specify programs to install.

When you ask to read in a Mathematica language file using << name`, Mathematica will automati-

cally search all directories in the list $Path in order to find a file with the appropriate name.

Similarly, if you use Install@"name`"D Mathematica will automatically search all directories in

$Path in order to find an external program with the name name.exe. Install@"name`"D allows

you to install programs that are stored in a central directory without explicitly having to specify

their location.

Setting Up External Functions to Be Called from
Mathematica

If you have a function defined in an external program, then what you need to do in order to

make it possible to call the function from within Mathematica is to add appropriate MathLink

code that passes arguments to the function, and takes back the results it produces.

In simple cases, you can generate the necessary code just by giving an appropriate MathLink

template for each external function.

:Begin:
:Function: f
:Pattern: f[x_Integer, y_Integer]
:Arguments: {x, y}
:ArgumentTypes: {Integer, Integer}
:ReturnType: Integer
:End:

A file f.tm containing a MathLink template for an external function f.

Systems Interfaces and Deployment 53

:Begin: begin the template for a particular function

:Function: the name of the function in the external program

:Pattern: the pattern to be defined to call the function

:Arguments: the arguments to the function

:ArgumentTypes: the types of the arguments to the function

:ReturnType: the type of the value returned by the function

:End: end the template for a particular function

:Evaluate: Mathematica input to evaluate when the function is
installed

The elements of a MathLink template.

Once you have constructed a MathLink template for a particular external function, you have to

combine this template with the actual source code for the function. Assuming that the source

code is written in the C programming language, you can do this just by adding a line to include

the standard MathLink header file, and then inserting a small main program.

Include the standard MathLink header file.

#include "mathlink.h"

Here is the actual source code for the function f.

int f(int x, int y) {
 return x+y;
}

This sets up the external program to be ready to take requests from Mathematica.

int main(int argc, char *argv[]) {
 return MLMain(argc, argv);
}

A file f.c containing C source code.

Note that the form of main required on different systems may be slightly different. The release

notes included in the MathLink Developer Kit on your particular computer system should give

the appropriate form.

mcc preprocess and compile MathLink source files

mprep preprocess MathLink source files

Typical external programs for processing MathLink source files.

MathLink templates are conventionally put in files with names of the form file.tm. Such files can

also contain C source code, interspersed between templates for different functions.

54 Systems Interfaces and Deployment

MathLink templates are conventionally put in files with names of the form file.tm. Such files can

also contain C source code, interspersed between templates for different functions.

Once you have set up the appropriate files, you then need to process the MathLink template

information, and compile all of your source code. Typically you do this by running various

external programs, but the details will depend on your computer system.

Under Unix, for example, the MathLink Developer Kit includes a program named mcc which will

preprocess MathLink templates in any file whose name ends with .tm, and then call cc on the

resulting C source code. mcc will pass command-line options and other files directly to cc.

This preprocesses f.tm, then compiles the resulting C source file together with the file f.c.

mcc -o f.exe f.tm f.c

This installs the binary in the current Mathematica session.

In[1]:= Install@"f.exe"D

Out[1]= LinkObject@f.exe, 4, 4D

Now f@x, yD calls the external function f Hint x, int yL and adds two integers together.

In[2]:= f@6, 9D

Out[2]= 15

The external program handles only machine integers, so this gives a peculiar result.

In[3]:= f@2^31 - 1, 5D

Out[3]= -2147483644

On Windows, the MathLink Developer Kit includes a program named mprep, which you have to

call directly, giving as input all of the .tm files that you want to preprocess. mprep will generate

C source code as output, which you can then feed to a C compiler.

Install@"prog"D install an external program

Uninstall@linkD uninstall an external program

Links@"prog"D show active links associated with "prog"

Links@D show all active links

LinkPatterns@linkD show patterns that can be evaluated on a particular link

Handling links to external programs.

This finds the link to the f.exe program.

Systems Interfaces and Deployment 55

This finds the link to the f.exe program.

In[4]:= Links@"f.exe"D

Out[4]= 8LinkObject@.êf.exe, 8, 6D<

This shows the Mathematica patterns that can be evaluated using the link.

In[5]:= LinkPatterns@%@@1DDD

Out[5]= 8f@x_Integer, y_IntegerD<

Install sets up the actual function f to execute an appropriate ExternalCall function.

In[6]:= ? f

Global`f

f@x_Integer, y_IntegerD :=
ExternalCall@LinkObject@.êf.exe, 8, 6D, CallPacket@0, 8x, y<DD

When a MathLink template file is processed, two basic things are done. First, the : Pattern :

and : Arguments : specifications are used to generate a Mathematica definition that calls an

external function via MathLink. And second, the : Function :, : ArgumentTypes : and

: ReturnType : specifications are used to generate C source code that calls your function within

the external program.

:Begin:

This gives the name of the actual C function to call in the external program.

:Function: prog_add

This gives the Mathematica pattern for which a definition should be set up.

:Pattern: SkewAdd[x_Integer, y_Integer:1]

The values of the two list elements are the actual arguments to be passed to the external
function.

:Arguments: {x, If[x > 1, y, y + x - 2]}

This specifies that the arguments should be passed as integers to the C function.

:ArgumentTypes: {Integer, Integer}

56 Systems Interfaces and Deployment

This specifies that the return value from the C function will be an integer.

:ReturnType: Integer

:End:

Both the : Pattern : and : Arguments : specifications in a MathLink template can be any

Mathematica expressions. Whatever you give as the : Arguments : specification will be evalu-

ated every time you call the external function. The result of the evaluation will be used as the

list of arguments to pass to the function.

Sometimes you may want to set up Mathematica expressions that should be evaluated not

when an external function is called, but instead only when the external function is first installed.

You can do this by inserting : Evaluate : specifications in your MathLink template. The expres-

sion you give after : Evaluate : can go on for several lines: it is assumed to end when there is

first a blank line, or a line that does not begin with spaces or tabs.

This specifies that a usage message for SkewAdd should be set up when the external program
is installed.

:Evaluate: SkewAdd::usage = "SkewAdd[x, y] performs
 a skew addition in an external program."

When an external program is installed, the specifications in its MathLink template file are used

in the order they were given. This means that any expressions given in : Evaluate : specifica-

tions that appear before : Begin : will have been evaluated before definitions for the external

function are set up.

Here are Mathematica expressions to be evaluated before the definitions for external functions
are set up.

:Evaluate: BeginPackage["XPack`"]
:Evaluate: XF1::usage = "XF1[x, y] is one external function."
:Evaluate: XF2::usage = "XF2[x] is another external function."
:Evaluate: Begin["`Private`"]

Systems Interfaces and Deployment 57

This specifies that the function XF1 in Mathematica should be set up to call the function f in the
external C program.

:Begin:
:Function: f
:Pattern: XF1[x_Integer, y_Integer]
:Arguments: {x, y}
:ArgumentTypes: {Integer, Integer}
:ReturnType: Integer
:End:

This specifies that XF2 in Mathematica should call g. Its argument and return value are taken to
be approximate real numbers.

:Begin:
:Function: g
:Pattern: XF2[x_?NumberQ]
:Arguments: {x}
:ArgumentTypes: {Real}
:ReturnType: Real
:End:

These Mathematica expressions are evaluated after the definitions for the external functions.
They end the special context used for the definitions.

:Evaluate: End[]
:Evaluate: EndPackage[]

Here is the actual source code for the function f. There is no need for the arguments of this
function to have the same names as their Mathematica counterparts.

int f(int i, int j) {
 return i + j;
}

Here is the actual source code for g. Numbers that you give in Mathematica will automatically
be converted into C double types before being passed to g.

double g(double x) {
 return x*x;
}

By using : Evaluate : specifications, you can evaluate Mathematica expressions when an

external program is first installed. You can also execute code inside the external program at

this time simply by inserting the code in main HL before the call to MLMain HL. This is sometimes

useful if you need to initialize the external program before any functions in it are used.

58 Systems Interfaces and Deployment

By using : Evaluate : specifications, you can evaluate Mathematica expressions when an

external program is first installed. You can also execute code inside the external program at

this time simply by inserting the code in main HL before the call to MLMain HL. This is sometimes

useful if you need to initialize the external program before any functions in it are used.

MLEvaluateString Hstdlink,"string"L

evaluate a string as Mathematica input

Executing a command in Mathematica from within an external program.

int diff(int i, int j) {

This evaluates a Mathematica Print function if i < j.

 if (i < j) MLEvaluateString(stdlink, "Print[\"negative\"]");
 return i - j;
}

This installs an external program containing the diff function defined above.

In[7]:= Install@"diffprog"D

Out[7]= LinkObject@.êdiffprog, 9, 7D

Calling diff causes Print to be executed.

In[8]:= diff@4, 7D

negative
Out[8]= -3

Note that any results generated in the evaluation requested by MLEvaluateString() are

ignored. To make use of such results requires full two-way communication between Mathemat-

ica and external programs, as discussed in "Two-Way Communication with External Programs".

Handling Lists, Arrays and Other Expressions

MathLink allows you to exchange data of any type with external programs. For more common

types of data, you simply need to give appropriate : ArgumentTypes : or : ReturnType : specifi-

cations in your MathLink template file.

Systems Interfaces and Deployment 59

Mathematica specification C specification

Integer integer int

Real floating-point
number

double

IntegerList list of integers int*,long

RealList list of floating-
point numbers

double*,long

String character string char*

Symbol symbol name char*

Manual call MathLink
routines directly

void

Basic type specifications.

Here is the MathLink template for a function that takes a list of integers as its argument.

:Begin:
:Function: h
:Pattern: h[a_List]
:Arguments: {a}
:ArgumentTypes: {IntegerList}
:ReturnType: Integer
:End:

Here is the C source code for the function. Note the extra argument alen which is used to pass
the length of the list.

int h(int *a, long alen) {

 int i, tot=0;

 for(i=0; i<alen; i++)
 tot += a[i];

 return tot;
}

This installs an external program containing the specifications for the function h.

In[1]:= Install@"hprog"D

Out[1]= LinkObject@.êhprog, 11, 8D

60 Systems Interfaces and Deployment

This calls the external code.

In[2]:= h@83, 5, 6<D

Out[2]= 14

This does not match the pattern h@a_ListD so does not call the external code.

In[3]:= h@67D

Out[3]= h@67D

The pattern is matched, but the elements in the list are of the wrong type for the external code,
so $Failed is returned.

In[4]:= h@8a, b, c<D

Out[4]= $Failed

You can mix basic types of arguments in any way you want. Whenever you use IntegerList or

RealList, however, you have to include an extra argument in your C program to represent the

length of the list.

Here is an : ArgumentTypes : specification.

:ArgumentTypes: {IntegerList, RealList, Integer}

Here is a possible corresponding C function declaration.

void f(int *a, long alen, double *b, long blen, int c)

Note that when a list is passed to a C program by MathLink its first element is assumed to be at

position 0, as is standard in C, rather than at position 1, as is standard in Mathematica.

In addition, following C standards, character strings specified by String are passed as char *

objects, terminated by î 0 null bytes. "Portability of MathLink Programs" discusses how to

handle special characters.

Systems Interfaces and Deployment 61

MLPutInteger32 Hstdlink,int iL put a single integer

MLPutReal64 Hstdlink,double xL put a single floating-point number

MLPutInteger32List Hstdlink,int*a,int nL

put a list of n integers starting from location a

MLPutReal64List Hstdlink,double*a,int nL

put a list of n floating-point numbers starting from
location a

MLPutInteger32Array Hstdlink,int*a,int*dims,NULL,int dL

put an array of integers to form a depth d list with dimen -
sions dims

MLPutReal64Array Hstdlink,double*a,int*dims,NULL,int dL

put an array of floating-point numbers

MLPutString Hstdlink,char*sL

put a character string

MLPutSymbol Hstdlink,char*sL

put a character string as a symbol name

MLPutFunction Hstdlink,char*s,int nL

begin putting a function with head s and n arguments

MathLink functions for sending data to Mathematica.

When you use a MathLink template file, what mprep and mcc actually do is to create a C pro-

gram that includes explicit calls to MathLink library functions. If you want to see an example of

how to use the MathLink library functions directly, you can look at the source code of this

program. Note when you use mcc, you typically need to give a -g option, otherwise the source

code that is generated is automatically deleted.

If your external function just returns a single integer or floating-point number, then you can

specify this just by giving Integer or Real as the : ReturnType : in your MathLink template

file. But because of the way memory allocation and deallocation work in C, you cannot directly

give : ReturnType : specifications such as IntegerList or RealList. And instead, to return

such structures, you must explicitly call MathLink library functions within your C program, and

give Manual as the : ReturnType : specification.

62 Systems Interfaces and Deployment

Here is the MathLink template for a function that takes an integer as an argument, and returns
a list of the digits in its binary representation using explicit MathLink functions.

:Begin:
:Function: bits
:Pattern: bits[i_Integer]
:Arguments: {i}
:ArgumentTypes: {Integer}
:ReturnType: Manual
:End:

The return type of the function is declared as void.

void bits(int i) {

 int a[32], k;

This puts values into the C array a.

 for(k=0; k<32; k++) {
 a[k] = i%2;
 i >>= 1;
 if (i==0) break;
 }

 if (k<32) k++;

This sends k elements of the array a back to Mathematica.

 MLPutInteger32List(stdlink, a, k);
 return ;
}

This installs the program containing the external function bits.

In[5]:= Install@"bitsprog"D

Out[5]= LinkObject@bitsprog, 5, 5D

The external function now returns a list of bits.

In[6]:= bits@14D

Out[6]= 80, 1, 1, 1<

If you declare an array in C as int a@n1D@n2D@n3D, then you can use MLPutInteger32Array()

to send it to Mathematica as a depth 3 list.

Systems Interfaces and Deployment 63

If you declare an array in C as int a@n1D@n2D@n3D, then you can use MLPutInteger32Array()

to send it to Mathematica as a depth 3 list.

Here is a declaration for a 3-dimensional C array.

 int a[8][16][100];

This sets up the array dims and initializes it to the dimensions of a.

 int dims[] = {8, 16, 100};

This sends the 3-dimensional array a to Mathematica, creating a depth 3 list.

 MLPutInteger32Array(stdlink, a, dims, NULL, 3);

You can use MathLink functions to create absolutely any Mathematica expression. The basic

idea is to call a sequence of MathLink functions that correspond directly to the FullForm repre-

sentation of the Mathematica expression.

This sets up the Mathematica function Plus with 2 arguments.

MLPutFunction(stdlink, "Plus", 2);

This specifies that the first argument is the integer 77.

MLPutInteger32(stdlink, 77);

And this specifies that the second argument is the symbol x.

MLPutSymbol(stdlink, "x");

In general, you first call MLPutFunction(), giving the head of the Mathematica function you

want to create, and the number of arguments it has. Then you call other MathLink functions to

fill in each of these arguments in turn. "Expressions" discusses the general structure of Mathe-

matica expressions and the notion of heads.

This creates a Mathematica list with 2 elements.

MLPutFunction(stdlink, "List", 2);

The first element of the list is a list of 10 integers from the C array r.

MLPutInteger32List(stdlink, r, 10);

64 Systems Interfaces and Deployment

The second element of the main list is itself a list with 2 elements.

MLPutFunction(stdlink, "List", 2);

The first element of this sublist is a floating-point number.

MLPutReal64(stdlink, 4.5);

The second element is an integer.

MLPutInteger32(stdlink, 11);

MLPutInteger32Array() and MLPutReal64Array() allow you to send arrays which are laid

out in memory in the one-dimensional way that C pre-allocates them. But if you create arrays

during the execution of a C program, it is more common to set them up as nested collections of

pointers. You can send such arrays to Mathematica by using a sequence of MLPutFunction()

calls, ending with an MLPutInteger32List() call.

This declares a to be a nested list of lists of lists of integers.

int ***a;

This creates a Mathematica list with n1 elements.

MLPutFunction(stdlink, "List", n1);

for (i=0; i<n1; i++) {

This creates a sublist with n2 elements.

 MLPutFunction(stdlink, "List", n2);

 for (j=0; j<n2; j++) {

This writes out lists of integers.

 MLPutInteger32List(stdlink, a[i][j], n3);

 }
}

It is important to realize that any expression you create using MathLink functions will be evalu-

ated as soon as it is sent to Mathematica. This means, for example, that if you wanted to trans-

pose an array that you were sending back to Mathematica, all you would need to do is to wrap

a Transpose around the expression representing the array. You can then do this simply by

calling MLPutFunction Hstdlink, "Transpose", 1L; just before you start creating the expres-

sion that represents the array.

Systems Interfaces and Deployment 65

It is important to realize that any expression you create using MathLink functions will be evalu-

ated as soon as it is sent to Mathematica. This means, for example, that if you wanted to trans-

a Transpose around the expression representing the array. You can then do this simply by

calling MLPutFunction Hstdlink, "Transpose", 1L; just before you start creating the expres-

sion that represents the array.

The idea of postprocessing data that you send back to Mathematica has many uses. One exam-

ple is as a way of sending lists whose length you do not know in advance.

This creates a list in Mathematica by explicitly appending successive elements.

In[7]:= t = 8<; Do@t = Append@t, i^2D, 8i, 5<D; t

Out[7]= 81, 4, 9, 16, 25<

This creates a list in which each successive element is in a nested sublist.

In[8]:= t = 8<; Do@t = 8t, i^2<, 8i, 5<D; t

Out[8]= 888888<, 1<, 4<, 9<, 16<, 25<

Flatten flattens out the list.

In[9]:= Flatten@tD

Out[9]= 81, 4, 9, 16, 25<

Sequence automatically flattens itself.

In[10]:= 8Sequence@1, Sequence@4, Sequence@DDD<

Out[10]= 81, 4<

In order to call MLPutInteger32List(), you need to know the length of the list you want to

send. But by creating a sequence of nested Sequence objects, you can avoid having to know

the length of your whole list in advance.

This sets up the List around your result.

MLPutFunction(stdlink, "List", 1);

while(condition) {
 /* generate an element */

Create the next level Sequence object.

 MLPutFunction(stdlink, "Sequence", 2);

66 Systems Interfaces and Deployment

Put the element.

 MLPutInteger32(stdlink, i);

}

This closes off your last Sequence object.

MLPutFunction(stdlink, "Sequence", 0);

MLGetInteger32 Hstdlink,int*iL get an integer, storing it at address i

MLGetReal64 Hstdlink,double*xL get a floating-point number, storing it at address x

Basic functions for explicitly getting data from Mathematica.

MathLink provides functions like MLPutInteger32() to send data from an external program

into Mathematica. MathLink also provides functions like MLGetInteger32() that allow you to

get data from Mathematica into an external program.

The list that you give for : ArgumentTypes : in a MathLink template can end with Manual,

indicating that after other arguments have been received, you will call MathLink functions to get

additional expressions.

:Begin:
:Function: f

The function f in Mathematica takes 3 arguments.

:Pattern: f[i_Integer, x_Real, y_Real]

All these arguments are passed directly to the external program.

:Arguments: {i, x, y}

Only the first argument is sent directly to the external function.

:ArgumentTypes: {Integer, Manual}

:ReturnType: Real
:End:

The external function only takes one explicit argument.

double f(int i) {

This declares the variables x and y.

Systems Interfaces and Deployment 67

This declares the variables x and y.

 double x, y;

MLGetReal64() explicitly gets data from the link.

 MLGetReal64(stdlink, &x);
 MLGetReal64(stdlink, &y);

 return i+x+y;
}

MathLink functions such as MLGetInteger32 Hlink, piL work much like standard C library func-

tions such as fscanf H fp, "%d", piL. The first argument specifies the link from which to get

data. The last argument gives the address at which the data that is obtained should be stored.

MLCheckFunction Hstdlink,"name",int*nL

check the head of a function and store how many argu-
ments it has

Getting a function via MathLink.

:Begin:
:Function: f

The function f in Mathematica takes a list of integers as an argument.

:Pattern: f[a:{___Integer}]

The list is passed directly to the external program.

:Arguments: {a}

The argument is to be retrieved manually by the external program.

:ArgumentTypes: {Manual}

:ReturnType: Integer
:End:

The external function takes no explicit arguments.

int f(void) {

This declares local variables.

68 Systems Interfaces and Deployment

This declares local variables.

 int n, i;
 int a[MAX];

This checks that the function being sent is a list, and stores how many elements it has in n.

 MLCheckFunction(stdlink, "List", &n);

This gets each element in the list, storing it in a@iD.

 for (i=0; i<n; i++)
 MLGetInteger32(stdlink, a+i);

In simple cases, it is usually possible to ensure on the Mathematica side that the data you send

to an external program has the structure that is expected. But in general the return value from

MLCheckFunction() will be MLSUCCESS only if the data consists of a function with the name

you specify.

Note that if you want to get a nested collection of lists or other objects, you can do this by

making an appropriate sequence of calls to MLCheckFunction().

MLGetInteger32List Hstdlink,int**a,int*nL

get a list of integers, allocating the memory needed to
store it

MLGetReal64List Hstdlink,double**a,int*nL

get a list of floating-point numbers

MLReleaseInteger32List Hstdlink,int*a,int nL

release the memory associated with a list of integers

MLReleaseReal64List Hstdlink,double*a,int nL

release the memory associated with a list of floating-point
numbers

Getting lists of numbers.

When an external program gets data from Mathematica, it must set up a place to store the

data. If the data consists of a single integer, as in MLGetInteger32 Hstdlink, & nL, then it

suffices just to have declared this integer using int n.

But when the data consists of a list of integers of potentially any length, memory must be

allocated to store this list at the time when the external program is actually called.

MLGetInteger32List Hstdlink, & a, & nL will automatically do this allocation, setting a to be a

pointer to the result. Note that memory allocated by functions like MLGetInteger32List() is

always in a special reserved area, so you cannot modify or free it directly.

Systems Interfaces and Deployment 69

MLGetInteger32List Hstdlink, & a, & nL will automatically do this allocation, setting a to be a

pointer to the result. Note that memory allocated by functions like MLGetInteger32List() is

always in a special reserved area, so you cannot modify or free it directly.

Here is an external program that will be sent a list of integers.

int f(void) {

This declares local variables. a is an array of integers.

 int n;
 int *a;

This gets a list of integers, making a be a pointer to the result.

 MLGetInteger32List(stdlink, &a, &n);

This releases the memory used to store the list of integers.

 MLReleaseInteger32List(stdlink, a, n);

...
}

If you use IntegerList as an : ArgumentTypes : specification, then MathLink will automatically

release the memory used for the list after your external function exits. But if you get a list of

integers explicitly using MLGetInteger32List(), then you must not forget to release the

memory used to store the list after you have finished with it.

MLGetInteger32Array Hstdlink,int**a,int**dims,char***heads,int*dL

get an array of integers of any depth

MLGetReal64Array Hstdlink,double**a,int**dims,char***heads,int*dL

get an array of floating-point numbers of any depth

MLReleaseInteger32Array Hstdlink,int*a,int*dims,char**heads,int dL

release memory associated with an integer array

MLReleaseRealArray Hstdlink,double*a,int*dims,char**heads,int dL

release memory associated with a floating-point array

Getting arrays of numbers.

MLGetInteger32List() extracts a one-dimensional array of integers from a single Mathemat-

ica list. MLGetInteger32Array() extracts an array of integers from a collection of lists or

other Mathematica functions nested to any depth.

70 Systems Interfaces and Deployment

MLGetInteger32List() extracts a one-dimensional array of integers from a single Mathemat-

ica list. MLGetInteger32Array() extracts an array of integers from a collection of lists or

other Mathematica functions nested to any depth.

The name of the Mathematica function at level i in the structure is stored as a string in heads@iD.

The size of the structure at level i is stored in dims@iD, while the total depth is stored in d.

If you pass a list of complex numbers to your external program, then MLGetReal64Array()

will create a two-dimensional array containing a sequence of pairs of real and imaginary parts.

In this case, heads@0D will be "List" while heads@1D will be "Complex".

Note that you can conveniently exchange arbitrary-precision numbers with external programs

by converting them to lists of digits in Mathematica using IntegerDigits and RealDigits.

MLGetString Hstdlink,char**sL get a character string

MLGetSymbol Hstdlink,char**sL get a symbol name

MLReleaseString
Hstdlink,char*sL

release memory associated with a character string

MLReleaseSymbol
Hstdlink,char*sL

release memory associated with a symbol name

Getting character strings and symbol names.

If you use String as an : ArgumentTypes : specification, then MathLink will automatically

release the memory that is used to store the string after your function exits. This means that if

you want to continue to refer to the string, you must allocate memory for it, and explicitly copy

each character in it.

If you get a string using MLGetString(), however, then MathLink will not automatically release

the memory used for the string when your function exits. As a result, you can continue refer-

ring to the string. Be careful not to modify the contents of the string by writing to the memory

that is returned by MLGetString(). When you no longer need the string, you must neverthe-

less explicitly call MLReleaseString() in order to release the memory associated with it.

MLGetFunction Hstdlink,char**s,int*nL

begin getting a function, storing the name of the head in s
and the number of arguments in n

MLReleaseSymbol
Hstdlink,char*sL

release memory associated with a function name

Getting an arbitrary function.

If you know what function to expect in your external program, then it is usually simpler to call

MLCheckFunction(). But if you do not know what function to expect, you have no choice but

to call MLGetFunction(). If you do this, you need to be sure to call MLReleaseSymbol() to

release the memory associated with the name of the function that is found by MLGetFuncÖ

tion().

Systems Interfaces and Deployment 71

If you know what function to expect in your external program, then it is usually simpler to call

MLCheckFunction(). But if you do not know what function to expect, you have no choice but

to call MLGetFunction(). If you do this, you need to be sure to call MLReleaseSymbol() to

release the memory associated with the name of the function that is found by MLGetFuncÖ

tion().

Portability of MathLink Programs

The Mathematica side of a MathLink connection is set up to work exactly the same on all com-

puter systems. But inevitably there are differences between external programs on different

computer systems.

For a start, different computer systems almost always require different executable binaries.

When you call Install@"prog"D, therefore, you must be sure that prog corresponds to a pro-

gram that can be executed on your particular computer system.

Install@" file"D try to execute file directly

InstallA" file",LinkProtocol->"type"E

use the specified protocol for low-level data transport

$SystemID identify the type of computer system being used

Install@"dir"D try to execute a file with a name of the form
dir ê $SystemID ê dir

Installing programs on different computer systems.

Mathematica follows the convention that if prog is an ordinary file, then Install@"prog"D will

just try to execute it. But if prog is a directory, then Mathematica will look for a subdirectory of

that directory whose name agrees with the current value of $SystemID, and will then try to

execute a file named prog within that subdirectory.

mcc -o prog … put compiled code in the file prog in the current directory

mcc -xo prog … put compiled code in prog ê $SystemID ê prog

Typical Unix commands for compiling external programs.

Even though the executable binary of an external program is inevitably different on different

computer systems, it can still be the case that the source code in a language such as C from

which this binary is obtained can be essentially the same.

But to achieve portability in your C source code there are several points that you need to

watch.

72 Systems Interfaces and Deployment

But to achieve portability in your C source code there are several points that you need to

watch.

For a start, you should never make use of extra features of the C language or C runtime

libraries that happen to be provided on a particular system, but are not part of standard C. In

addition, you should try to avoid dealing with segmented or otherwise special memory models.

The include file mathlink.h contains standard C prototypes for all the functions in the MathLink

library.

MLPutInteger32 HL MLGetInteger32 HL integer corresponding to C type int, that
is, 32 bits

MLPutInteger16 HL MLGetInteger16 HL integer of type short, that is, 16 bits

MLPutInteger64 HL MLGetInteger64 HL 64-bit integer

MLPutReall64 HL MLGetReal64 HL IEEE double-precision real number, corre-
sponding to the C-language type double

MLPutReal32 HL MLGetReal32 HL IEEE single-precision real number, corre -
sponding to the C-language type float

MLPutReal128 HL MLGetReal128 HL IEEE quad-precision real number

MathLink functions that use specific C types.

If you are going to call MathLink library functions in a portable way, it is essential that you use

the same types as they do.

If your programs correctly match the argument types for the MathLink library functions, you do

not have to worry about C type differences between computer systems. MathLink automatically

converts the C types to the appropriate sizes for each platform. MathLink also swaps bytes as

needed to correctly transfer numbers across platforms, and it converts between floating-point

number formats with the smallest possible loss of precision.

Systems Interfaces and Deployment 73

MLPutString Hstdlink,char*sL put a null-terminated C character string

MLPutUnicodeString Hstdlink,unsigned short*s,int nL

put a string encoded in terms of 16-bit UCS-2 Unicode
characters

MLPutByteString Hstdlink,unsigned char*s,int nL

put a string containing only 8-bit character codes

MLPutUTF8String
Hstdlink, const

unsigned char*s,int nL

put a string of UTF-8 encoded Unicode characters

MLPutUTF16String
Hstdlink, const unsigned

short*s,int nL

put a string of UTF-16 encoded Unicode characters

MLPutUTF32String Hstdlink,
const unsigned int*s,int nL

put a string of UTF-32 encoded Unicode characters

MLGetString Hstdlink,char**sL get a null-terminated C character string

MLGetUnicodeString Hstdlink,unsigned short**s,long*nL

get a string encoded in terms of 16-bit UCS-2 Unicode
characters

MLGetByteString Hstdlink,unsigned char**s,long*n,long specL

get a string containing only 8-bit character codes, using
spec as the code for all 16-bit characters

MLGetUTF8String Hstdlink,
const unsigned char**s,
int*m,int*nL

get a string of UTF-8 encoded Unicode characters

MLGetUTF16String
Hstdlink, const unsigned

short**s,int*m,int*nL

get a string of UTF-16 encoded Unicode characters

MLGetUTF32String
Hstdlink, const

unsigned int**s,int*nL

get a string of UTF-32 encoded Unicode characters

Manipulating general strings.

In simple C programs, it is typical to use strings that contain only ordinary ASCII characters.

But in Mathematica it is possible to have strings containing all sorts of special characters. These

characters are specified within Mathematica using Unicode character codes, as discussed in

"Raw Character Encodings".

74 Systems Interfaces and Deployment

C language char * strings typically use only 8 bits to store the code for each character. UCS-2

encoded strings, however, require 16 bits. As a result, the functions MLPutUnicodeString()

and MLGetUnicodeString() work with arrays of unsigned short integers. The same is true of

UTF-16 encoded strings and the corresponding functions MLPutUTF16String() and MLGetUTÖ

F16String().

UTF-32 encoded strings require 32 bits for each character, and the corresponding functions

MLPutUTF32String() and MLGetUTF32String() work with arrays of unsigned int integers.

If you know that your program will not have to handle special characters, then you may find it

convenient to use MLPutByteString() and MLGetByteString(). These functions represent all

characters directly using 8-bit character codes. If a special character is sent from Mathematica,

then it will be converted by MLGetByteString() to a fixed code that you specify.

† mainHL may need to be different on different computer systems

A point to watch in creating portable MathLink programs.

Computer systems and compilers that have C runtime libraries based on the Unix model allow

MathLink programs to have a main program of the form main Hargc, argvL which simply calls

MLMain Hargc, argvL.

Some computer systems or compilers may however require main programs of a different form.

You should realize that you can do whatever initialization you want inside main HL before calling

MLMain(). Once you have called MLMain(), however, your program will effectively go into an

infinite loop, responding to requests from Mathematica until the link to it is closed.

Systems Interfaces and Deployment 75

Using MathLink to Communicate between
Mathematica Sessions

LinkCreate@"name"D create a link for another program to connect to

LinkConnect@"name"D connect to a link created by another program

LinkClose@linkD close a MathLink connection

LinkWrite@link,exprD write an expression to a MathLink connection

LinkRead@linkD read an expression from a MathLink connection

LinkReadAlink,HoldE read an expression and immediately wrap it with Hold

LinkReadyQ@linkD find out whether there is data ready to be read from a link

LinkReadyQ@link,tD wait for up to t seconds to see if an expression becomes
ready to read

LinkReadyQ@8link1,link2,…<D find out whether there is data ready to be read from one of
the links

LinkReadyQ@8link1,link2,…<,tD wait for up to t seconds to see if an expression becomes
ready to read

MathLink connections between Mathematica sessions.

Session A

This starts up a link on port number 8000.

In[1]:= link = LinkCreate@"8000", LinkProtocol Ø "TCPIP"D

Out[1]= LinkObject@8000üfrog.wolfram.com,4470üfrog.wolfram.com, 17, 5D

Session B

This connects to the link on port 8000.

In[2]:= Link = LinkConnect@"8000", LinkProtocol Ø "TCPIP"D

Out[2]= LinkObject@8000ü frog.wolfram.com , 11, 4D

Session A

This evaluates 15! and writes it to the link.

In[3]:= LinkWrite@link, 15!D

Session B

76 Systems Interfaces and Deployment

Session B

This reads from the link, getting the 15! that was sent.

In[4]:= LinkRead@LinkD

Out[4]= 1307674368000

This writes data back on the link.

In[5]:= LinkWrite@link, N@%^6DD

Session A

And this reads the data written in session B.

In[6]:= LinkRead@linkD

Out[6]= 5.00032µ1072

One use of MathLink connections between Mathematica sessions is simply as a way to transfer

data without using intermediate files.

Another use is as a way to dispatch different parts of a computation to different sessions.

Session A

This writes the expression 2 + 2 without evaluating it.

In[7]:= LinkWrite@link, Unevaluated@2 + 2DD

Session B

This reads the expression from the link, immediately wrapping it in Hold.

In[8]:= LinkRead@Link, HoldD

Out[8]= Hold[2 + 2]

This evaluates the expression.

In[9]:= ReleaseHold@%D

Out[9]= 4

When you call LinkWrite, it writes an expression to the MathLink connection and immediately

returns. But when you call LinkRead, it will not return until it has read a complete expression

from the MathLink connection.

Systems Interfaces and Deployment 77

When you call LinkWrite, it writes an expression to the MathLink connection and immediately

returns. But when you call LinkRead, it will not return until it has read a complete expression

from the MathLink connection.

You can tell whether anything is ready to be read by calling LinkReadyQ@linkD. If LinkReadyQ

returns True, then you can safely call LinkRead and expect immediately to start reading an

expression. But if LinkReadyQ returns False, then LinkRead would block until an expression

for it to read had been written by a LinkWrite in your other Mathematica session.

Session A

There is nothing waiting to be read on the link, so if LinkRead were to be called, it would
block.

In[10]:= LinkReadyQ@linkD

Out[10]= False

Session B

This writes an expression to the link.

In[11]:= LinkWrite@Link, x + yD

Session A

Now there is an expression waiting to be read on the link.

In[12]:= LinkReadyQ@linkD

Out[12]= True

LinkRead can thus be called without fear of blocking.

In[13]:= LinkRead@linkD

Out[13]= x + y

LinkReadyQ can take a list of link objects, evaluating each link in parallel to determine if there

is data to read. As in the case of a single link, a second argument specifies a time out period,

causing LinkReadyQ to wait until one of the links is ready to use.

78 Systems Interfaces and Deployment

LinkCreate@
LinkProtocol->"TCPIP"D

pick any unused port on your computer

LinkCreate@"number",LinkProtocol->"TCPIP"D

use a specific port

LinkConnect@"number",LinkProtocol->"TCPIP"D

connect to a port on the same computer

LinkConnect@"numberühost",LinkProtocol->"TCPIP"D

connect to a port on another computer

Ways to set up MathLink links over TCP/IP.

MathLink can use whatever mechanism for interprogram communication your computer system

supports. In setting up connections between concurrent Mathematica sessions, a common

mechanism is internet TCP ports.

Most computer systems have a few thousand possible numbered ports, some of which are

typically allocated to standard system services.

You can use any of the unallocated ports for MathLink connections.

Session on frog.wolfram.com

This finds an unallocated port on frog.wolfram.com.

In[14]:= link = LinkCreate@LinkProtocol Ø "TCPIP"D

Out[14]= LinkObject["2981@frog.wolfram.com,2982@frog.wolfram.com", 5, 5]

Session on toad.wolfram.com

This connects to the port on frog.wolfram.com.

In[15]:= link = LinkConnect@
"2981üfrog.wolfram.com,2982üfrog.wolfram.com", LinkProtocol Ø "TCPIP"D

Out[15]= LinkObject["2981@frog.wolfram.com,2982@frog.wolfram.com", 5, 5]

This sends the current machine name over the link.

In[16]:= LinkWrite@link, $MachineNameD

Systems Interfaces and Deployment 79

Session on frog.wolfram.com

This reads the expression written on toad.

In[17]:= LinkRead@linkD

Out[17]= toad

By using internet ports for MathLink connections, you can easily transfer data between Mathe-

matica sessions on different machines. All that is needed is that an internet connection exists

between the machines.

Note that because MathLink is completely system independent, the computers at each end of a

MathLink connection do not have to be of the same type. MathLink nevertheless notices when

they are, and optimizes data transmission in this case.

Calling Subsidiary Mathematica Processes

LinkLaunch@"prog"D start an external program and open a connection to it

Connecting to a subsidiary program via MathLink.

This starts a subsidiary Mathematica process on the computer system used here.

In[1]:= link = LinkLaunch@"math -mathlink"D

Out[1]= LinkObject[math -mathlink, 4, 4]

Here is a packet representing the first input prompt from the subsidiary Mathematica process.

In[2]:= LinkRead@linkD

Out[2]= InputNamePacket[In[1]:=]

This writes a packet representing text to enter in the subsidiary Mathematica process.

In[3]:= LinkWrite@link, EnterTextPacket@"10!"DD

Here is a packet representing the output prompt from the subsidiary Mathematica process.

In[4]:= LinkRead@linkD

Out[4]= OutputNamePacket[Out[1]=]

80 Systems Interfaces and Deployment

And here is the actual result from the computation.

In[5]:= LinkRead@linkD

Out[5]= ReturnTextPacket[3628800]

The basic way that the various different objects involved in a Mathematica session are kept

organized is by using MathLink packets. A MathLink packet is simply an expression with a

definite head that indicates its role or meaning.

EnterTextPacket@"input"D text to enter corresponding to an input line

ReturnTextPacket@"output"D text returned corresponding to an output line

InputNamePacket@"name"D text returned for the name of an input line

OutputNamePacket@"name"D text returned for the name of an output line

Basic packets used in Mathematica sessions.

The fact that LinkRead returns an InputNamePacket indicates that the subsidiary Mathemat-
ica is now ready for new input.

In[6]:= LinkRead@linkD

Out[6]= InputNamePacket[In[2]:=]

This enters two Print commands as input.

In[7]:= LinkWrite@link, EnterTextPacket@"Print@aD; Print@bD;"DD

Here is the text from the first Print.

In[8]:= LinkRead@linkD

Out[8]= TextPacket[a
]

And here is the text from the second Print.

In[9]:= LinkRead@linkD

Out[9]= TextPacket[b
]

No output line is generated, so the new packet is an InputNamePacket.

In[10]:= LinkRead@linkD

Out[10]= InputNamePacket[In[3]:=]

Systems Interfaces and Deployment 81

TextPacket@"string"D text from Print etc.

MessagePacket@symb,"tag"D a message name

DisplayPacket@"string"D parts of PostScript graphics

DisplayEndPacket@"string"D the end of PostScript graphics

Some additional packets generated in Mathematica sessions.

If you enter input to Mathematica using EnterTextPacket@"input"D, then Mathematica will

automatically generate a string version of your output, and will respond with

ReturnTextPacket@"output"D. But if you instead enter input using

EnterExpressionPacket@exprD then Mathematica will respond with

ReturnExpressionPacket@exprD and will not turn your output into a string.

EnterExpressionPacket@exprD an expression to enter corresponding to an input line

ReturnExpressionPacket@exprD an expression returned corresponding to an output line

Packets for representing input and output lines using expressions.

This enters an expression into the subsidiary Mathematica session without evaluating it.

In[11]:= LinkWrite@link, Unevaluated@EnterExpressionPacket@Factor@x^6 - 1DDDD

Here are the next 3 packets that come back from the subsidiary Mathematica session.

In[12]:= Table@LinkRead@linkD, 83<D

Out[12]= 9OutputNamePacket@Out@3D=D,

ReturnExpressionPacketAH-1 + xL H1 + xL I1 - x - x2M I1 + x + x2ME, InputNamePacket@In@4D:=D=

InputNamePacket and OutputNamePacket packets are often convenient for making it possible

to tell the current state of a subsidiary Mathematica session. But you can suppress the genera-

tion of these packets by calling the subsidiary Mathematica session with a string such as

"math -mathlink -batchoutput".

Even if you suppress the explicit generation of InputNamePacket and OutputNamePacket pack-

ets, Mathematica will still process any input that you give with EnterTextPacket or

EnterExpressionPacket as if you were entering an input line. This means for example that

Mathematica will call $Pre and $Post, and will assign values to In@$LineD and Out@$LineD.

82 Systems Interfaces and Deployment

EvaluatePacket@exprD an expression to be sent purely for evaluation

ReturnPacket@exprD an expression returned from an evaluation

Evaluating expressions without explicit input and output lines.

This sends an EvaluatePacket. The Unevaluated prevents evaluation before the packet is
sent.

In[13]:= LinkWrite@link, Unevaluated@EvaluatePacket@10!DDD

The result is a pure ReturnPacket.

In[14]:= LinkRead@linkD

Out[14]= ReturnPacket@3628800D

This sends an EvaluatePacket requesting evaluation of Print@xD.

In[15]:= LinkWrite@link, Unevaluated@EvaluatePacket@Print@xDDDD

The first packet to come back is a TextPacket representing text generated by the Print.

In[16]:= LinkRead@linkD

Out[16]= TextPacket[x
]

After that, the actual result of the Print is returned.

In[17]:= LinkRead@linkD

Out[17]= ReturnPacket[Null]

In most cases, it is reasonable to assume that sending an EvaluatePacket to Mathematica will

simply cause Mathematica to do a computation and to return various other packets, ending with

a ReturnPacket. However, if the computation involves a function like Input, then Mathematica

will have to request additional input before it can proceed with the computation.

This sends a packet whose evaluation involves an Input function.

In[18]:= LinkWrite@link, Unevaluated@EvaluatePacket@2 + Input@"data ="DDDD

What comes back is an InputPacket which indicates that further input is required.

In[19]:= LinkRead@linkD

Out[19]= InputPacket[data =]

Systems Interfaces and Deployment 83

There is nothing more to be read on the link at this point.

In[20]:= LinkReadyQ@linkD

Out[20]= False

This enters more input.

In[21]:= LinkWrite@link, EnterTextPacket@"x + y"DD

Now the Input function can be evaluated, and a ReturnPacket is generated.

In[22]:= LinkRead@linkD

Out[22]= ReturnPacket[2 + x + y]

LinkInterrupt@linkD send an interrupt to a MathLink-compatible program

Interrupting a MathLink-compatible program.

This sends a very time-consuming calculation to the subsidiary process.

In[23]:= LinkWrite@link, EnterTextPacket@"FactorInteger@2^777-1D"DD

The calculation is still going on.

In[24]:= LinkReadyQ@linkD

Out[24]= False

This sends an interrupt.

In[25]:= LinkInterrupt@linkD

Now the subsidiary process has stopped, and is sending back an interrupt menu.

In[26]:= LinkRead@linkD

Out[26]= MenuPacket[1, Interrupt>]

This closes the link.

In[27]:= LinkClose@linkD

84 Systems Interfaces and Deployment

Two-Way Communication with External Programs

When you install a MathLink-compatible external program using Install, the program is set up

to behave somewhat like a simplified Mathematica kernel. Every time you call a function in the

external program, a CallPacket is sent to the program, and the program responds by sending

back a result wrapped in a ReturnPacket.

This installs an external program, returning the LinkObject used for the connection to that
program.

In[1]:= link = Install@"bitsprog"D

Out[1]= LinkObject@bitsprog, 4, 4D

The function ExternalCall sends a CallPacket to the external program.

In[2]:= ? bits

Global`bits

bits@i_IntegerD :=
ExternalCall@LinkObject@bitsprog, 4, 4D, CallPacket@0, 8i<DD

You can send the CallPacket explicitly using LinkWrite. The first argument of the
CallPacket specifies which function in the external program to call.

In[3]:= LinkWrite@link, CallPacket@0, 867<DD

Here is the response to the CallPacket from the external program.

In[4]:= LinkRead@linkD

Out[4]= 81, 1, 0, 0, 0, 0, 1<

If you use Install several times on a single external program, Mathematica will open several

MathLink connections to the program. Each connection will however always correspond to a

unique LinkObject.

$CurrentLink the MathLink connection to the external program currently
being run

Identifying different instances of a single external program.

:Begin:
:Function: addto

Systems Interfaces and Deployment 85

This gives $CurrentLink as an argument to addto.

:Pattern: addto[$CurrentLink, n_Integer]

:Arguments: 8n<
:ArgumentTypes: 8Integer<
:ReturnType: Integer
:End:

This zeros the global variable counter every time the program is started.

int counter = 0;

int addto(int n) 8
 counter += n;
 return counter;
<

This installs one instance of the external program containing addto.

In[5]:= ct1 = Install@"addtoprog"D

Out[5]= LinkObject@addtoprog, 5, 5D

This installs another instance.

In[6]:= ct2 = Install@"addtoprog"D

Out[6]= LinkObject@addtoprog, 6, 6D

This adds 10 to the counter in the first instance of the external program.

In[7]:= addto@ct1, 10D

Out[7]= 10

This adds 15 to the counter in the second instance of the external program.

In[8]:= addto@ct2, 15D

Out[8]= 15

This operates on the first instance of the program again.

In[9]:= addto@ct1, 20D

Out[9]= 30

If an external program maintains information about its state then you can use different ins-

tances of the program to represent different states. $CurrentLink then provides a way to refer

to each instance of the program.

86 Systems Interfaces and Deployment

If an external program maintains information about its state then you can use different in-

stances of the program to represent different states. $CurrentLink then provides a way to refer

to each instance of the program.

The value of $CurrentLink is temporarily set every time a particular instance of the program is

called, as well as when each instance of the program is first installed.

MLEvaluateString Hstdlink,"string"L

send input to Mathematica but return no results

Sending a string for evaluation by Mathematica.

The two-way nature of MathLink connections allows you not only to have Mathematica call an

external program, but also to have that external program call back to Mathematica.

In the simplest case, you can use the MathLink function MLEvaluateString HL to send a string

to Mathematica. Mathematica will evaluate this string, producing whatever effects the string

specifies, but it will not return any results from the evaluation back to the external program.

To get results back you need explicitly to send an EvaluatePacket to Mathematica, and then

read the contents of the ReturnPacket that comes back.

This starts an EvaluatePacket.

MLPutFunction(stdlink, "EvaluatePacket", 1);

This constructs the expression Factorial@7D or 7!.

 MLPutFunction(stdlink, "Factorial", 1);
 MLPutInteger32(stdlink, 7);

This specifies that the packet you are constructing is finished.

MLEndPacket(stdlink);

This checks the ReturnPacket that comes back.

MLCheckFunction(stdlink, "ReturnPacket", &n);

This extracts the integer result for 7! from the packet.

MLGetInteger32(stdlink, &ans);

Systems Interfaces and Deployment 87

MLEndPacket HstdlinkL specify that a packet is finished and ready to be sent to
Mathematica

Sending a packet to Mathematica.

When you can send Mathematica an EvaluatePacket@inputD, it may in general produce many

packets in response, but the final packet should be ReturnPacket@outputD. "Manipulating Expres-

sions in External Programs" will discuss how to handle sequences of packets and expressions

whose structure you do not know in advance.

Running Programs on Remote Computers

MathLink allows you to call an external program from within Mathematica even when that

program is running on a remote computer. Typically, you need to start the program directly

from the operating system on the remote computer. But then you can connect to it using com-

mands within your Mathematica session.

Operating system on toad.wolfram.com

This starts the program fprog and tells it to create a new link.

fprog -linkcreate -linkprotocol TCPIP

The program responds with the specification of the link it has created.

Link created on: 2976@toad.wolfram.com,2977@toad.wolfram.com

Mathematica session on frog.wolfram.com

This connects to the link that has been created.

In[1]:= Install@LinkConnect@
"2976ütoad.wolfram.com,2977ütoad.wolfram.com", LinkProtocol Ø "TCPIP"DD

Out[1]= LinkObject[2976@toad.wolfram.com,2977@toad.wolfram.com, 1, 1]

This now executes code in the external program on toad.wolfram.com.

In[2]:= f@16D

Out[2]= 561243

External programs that are created using mcc or mprep always contain the code that is needed

to set up MathLink connections. If you start such programs directly from your operating

system, they will prompt you to specify what kind of connection you want. Alternatively, if your

operating system supports it, you can also give this information as a command-line argument

to the external program.

88 Systems Interfaces and Deployment

External programs that are created using mcc or mprep always contain the code that is needed

to set up MathLink connections. If you start such programs directly from your operating

system, they will prompt you to specify what kind of connection you want. Alternatively, if your

operating system supports it, you can also give this information as a command-line argument

to the external program.

prog-linkcreate -
linkprotocol TCPIP

operating system command to run a program and have it
create a link

InstallALinkConnect@
"port1ühost,port2ühost",
LinkProtocol->"TCPIP"DE

Mathematica command to connect to the external program

Running an external program on a remote computer.

Running External Programs under a Debugger

MathLink allows you to run external programs under whatever debugger is provided in your

software environment.

MathLink-compatible programs are typically set up to take arguments, usually on the command

line, which specify what MathLink connections they should use.

In debugger: run -linkcreate -linkprotocol TCPIP

In Mathematica: InstallA
LinkConnect@"port",LinkProtocol->"TCPIP"DE

Running an external program under a debugger.

Note that in order to get a version of an external program that can be run under a debugger,

you need to compile the program so that the output is suitable for use with your debugger.

Unix compilers commonly use -g as a command-line argument for producing a debuggable

program. See your compiler documentation for specific information on the steps you should

take.

Unix debugger

Set a breakpoint in the C function f.

break f
Breakpoint set: f: line 1

Start the external program.

Systems Interfaces and Deployment 89

Start the external program.

run -linkcreate -linkprotocol TCPIP

The program responds with what port it is listening on.

Link created on: 2981@frog.wolfram.com,2982@frog.wolfram.com

Mathematica session

This connects to the program running under the debugger.

In[1]:= Install@LinkConnect@
"2981üfrog.wolfram.com,2982üfrog.wolfram.com", LinkProtocol Ø "TCPIP"DD

Out[1]= LinkObject[2981@frog.wolfram.com,2982@frog.wolfram.com, 1, 1]

This calls a function which executes code in the external program.

In[2]:= f@16D

Unix debugger

The external program stops at the breakpoint.

Breakpoint: f(16)

This tells the debugger to continue.

continue

Mathematica session

Now f returns.
Out[3]= 561243

Manipulating Expressions in External Programs

Mathematica expressions provide a very general way to handle all kinds of data, and you may

sometimes want to use such expressions inside your external programs. A language like C,

however, offers no direct way to store general Mathematica expressions. But it is nevertheless

possible to do this by using the loopback links provided by the MathLink library. A loopback link

is a local MathLink connection inside your external program, to which you can write expressions

that can later be read back.

90 Systems Interfaces and Deployment

Mathematica expressions provide a very general way to handle all kinds of data, and you may

sometimes want to use such expressions inside your external programs. A language like C,

possible to do this by using the loopback links provided by the MathLink library. A loopback link

is a local MathLink connection inside your external program, to which you can write expressions

that can later be read back.

MLINK MLLoopbackOpen Hstdenv,int*errnoL

open a loopback link

void MLClose HMLINK linkL close a link

int MLTransferExpression
HMLINK dest,MLINK srcL

get an expression from src and put it onto dest

Functions for manipulating loopback links.

This opens a loopback link.

...
ml = MLLoopbackOpen(stdenv, &errno);

This puts the expression Power@x, 3D onto the loopback link.

MLPutFunction(ml, "Power", 2);
 MLPutSymbol(ml, "x");
 MLPutInteger32(ml, 3);
...

This gets the expression back from the loopback link.

MLGetFunction(ml, &head, &n);
 MLGetSymbol(ml, &sname);
 MLGetInteger32(ml, &k);
...

This closes the loopback link again.

MLClose(ml);

You can use MLTransferExpression() to take an expression that you get via stdlink from

Mathematica, and save it in a local loopback link for later processing.

You can also use MLTransferExpression() to take an expression that you have built up on a

local loopback link, and transfer it back to Mathematica via stdlink.

This puts 21! onto a local loopback link.

...
MLPutFunction(ml, "Factorial", 1);
 MLPutInteger32(ml, 21);

This sends the head FactorInteger to Mathematica.

Systems Interfaces and Deployment 91

This sends the head FactorInteger to Mathematica.

MLPutFunction(stdlink, "FactorInteger", 1);

This transfers the 21! from the loopback link to stdlink.

MLTransferExpression(stdlink, ml);

You can put any sequence of expressions onto a loopback link. Usually you get the expressions

off the link in the same order as you put them on.

And once you have got an expression off the link it is usually no longer saved. But by using

MLCreateMark() you can mark a particular position in a sequence of expressions on a link,

forcing MathLink to save every expression after the mark so that you can go back to it later.

MLMARK MLCreateMark IMLINK linkM

create a mark at the current position in a sequence of
expressions on a link

MLSeekMark IMLINK link,MLMARK mark,int nM

go back to a position n expressions after the specified mark
on a link

MLDestroyMark IMLINK link,MLMARK markM

destroy a mark in a link

Setting up marks in MathLink links.

This puts the integer 45 onto a loopback link.

...
MLPutInteger32(ml, 45);

This puts 33 onto the link.

MLPutInteger32(ml, 33);

And this puts 76.

MLPutInteger32(ml, 76);

This will read 45 from the link. The 45 will no longer be saved.

MLGetInteger32(ml, &i);

92 Systems Interfaces and Deployment

This creates a mark at the current position on the link.

mark = MLCreateMark(ml);

This will now read 33.

MLGetInteger32(ml, &i);

And this will read 76.

MLGetInteger32(ml, &i);

This goes back to the position of the mark.

MLSeekMark(ml, mark, 0);

Now this will read 33 again.

MLGetInteger32(ml, &i);

It is important to destroy marks when you have finished with them, so no unnecessary expres-
sions will be saved.

MLDestroyMark(ml, mark);

The way the MathLink library is implemented, it is very efficient to open and close loopback

links, and to create and destroy marks in them. The only point to remember is that as soon as

you create a mark on a particular link, MathLink will save subsequent expressions that are put

on that link, and will go on doing this until the mark is destroyed.

int MLGetNext HMLINK linkL find the type of the next object on a link

int MLGetArgCount
IMLINK link,int*nM

store in n the number of arguments for a function on a link

int MLGetSymbol
IMLINK link,char**nameM

get the name of a symbol

int MLGetInteger32
IMLINK link,int*iM

get a machine integer

int MLGetReal64
IMLINK link,double*xM

get a machine floating-point number

int MLGetString
IMLINK link,char**stringM

get a character string

Functions for getting pieces of expressions from a link.

Systems Interfaces and Deployment 93

MLTKFUNC composite function~head and arguments

MLTKSYM Mathematica symbol

MLTKINT integer

MLTKREAL floating-point number

MLTKSTR character string

Constants returned by MLGetNext().

switch(MLGetNext(ml)) {

This reads a composite function.

 case MLTKFUNC:
 MLGetArgCount(ml, &n);
 recurse for head
 for (i = 0; i < n; i++) 8
 recurse for each argument
 <
 …

This reads a single symbol.

 case MLTKSYM:
 MLGetSymbol(ml, &name);
 …

This reads a machine integer.

 case MLTKINT:
 MLGetInteger32(ml, &i);
 …
}

By using MLGetNext HL it is straightforward to write programs that can read any expression.

The way MathLink works, the head and arguments of a function appear as successive expres-

sions on the link, which you read one after another.

Note that if you know that the head of a function will be a symbol, then you can use

MLGetFunction HL instead of MLGetNext HL. In this case, however, you still need to call

MLReleaseSymbol HL to disown the memory used to store the symbol name.

94 Systems Interfaces and Deployment

int MLPutNext IMLINK link,int typeM

prepare to put an object of the specified type on a link

int MLPutArgCount IMLINK link,int nM

give the number of arguments for a composite function

int MLPutSymbol IMLINK link,char*nameM

put a symbol on the link

int MLPutInteger32 IMLINK link,int iM

put a machine integer

int MLPutReal64 IMLINK link,double xM

put a machine floating-point number

int MLPutString IMLINK link,char*stringM

put a character string

Functions for putting pieces of expressions onto a link.

MLPutNext() specifies types of expressions using constants such as MLTKFUNC from the

mathlink.h header file~just like MLGetNext().

Error and Interrupt Handling

When you are putting and getting data via MathLink various kinds of errors can occur. When-

ever any error occurs, MathLink goes into a completely inactive state, and all MathLink func-

tions you call will return 0 immediately.

int MLError IMLINK linkM return a number identifying the current error, or 0 if none
has occurred

char*MLErrorMessage IMLINK linkM

return a character string describing the current error

int MLClearError IMLINK linkM clear the current error, returning MathLink if possible to an
active state

Handling errors in MathLink programs.

When you do complicated operations, it is often convenient to check for errors only at the end.

If you find that an error occurred, you must then call MLClearError() to activate MathLink

again.

Systems Interfaces and Deployment 95

int MLNewPacket IMLINK linkM skip to the end of the current packet

Clearing out the remains of a packet.

After an error, it is common to want to discard the remainder of the packet or expression that

you are currently processing. You can do this using MLNewPacket().

In some cases, you may want to set it up so that if an error occurs while you are processing

particular data, you can then later go back and reprocess the data in a different way. You can

do this by calling MLCreateMark() to create a mark before you first process the data, and then

calling MLSeekMark() to seek back to the mark if you need to reprocess the data. You should

not forgot to call MLDestroyMark() when you have finally finished with the data~otherwise

MathLink will continue to store it.

int MLAbort a global variable set when a program set up by Install is
sent an abort interrupt

Aborting an external program.

If you interrupt Mathematica while it is in the middle of executing an external function, it will

typically give you the opportunity to try to abort the external function. If you choose to do this,

what will happen is that the global variable MLAbort will be set to 1 inside your external pro-

gram.

MathLink cannot automatically back out of an external function call that has been made. So if

you have a function that can take a long time, you should explicitly check MLAbort every so

often, returning from the function if you find that the variable has been set.

Running Mathematica from Within an External
Program

To run Mathematica from within an external program requires making use of many general

features of MathLink. The first issue is how to establish a MathLink connection to Mathematica.

When you use MathLink templates to create external programs that can be called from Mathe-

matica, source code to establish a MathLink connection is automatically generated, and all you

have to do in your external program is to call MLMain Hargc, argvL. But in general you need to

call several functions to establish a MathLink connection.

96 Systems Interfaces and Deployment

MLENV MLInitialize H0L initialize MathLink library functions

MLINK MLOpenArgcArgv HMLENV env,int argc,char**argv,int*errnoL

open a MathLink connection taking parameters from an
argv array

MLINK MLOpenString HMLENV env,char*string,int*errnoL

open a MathLink connection taking parameters from a
single character string

int MLActivate HMLINK linkL activate a MathLink connection, waiting for the program at
the other end to respond

void MLClose HMLINK linkL close a MathLink connection

void MLDeinitialize HMLENV envL deinitialize MathLink library functions

Opening and closing MathLink connections.

Include the standard MathLink header file.

#include "mathlink.h"

int main(int argc, char *argv[]) {

 MLENV env;
 MLINK link;
 int errno;

This initializes MathLink library functions.

 env = MLInitialize(0);

This opens a MathLink connection, using the same arguments as were passed to the main
program.

 link = MLOpenArgcArgv(env, argc, argv, &errno);

This activates the connection, waiting for the other program to respond.

 MLActivate(link);

 ...
}

Systems Interfaces and Deployment 97

Often the argv that you pass to MLOpenArgcArgv() will come directly from the argv that is

passed to main HL when your whole program is started.

The elements in the argv array are character strings which mirror the arguments and options

used in the Mathematica functions LinkLaunch, LinkCreate and LinkConnect.

"-linklaunch" operate like LinkLaunch@"name"D

"-linkcreate" operate like LinkCreate@"name"D

"-linkconnect" operate like LinkConnect@"name"D

"-linkname","name" give the name to use

"-linkprotocol","protocol" give the link protocol to use (TCPIP, Pipes, etc.)

Possible elements of the argv array passed to MLOpenArgcArgv().

As an alternative to MLOpenArgcArgv() you can use MLOpenString(), which takes parame-

ters concatenated into a single character string with spaces in between.

Once you have successfully opened a MathLink connection to the Mathematica kernel, you can

then use standard MathLink functions to exchange data with it.

int MLEndPacket IMLINK linkM indicate the end of a packet

int MLNextPacket IMLINK linkM find the head of the next packet

int MLNewPacket IMLINK linkM skip to the end of the current packet

Functions often used in communicating with the Mathematica kernel.

Once you have sent all the pieces of a packet using MLPutFunction() etc., MathLink requires

you to call MLEndPacket() to ensure synchronization and consistency.

One of the main issues in writing an external program which communicates directly with the

Mathematica kernel is handling all the various kinds of packets that the kernel can generate.

The function MLNextPacket() finds the head of the next packet that comes from the kernel,

and returns a constant that indicates the type of the packet.

98 Systems Interfaces and Deployment

Mathematica packet constant
ReturnPacket@exprD RETURNPKT result from a computation
ReturnTextPacket@"string"D RETURNTEXTPKT textual form of a result
InputNamePacket@"name"D INPUTNAMEPKT name of an input line
OutputNamePacket@"name"D OUTPUTNAMEPKT name of an output line
TextPacket@"string"D TEXTPKT textual output from functions like Print
MessagePacket@symb,"tag"D MESSAGEPKT name of a message generated by

Mathematica
InputPacket@"prompt"D INPUTPKT request for a response to an Input function
CallPacket@i,listD CALLPKT request for a call to an external function

Some packets recognized by MLNextPacket().

This keeps on reading data from a link, discarding it until an error or a ReturnPacket is found.

while ((p = MLNextPacket(link)) && p != RETURNPKT)
 MLNewPacket(link);

If you want to write a complete front end to Mathematica, you will need to handle all of the

possible types of packets that the kernel can generate. Typically you can do this by setting up

an appropriate switch on the value returned by MLNextPacket().

The MathLink Developer Kit contains sample source code for several simple but complete front

ends.

int MLReady IMLINK linkM test whether there is data waiting to be read on a link

int MLReadyParallel IMLENV e, MLINK *links, int n, mltimeval tM

test in parallel whether there is data to be read from a list
of links

int MLFlush IMLINK linkM flush out buffers containing data waiting to be sent on a
link

Flow of data on links.

One feature of more sophisticated external programs such as front ends is that they may need

to perform operations while they are waiting for data to be sent to them by Mathematica. When

you call a standard MathLink library function such as MLNextPacket() your program will nor-

mally block until all the data needed by this function is available.

You can avoid blocking by repeatedly calling MLReady(), and only calling functions like

MLNextPacket() when MLReady() no longer returns 0. MLReady() is the analog of the Mathe-

matica function LinkReadyQ.

Note that MathLink sometimes buffers the data that you tell it to send. To make sure that all

necessary data has been sent you should call MLFlush(). Only after doing this does it make

sense to call MLReady() and wait for data to be sent back.

Systems Interfaces and Deployment 99

Note that MathLink sometimes buffers the data that you tell it to send. To make sure that all

necessary data has been sent you should call MLFlush(). Only after doing this does it make

sense to call MLReady() and wait for data to be sent back.

MathLink Interface 3

The library now fully supports the Unicode character encoding forms UTF-8, UTF-16, and

UTF-32. Use the following new API functions to put or get Unicode characters to or from a link.

 MLPutUTF8String() MLGetUTF8String()

 MLPutUTF16String() MLGetUTF16String()

 MLPutUTF32String() MLGetUTF32String()

 MLPutUTF8Symbol() MLGetUTF8Symbol()

 MLPutUTF16Symbol() MLGetUTF16Symbol()

 MLPutUTF32Symbol() MLGetUTF32Symbol()

 MLReleaseUTF8String() MLReleaseUTF8Symbol()

 MLReleaseUTF16String() MLReleaseUTF16Symbol()

 MLReleaseUTF32String() MLReleaseUTF32Symbol()

The MathLink library header file mathlink.h no longer contains obsolete platform support

sections such as those defined by MACINTOSH_MATHLINK or OS2_MATHLINK. MACINTOSH_MATHÖ

LINK definitions referred to Mac-OS 9 and earlier. DARWIN_MATHLINK contains all platform-

specific definitions for Mac OS X.

All uses of special alternative names for common C types have been removed from the API. The

MathLink header file mathlink.h still contains versions of the API functions with these types

for use with Interface 2 and older programs.

 Previous MathLink type C type

 uchar_ct unsigned char

 ucharp_ct unsigned char *

 ucharpp_ct unsigned char **

 ucharppp_ct unsigned char ***

 ushort_ct unsigned short

 ushortp_ct unsigned short *

 ushortpp_ct unsigned short **

 ushortppp_ct unsigned short ***

 uint_ct unsigned int

 uintp_ct unsigned int *

 uintpp_ct unsigned int **

100 Systems Interfaces and Deployment

uintpp_ct
 int_ct int

 voidp_ct void *

 voidpp_ct void **

 charp_ct char *

 charpp_ct char **

 charppp_ct char ***

 long_ct long

 longp_ct long *
 longpp_ct long **

 long_st long

 longp_st long *

 longpp_st long **

 ulong_ct unsigned long

 ulongp_ct unsigned long *

 kushortp_ct const unsigned short *

 kushortpp_ct const unsigned short **

 kuintp_ct const unsigned int *

 kuintpp_ct const unsigned int **

 kucharp_ct const unsigned char *

 kucharpp_ct const unsigned char **

 kcharp_ct const char *

 kcharpp_ct const char **

 kvoidp_ct const void *

The memory allocator/deallocator functions passed to the library using MLSetAllocParameÖ

ter() now must be thread-safe.

API functions that previously took a MLParametersPointer type as an argument or returned a

MLParametersPointer type now instead take or return a char * type.

API functions that take as an argument or return a mlapi_result type now take or return type

int.

API functions that take as an argument or return a mlapi_error type now take or return type

int.

API functions that take as an argument or return a mlapi_token type now take or return type

int.

API functions that take as an argument or return a mlapi_packet type now take or return type

int.

API functions that take as an argument or return a MLPointer type now take or return void *.

The MLOpen* functions previously took type long * for the error variable but now take type

int *.

Systems Interfaces and Deployment 101

The MLOpen* functions previously took type long * for the error variable but now take type

int *.

The header file mathlink.h now contains several new error definitions related to the Unicode

character encoding forms.

 Error code Interpretation

 MLEPDATABAD MathLink encountered invalid character data in given charac -
ter encoding

 MLEPSCONVERT Unable to convert from given character encoding to MathLink
encoding

 MLEGSCONVERT Unable to convert from MathLink encoding to requested
character encoding

MLPutMessage() and MLGetMessage() now use types int and int * respectively instead of

the dev_message and dev_message * types.

MLSeekMark() and MLSeekToMark() now use type int rather than type long for the expres-

sion index.

The functions in the following table took long types for some arguments; they now take int.

 MLGetRawData() MLGetData()

 MLGetArgCount() MLGetRawArgCount()

 MLBytesToGet() MLRawBytesToGet()

 MLExpressionsToGet() MLTakeLast()

 MLPutRawSize() MLPutRawData()

 MLPutArgCount() MLPutComposite()

 MLBytesToPut()

MLGetReal() is now an actual API function rather than a #define alias to MLGetDouble().

MLGetReal() still has the same functionality as MLGetDouble().

MLActivate() is now an actual API function rather than a #define alias to MLConnect().

MLActivate() still has the same functionality as MLConnect().

The functions in column one listed below are now obsolete. New programs should use the

functions listed in column two for replacement functionality.

 MLCheckFunction() MLTestHead()

 MLCheckFunctionWithArg() MLTestHead()

 MLGetShortInteger() MLGetInteger16()

 MLGetInteger() MLGetInteger32()

102 Systems Interfaces and Deployment

 MLGetLongInteger() MLGetInteger64() for 64-bit integers or MLGetInteger32()
for 32-bit integers

 MLGetFloat() MLGetReal32()

 MLGetDouble() MLGetReal64()

 MLGetLongDouble() MLGetReal128()

 MLGetShortIntegerArrayData() MLGetInteger16ArrayData()

 MLGetIntegerArrayData() MLGetInteger32ArrayData()

 MLGetLongIntegerArrayData() MLGetInteger64ArrayData() for 64-bit integers or
MLGetInteger32ArrayData() for 32-bit integers

 MLGetFloatArrayData() MLGetReal32ArrayData()

 MLGetDoubleArrayData() MLGetReal64ArrayData()

 MLGetLongDoubleArrayData() MLGetReal128ArrayData()

 MLGetShortIntegerArray() MLGetInteger16Array()

 MLGetIntegerArray() MLGetInteger32Array()

 MLGetLongIntegerArray() MLGetInteger64Array() for 64-bit integers or
MLGetInteger32Array() for 32-bit integers

 MLGetFloatArray() MLGetReal32Array()

 MLGetDoubleArray() MLGetReal64Array()

 MLGetLongDoubleArray() MLGetReal128Array()

 MLDisownShortIntegerArray() MLReleaseInteger16Array()

 MLDisownIntegerArray() MLReleaseInteger32Array()

 MLDisownLongIntegerArray() MLReleaseInteger64Array() for 64-bit integers or
MLReleaseInteger32Array() for 32-bit integers

 MLDisownFloatArray() MLReleaseReal32Array()

 MLDisownDoubleArray() MLReleaseReal64Array()

 MLDisownLongDoubleArray() MLReleaseReal128Array()

 MLGetIntegerList() MLGetInteger32List(()

 MLGetRealList() MLGetReal64List()

 MLDisownIntegerList() MLReleaseInteger32List()

 MLDisownRealList() MLReleaseReal64List()

 MLPutShortInteger() MLPutInteger16()

 MLPutInteger() MLPutInteger32()

 MLPutLongInteger() MLPutInteger64() for 64-bit integers or MLPutInteger32()
for 32-bit integers

 MLPutFloat() MLPutReal32()

 MLPutDouble() MLPutReal64()

 MLPutLongDouble() MLPutReal128()

 MLPutShortIntegerArrayData() MLPutInteger16ArrayData()

 MLPutIntegerArrayData() MLPutInteger32ArrayData()

 MLPutLongIntegerArrayData() MLPutInteger64ArrayData() for 64-bit integers or
MLPutInteger32ArrayData() for 32-bit integers

 MLPutFloatArrayData() MLPutReal32ArrayData()

 MLPutDoubleArrayData() MLPutReal64ArrayData()

Systems Interfaces and Deployment 103

 MLPutLongDoubleArrayData() MLPutReal128ArrayData()

 MLPutShortIntegerArray() MLPutInteger16Array()

 MLPutIntegerArray() MLPutInteger32Array()

 MLPutLongIntegerArray() MLPutInteger64Array() for 64-bit integers or
MLPutInteger32Array() for 32-bit integers

 MLPutFloatArray() MLPutReal32Array()

 MLPutDoubleArray() MLPutReal64Array()

 MLPutLongDoubleArray() MLPutReal128Array()

 MLPutIntegerList() MLPutInteger32List()

 MLPutRealList() MLPutReal64List()

 MLGetUnicodeString() MLGetUCS2String()

 MLGetUnicodeSymbol() MLGetUCS2Symbol()

 MLPutUnicodeString() MLPutUCS2String()

 MLPutUnicodeSymbol() MLPutUCS2Symbol()

 MLPut16BitCharacters() MLPutUCS2Characters()

 MLDisownUnicodeString() MLReleaseUCS2String()

 MLDisownUnicodeSymbol() MLReleaseUCS2Symbol()

Interface 3 changes the default linkprotocol for linkmode Listen and linkmode Connect links. By

default the MathLink library will create "SharedMemory" links for linkmode Listen and linkmode

Connect links on all platforms.

104 Systems Interfaces and Deployment

