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Abstract 26 

Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, 27 

we performed longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, 28 

collecting samples pre-infection, serially during infection, and after clinical recovery. Using 29 

plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identified 30 

transcriptomic and proteomic signatures of COVID-19 severity, and found distinct temporal 31 

molecular profiles in patients with severe disease. Supervised learning revealed that the 32 

plasma proteome was a superior indicator of clinical severity than the PBMC transcriptome. 33 

We showed that both the levels and trajectory of plasma LRRC15, a proposed co-receptor for 34 

SARS-CoV-2, are the strongest predictors of clinical outcome. Strikingly, we observed that 35 

two months after the acute infection, patients still display dysregulated gene expression 36 

related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which 37 

may explain the prolonged thrombotic risk following COVID-19. 38 

 39 

 40 

Introduction 41 

 42 

COVID-19, caused by the SARS-CoV-2 virus, is a highly heterogenous disease. In most 43 

individuals, it is a mild, self-limiting illness, but some individuals develop severe disease, 44 

typically manifesting as respiratory failure with marked systemic inflammation and 45 

immunopathology. Multiple studies have described immunological [1,2], transcriptomic [3–7], 46 

and proteomic [8–16] correlates of severe disease. The importance of an aberrant host 47 

immune response in tissue injury in severe COVID-19 is supported by the efficacy of anti-48 

inflammatory treatments. These include glucocorticoids [17], monoclonal antibodies blocking 49 

the interleukin-6 receptor [18,19], and the Janus kinase (JAK) inhibitor baricitinib [20]. A wide 50 

range of additional therapies directed at specific elements of the inflammatory response has 51 

been developed for immuno-inflammatory diseases and present potential repurposing 52 

opportunities for the treatment of severe COVID-19. Understanding the molecular basis for 53 

severe COVID-19 is critical for the rational selection of such therapies. 54 

 55 

Risk factors for severe COVID-19 include age, male sex, and the presence of comorbidities 56 

such as chronic kidney disease (CKD). In CKD, the risk of severe COVID-19 is proportional to 57 

the degree of renal impairment [21]. End-stage kidney disease (ESKD) confers particularly 58 

high risk, with a population-based study estimating a hazards ratio for death of 3.69 [21] and 59 

a European registry study reporting 23.9% 28-day mortality in dialysis patients with COVID-60 

19 [22]. In part, this is because ESKD patients are enriched for other risk factors for severe 61 

COVID-19, including cardiometabolic disease. However, even after adjustment for these, 62 
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ESKD remains independently associated with the risk of severe COVID-19. In addition, ESKD 63 

patients display impaired vaccine responses [23,24], and those on haemodialysis cannot 64 

shield effectively during lockdowns as they need to access dialysis facilities regularly. 65 

 66 

Here, we investigated the host response to SARS-CoV-2 in ESKD patients on haemodialysis 67 

since study of such an at-risk group should enhance the probability of identifying severity 68 

signals and might also point to either an exaggerated or even distinct immunological response 69 

to the virus. Moreover, ESKD patients receiving haemodialysis present a unique opportunity 70 

for serial blood sampling of both outpatients and inpatients with COVID-19, since patients 71 

must attend medical facilities for regular dialysis regardless. This enabled us to perform 72 

longitudinal analysis and avoid the selection bias that affects studies limited solely to 73 

hospitalised patients. 74 

 75 

The host response to SARS-CoV-2 is orchestrated by a complex network of cells and 76 

mediators, including circulating proteins such as cytokines and soluble receptors. Soluble 77 

proteins play key roles in multiple biological processes, including signaling, host defence and 78 

repair, and are potential biomarkers and therapeutic targets. We therefore hypothesised that 79 

a comprehensive analysis of both circulating proteins and immune cells should yield valuable 80 

and complementary insights into the pathobiology of COVID-19. To this end, we used the 81 

aptamer-based SomaScan platform that provides the broadest available coverage of the 82 

plasma proteome (6,323 proteins), combined with RNA-sequencing and flow cytometry of 83 

peripheral blood mononuclear cells (PBMCs). We integrated these data to provide a 84 

comprehensive view of the COVID-19 multi-omic landscape, enabling us to link transcriptomic 85 

and cellular changes with circulating proteins. Supervised learning identified plasma levels of 86 

the LRRC15 protein, a recently proposed alternative receptor for SARS-CoV-2, as a key 87 

marker of disease severity. Uniquely, by comparing pre-infection samples to samples 88 

collected from the same individuals during COVID-19 and after clinical recovery, we revealed 89 

persistent upregulation of gene expression signatures related to vascular and clotting 90 

pathways several months after infection. These findings elucidate the biological underpinnings 91 

of the prolonged pro-thrombotic state associated with COVID-19. 92 

 93 

Results 94 

 95 

Features of patient cohorts 96 

 97 

We recruited two cohorts of ESKD patients on haemodialysis presenting with COVID-19 98 

(Figure 1A). The Wave 1 cohort consisted of 53 patients recruited during the initial phase of 99 
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the COVID-19 pandemic (April-May 2020) (Supplementary Table 1). Serial blood sampling 100 

was carried out where feasible (Figure 1B), given the pressure on hospital services and the 101 

effects of national lockdown. We assessed disease severity using a WHO four-level ordinal 102 

score, categorising it into mild, moderate, severe, and critical. Of the 53 patients, 25 had a 103 

peak illness severity score of severe or critical (hereafter ‘severe/critical’) and 28 mild or 104 

moderate (‘mild/moderate’). Nine died. The majority of patients were of non-European 105 

ancestry. Further clinical and demographic details are provided in Supplementary Table 1. 106 

We also contemporaneously recruited 59 non-infected haemodialysis patients to provide a 107 

control group, selected to mirror the age, sex and ethnicity distribution of the COVID-19 cases 108 

(Supplementary Figure 1A-C). 109 

 110 

The Wave 2 cohort consisted of 17 ESKD patients with COVID-19 infected during the 111 

resurgence of cases in January-March 2021 (Supplementary Table 2). All had been recruited 112 

as part of the COVID-19 negative control group during Wave 1, thereby providing a pre-113 

infection sample collected 8-9 months earlier. For the Wave 2 cohort, we systematically 114 

acquired serial samples for all patients at regular intervals (every 2-3 days over the course of 115 

the acute illness) (Figure 1C). 9 patients had a peak illness severity of severe/critical (of whom 116 

4 died), and 8 mild/moderate. For 12 of these patients, we acquired convalescent samples 117 

approximately two months following infection. 118 

 119 

The effect of COVID-19 on the PBMC transcriptome and plasma proteome in ESKD patients 120 

 121 

We performed transcriptomic profiling using RNA-seq of PBMCs. Principal components 122 

analysis (PCA) revealed a clear effect of COVID-19 in both Wave 1 (COVID-19 positive and 123 

negative patient samples) and Wave 2 (pre-infection and subsequent COVID-19 positive 124 

samples from the same individuals) (Figure 2A). In the Wave 1 cohort, differential gene 125 

expression analysis between COVID-19 positive (n=179 samples from 51 patients) and 126 

negative samples (n=55) using linear mixed models (LMM) identified 3,026 significantly up-127 

regulated and 3,329 down-regulated genes (1% false discovery rate, FDR) (Supplementary 128 

File 1A). For the Wave 2 cohort, where we compared COVID-19 positive samples (n=90 129 

samples from 17 individuals) with pre-infection samples from these same individuals, we 130 

identified 2,871 up-regulated and 3,325 down-regulated genes (1% FDR, LMM) 131 

(Supplementary File 1A). These findings demonstrate widespread transcriptomic changes 132 

associated with COVID-19. The effect sizes for the differentially expressed genes between 133 

the Wave 1 and 2 cohorts were highly concordant (Pearson’s r 0.80) (Supplementary Figure 134 

2A), despite differences in the prevalent SARS-CoV-2 variant and developments in medical 135 

management (8 of 17 patients in the Wave 2 cohort received glucocorticoids). To identify the 136 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

5 
 

genes that were consistently differentially expressed across both cohorts, we used robust rank 137 

aggregation (RRA) (Supplementary File 1A, Supplementary Figure 3). 138 

 139 

To gain insight into the biological pathways underlying these changes, we used Gene Set 140 

Variation Analysis (GSVA) [25] to compare COVID-19 positive and negative ESKD samples 141 

(Supplementary File 1B). Enriched pathways included those related to cell cycle (e.g. “Polo-142 

like kinase mediated events”, which are involved in the cellular response to DNA damage) and 143 

host defence (e.g. “Complement cascade”, “Fc-gamma receptor-dependent phagocytosis”, 144 

and “Parasite infection”) (Supplementary Figure 4). This analysis also highlighted leukocyte-145 

endothelial interactions (“Cell surface interactions at the vascular wall”, which included SELL 146 

and CEACAM-1, -3, -6 and -8 genes). Examples of marked changes in gene expression 147 

between the pre-infection and first acute infection sample in the Wave 2 cohort included 148 

components of “Immunoregulatory interactions between a lymphoid and a non-lymphoid cell” 149 

pathway term (e.g. SIGLEC1, SIGLEC9, SELL, all increased) and “Development and 150 

heterogeneity of the ILC family” (e.g. IFNG, GATA3, RORA, all decreased) (Figure 2B).  151 

 152 

We next assessed the circulating proteome, measuring 6,323 proteins using the SomaScan 153 

platform (Supplementary File 1C). PCA showed clear differences between COVID-19 154 

positive and negative samples (Figure 2A). We identified 1,273 differentially abundant 155 

proteins between COVID-19 positive and negative samples in Wave 1 (86 samples from 37 156 

COVID-19 positive ESKD patients versus 53 non-infected ESKD patient samples, LMM) 157 

(Supplementary File 1D, Supplementary Figure 5). In Wave 2, comparison of COVID-19 158 

positive samples (n=102 samples from 17 patients) with pre-infection samples from the same 159 

individuals identified 5,265 differentially abundant proteins. The effect sizes were generally 160 

concordant between the cohorts (Pearson’s r 0.57) (Supplementary Figure 2B). As for our 161 

transcriptomic analysis, we used RRA to identify the differentially abundant proteins consistent 162 

across both cohorts (Supplementary File 1D). 163 

 164 

Enrichment analysis revealed upregulation of pathways, including “DDX58 IFIH1 mediated 165 

induction of interferon-alpha/beta”, “Wilk et al., 2021 IFN module” [26], “Host-pathogen 166 

interaction of human coronaviruses interferon induction” and “SARS-CoV-2 innate immunity 167 

evasion and cell-specific immune response”, reflecting host anti-viral responses and providing 168 

validation of our analysis (Figure 2C, Supplementary File 1E). Highly up-regulated proteins 169 

within these pathways included STAT1; DDX58 and ISG15, both crucial to the IFN-mediated 170 

antiviral response in COVID-19 [27]; IFITM3, which is up-regulated in lung epithelial cells 171 

during early SARS-CoV-2 infection [28]; and the chemokines CXCL11, CXCL1, CXCL6, 172 

CXCL5 and CXCL10. Another significantly up-regulated pathway was “Senescence-173 
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associated secretory phenotype”, which included up-regulated ubiquitin-conjugating enzymes 174 

(UBE2S, UBE2E1), histones (H2BC21, H2BU1) and STAT3 (Figure 2D). Down-regulated 175 

pathways included “Integrin cell surface interactions” and “Collagen biosynthesis and 176 

modifying enzymes” which contained collagen proteins (e.g. COL11A2, COL13A1, COL15A1) 177 

and related enzymes (e.g. P4HB, PCOLCE) (Figure 2D). 178 

 179 

Transcriptomic and proteomic changes associated with COVID-19 severity  180 

  181 

In both cohorts, the PCA of the PBMC transcriptomics revealed differences according to both 182 

severity at time of sampling and overall clinical course (defined by peak severity score) (Figure 183 

3A). There was a gradient of severity reflected in the molecular phenotype. We next assessed 184 

molecular features associated with severity at time of blood sampling, encoded as an ordinal 185 

variable. We identified 3,522 genes that were significantly associated with contemporaneous 186 

severity in the Wave 1 cohort and 657 genes in the Wave 2 cohort (LMM, 1% FDR, 187 

Supplementary File 1F, Supplementary Figure 6). We then applied GSVA to identify 188 

pathways and used RRA to combine results from each cohort (Supplementary File 1G). 189 

 190 

The up-regulated transcriptomic pathways in more severe disease included those involved in 191 

oxidative stress (“Glutathione metabolism”, “Detoxification of reactive oxygen species”), 192 

“Transcriptional regulation of granulopoiesis”, pathways containing numerous histone-193 

encoding genes (“HDACs deacetylate histones”, “Diseases of programmed cell death”, “RHO 194 

GTPases activate PKNs”) and “Complement and coagulation cascades” (Figure 3B-C, 195 

Supplementary File 1G). Down-regulated pathway terms included “TCRA pathway”, 196 

“Pathogenesis of SARS-CoV-2 mediated by nsp9-nsp10 complex”, “TP53 activity”, and “PD1 197 

signaling”, suggesting T cell activation in more severe COVID-19 (Figure 3B-C, 198 

Supplementary File 1G). 199 

 200 

PCA of the proteomic data revealed differences according to clinical severity (Supplementary 201 

Figure 7A). We found 148 and 1,625 proteins associated with disease severity in the Wave 1 202 

(86 COVID-19 positive samples) and Wave 2 (102 COVID-19 positive samples) datasets, 203 

respectively (Supplementary File 1H, Supplementary Figure 8). Pathway analysis identified 204 

15 severity-associated pathway terms that reached statistical significance (1% FDR) in both 205 

cohorts (Supplementary Figure 7B, Supplementary File 1I). Among the most upregulated 206 

pathways in more severe disease were “HDACs deacetylate histones”, pathways related to 207 

transcriptional regulation (e.g. “mRNA splicing minor pathway”, “Spliceosome”, “RNA 208 

polymerase II transcription termination”, “Processing of capped intron-containing pre mRNA”) 209 

and “RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function”, 210 
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while the most down-regulated pathways included “PD-1 signaling” and “T-cell receptor and 211 

costimulatory signaling”. Example proteins from these pathways are shown in Supplementary 212 

Figure 7C. 213 

 214 

Severe COVID-19 is associated with dynamic multi-omic modular trajectories  215 

 216 

We next examined the temporal trajectories of the transcriptome and the proteome during 217 

COVID-19 by explicitly modelling molecular profiles with respect to time following symptom 218 

onset (Methods). To aid biological interpretation, we first applied a dimension reduction 219 

strategy using weighted gene correlation network analysis (WGCNA) [29]. WGCNA identified 220 

23 modules of co-expressed genes (which we denote with the prefix ‘t’) (Supplementary File 221 

1J), and 12 proteomic modules (denoted with ‘p’) (Supplementary File 1K). Longitudinal 222 

modelling revealed 8 transcriptomic and 5 proteomic modules with significantly (5% FDR) 223 

different temporal patterns in patients with mild/moderate versus severe/critical disease (LMM 224 

time x clinical course (TxCC) interaction - Methods) (Supplementary Tables 3-4). Typically, 225 

the modules displayed a flat temporal profile in mild/moderate COVID-19, whereas there was 226 

a dynamic profile in severe/critical disease (Figure 4A, Supplementary Figure 9). Some 227 

modules rose with time in severe/critical patients (e.g. tB, tL, p9 and p12), whilst others 228 

dropped (e.g. tC, tP, tI, p7). Examples of individual genes from module tB exhibiting this 229 

behaviour include MMP9, ORM1, LRRN1 (Figure 4B). 230 

 231 

We identified significant associations between modules, with transcriptomic and proteomic 232 

modules clustered into larger positively or negatively correlated groupings (Figure 4C). The 233 

inter-modular associations appeared to strongly reflect association with COVID-19 severity at 234 

time of sampling (Supplementary Tables 3-4), implying that this is a strong underlying factor 235 

in the -omics data. Consistent with this, integrated analysis of the transcriptomic and proteomic 236 

datasets using MEFISTO [30] revealed a single factor that had a significantly different 237 

trajectory in severe/critical versus mild/moderate disease (p<0.0001, LMM TxCC) 238 

(Supplementary Figure 10). 239 

 240 

We characterised the modules by pathway analysis (Figure 4A, Supplementary Tables 3-4, 241 

Supplementary File 1L, Supplementary File 1M). We also investigated whether disease 242 

trajectory-associated transcriptomic modules might reflect a shift in cell-type proportions, 243 

estimated using the CIBERSORTx algorithm (Methods) (Supplementary Figure 11, 244 

Supplementary File 1N). The severity-associated modules tB and tJ were both strongly 245 

positively associated with myeloid cell proportions, particularly neutrophils, and negatively 246 

associated with lymphocyte subsets (Supplementary Figure 11). The presence of a 247 
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neutrophilic gene signature in the PBMC preparations may indicate the presence of low-248 

density granulocytes. Consistent with this, hub genes in Module tB (including TECPR2, 249 

CSF3R, STX3; Figure 4A) are associated with granulocytes and autophagy, and pathway 250 

analysis of the module genes revealed enrichment for pathways including “Neutrophil 251 

degranulation” and “ROS and RNS production in phagocytes” (including genes encoding the 252 

key cytosolic components of the phagocyte NADPH oxidase such as NCF1, NCF2 and NCF4). 253 

Module tB also contains genes encoding calcium-binding proteins (e.g. S100A6, S100A9, 254 

S100A11, S100A12) that play important roles in regulating inflammatory pathways [31], as 255 

well as integrins (e.g. ITGA1, ITGAM, ITGB4, ITGAX, ITGAD), adhesion molecules (e.g. 256 

CEACAM1, CEACAM3, CEACAM4, ICAM3), OSM (encoding Oncostatin M) and CSF1 257 

(encoding M-CSF). The tL module, which also displayed a rising trajectory in worse disease, 258 

was strongly positively associated with imputed plasma cell proportion (Supplementary 259 

Figure 11) and many of its members encoded immunoglobulins. The severity-associated 260 

proteomic modules that strongly correlated with transcriptomic modules tB, tJ and tL were p8 261 

and p9 (both enriched for pathways related to RNA splicing), and p12 (significantly enriched 262 

for the pathway “HDACs deacetylate histones”) (Supplementary Table 4). The latter is 263 

consistent with our earlier observations that a histone pathway signature was prominently 264 

associated with COVID-19 severity in both the RNA-seq (Figure 3C, Supplementary Figure 265 

6) and plasma proteomic data (Supplementary Figure 7C). 266 

 267 

In contrast to tB, tJ and tL, the other transcriptomic modules (tP, tC, tF, tI, tN) all displayed a 268 

decreasing trajectory in patients with worse disease (Figure 4A). These transcriptomic 269 

modules tended to be positively associated with imputed lymphocyte subset proportions and 270 

negatively associated with imputed myeloid proportions, implying that higher lymphocyte-271 

related gene signatures and lower myeloid-related ones is a favourable prognostic sign 272 

(Supplementary Figure 11). While we cannot distinguish correlation from causation or indeed 273 

reverse causation, it is possible that these modules represent genes that enable an 274 

appropriate host response enabling viral clearance without an excessive inflammatory 275 

response. 276 

 277 

Flow cytometry identifies markers of enhanced interferon signaling early in severe disease 278 

 279 

To understand whether transcriptional signatures in PBMCs reflected changes in blood cell 280 

proportions, we performed flow cytometry on a subset of PBMC samples from the Wave 2 281 

cohort. We found no major difference in the overall proportions of myeloid or lymphoid cells 282 

within the PBMC fraction between pre-infection and COVID-19 positive samples, except for a 283 

reduction in the proportion of type 2 dendritic cells (Supplementary Figure 12). Similarly, 284 
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there was little difference in the distribution of cells between mild/moderate and severe/critical 285 

patients. We observed some severity-related differences within cell subsets. Within lymphoid 286 

cells, we noted higher expression of the activation marker CD69 on CD4+ T cells at day 7 in 287 

severe/critical disease compared to either pre-infection or mild/moderate disease 288 

(Supplementary Figure 13A). At day 14, there was an increase in CD38hi plasmablasts in 289 

severe/critical disease compared to pre-infection or mild/moderate samples (Supplementary 290 

Figure 13B). We also found that in severe/critical patients, there was a progressive drop in 291 

the proportion of non-classical monocytes over the first 14 days of the illness that was more 292 

marked than in mild/moderate patients (Supplementary Figure 14A). In severe/critical 293 

patients there was a greater proportion of intermediate and non-classical monocyte subsets 294 

expressing CD38 compared both to pre-infection samples and to mild/moderate patients 295 

(Supplementary Figure 14B), likely reflecting enhanced activation [30]. In classical 296 

monocytes there was a similar, but non-significant, trend. We found higher expression of 297 

proliferation-associated Ki67 on classical monocytes in COVID-19 versus pre-infection 298 

samples in both mild/moderate and severe/critical patients (Supplementary Figure 14C). In 299 

our transcriptomic data we identified increased SIGLEC1 gene expression in COVID-19 300 

(Figure 2B). SIGLEC-1 is exclusively expressed by CD14+ monocytes at the protein level. 301 

SIGLEC-1 expression measured by flow cytometry correlated with GSVA enrichment score of 302 

type I IFN signatures (Supplementary Figure 14D). We observed SIGLEC1 expression 303 

increased at greater intensity as early as day 0-3 post infection in severe/critical versus 304 

mild/moderate patients, suggesting stronger and a more immediate type I IFN response in 305 

severe COVID-19 (Supplementary Figure 14E). 306 

 307 

Longitudinal cytokine/chemokine analysis reveals distinct temporal profiles that distinguish 308 

disease severity 309 

 310 

Many plasma proteins associated with severe COVID-19 are canonically intra-cellular 311 

proteins. Their elevation in severe COVID-19 may therefore be a readout of increased cell 312 

turnover, death, stress, and viral hijacking of host cellular machinery. Consequently, we 313 

performed a more focussed analysis examining proteins whose primary biological role is to 314 

act extra-cellularly (e.g. cytokines, chemokines, growth factors and their receptors). These 315 

classes of proteins are important therapeutic targets in inflammatory diseases [32]. 316 

Accordingly, we modelled the temporal profiles of 232 proteins that fell within the KEGG 317 

pathway “Cytokine-cytokine receptor interaction”. Fifty proteins had significantly different 318 

profiles in patients with a severe/critical clinical course versus those with mild/moderate ones 319 

(TxCC interaction effect, 5% FDR; Supplementary File 1O). Proteins exhibited distinct 320 

patterns of divergence between severe/critical and mild/moderate disease over time (Figure 321 
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5A). Some (e.g. IL1b, IL6, IL15RA, CCL2) showed a relatively stable temporal profile in 322 

mild/moderate patients but rising trajectories in severe/critical patients (Figure 5B). Others 323 

(e.g. CCL15, TNFSF13B (BAFF), PDGFRB, EDAR, IFNA10, IFNA13, IFNA16, IFNE and 324 

IFNL3) were elevated early in the disease course and decreased over time, but displayed 325 

more marked initial elevations in severe/critical patients (Figure 5C). Yet other proteins 326 

displayed temporal profiles in mild/moderate patients that were inverted compared to 327 

severe/critical. For example, CD40LG, TNFSF10 (TRAIL) and IL11 were reduced in the 328 

severe/critical versus the mild/moderate group at early timepoints but increased in 329 

severe/critical patients later (Figure 5D). Conversely, leptin, INHBA (inhibin A), and CCL22 330 

were initially higher in severe/critical than mild/moderate patients but with the reverse pattern 331 

later on (Figure 5E). These data illustrate the dynamic nature of the soluble protein response 332 

and how this varies according to disease severity, highlighting the limitation of studies that use 333 

a single snapshot. 334 

 335 

Plasma LRRC15 as a predictor of COVID-19 severity 336 

 337 

We next investigated whether clinical severity could be inferred from the transcriptomic and/or 338 

proteomic data and which had the better predictive performance. For this analysis, we 339 

combined the COVID-19 cases from both cohorts. For each COVID-19 patient, we selected 340 

the first sample at the patient’s peak severity score so that there was one sample per patient. 341 

To predict COVID-19 severity at time of sampling, we employed two supervised learning 342 

methods, lasso and random forests. We applied these separately on i) the plasma proteomic 343 

data; ii) the PBMC transcriptomic data; and iii) the combination of both (the multi-omic data). 344 

 345 

The proteomic-based models consistently outperformed the transcriptome-based ones, with 346 

non-overlapping 95% confidence intervals (Figure 6A, Supplementary Figure 15A). The 347 

lasso model generated on the proteome had an estimated area under the curve (AUC) of 0.93 348 

(versus 0.86 for the transcriptome). The random forests model generated on the proteome 349 

had an AUC of 0.88 (versus 0.83 for the transcriptome). The models based on the proteome 350 

alone also had greater predictive performance than those trained on the multi-omic data, 351 

although the confidence intervals for the AUC estimates overlapped (Figure 6A, 352 

Supplementary Figure 15A). 353 

 354 

We next examined the supervised learning models to identify the most important biomarkers 355 

of severe/critical disease (Methods) (Figure 6B, Supplementary Figure 15B, 356 

Supplementary File 1P-R). Although only a minority of the input features to the “multi-omic” 357 

model were proteins (34%; 6,323/18,548), proteins made up the majority of the top 15 most 358 
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important predictors (10/15 for lasso and 9/15 for random forests). This, and our finding that 359 

the plasma proteome was a superior predictor of severity than the PBMC transcriptome, 360 

highlights that plasma proteins provide a valuable read-out of the pathophysiological 361 

processes in severe COVID-19. 362 

 363 

Importantly, both lasso and random forests identified plasma LRRC15 protein levels as the 364 

most important predictor of COVID-19 severity. Interestingly, this protein was recently 365 

identified by two pre-prints as a receptor for SARS-COV-2 [33,34]. We next examined 366 

LRRC15’s longitudinal trajectory over the course of COVID-19 infection, finding that it 367 

displayed a different temporal profile dependent on the disease course (p<0.0001, TxCC 368 

interaction, LMM). The concentration was stable in most individuals with mild/moderate 369 

COVID-19 (Figure 6C), whereas it decreased over time in severe/critical patients. Thus, a 370 

snapshot level of LRRC15 and its dynamic profile over time can convey information on the 371 

current clinical state of the patient and the overall course of the disease, respectively. 372 

 373 

Persistent deranged platelet and coagulation pathways in convalescence 374 

 375 

For 12 of the 17 patients in the Wave 2 cohort, we obtained a sample after clinical recovery at 376 

approximately two months following the acute infection. PCA analysis of the PBMC 377 

transcriptome showed that while pre-COVID-19 and convalescent samples appeared more 378 

similar than samples taken during COVID-19, there were differences between the 379 

convalescent samples and their pre-infection counterparts (Figure 7A), indicating that they 380 

have not fully returned to baseline. Comparison of the convalescent samples to their paired 381 

pre-COVID-19 samples revealed 25 significantly differentially expressed genes (1% FDR), of 382 

which 24 were up-regulated post-COVID-19 (Figure 7B, Table 1, Supplementary File 1S). 383 

Up-regulated clotting-related genes included PF4 (encoding platelet factor 4) and the related 384 

gene PF4V1 (platelet factor 4 variant 1). Of note, these genes are located in the same genomic 385 

region on chromosome 4, along with the chemokine CXCL5, which was also significantly up-386 

regulated. Another nearby gene, PPBP (Pro-Platelet Basic Protein, aka CXCL7), was also up-387 

regulated in convalescent samples, although it did not quite reach significance at 1% FDR 388 

(nominal P = 3.33x10-5, adjusted P = 0.0159). The upregulation of these neighbouring genes 389 

suggests they are influenced by a shared genomic regulatory element. Overrepresentation 390 

analysis of the 25 differentially expressed genes revealed significant enrichment of terms 391 

including “Platelet activation, signaling and aggregation”, “Formation of fibrin clot/clotting 392 

cascade”, “Chemokine signaling pathway”, “SARS-CoV-2 innate immunity evasion and cell-393 

specific immune response” and “Smooth muscle contraction” (Figure 7C, Supplementary 394 

File 1T). These data suggest persistent activation of abnormal processes for a considerable 395 
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time after clinical recovery. In particular, they implicate the vascular and clotting systems, 396 

which may have implications for long-term risk of thrombosis. 397 

 398 

Discussion 399 

 400 

This study leverages a unique feature of COVID-19 in patients with ESKD on haemodialysis: 401 

the possibility of obtaining serial blood samples throughout the disease course, irrespective of 402 

disease severity. This allows a rare insight into the pathogenesis of COVID-19 through 403 

examination of the temporal evolution of molecular and cellular changes. Moreover, ESKD 404 

patients are an important group to study as they are at substantial risk of severe or fatal 405 

disease [21,35]. Despite the remarkable success of vaccination programmes at the population 406 

level, ESKD patients display impaired vaccine responses [23,24]. In addition, the majority of 407 

patients in our study were of non-white ethnicity, which is also a risk factor for severe disease 408 

[21]. 409 

 410 

Most studies of circulating proteins in COVID-19, including our previous work, have used Olink 411 

immunoassay technology [8–10] or mass spectrometry [11,12]. The broadest Olink assay 412 

system, used in the study of Filbin et al [8], measures 1,472 proteins, while mass spectrometry 413 

is generally limited to reliable detection of less than 1,000 plasma proteins and lacks sensitivity 414 

for low abundance proteins. A small number of studies have employed the aptamer-based 415 

SomaScan v4 platform, that measures 4,665 unique proteins [8,13–16]. Here, we used the 416 

SomaScan v4.1, which measures 6,323 unique proteins, and complemented this with RNA-417 

seq and flow cytometry. Our study is strengthened by data from two cohorts from different 418 

waves of the pandemic, and the comparison of samples from before, during and after COVID-419 

19 from the same individuals. 420 

 421 

Plasma proteomics identified several pathways upregulated in COVID-19 related to host 422 

defence against viruses, including those previously described in SARS-CoV-2. Our PBMC 423 

transcriptomic analysis identified numerous pathways that are up-regulated in COVID-19. 424 

Many have been identified in previous studies of COVID-19 in other populations without 425 

ESKD, indicating the presence of common patterns of COVID-19-related immunological 426 

abnormalities. Examples include type 1 interferon signaling, the complement cascade, and 427 

genes reflecting leukocyte-vascular interactions. Other up-regulated pathways included “Polo-428 

like kinase mediated events” and “Golgi-cisternae peri-centriolar stack re-organisation". Both 429 

are likely to reflect the extensive cell division of immunocytes that occurs in COVID-19. For 430 

instance, the pericentriolar stacks of Golgi cisternae undergo extensive fragmentation and 431 

reorganization in mitosis. Similarly, polo-like kinase is crucial for facilitating the G2/M 432 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

13 
 

transition. These findings are consistent with the up-regulation of APC-Cdc20 mediated 433 

degradation of Nek2A and other APC-Cdc20 related processes that we observed in the 434 

proteomic data; Cdc20 is a protein that is key to the process of cell division. 435 

 436 

Transcriptomic and proteomic associations with severe COVID-19 converged on some 437 

unifying themes. For example, up-regulation of histone-encoding genes and elevated plasma 438 

histone protein levels were both markers of COVID-19 severity. The increased expression of 439 

histone-encoding transcripts may indicate increased immune cell proliferation. In each cell 440 

cycle, sufficient histones are needed to package the newly replicated daughter DNA strands, 441 

requiring tight coupling of histone synthesis to the cell cycle [36]. Excess histones within cells 442 

can trigger chromatin aggregation and block transcription [37]. Thus, in severe COVID-19, 443 

viral hijacking of cellular machinery may contribute to cellular damage through decoupling of 444 

DNA synthesis and histone transcription. The preponderance of plasma histone proteins in 445 

severe disease is likely to reflect the higher levels of cell damage and death. The presence of 446 

histone proteins in plasma, however, is likely to represent more than just a marker of disease. 447 

Histones are constituents of neutrophil extracellular traps (NETs) which contribute to tissue 448 

injury in severe COVID-19. In addition, histones constitute powerful damage associated 449 

molecular patterns (DAMPs) and can perpetuate inflammation via ligation of toll-like receptors 450 

and direct damage to epithelial and endothelial cells [38]. Upregulation of pathways related to 451 

control of transcription and translation was another feature of severe COVID-19 452 

(Supplementary Figure 7B), perhaps reflecting subversion of normal cell biology by SARS-453 

CoV-2. In keeping with this, studies of cells infected with SARS-CoV-2 revealed “re-shaping” 454 

of processes including translation, splicing and nucleic acid metabolism [39,40]. 455 

 456 

Modular analysis highlighted a rising neutrophilic gene signature as the illness progressed in 457 

severe/critical patients, with enrichment of reactive oxygen and nitrogen species pathways. 458 

This suggests prolonged activation of neutrophils and their key effector pathways including 459 

NET formation. This neutrophilic gene signature likely indicates the presence of low-density 460 

granulocytes within the PBMC fraction. Data from other infections suggest that phagocyte 461 

NADPH oxidase-derived reactive oxygen species can be detrimental in acute viral infection; 462 

mice lacking components of the NADPH oxidase have reduced disease severity and 463 

inflammation in response to influenza and lymphocytic choriomeningitis virus infection 464 

[41][42][43]. 465 

 466 

Cytokines and their receptors play a major role in the pathogenesis of inflammatory diseases 467 

and are important targets of existing drugs [32]. Longitudinal examination of plasma 468 

cytokines/chemokines revealed divergence temporal trajectories between disease severity 469 
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strata, manifesting in several patterns (Figure 5). For example, in patients with a 470 

severe/critical disease course, IL11 was reduced early on but increased later relative to more 471 

indolent disease (Figure 5D). IL11 is known to cause progressive fibrosis [44,45], and the 472 

marked increases late in severe/critical disease may have implications for the development of 473 

pulmonary sequelae. Leptin, INHBA (inhibin A), and CCL22 showed the opposite pattern 474 

(Figure 5E). Leptin has roles in both cell metabolism and immunity with many immune cells 475 

responding to leptin directly via the leptin receptor, resulting in a pro-inflammatory phenotype 476 

[46]. It is produced by adipocytes, so its elevation early in severe/critical disease may be a 477 

read-out of higher body mass index, which is a risk factor for severe COVID-19, or increased 478 

cell metabolism/turnover. Its fall over time in severe/critical patients may reflect weight loss 479 

and cell death. Whether leptin is also directly influencing risk of severe disease through its 480 

immunological effects is unclear. Inhibin-A progressively increased over time in mild/moderate 481 

patients but fell in severe/critical patients. Inhibin-A negatively regulates dendritic cell 482 

maturation and promotes a tolerogenic phenotype [47]. Failure to upregulate it later in the 483 

disease course may therefore contribute to deleterious inflammation. Similarly, CCL22 plays 484 

an important role in switching off inflammation. CCL22 promotes dendritic cell-regulatory T 485 

cell interactions and CCL22 deficiency is associated with excessive pathogenic inflammation 486 

in mice [48]. 487 

 488 

Proteins in the type 1 interferon (IFN) pathway were higher in severe/critical than 489 

mild/moderate patients early in disease (Figure 5C), suggesting a paradoxical role of this 490 

pathway in COVID-19. While inherited or acquired deficiencies of IFN proteins predispose to 491 

risk of severe COVID-19 [49,50], our data suggest that the picture may be more complex. 492 

Thus, IFNs may act as a double-edged sword, with harm to the host from both insufficient 493 

responses (leading to failure to control the virus) and from excessive responses (resulting in 494 

immunopathology). While we cannot exclude the possibility that increased IFNs is a 495 

consequence rather than a cause of severe disease, their elevation very early in disease 496 

suggests this is less likely. Another consideration is that the greater IFN response in severe 497 

disease might reflect higher viral burden. 498 
 499 
Using two distinct supervised learning methods, we observed that the plasma proteome better 500 

captures disease severity than the PBMC transcriptome. When supervised learning algorithms 501 

were trained on both the proteomic and transcriptomic data simultaneously, plasma proteins 502 

dominate the list of important biomarkers. There are several reasons why this might be the 503 

case. Plasma is under strong homeostasis: derangement is a marker of loss of physiological 504 

control. Plasma proteins may provide important read-outs of both pathogenesis and tissue 505 
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injury by reflecting the activity of cell types other than PBMCs, such as neutrophils, 506 

endothelium and hepatocytes (a major source of coagulation and complement proteins). 507 

 508 

A striking finding was the predictive value of plasma levels of LRRC15 in indicating COVID-509 

19 severity. Longitudinal profiling revealed that LRRC15 levels remain stable in those with a 510 

mild/moderate clinical course but decrease over time in severe/critical illness (Figure 6C). Our 511 

findings are particularly intriguing as two recent pre-prints have identified LRRC15 as an 512 

accessory factor for SARS-CoV-2 entry to cells. Using arrayed transmembrane protein and 513 

pooled genome-wide CRISPR activation screens, Shilts and colleagues demonstrated that 514 

the SARS-CoV-2 spike protein interacts with LRRC15 [33]. Both screens identified the 515 

interaction and the CRISPRa screen identified LRRC15 and the established SARS-CoV-2 516 

binding partner, ACE2, as the two most prominent interactors. This work also showed that 517 

ACE2 and LRRC15 bind the C-terminal domain of the spike protein, which contains the 518 

receptor binding domain, suggesting that the two proteins may compete for spike protein 519 

binding. Song and colleagues also used a CRISPRa approach to identify proteins that could 520 

bind the SARS-CoV-2 spike protein to the A375 melanoma cell line [34]. The screen identified 521 

ACE2 and LRRC15, and further showed that the interaction took place with the receptor 522 

binding domain of the spike protein. Expression of LRRC15 on a HeLa cell line that expresses 523 

ACE2 inhibited the entry of a SARS-CoV-2 spike pseudovirus. This paper notes, however, 524 

that LRRC15 is expressed on different cells from those that express ACE2 and proposes that 525 

LRRC15 inhibits virally entry in trans, acting as a decoy and binding virions that cannot then 526 

enter cells via ACE2. Our data are consistent with a model in which a failure to up-regulate 527 

LRRC15 increases risk of severe COVID-19 disease because of the lack of a receptor that 528 

inhibits its entry to cells. Thus our study is the first human in vivo study to highlight the 529 

importance of LRRC15 in the response to SARS-CoV-2.  530 

 531 

Another unique strength of our study was the availability of baseline pre-infection samples for 532 

the Wave 2 cohort, as well as samples taken two months after the acute COVID-19 episode. 533 

Leveraging this, we demonstrate that there is chronic activation of vascular, platelet and 534 

coagulation pathways for a prolonged period after clinical resolution of disease. The elevated 535 

risk of thrombotic events during acute COVID-19 is well-documented. In a large study 536 

encompassing both hospitalised and non-hospitalised patients [51], the risk of pulmonary 537 

embolism (PE) and deep vein thrombosis (DVT) were 27-fold and 17-fold increased, 538 

respectively, in the seven days following diagnosis. These risk ratios are much higher than 539 

those previously associated with upper respiratory tract infections, suggesting unique features 540 

specific to SARS-CoV-2 infection. The risk of arterial thrombosis was also significantly 541 

increased, although smaller in magnitude than the risk of venous thromboembolism (VTE). 542 
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The pathophysiology underlying COVID-19 associated coagulopathy is complex and involves 543 

the convergence of several pathways [52]. Invasion of ACE2-expressing epithelial cells by 544 

SARS-CoV-2 results in down-regulation of ACE2 and increased angiotensin II levels. This in 545 

turn leads to increased expression of PAI1 which impairs breakdown of fibrin and promotes 546 

increased vascular tone, via smooth muscle contraction. Endothelial cell activation, 547 

complement activation, NETosis, hypoxia and cytokine/chemokine secretion all promote 548 

coagulopathy through increases in tissue factor and concomitant fibrin formation. Remarkably, 549 

our data suggest that these pathways remain dysregulated months after acute infection has 550 

resolved (Figure 7, Table 1). This is particularly important given emerging evidence indicating 551 

that the risk of thrombo-embolism extends beyond the acute phase. Ho et al showed that risk 552 

of a PE was 3.5-fold higher even in the time window 28 to 56 days after diagnosis of COVID-553 

19 [51]. A recent population-wide registry study revealed that following COVID-19 the risk of 554 

DVT and PE was significantly elevated for 70 and 110 days, respectively [53]. Although VTE 555 

risk was greatest for those with severe disease, even patients with mild disease had elevated 556 

VTE risk. Our data provide a molecular basis that begins to explain this risk. Intriguingly, 557 

among the genes up-regulated in convalescent samples compared to pre-infection was 558 

platelet factor 4 (PF4). PF4 is expressed in platelets and leucocytes. It is released from the 559 

alpha granules of activated platelets, contributing to platelet aggregation. The prolonged up-560 

regulation of PF4 after COVID-19 is therefore likely to contribute to a prothrombotic state. Of 561 

note, autoantibodies to PF4 are the pathogenic entity in both vaccine-induced thrombotic 562 

thrombocytopenia (VITT) [54,55] and heparin-induced thrombocytopenia (HIT). PF4 becomes 563 

an autoantigen when it forms complexes with adenoviral vaccine components or heparin 564 

respectively, unmasking epitopes to which autoantibodies bind [56]. It will therefore be 565 

interesting for future studies to investigate whether autoantibodies to PF4 might contribute to 566 

post-COVID-19 thrombosis in some patients. Whether the molecular abnormalities found in 567 

our study also apply to more general patient populations without background ESKD needs to 568 

be determined. Ongoing studies focusing on the sequelae of COVID-19 are well placed to 569 

address this. 570 

 571 

Our study has several limitations. ESKD patients have considerable multi-morbidity and 572 

deranged physiology, and our findings may not all be generalisable to other patient 573 

populations. We lacked a comparator group of ESKD patients with another viral infection to 574 

delineate COVID-19 specific features. We studied peripheral blood; while this can provide 575 

valuable information, it does not always reflect processes at the site of tissue injury. We 576 

performed bulk RNA-seq on PBMCs. Thus, transcriptomic signatures may reflect both 577 

changes in gene expression and also alteration in the distribution of cell subtypes within 578 

PBMCs. We mitigated this issue through use of deconvolution methods and flow cytometry, 579 
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but future studies using single cell RNA-seq and CITE-seq will provide further granularity. We 580 

did not have measurements of viral load which would have aided interpretation of the 581 

magnitude of host responses (e.g. interferon signaling). Finally, the convalescent samples 582 

were taken relatively soon after clinical recovery: it will be important for future studies to 583 

establish how long molecular abnormalities persist. 584 

 585 

In summary, we demonstrate dynamic transcriptomic, proteomic and cellular signatures that 586 

vary both with time and COVID-19 severity. We show that in patients with a severe clinical 587 

course there is increased type 1 interferon signaling early in the illness, with increases in pro-588 

inflammatory cytokines later in disease. We identify plasma levels of the proposed alternative 589 

SARS-CoV-2 receptor, LRRC15, as the strongest predictor of COVID-19 severity. Finally, we 590 

show that immune cells display dysregulated gene expression two months following COVID-591 

19, with upregulation of clotting-related genes. This may contribute to the prolonged 592 

thrombotic risk post-COVID-19. 593 
 594 
Methods 595 
 596 
Patient cohorts and ethical approval 597 
All participants (patients and controls) were recruited from the Imperial College Renal and 598 
Transplant Centre and its satellite dialysis units, London, United Kingdom, and provided 599 
written informed consent prior to participation. Study ethics were reviewed by the UK National 600 
Health Service (NHS) Health Research Authority (HRA) and Health and Care Research Wales 601 
(HCRW) Research Ethics Committee (reference 20/WA/0123: The impact of COVID-19 on 602 
patients with renal disease and immunosuppressed patients). Ethical approval was given. 603 
 604 
We recruited two cohorts of ESKD patients with COVID-19 (Figure 1A). All patients were 605 
receiving haemodialysis prior to acquiring COVID-19. The first cohort (‘Wave 1’) were recruited 606 
during the initial phase of the COVID-19 pandemic (April-May 2020). Blood samples were 607 
taken from 53 patients with COVID-19 (Supplementary Table 1). Serial blood sampling was 608 
carried out where feasible (Figure 1B), given the pressure on hospital services and the effects 609 
of national lockdown. We also contemporaneously recruited 59 non-infected haemodialysis 610 
patients to provide a control group, selected to mirror the age, sex and ethnicity distribution of 611 
the COVID-19 cases (Supplementary Figure 1A-C). 612 
 613 
The Wave 2 cohort consisted of 17 ESKD patients with COVID-19 infected during the 614 
resurgence of cases in January-March 2021 (Supplementary Table 2). These 17 individuals 615 
had all been recruited as part of the COVID-19 negative control group during Wave 1, and so 616 
a pre-infection sample collected in April/May 2020 (8-9 months preceding infection) was also 617 
available. For the Wave 2 cohort, we systematically acquired serial samples for all patients at 618 
regular intervals (every 2-3 days over the course of the acute illness) (Figure 1C). Additionally, 619 
for 12 of these 17 patients, we acquired convalescent samples at approximately 2 months 620 
post the acute COVID-19 episode (range 41-55 days from the initial sample). Convalescent 621 
samples were unavailable for four patients who died and for one patient due to logistical 622 
difficulties in sample collection. 623 
 624 
To minimise variation related to the timing of dialysis, blood samples were taken prior to 625 
commencing a haemodialysis session. 626 
 627 
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Clinical severity scoring 628 
We assessed disease severity using a four-level ordinal score, categorising into mild, 629 
moderate, severe, and critical, based on the WHO clinical management of COVID-19: Interim 630 
guidance 27 May 2020. ‘Mild’ was defined as COVID-19 symptoms but no evidence of 631 
pneumonia and no hypoxia. ‘Moderate’ was defined as symptoms of pneumonia or hypoxia 632 
with oxygen saturation (SaO2) greater than 92% on air, or an oxygen requirement no greater 633 
than 4 L/min. ‘Severe’ was defined as SaO2 less than 92% on air, or respiratory rate more 634 
than 30 per minute, or oxygen requirement more than 4 L/min. ‘Critical’ was defined as organ 635 
dysfunction or shock or need for high dependency or intensive care support (i.e. the need for 636 
non-invasive ventilation or intubation). We recorded disease severity scores throughout the 637 
illness, such that samples from the same individual could have differing severity scores 638 
according to the temporal evolution of the disease. We defined the overall clinical course for 639 
each patient as the peak severity score that occurred during the patient’s illness. Different 640 
downstream analyses utilise either the severity at the time of sample (i.e. the sample-level 641 
severity) or the overall clinical course (i.e. the patient-level severity), as described in the 642 
relevant sections below. 643 
 644 
PBMC collection protocol 645 
Peripheral blood mononuclear cells (PBMCs) were obtained by density gradient centrifugation 646 
using Lymphoprep (STEMCELL Technologies, Canada). Approximately 20 ml of blood were 647 
diluted 1x with phosphate buffered saline (PBS) with addition of 2% FBS and layered on top 648 
of 15 ml of Lymphoprep solution. The samples were then centrifuged at 800 g for 20 minutes 649 
at room temperature without break. PBMCs were collected from the interface and washed 650 
twice with PBS/2%FBS. 2 million PBMCs were centrifuged down to form a pellet and 651 
resuspended in 350 ul RLT buffer + 1% β-Mercaptoethanol (from Qiagen RNAeasy kit) for 652 
RNA extraction. Remaining PBMCs were cryopreserved in 1 ml freezing medium (FBS 10% 653 
DMSO) and stored in–80 degrees C freezer. 654 
 655 
Plasma collection.  656 
5 ml of blood was collected in EDTA tubes and centrifuged at 1000 RPM for 15 mins. Plasma 657 
was extracted and frozen at –80 degrees Celcius. 658 
 659 
RNA-seq of PBMCs 660 
RNA extraction and sequencing were done at GENEWIZ facilities (Leipzig, Germany). Total 661 
RNA was extracted from using RNeasy Mini kits (Qiagen) as per the manufacturer’s 662 
instructions, with an additional purification step by on-column DNase treatment using the 663 
RNase-free DNase Kit (Qiagen) to remove any genomic DNA. Total RNA quality and 664 
concentration was analysed using Agilent Tapestation (Agilent Tech Inc.). Samples with RIN 665 
values ≥ 6.0 and ≥ 100 ng of total RNA were used to generate RNA-seq libraries. RNA-seq 666 
libraries were made using NEBnext ultra II RNA directional kit per the manufacturer’s 667 
instruction. Poly-A RNA was purified using poly-T oligo-attached magnetic beads followed by 668 
hemoglobin mRNA depletion using QIAseq FastSelect Globin Kit to remove potential 669 
contaminating RNA from red blood cell. Then, first and second cDNA strand synthesis was 670 
performed. Next, cDNA 3' ends were adenylated and adapters ligated followed by library 671 
amplification. The libraries were size selected using AMPure XP Beads (Beckman Coulter), 672 
purified and their quality was checked using a short sequencing run on MiSeq Nano. Samples 673 
were randomized to avoid confounding of batch effects with clinical status and multiplexed 674 
libraries were run on 29 lanes of the Illumina HiSeq platform to generate approximately 30 675 
million x 150bp paired-end reads per sample. 676 
 677 
Initial quality control and alignment was performed using the nf-core RNA-seq v3.2 pipeline 678 
[57] based on nextflow [58], a workflow management system. FastQC [59] was used to 679 
evaluate and merge paired reads prior to adapter trimming using Trimgalore [60]. We used 680 
STAR [61] to align reads to GRCh38 and htseq-count [62] to generate a counts matrix. 681 
 682 
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For the Wave 1 cohort, following quality control (QC), transcriptomic data were available for 683 
179 samples from 51 COVID-19 positive ESKD patients (median 3 samples per patient, range 684 
1-8) (Supplementary Figure 1D), plus 55 non-infected ESKD patient samples. For the Wave 685 
2 cohort (17 patients), following QC, transcriptomic data were available for 90 samples 686 
collected during acute COVID-19 infection (median of 6 samples per patient, range 3-7), plus 687 
17 pre-infection samples and 12 convalescent samples. 688 
 689 
Prior to further analysis, genes with insufficient counts were removed using edgeR’s 690 
filterByExpr function [63]; for differential expression analyses, the “group” argument was set 691 
to the main group of interest. For all analyses, gene expression was TMM normalised [64], 692 
converted to counts per million (CPM) and log-transformed. We primarily used ENSEMBL 693 
identifiers [65], however for plots we report the HGNC gene ID [66] where available. For 694 
analyses that considered multiple proteins simultaneously (PCA, WGCNA, MEFISTO, 695 
supervised learning), we additionally: i) removed genes with low variance (33% of genes with 696 
the lowest maximum absolute deviation) [67]; ii) centered and scaled the data. 697 
 698 
Plasma proteomics 699 
We performed proteomics on EDTA plasma samples using the aptamer-based SomaScan 700 
platform (Somalogic, Boulder, Colorado, USA). The SomaScan v4.1 assay contains 7,288 701 
modified-aptamers (Somamers) that target human proteins. Since more than one aptamer 702 
may target the same protein, these 7,288 aptamers map to 6,347 unique proteins. 48 703 
Somamers were removed due to QC failure, so the final dataset contains 7,240 Somamers 704 
representing 6,323 unique proteins. We annotated these proteins using the Human Protein 705 
Atlas [68]; 4,980 proteins were labelled as intracellular, 1,586 were annotated as membrane 706 
proteins and 1,160 as secreted (Supplementary Figure 16A). Many proteins were labelled 707 
as both intracellular and as membrane or secreted, reflecting the biology of protein storage 708 
and extra-cellular secretion/excretion (Supplementary Figure 16B).  709 
 710 
We report proteins by their corresponding HGNC gene ID [66], which provides a more 711 
standardised nomenclature compared to protein names and allows direct comparison with the 712 
transcriptomic data. 713 
 714 
Where multiple Somamers related to the same protein, we retained these Somamers for 715 
univariate analyses such as differential abundance analyses. However, for analyses that 716 
considered multiple proteins simultaneously (PCA, WGCNA, MEFISTO, supervised learning), 717 
we selected one Somamer at random to represent each protein. One COVID-19 positive 718 
sample in the wave 2 cohort failed QC and was excluded from the analyses. The raw 719 
SomaScan data was separated by cohort. The expression values for each Somamer were 720 
inverse-rank normalised prior to downstream analyses. 721 
 722 
For the Wave 1 cohort, following QC, proteomic data were available for 86 samples from 37 723 
COVID-19 positive ESKD patients (median 3 samples per patient, range 1-3), plus 53 non-724 
infected ESKD patients. For the Wave 2 cohort (n=17 patients), following QC, proteomic data 725 
were available for 102 samples collected serially during acute COVID-19 infection (median of 726 
6 samples per patient, range 5-7) and 16 pre-infection samples.  727 
 728 
Differential expression analyses: COVID-19 positive versus negative 729 
We compared COVID-19 positive and negative patients using linear mixed models (LMM), 730 
which account for serial samples from the same individual [69]. Age, sex and ethnicity were 731 
included as covariates. A random intercept term was used to estimate the variability between 732 
individuals in the study and thus account for repeated measures. We performed differential 733 
expression analyses for the transcriptomic data and the proteomic data. The regression model 734 
for these analyses in Wilkinson-style notation was: 735 

 736 
E ~ covid_status + sex + age + ethnicity + (1 | individual) 737 
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 738 
where, E represents expression (gene or protein, depending on the data type being analysed) 739 
and “covid_status” was a categorical variable (infected/non-infected). 740 
 741 
For differential expression of proteins, we applied LMM using the lmerTest package [70]. 742 
Differential gene expression analysis was performed using the same model formula, applied 743 
using the differential expression for repeated measures (dream) pipeline [71] in the 744 
variancePartition package [72]. For all data types, we fitted LMM using restricted maximum 745 
likelihood (REML) and calculated P-values using a type 3 F-test, in conjunction with 746 
Satterthwaite’s method for estimating the degrees of freedom for fixed effects [70]. Multiple 747 
testing correction was performed using the Benjamini-Hochberg method and a 1% FDR used 748 
for the significance threshold. 749 
 750 
The Wave 1 cohort was analysed separately to the Wave 2 court. For Wave 1, we compared 751 
samples from COVID-19 positive ESKD patients to COVID-19 negative ESKD patients. For 752 
Wave 2, we compared samples from COVID-19 positive ESKD patients to samples from these 753 
patients taken approximately 8 months prior to infection. 754 
 755 
When reporting the number of differentially expressed proteins in the text we refer to the 756 
number of unique proteins rather than the number of significant Somamers.  757 
 758 
Testing transcriptomic and proteomic features for association with COVID-19 severity 759 
We performed a within-cases analysis, testing for the association of gene expression with 760 
COVID-19 severity at time of sampling. We used the four-level WHO severity rating (mild, 761 
moderate, severe, critical), which could vary between samples from the same individual 762 
reflecting the clinical status at the time the same was taken. We again used a linear mixed 763 
model to account for samples from the same individual. The regression model was: 764 
 765 

E ~ covid_severity + sex + age + ethnicity + (1 | individual) 766 
 767 
The “covid_severity” variable represents severity at the time of the sample and was encoded 768 
using orthogonal polynomial contrasts to account for ordinal nature of severity levels. 769 
 770 
COVID-19 positive samples from the Wave 1 cohort were analysed separately to those from 771 
the Wave 2 cohort. 772 
 773 
The same approach was used for the proteomics data. 774 
 775 
Gene set variation analysis 776 
To identify pathways that were up- or down-regulated in COVID-19 positive versus negative 777 
samples, we applied gene set variation analysis (GSVA) [25]. To define gene sets, we used 778 
the MSigDb C2 canonical pathways [73]; we discarded sets with less than ten genes. We 779 
additionally included a gene set for the peripheral immune response defined for patients with 780 
severe COVID-19 [26] and a set of type 1 interferons active in patients with systemic lupus 781 
erythematosus (SLE) [74]. After reduction of genes into gene sets, we then performed testing 782 
for dysregulated pathways using the same linear mixed modelling approach as for the 783 
differential gene and protein expression analyses. P-values were adjusted by Benjamini-784 
Hochberg, with a significance threshold of 1% FDR. 785 
 786 
To dissect out the key molecules underpinning enriched pathways, we examined the genes 787 
that comprise these pathway terms and identified which of these featured most prominently in 788 
the differential gene expression analysis. 789 
 790 
We repeated this procedure for testing of association of pathways with severity at the time of 791 
sample using the 4-level ordinal score. 792 
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 793 
We then applied the same approach to the proteomics data for the COVID-19 positive versus 794 
negative analysis, and for testing associations with COVID-19 severity at the time of sample. 795 
 796 
Robust rank aggregation 797 
The Wave 1 and Wave 2 cohorts were analysed separately for both the differential expression 798 
analyses between COVID-19 positive and negative samples and for the within-cases severity 799 
analyses. To identify the associations that were most consistent between the Wave 1 and 800 
Wave 2 cohorts, for each analysis, we integrated the P-values for each cohort using robust 801 
rank aggregation (RRA) [75]. This method identifies features that are ranked higher than 802 
expected across multiple lists. RRA generates a significance score analogous to a P-value; 803 
we -log10 transform these values such that a larger score indicates more consistent 804 
associations between the Wave 1 cohort and the Wave 2 cohort. RRA was applied to the 805 
results of the transcriptomic, proteomic and GSVA analyses comparing COVID-19 positive 806 
versus negative samples from Wave 1 and Wave 2. Similarly, it was applied to the analyses 807 
testing for association of molecular features with COVID-19 severity at the time of sampling. 808 
 809 
Modelling modular longitudinal trajectories 810 
We examined the temporal trajectories of the transcriptome following infection, by explicitly 811 
modelling molecular markers with respect to time following COVID-19 symptom onset. We 812 
used a two-step approach. 813 
 814 
Step 1. To aid biological interpretation, we first applied a dimension reduction strategy using 815 
weighted gene correlation network analysis (WGCNA) [29] to identify modules of correlated 816 
molecular features. For this analysis, we combined samples from the Wave 1 and Wave 2 817 
cohorts. Additionally, since our goal was to perform longitudinal analysis, we only selected 818 
patients who had been sampled at least three times prior to 21 days following COVID-19 819 
symptom onset. The default implementation of WGCNA is not designed for use with non-820 
independent samples [76], so we modified the analysis pipeline by generating a correlation 821 
matrix using a repeated measures correlation metric (rmcorr) that is appropriate for repeated 822 
measures [77]. We used WGCNA’s pickSoftThreshold.fromSimilarity function to pick the 823 
minimum soft-thresholding power that satisfied the minimum scale free topology fitting index 824 
(R2>0.85) and maximum mean connectivity (100). We subsequently defined signed adjacency 825 
and topological overlap matrices before applying average-linkage hierarchical clustering. We 826 
cut this tree with a hybrid dynamic tree cutting algorithm, with the parameters deepSplit = 4 827 
and minClusterSize = 30 [78]. Finally, we defined eigengenes for each module and merged 828 
those with a distance less than 0.25. The eigen-genes provide a numerical representation for 829 
each module of co-expressed genes. 830 
 831 
We used the same approach to analyse the proteomic data. 832 
 833 
Step 2. To examine the trajectory of each module over time, we fitted a linear mixed model 834 
with time from symptom onset as an independent variable and the eigengene (or eigenprotein 835 
in the case of proteomic modules) as the dependent variable. Time was defined for each 836 
sample as time from first symptoms; where date of first symptoms was not available, we 837 
instead used date of first positive swab. Samples that were taken more than 21 days from 838 
each individual’s baseline date were excluded. We used R’s bs function to fit a polynomial 839 
spline of degree two to model the expression of modules with respect to time from baseline 840 
[79]. To test whether modules displayed different temporal patterns according to the overall 841 
clinical course of COVID-19 (defined as a binary variable indicating whether the peak WHO 842 
severity score was mild/moderate or severe/critical), we included clinical course as a covariate 843 
in the model, and an interaction term between time from symptom onset and clinical course 844 
(TxCC). 845 
 846 
The regression model used is displayed using Wilkinson-style notation below. 847 
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 848 
eigen-expression ~ clinical_course * time + sex + age + ethnicity + wave + (1 | individual) 849 

 850 
We extracted the P-values for the TxCC term in this model and applied Benjamini-Hochberg 851 
adjustment, using 5% FDR as the significance threshold. A significant interaction effect for the 852 
TxCC term indicates that the module has a different temporal profile in mild/moderate versus 853 
severe/critical disease. 854 
 855 
Additional WGCNA module annotation and association testing 856 
To better understand the biological information reflected in the transcriptomic and proteomic 857 
modules, we further characterised them through a multi-pronged analytical strategy. We  858 
tested association of eigen-genes and eigen-proteins with other variables. First, we tested for 859 
the association of the modules with WHO severity at the time of the sample using the LMM 860 
approach described above in subsection ‘Testing transcriptomic and proteomic features for 861 
association with COVID-19 severity’ i.e.: 862 
 863 

E ~ covid_severity + sex + age + ethnicity + wave + (1 | individual) 864 
 865 
Second, since PBMCs represent a mixed population of immune cells, we investigated whether 866 
disease trajectory-associated transcriptomic modules might reflect shift in cell type 867 
proportions. To this end, we applied CIBERSORTx, a computational algorithm to impute 868 
immune cell fractions from RNA-seq data (see subsection ‘Cell fraction imputation’ below). 869 
We then tested for correlations between these imputed immune cell proportions and module 870 
eigengenes using LMM: 871 
 872 

eigen-expression ~ cell_fraction + sex + age + ethnicity + wave + (1 | individual)  873 
 874 
Both these models included an additional fixed effect (“wave”) to reflect the cohort. 875 
 876 
Third, we performed pathway enrichment analysis on the modules using the R package 877 
clusterProfiler’s “enricher” function [80]. Gene sets were defined using MSigDB C2 canonical 878 
pathways [73]. 879 
 880 
Lastly, to understand the relationship between the transcriptomic and proteomic modules, we 881 
performed correlation analysis using LMM. 882 
 883 
5% FDR was used for statistical significance for these analyses. 884 
 885 
Cell fraction imputation 886 
We used CIBERSORTx [81] to impute cell fractions from the normalised bulk RNA-seq 887 
dataset. The program was run with default parameters We inferred the cell fractions of 22 888 
immune cell types in the isolated PBMCs of each sample using the LM22 signature matrix file 889 
[82]. 890 

 891 
Multi-omic longitudinal factor analysis with MEFISTO 892 
MEFISTO [83] is an extension of Multi-Omics Factor Analysis (MOFA) that can exploit 893 
temporal relationships between samples to find factors that change over time (from baseline). 894 
We used this method to find joint factors of variation in the transcriptomic and proteomic 895 
datasets. For the MEFISTO analysis, we used the same set of samples as in the network 896 
analysis and applied the same pre-processing steps to the data (see Methods – network 897 
analysis). Additionally, we removed genes with the lowest maximum absolute deviation [67] 898 
such that the number of genes retained were equal to the number of unique proteins measured 899 
(6,323) to avoid imbalance numbers of features between the transcriptomic and proteomic 900 
data which can impact the MEFISTO algorithm. Using the “slow” convergence criterion, 901 
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MEFISTO identified 8 factors that had a minimal variance explained of 1% in at least one data 902 
modality. 903 
 904 
We then applied the longitudinal model described earlier to test for an interaction effect 905 
between time from first symptoms and clinical course, with a latent factor identified by 906 
MEFISTO as the dependent variable. The regression model used is displayed using 907 
Wilkinson-style notation below: 908 

 909 
Latent_factor ~ clinical_course * time + sex + age + ethnicity + wave + (1 | individual) 910 

 911 
Longitudinal modelling of cytokines and cytokine receptors 912 
We modelled the temporal profiles of 232 plasma proteins that fell within the KEGG pathway 913 
“Cytokine-cytokine receptor interaction”. As for the longitudinal analyses described earlier, we 914 
used a linear mixed model with a time x clinical course interaction term. 915 
 916 

P ~ clinical_course * time + sex + age + ethnicity + wave + (1 | individual) 917 
 918 
P values for the time x clinical course interaction were extracted and adjusted for multiple 919 
testing with the Benjamini-Hochberg procedure, with significance threshold of 5% FDR. 920 
 921 
Supervised learning 922 
The goal of this analysis was to predict clinical severity from the molecular features 923 
(transcriptomic, proteomic or both). We performed supervised learning using the R caret 924 
framework [84]; caret uses the randomForest package to fit random forest models and glmnet 925 
[85] to fit lasso models. For this analysis, we only included samples on which both 926 
transcriptomics and proteomics had been performed. We then selected the earliest sample for 927 
each individual at which they had reached their peak COVID-19 WHO severity score, so that 928 
there was one sample per patient. We then categorised the clinical severity score 929 
corresponding to each sample into a binary variable such that patients with a WHO severity 930 
score of mild or moderate were considered “mild/moderate” and those with a WHO score of 931 
severe or critical were considered “severe/critical”. This resulted in n=37 mild/moderate 932 
samples and n=14 severe/critical samples.  933 
 934 
We trained models using Monte Carlo cross-validation for: i) the plasma proteomic data alone 935 
(6,323 features); ii) the PBMC RNA-seq data alone (12,225 features); and iii) the combined 936 
proteomic and RNA-seq datasets. The first step in this training process was to create 200 937 
random partitions of the data, such that 80% of the data was used to train the model in each 938 
resample and 20% was retained as a validation set. In each resample, we calculated the area 939 
under the curve (AUC) of the receiver operating characteristic (ROC) curve. We then 940 
calculated confidence intervals for the 200 AUC-ROC values generated for each model and 941 
feature type.  942 
 943 
The random forest model’s parameters were kept constant at 500 trees and the mtry value 944 
(number of proteins randomly sampled as candidates at each node) was calculated as the 945 
square root of the number of features. After cross-validation, we fitted a final random forest 946 
model using the entirety of the dataset. We extracted important features from this model using 947 
the R randomForestExplainer package, based on the accuracy decrease metric (the average 948 
decrease in prediction accuracy upon swapping out a feature). For the lasso model, the 949 
lambda value that maximised the mean AUC-ROC during cross-validation was selected. We 950 
recorded the features selected by the lasso model in each data resample; feature importance 951 
was subsequently defined as the number of models in which each feature had a non-zero 952 
coefficient. The feature importance metrics from both models were scaled by dividing their 953 
values by the maximum value, such that the most important feature has an importance metric 954 
of 1. 955 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

24 
 

 956 
Differential gene expression analysis: pre-infection versus recovery samples 957 
For the 12 individuals in the Wave 2 cohort for whom we collected a convalescent sample 958 
(approximately 2 months post-infection; range 41-55 days from the initial sample), we 959 
performed a differential gene expression analysis comparing these samples to the paired pre-960 
infection samples using LMM, implemented with the R dream package [71]. Age, sex and 961 
ethnicity were included as covariates and a random intercept term used to account for the 962 
paired nature of the samples. Statistical significance was defined as 1% FDR. To identify 963 
enriched pathways in the list of differentially expressed genes, we performed 964 
overrepresentation analyses using the same approach as described above for annotating the 965 
WGCNA modules. 966 
 967 
Flow cytometry  968 
Flow cytometry analysis was performed on a subset of the Wave 2 PBMC samples. We 969 
examined samples taken during acute COVID-19 from 17 patients (of whom 9 patients had a 970 
mild/moderate clinical course and 8 patients with severe/critical course), and pre-infection 971 
samples from 15 of these same patients. 972 
  973 
Cryopreserved PBMCs were thawed in humidified 37°C, 5% CO2 incubator and resuspended 974 
in thawing medium (RPMI, 20% FBS). PBMCs were washed twice with PBS and stained with  975 
Zombie Yellow LIVE/DEAD (Biolegend) following the manfacturer’s protocol to exclude dead 976 
cells. Then, PBMCs were washed twice with FACS buffer (1% BSA, 0.09% Azide, 1 mM 977 
EDTA), and Fc receptors were blocked with Human TruStain Fc Receptor Blocking Solution 978 
(Biolegend). Then, surface staining were performed using the selected 979 
fluorochrome-conjugated monoclonal antibodies detailed in Supplementary Table 5 for 20 980 
minutes at 4°C. Following incubation, cells were fixed and permeabilized using the 981 
eBioscience™ Foxp3 / Transcription Factor Staining Buffer Set (Invitrogen) for intracellular 982 
staining. Cells were incubated with selected antibodies or isotype controls for 30 minutes at 983 
4°C and resuspended in FACs buffer for analysis. Aurora Spectral Flow Cytometry (Cytek®) 984 
and FlowJo software, version 10 (Tree Star Inc. Ashland, OR, USA) were used for analysis of 985 
all samples. 986 
 987 
Flow cytometry statistical analysis 988 
To evaluate decomposition performance by CIBERSORTx analysis, cell proportion estimates 989 
were compared to cell percentages from Flow Cytometry analysis using Pearson’s correlation 990 
analysis (n=68 samples). We were unable to examine for the presence of LDGs using our flow 991 
cytometry data since this was performed on cryopreserved PBMCs and LDGs do not survive 992 
the freeze-thaw process (whereas we performed transcriptomics on RNA extracted from fresh 993 
PBMCs). We observed significant correlation of estimated cell proportions from CIBERSORTx 994 
analysis compared to proportions measured by flow cytometry for all other cell types (Pearson 995 
r > 0.4045, p-value < 0.0001). 996 
 997 
For severity analysis, one sample per patient was selected at a time that coincided with the 998 
expected spike in the inflammatory response (nearest sample to day 7 after symptom onset; 999 
no more than +/- 72 hours). Patients were classified according to the overall peak illness 1000 
severity into two groups (mild/moderate = 9, severe/critical = 8). Change of cell proportion 1001 
across time were accessed by grouping samples into 4 days interval post COVID-19-positive 1002 
test. One-way ANOVA was used to calculate significant differences between multiple groups 1003 
with Dunnet’s correction for multiple-way comparisons. Significance is based upon p-value < 1004 
0.05. 1005 
 1006 
 1007 
Data and code availability 1008 
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• Individual-level data for transcriptomics, proteomics and flow cytometry are available 1009 
without restriction from Zenodo (doi: 10.5281/zenodo.6497251) 1010 

• Code is available at: https://github.com/jackgisby/covid-longitudinal-multi-omics 1011 
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FIGURES 1057 
 1058 

 1059 
 1060 
Figure 1: Study design and cohort summary. A) Graphical summary of the patient cohorts, sampling, 1061 
and major analyses. B/C) For each cohort, the timing of the serial blood sampling is shown by triangles 1062 
and the temporal COVID-19 severity by coloured bars. Three patients were hospitalised prior to COVID-1063 
19 diagnosis in the Wave 1 cohort. Three of the four patients in the Wave 2 cohort with fatal outcomes 1064 
died >30 days from first positive swab. 1065 
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 1066 
Figure 2: Signatures of COVID-19 in ESKD. A) PCA of the PBMC transcriptome (left) and plasma 1067 
proteome (right). Each point represents a sample and is coloured by COVID-19 status. B) Paired violin 1068 
plots showing intra-individual comparisons of pre-infection and most severe sample (Wave 2 cohort) 1069 
during COVID-19 for selected genes. Grey lines link each individual’s pre-infection and infection 1070 
samples. All genes shown were significantly differentially expressed (1% FDR) in both cohorts. Genes 1071 
are grouped by membership to pathways that were significantly enriched (1% FDR) in GSVA. C) The 1072 
30 protein pathway enrichment terms with the greatest RRA scores (indicating consistent dysregulation 1073 
in both the Wave 1 and Wave 2 proteomic datasets), ordered by effect size. All pathway terms shown 1074 
were significantly enriched in the individual cohort analyses (1% FDR). Red= up-regulated in COVID-1075 
19 versus controls; blue= down-regulated. D) As for B, but displaying selected plasma proteins 1076 
(significant at 1% FDR). 1077 
  1078 
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 1079 
Figure 3: Association of the PBMC transcriptome and COVID-19 severity. A) PCA of the PBMC 1080 
transcriptome. Each point represents a sample and is coloured by contemporaneous COVID-19 WHO 1081 
severity (left) and overall clinical course (right). B) The 30 GSVA transcriptomic pathway enrichment 1082 
terms with the greatest RRA scores. All were significantly enriched in both Wave 1 and 2 cohorts (1% 1083 
FDR). Terms are ordered and coloured by their effect size. Red= up-regulated in more severe COVID-1084 
19; blue= down-regulated. C) Violin plots show gene expression values (Wave 1 cohort) stratified by 1085 
COVID-19 status and severity (at time of sample) for selected genes. All genes shown were significantly 1086 
associated (1% FDR) with severity in both the Wave 1 and 2 cohorts. Genes are grouped by 1087 
membership to pathways that were significantly enriched (1% FDR) in GSVA. 1088 
  1089 
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 1090 
 1091 
Figure 4: Longitudinal profiles of transcriptomic modules. A) The longitudinal profiles of significant 1092 
(5% FDR) gene modules, stratified by clinical course. Lines represent model estimates and shaded 1093 
areas represent 95% confidence intervals. B) Modelled longitudinal profiles of genes within module B 1094 
with the most significant TxCC interaction effects. Left: model estimates and 95% confidence intervals. 1095 
Right: individual-level data. C) Heatmap displaying associations (LMM) between transcriptomic and 1096 
proteomic modules (right). Red= positive correlation, blue= negative correlation. Significant 1097 
associations (5% FDR) are represented by an asterisk. 1098 
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Figure 5: Dynamic temporal changes in circulating cytokines and receptors vary between severe 1101 
and mild COVID-19. A) Heatmap displaying proteins with a significantly different temporal profile in 1102 
mild vs severe disease (TxCC, LMM, FDR <0.05). Colour indicates model estimates over time, stratified 1103 
by patient group. Proteins are clustered based on the temporal profile of the discordance between 1104 
mild/moderate and severe/critical disease. Proteins are annotated using gene symbols, with alternative 1105 
common protein identifiers in parentheses. B-E) Examples of proteins with differing patterns of 1106 
discordance over time in severe/critical versus mild/moderate patients. 1107 
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 1109 
Figure 6: Supervised learning to predict COVID-19 severity from molecular features. A) Point 1110 
estimates of area under the curve from receiver operator analysis (AUC-ROC) for predicting COVID-19 1111 
severity with 95% confidence intervals using lasso. “Both” = supervised learning on the combined 1112 
proteomic and transcriptomic data. B) Important proteins (left) and genes (right) for the lasso model. 1113 
Feature importance is scaled between 0 and 1, where 1 represents the most important feature. C) The 1114 
profile of LRRC15 plasma protein concentration over time, stratified by severity of the patients’ overall 1115 
clinical course. Left: model estimates and 95% confidence intervals (p<0.0001, TxCC interaction, LMM). 1116 
Right: raw data for each individual (right). 1117 
 1118 
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 1119 
 1120 

Figure 7: Persistent dysregulation of immune cell gene expression two months following COVID-1121 
19. A) PCA of the Wave 2 PBMC transcriptomic data, including pre-infection, infection and recovery 1122 
samples (taken 2 months after the acute illness). Each point represents a sample. Arrows link recovery 1123 
samples to the pre-infection sample from the same individual. B) Paired violin plots for differentially 1124 
expressed genes in recovery versus pre-infection samples. Grey lines link each individual’s pre- 1125 
infection sample to their recovery sample. C) All significantly enriched (5% FDR) pathway terms for the 1126 
differentially expressed genes in recovery versus pre-infection samples. 1127 
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TABLES 1129 
 1130 
Table 1: Genes that do not return to baseline 2 months after recovery from COVID-19. 1131 
Genes that are significantly differentially expressed (1% FDR) in recovery versus pre-infection 1132 
samples. Estimate represents the average difference in log CPM (counts per million). A 1133 
complete table including all genes tested can be found in Supplementary Table 1134 
recovery_results. 1135 
 1136 

Gene ID Gene name Estimate (recovery 
- pre-infection) 

P-value Adjusted P-value 

ENSG00000236304 lncRNA 1.84 5.37E-08 9.20E-04 
FSTL1 Follistatin Like 1 1.17 1.60E-07 1.37E-03 
PTGS1 Prostaglandin-Endoperoxide 

Synthase 1 
0.64 3.69E-07 2.11E-03 

SPOCD1 SPOC Domain Containing 1 1.31 6.41E-07 2.53E-03 
CXCL5 C-X-C Motif Chemokine Ligand 

5 
1.84 7.39E-07 2.53E-03 

ALOX12 Arachidonate 12-Lipoxygenase, 
12S Type 

1.33 1.24E-06 3.53E-03 

PF4 Platelet Factor 4 1.53 1.71E-06 3.91E-03 
ESAM Endothelial Cell Adhesion 

Molecule 
1.18 1.83E-06 3.91E-03 

MT-RNR1 Mitochondrially Encoded 12S 
RRNA 

1.00 2.61E-06 4.13E-03 

MMD Monocyte To Macrophage 
Differentiation Associated 

0.77 2.80E-06 4.13E-03 

ENSG00000240093 lncRNA -0.71 2.82E-06 4.13E-03 
MTURN Maturin, Neural Progenitor 

Differentiation Regulator 
Homolog 

0.54 3.11E-06 4.13E-03 

GNG11 G Protein Subunit Gamma 11 1.53 3.13E-06 4.13E-03 
CAVIN2 Caveolae Associated Protein 2 1.15 4.51E-06 5.52E-03 
DOK6 Docking Protein 6 1.59 5.00E-06 5.71E-03 
LINC00989 lncRNA 1.25 5.76E-06 5.81E-03 
SPARC Secreted Protein Acidic And 

Cysteine Rich 
1.65 6.07E-06 5.81E-03 

PF4V1 Platelet Factor 4 Variant 1 1.60 6.11E-06 5.81E-03 
ABLIM3 Actin Binding LIM Protein 

Family Member 3 
1.41 6.88E-06 6.07E-03 

MFAP3L Microfibril Associated Protein 
3 Like 

0.74 7.09E-06 6.07E-03 

CALD1 Caldesmon 1 1.78 7.79E-06 6.23E-03 
ITGB5 Integrin Subunit Beta 5 1.10 8.00E-06 6.23E-03 
LINC01750 lncRNA 2.00 1.13E-05 8.22E-03 
PCSK6 Proprotein Convertase 

Subtilisin/Kexin Type 6 
1.22 1.15E-05 8.22E-03 

PVALB Parvalbumin 2.04 1.46E-05 9.97E-03 
  1137 
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Supplementary Figures 1138 

 1139 
 1140 

 1141 
 1142 
Supplementary Figure 1: Characteristics of the Wave 1 cohort. The number of COVID-19 1143 
positive and negative patients, stratified by A), sex B), age C) ethnicity. D) Number of serial 1144 
PBMC samples with post-QC RNA-seq data available for COVID-19 patients.  1145 
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 1147 

 1148 
 1149 
Supplementary Figure 2: A) Comparison of effect sizes (coefficients from LMM) for the Wave 1150 
1 and Wave 2 infected vs non-infected differential expression analyses for the transcriptome. 1151 
Each point is a gene, coloured according to its significance in the Wave 1 and 2 analyses. r= 1152 
Pearson’s correlation coefficient. B) As A, for the proteome.  1153 
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 1154 
Supplementary Figure 3: Genes differentially expressed in COVID-19. Heatmap for the 1155 
100 transcriptomic features most significantly differentially expressed between COVID-19 1156 
cases and controls, according to robust rank aggregation (RRA). These genes were significant 1157 
in both cohorts (1% FDR). Columns are ordered by COVID-19 status and severity. For the 1158 
Wave 1 heatmap, genes are ordered by hierarchical clustering; the Wave 2 heatmap is 1159 
ordered to match this. Each feature was scaled and centred separately in each dataset. 1160 
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 1162 
 1163 
Supplementary Figure 4: Transcriptomic enrichment analysis comparing infected and 1164 
non-infected patients. The 30 GSVA gene pathway enrichment terms with the greatest RRA 1165 
scores (indicating consistent dysregulation in both the Wave 1 and Wave 2 transcriptomic 1166 
datasets). All pathway terms shown were significantly enriched in the individual cohort 1167 
analyses (1% FDR). Terms are ordered and coloured by their effect size. All terms were up-1168 
regulated in COVID-19 cases, so they are all coloured red. 1169 
  1170 
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 1171 
Supplementary Figure 5: Most significant differentially abundant plasma proteins in 1172 
COVID-19 positive versus negative ESKD samples. Heatmap for the 100 proteomic 1173 
features most significantly differentially abundant between COVID-19 cases and controls, 1174 
according to robust rank aggregation (RRA). These proteins were significant in both cohorts 1175 
(1% FDR, LMM). Columns are ordered by COVID-19 status and severity. For the Wave 1 1176 
heatmap, proteins are ordered by hierarchical clustering; the Wave 2 heatmap is ordered to 1177 
match this. Each feature was scaled and centred separately in each dataset.  1178 
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 1179 

 1180 
Supplementary Figure 6: Genes with the most significant association with COVID-19 1181 
severity. Heatmap for the 100 transcriptomic features most significantly associated with 1182 
contemporaneous severity, according to robust rank aggregation (RRA). These genes were 1183 
significant in both cohorts (1% FDR). Columns are ordered by COVID-19 status and severity. 1184 
For the Wave 1 heatmap, genes are ordered by hierarchical clustering; the Wave 2 heatmap 1185 
is ordered to match this. Each feature was scaled and centred separately in each dataset. 1186 
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 1187 
Supplementary Figure 7: Plasma proteomic associations with COVID-19 severity. A) 1188 
PCA of the proteome. Each point represents a sample and is coloured by contemporaneous 1189 
COVID-19 severity (left) and overall clinical course of the patient (right). B) The GSVA protein 1190 
pathway enrichment terms significantly associated (1% FDR) with contemporaneous severity 1191 
in both the Wave 1 and Wave 2 proteomic datasets. All pathway terms shown were 1192 
significantly enriched in the individual cohort analyses (1% FDR). Terms are ordered and 1193 
coloured by their effect size. Terms up-regulated in more severe COVID-19 are coloured red 1194 
while down-regulated terms are blue. C) Violin plots show gene expression values (Wave 2 1195 
cohort) stratified by COVID-19 status and severity (at time of sample) for selected genes. All 1196 
genes shown were significantly associated (1% FDR) with contemporaneous severity in the 1197 
Wave 2 cohort. 1198 
 1199 
  1200 
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 1201 

Supplementary Figure 8: Selected proteins associated with COVID-19 severity. Heatmap 1202 
for the 100 proteomic features most significantly associated with contemporaneous WHO 1203 
severity, according to robust rank aggregation (RRA). These proteins were significant in both 1204 
cohorts (1% FDR). Columns are ordered by COVID-19 status and severity. For the Wave 1 1205 
heatmap, proteins are ordered by hierarchical clustering; the Wave 2 heatmap is ordered to 1206 
match this. Each feature was scaled and centred separately in each dataset. 1207 
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 1209 

 1210 
Supplementary Figure 9: Longitudinal profiles of protein modules and hub proteins. 1211 
Modelled longitudinal profiles of protein modules with significant (5% FDR) TxCC interactions 1212 
(left) and the profiles of their top three most central hub proteins (right). Red lines= patients 1213 
with a severe/critical clinical course; blue lines= mild/moderate clinical course. Shaded areas 1214 
represent 95% confidence intervals. 1215 
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 1216 
 1217 
Supplementary Figure 10: A multi-modal factor representing COVID-19 severity. A) The 1218 
longitudinal profile of a factor identified by MEFISTO with a significant (5% FDR) TxCC 1219 
interaction. Model estimates and 95% confidence interval (left) and the trajectory of the factor 1220 
for each individual (right). B) The weights of individual genes and proteins with respect to the 1221 
factor identified by MEFISTO. A plus sign indicates molecules positively associated with the 1222 
factor while molecules negatively associated with the factor have a minus sign.  1223 
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 1225 

 1226 
Supplementary Figure 11: Association of transcriptomic modules with imputed cell 1227 
abundances. Association of modules (columns) with cell abundances (rows) imputed using 1228 
CIBERSORTx. Analysis with LMM. All modules shown have significant TxCC interaction 1229 
effects. The bottom row shows the association with severity score at time of sample. Asterisks 1230 
represent significant (5% FDR) associations. 1231 
  1232 
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 1233 
 1234 

 1235 
Supplementary Figure 12: Proportion of major lymphocytes and myeloid cells in 1236 
PBMCs (Wave 2 cohort).  1237 

Panels marked “Pre-infection vs. Day 7": frequencies of major immune subsets gated on 1238 
CD45+ leukocytes in samples taken prior to infection (Pre-infection n=15) and at closest 1239 
sample to day 7 from symptom onset (Mild/moderate n=9; Severe/critical n=8). Data presented 1240 
as mean (box) ± S.E.M (whiskers). Each symbol represents an individual. 1241 

Panels marked “Longitudinal”: frequencies of major immune subsets before, during and after 1242 
infection as a line plot. Each line depicts one individual. Blue = patients with a mild/moderate 1243 
clinical course; sample numbers: Pre-infection n=8, Day 0-3 n=4, Day 4-7 n=6, Day 8-11 n=4, 1244 
Day 12-14 n=6, Day 15-18 n=5, Convalescence n=9. Red= severe/critical clinical course; 1245 
sample numbers: Pre-infection n=7, Day 0-3 n=5, Day 4-7 n=6, Day 8-11 n=6, Day 12-14 n=4, 1246 
Day 15-18 n=5, Convalescence n=3. One-way ANOVA with Dunnet’s for multiple comparisons 1247 
correction was used for statistical analysis. Only significant differences are indicated. *p <0.05. 1248 
NK= natural killer; pDCs= plasmacytoid dendritic cells. DC= dendritic cells. 1249 
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 1251 

Supplementary Figure 13: Increased activated T cells, plasmablast and proliferating B 1252 
cells is associated with disease severity in COVID-19 ESKD patients.  1253 

A) Percentage of cells expressing activation markers CD69, CD38 and HLA-DR gated 1254 
on CD4+ T cells or CD8+ T cells. Panel marked “Pre-infection vs. Day 7”: data plotted for 1255 
samples taken prior to infection (Pre-infection n=15) and for closest sample to day 7 from 1256 
symptom onset (Mild/Moderate n=9; Severe/Critical n=8). 1257 
B) Frequencies of IgD-CD38hiCD19+ plasmablast and Ki67+ cells gated on CD19+ B 1258 
cells. Panel marked “Pre-infection vs. Day 14”: data plotted for samples taken prior to infection 1259 
(Pre-infection n=15) and for closest sample to day 14 from symptom onset (Mild/Moderate 1260 
n=9; Severe/Critical n=8). 1261 
 1262 
(A-B) Left panels: data presented as mean (bar) ± S.E.M (whiskers). Each symbol represents 1263 
an individual. Right panels: frequencies of cells over the course of infection as a line plot. Each 1264 
continuous line depicts one individual. Mild/moderate patients in blue (Pre-infection n=8, Day 1265 
0-3 n=4, Day 4-7 n=6, Day 8-11 n=4, Day 12-14 n=6, Day 15-18 n=5, Convalescence n=9) 1266 
and severe/critical in red (Pre-infection n=7, Day 0-3 n=5, Day 4-7 n=6, Day 8-11 n=6, Day 1267 
12-14 n=4, Day 15-18 n=5, Convalescence n=3). One-way ANOVA with Dunnet’s for multiple 1268 
comparisons correction used for statistical analysis. Only significant differences are indicated. 1269 
*p <0.05; **p <0.01; ***p <0.001. 1270 
  1271 
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 1272 

Supplementary Figure 14: Increased activated and proliferating circulatory monocytes 1273 
is associated with disease severity in COVID-19 ESKD patients.  1274 

A) Frequencies of monocyte subsets as defined with CD14+ and CD16+ expression gated on 1275 
total monocytes. Percentage of cells expressing CD38 (B) and Ki67 (C) gated on 1276 
CD14+CD16- CMs, CD14+CD16+ IntMs, CD14-CD16+ NCMs. D) Correlation (Pearson’s r) 1277 
of SIGLEC-1 protein expression by MFI to RNAseq-derived GSVA enrichment score for type 1278 
I IFN signatures. E) Siglec-1 expression in MFI gated on total monocytes. 1279 

(B, C, E): Data plotted for samples taken prior to infection (Pre-infection n=15) and for closest 1280 
sample to day 7 from symptom onset (Mild/Moderate n=9; Severe/Critical n=8). Data 1281 
presented as mean ± S.E.M. Each symbol represents an individual. (A, B, C, E) Frequencies 1282 
of cells over the course of infection as a line or bar plot. Mild/moderate patients in blue (Pre-1283 
infection n=8, Day 0-3 n=4, Day 4-7 n=6, Day 8-11 n=4, Day 12-14 n=6, Day 15-18 n=5, 1284 
Convalescence n=9) and severe/critical in red (Pre-infection n=7, Day 0-3 n=5, Day 4-7 n=6, 1285 
Day 8-11 n=6 Day 12-14 n=4, Day 15-18 n=5, Convalescence n=3). 1286 
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(A, B, C, E): One-way ANOVA with Dunnet’s for multiple comparisons correction used for 1287 
statistical analysis. 1288 

Only significant differences are indicated. *p <0.05; **p <0.01; ***p <0.001. CM=Classical 1289 
Monocytes; IntM=Intermediate Monocytes; NCM=Non-classical Monocytes; MFI=Median 1290 
Fluorescence Intensity. 1291 
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 1293 

 1294 
 1295 
Supplementary Figure 15: Predicting COVID-19 severity using random forests. A) Point 1296 
estimates of area under the curve from receiver operator analysis (AUC-ROC) for predicting 1297 
COVID-19 severity with 95% confidence intervals using random forests. “Both” = supervised 1298 
learning on the combined proteomic and transcriptomic data. B) Important proteins (left) and 1299 
genes (right) for the random forests model. Feature importance is scaled between 0 and 1, 1300 
where 1 represents the most important feature. 1301 
  1302 
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 1303 
Supplementary Figure 16: Human Protein Atlas classification of proteins measured by 1304 
the SomaScan v4.1 assay. A) The number of unique proteins measured that were labelled 1305 
as intracellular, membrane and secreted. B) Venn diagram illustrating overlap between the 1306 
annotations.  1307 
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Supplementary Tables 1309 
 1310 
Supplementary Table 1: Characteristics of the Wave 1 cohort.  1311 

 Overall (n = 53) 
Peak severity mild 
or moderate (n = 

28) 

Peak severity 
severe or critical (n 

= 25) 
Age  
Median  
(IQR) 

 
72.0 
62.0-76.0 

 
73.0 
64.8-76.2 

 
68.0 
62.0-76.0 

Sex  
M 
F 

 
37 (69.8%) 
16 (30.2%) 

 
18 (64.3%) 
10 (35.7%) 

 
19 (76.0%) 
6   (24.0%) 

Ethnicity 
Asian 
White 
Black 
Other 

 
21 (39.6%) 
17 (32.1%) 
8 (15.1%) 
7 (13.2%) 

 
11 (39.3%) 
6 (21.4%) 
5 (17.9%) 
6 (21.4%) 

 
10 (40.0%) 
11 (44.0%) 
3 (12.0%) 
1 (4.0%) 

Diabetes 32* (60.4%) 16* (57.1%) 16 (64.0%) 
Current smoker 1 (1.9%) 1 (3.6%) 0 (0.0%) 
ESKD cause 
DN 
HTN/vascular 
GN/autoimmune 
Genetic 
Other/unknown 

 
27 (50.9%) 
5 (9.4%) 
3 (5.7%) 
1 (1.9%) 
17 (32.1%) 

 
14 (50.0%) 
3 (10.7%) 
1 (3.6%) 
1 (3.6%) 
9 (32.1%) 

 
13 (52.0%) 
2 (8.0%) 
2 (8.0%) 
0 (0.0%) 
9 (36.0%) 

Hospitalisation due 
to COVID-19† 

32 (60.4%) 7 (25.0%) 25 (100%) 

Fatal COVID-19 9 (17.0%) 0 (0.0%) 9 (36.0%) 
DN = diabetic nephropathy. GN = glomerulonephritis. HTN = hypertension. IQR = inter-1312 
quartile range. Subsets defined according to peak WHO severity over the course of the illness.  1313 
 1314 
*One patient had type 1 diabetes, the remainder type 2. †3 patients were hospitalised prior to 1315 
COVID-19 diagnosis. 8 patients diagnosed with COVID-19 as outpatients subsequently 1316 
deteriorated were hospitalised. 1317 
  1318 
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Supplementary Table 2: Characteristics of the Wave 2 cohort. 1319 

 Overall (n = 17) Peak severity mild 
or moderate (n = 9) 

Peak severity 
severe or critical (n 

= 8) 
Age  
Median  
(IQR) 

 
72.0 
61.0-77.0 

 
72.0 
60.0-75.0 

 
70.5 
64.0-80.5 

Sex  
M 
F 

 
10 (58.8%) 
7 (41.2%) 

 
4 (44.4%) 
5 (55.6%) 

 
6 (75.0%) 
2 (25.0%) 

Ethnicity 
Asian 
White 
Black 
Other 

 
11 (64.7%) 
4 (23.5%) 
1 (5.9%) 
1 (5.9%) 

 
6 (66.7%) 
2 (22.2%) 
0 (0.0%) 
1 (11.1%) 

 
5 (62.5%) 
2 (25.0%) 
1 (12.5%) 
0 (0.0%) 

Diabetes 11 (64.7%) 6 (66.7%) 5 (62.5%) 
Current smoker 0 (0.0%) 0 (0.0%) 0 (0.0%) 
ESKD cause 
DN 
HTN/vascular 
GN/autoimmune 
Genetic 
Other/unknown 

 
10 (58.8%) 
0 (0.0%) 
1 (5.9%) 
0 (0.0%) 
6 (35.3%) 

 
6 (66.7%) 
0 (0.0%) 
0 (0.0%) 
0 (0.0%) 
3 (33.3%) 

 
4 (50.0%) 
0 (0.0%) 
1 (12.5%) 
0 (0.0%) 
3 (37.5%) 

Hospitalisation due 
to COVID-19† 

9 (52.9%) 1 (11.1%) 8 (100%) 

Fatal COVID-19 4 (23.5%) 0 (0.0%) 4 (50.0%) 
DN = diabetic nephropathy. GN = glomerulonephritis. HTN = hypertension. IQR = inter-1320 
quartile range. Subsets defined according to peak WHO severity over the course of the illness.  1321 
 1322 
  1323 
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Supplementary Table 3: Transcriptomic modules associated with disease trajectory.  1324 
 1325 

Module 
code 

Module 
name 

Size Selected enrichments Primary cell 
type 

Hub genes Severity 
association 

tB Granulocyte 
cell-like 
module 1  

1,309 R: Neutrophil degranulation 
R: Innate immune system 
R: ROS and RNS production 
in phagocytes 
R: Oxidative stress-induced 
senescence 

Neutrophils TECPR2, CSF3R, 
STX3, MMP25, 
BASP1, MBOAT7, 
NCF4, GLT1D1, 
RNF24, DHX34 

↑ 
tJ Granulocyte 

cell-like 
module 2  

169 R: Neutrophil degranulation 
R: Innate immune system 
R: Antimicrobial peptides 
NABA: Matrisome 

Macrophages 
(M0) 

CEACAM8, BPI, 
CD24, CEACAM6, 
ABCA13, DEFA4, 
LTF, AZU1, ELANE, 
LCN2 

↑* 
tL Plasma cell 

module  
655 R: Cell cycle 

R: MHC class II antigen 
presentation 
WP: DNA damage response 
R: Factors involved in 
megakaryocyte development 
and platelet production 

Plasma cells RRM2, FOXM1, 
MKI67, TPX2, BUB1, 
KIFC1, TK1, MZB1, 
CDK1, CCNA2 ↑ 

tP Nuclear and 
cell cycle 
module  

464 None significant B cells naive SNRPA1, CEP95, 
THUMPD2, CENPC, 
ZNF326, NDUFAF5, 
ILKAP, SUPV3L1, 
USP36, GOLT1B 

↓ 
tC T-cell 

activity 
module 1 

545 KEGG: Natural killer cell 
mediated cytotoxicity 
R: Immunoregulatory 
interactions between a 
lymphoid and a non-
lymphoid cell 
PID: CD8 TCR downstream 
pathway 

NK cells resting SAMD3, ADGRG1, 
ZAP70, PYHIN1, 
FCRL6, PRSS23, 
FGFBP2, NFATC2, 
PTCH1, LLGL2 ↓ 

tF T-cell 
activity 
module 2  

761 WP: T-cell receptor and co-
stimulatory signaling 

T cells CD4 
memory resting 

PLCG1, LCK, 
UBASH3A, ABCD2, 
LINC00649, PRKCQ-
AS1, TC2N, 
LINC01550, SEPTIN1, 
NLRC3 

↓ 
tI Monocyte 

module  
299 R: PD1 signaling  

KEGG: Viral myocarditis 
KEGG: Antigen processing 
and presentation 
KEGG: Cell adhesion 
molecules 
R: Interferon gamma 
signaling 

Monocytes PLXNB2, NAAA, 
CSF1R, PSAP, 
CARD9, SLC7A7, 
PEA15, ARHGEF10L, 
ZNF385A, ARRB1 ↓ 

tN Allergy-
related 
module  

54 WP: IL-3 signaling pathway 
KEGG: Asthma 

T cells CD4 
memory resting 

HDC, LINC02458, 
CPA3, GATA2, 
AKAP12, MS4A2, 
ENPP3, FCER1A, 
TRIM51EP, SLC45A3 

↓ 
Transcriptomic modules associated with disease trajectory (i.e. with a significant TxCC 1326 
interaction) are tabulated and assigned names that are representative of their members. Size 1327 
= the number of genes assigned to the module. Primary cell type indicates the CIBERSORTx 1328 
cell type with the greatest positive correlation with the module’s eigengene. Severity 1329 
association indicates whether the module’s eigengene is positively (↑) or negatively (↓) 1330 
associated with contemporaneous WHO severity (5% FDR). 1331 
* Module tJ was positively correlated with severity, but this association was not significant at 1332 
5% FDR. 1333 
R = Reactome 1334 
WP = WikiPathways  1335 
PID = Pathway Interaction Database 1336 
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Supplementary Table 4: Proteomic modules associated with disease trajectory. 1338 
 1339 

Module 
code 

Module 
name 

Size Selected enrichments Hub genes Severity 
association 

p12 Histone-
associated 
module  

40 R: HDACs deacetylate histones 
KEGG: Systemic lupus 
erythematosus 
R: Chromatin modifying enzymes 
R: HCMV late events 

H2AC1, H2AW, H2BU1, H2BC21, 
H2BC12, H2AZ1, CELF2, H2AC11, 
EEF1B2, MMP17 ↑ 

p9 Splicing 
and 
nuclear 
module 1  

241 PID: FRA pathway 
WP: Striated muscle contraction 
R: Complement cascade 
KEGG: Spliceosome 

CLSTN3, KHSRP, OIT3, NELFA, 
EWSR1, CETP, PUF60, SRSF6, 
NXT1, ARHGAP36 ↑ 

p8 Splicing 
and 
nuclear 
module 2  

107 R: Processing of capped intron 
containing pre-mRNA 
R: mRNA splicing 
KEGG: Spliceosome 

CILP, FUBP1, TSSC4, ALKAL2, 
STMN3, STMN1, STMN2, UBE2Z, 
MAFG, LEMD1 ↑ 

p1 Mixed 
immune 
module 1  

281 WP: Development of pulmonary 
dendritic cells and macrophage 
subsets 

MRPL52, PLA2G2C, ITGAL, 
NLRP4, GDF3, VSTM4, ITGB1, 
SVBP, ANXA8, UBD 

↑ 
p7 Mixed 

immune 
module 2 

66 None significant DEFB135, SPINK14, VAT1L, 
NT5E, PAXIP1, ZHX3, ODC1, 
PLEKHM2, DEFB112, F3 

↓ 
Proteomic modules associated with disease trajectory (i.e. with a significant TxCC interaction) 1340 
are tabulated and assigned names that are representative of their members. Size = the 1341 
number of proteins assigned to the module. Severity association indicates whether the 1342 
module’s eigenprotein is positively (↑) or negatively (↓) associated with contemporaneous 1343 
WHO severity (5% FDR). 1344 
R = Reactome 1345 
WP = WikiPathways  1346 
PID = Pathway Interaction Database 1347 
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Supplementary Table 5. List of antibodies used in flow cytometry.  1349 

Antibodies Source Clone Identifier 
BV421-CD4 BioLegend A161A1 357424 
BV421-CD14 BioLegend 63D3 367144 

PB-CD57 BioLegend QA17A04 393316 
PB-Foxp3 (Intracellular) BioLegend 206D 320116 

BV510-CD95 BioLegend DX2 305640 
BV510-IgD BioLegend IA6-2 348219 

BV605-CCR7 BioLegend G043H7 353224 
BV605-CD4 BioLegend SK3 344645 

BV650-HLA-DR BioLegend L243 307650 
BV650-CD123 BioLegend 6H6 306032 
BV711-KLRG1 BioLegend 2F1/KLRG1 138427 
BV711-CD11c BioLegend 3.9 301630 

BV750-CD45RA BioLegend HI100 304166 
BV750-HLA-DR BioLegend L243 307672 

BV785-CD19 BioLegend HIB19 302240 
AF488-CD3 BioLegend HIT3a 300320 

BB515-CD152/CTLA-4 
(Intracellular) 

BD 
Bioscience 

BNI3 566917 

BB515-CD8 BD 
Bioscience 

RPA-T8 564526 

PE-CD56 BioLegend 39D5 355504 
PE-CD335 BioLegend 9^E2 331908 
PE- CD16 BioLegend 3G8 302008 
PE- CD14 BioLegend 63D3 367104 
PE- CD19 BioLegend HIB19 302208 

PE-Siglec-1 BioLegend 7-239 346004 
PEDAZ594-CD69 BioLegend FN50 310941 

PEDAZ594-NKG2D BioLegend 1D11 320828 
PE-Cy5-CD27 Thermofisher O323 15-0279-42 
PE-Cy5-CD25 Biolegend BC96 302608 

Percp-cy5.5-Ki67 (Intracellular) BioLegend Ki-67 350520 
Percp-ef710-gdTCR Thermofisher B1.1 46-9959-42 
Percp-ef710-CD16 Thermofisher CB16 46-0168-42 

PE-Cy7-PD1 BioLegend A17188B 621616 
PE-Cy7-CD141 Biolegend M80 344110 
AF647-CD45 BioLegend HI30 304056

  
AF700-CD8 BioLegend HIT8a 300920 

AF700-CD66b BioLegend VI MA81 305114 
APC/Fire750-CD38 BioLegend HB-7 356626 
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 1351 

Titles for Supplementary File - (in Excel file) 1352 

Supplementary File 1A. Differential gene expression analysis comparing COVID-19 1353 
positive versus negative PBMC samples. Contains the linear mixed model estimates and 1354 
corresponding P-values for each gene, for both the Wave 1 and Wave 2 cohorts. The column 1355 
“Aggregated Score” represents the RRA score for the P-values from both cohorts. 1356 

Supplementary File 1B. Gene set analysis comparing COVID-19 positive versus 1357 
negative samples. Contains the linear mixed model estimates and corresponding P-values 1358 
for each GSVA gene set, for both the Wave 1 and Wave 2 cohorts. The column “Aggregated 1359 
Score” represents the RRA score for the P-values from both cohorts. 1360 

Supplementary File 1C. Protein annotations. List of proteins measured by the SomaScan 1361 
v4.1 assay, their corresponding UniProt and GeneIDs, and their annotations in the human 1362 
protein atlas. 1363 

Supplementary File 1D. Differential plasma protein abundance analysis comparing 1364 
COVID-19 positive versus negative samples. Contains the linear mixed model estimates 1365 
and corresponding P-values for each protein, for both the Wave 1 and Wave 2 cohorts. The 1366 
column “Aggregated Score” represents the RRA score for the P-values from both cohorts. 1367 

Supplementary File 1E. Protein set analysis comparing COVID-19 positive versus 1368 
negative samples. Contains the linear mixed model estimates and corresponding P-values 1369 
for each GSVA protein set, for both the Wave 1 and Wave 2 cohorts. The column “Aggregated 1370 
Score” represents the RRA score for the P-values from both cohorts. 1371 

Supplementary File 1F. Transcriptomic associations with contemporaneous COVID-19 1372 
severity. Associations with 4-level ordinal WHO severity score at the time of the sample. 1373 
Contains the linear mixed model estimates and corresponding P-values for each gene, for 1374 
both the Wave 1 and Wave 2 cohorts. The column “Aggregated Score” represents the RRA 1375 
score for the P-values from both cohorts. 1376 

Supplementary File 1G. Associations of gene sets with contemporaneous COVID-19 1377 
severity. Associations with 4-level ordinal WHO severity score at the time of the sample. 1378 
Contains the linear mixed model estimates and corresponding P-values for each GSVA gene 1379 
set, for both the Wave 1 and Wave 2 cohorts. The column “Aggregated Score” represents the 1380 
RRA score for the P-values from both cohorts. 1381 

Supplementary File 1H. Proteomic associations with contemporaneous COVID-19 1382 
severity. Associations with 4-level ordinal WHO severity score at the time of the sample. 1383 
Contains the linear mixed model estimates and corresponding P-values for each protein, for 1384 
both the Wave 1 and Wave 2 cohorts. The column “Aggregated Score” represents the RRA 1385 
score for the P-values from both cohorts. 1386 

Supplementary File 1I. Associations of protein sets with contemporaneous COVID-19 1387 
severity. Associations with 4-level ordinal WHO severity score at the time of the sample. 1388 
Contains the linear mixed model estimates and corresponding P-values for each GSVA gene 1389 
set, for both the Wave 1 and Wave 2 cohorts. The column “Aggregated Score” represents the 1390 
RRA score for the P-values from both cohorts. 1391 

Supplementary File 1J. The membership of genes to WGCNA transcriptomic modules. 1392 

Supplementary File 1K. The membership of proteins to WGCNA proteomic modules. 1393 
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Supplementary File 1L. Gene set enrichment of transcriptomic WGCNA modules. 1394 
Overrepresentation analysis of gene sets for each module. 1395 

Supplementary File 1M. Protein set enrichment of proteomic WGCNA modules. 1396 
Overrepresentation analysis of protein sets for each module. 1397 

Supplementary File 1N. Associations of imputed cell proportions with transcriptomic 1398 
WGCNA modules. Contains the linear mixed model estimates and corresponding P-values 1399 
for each WGCNA module – imputed cell type pair.  1400 

Supplementary File 1O. Longitudinal profiles of cytokine proteins in plasma. P-values 1401 
for the linear mixed modelling of cytokines and related proteins. P-values are included for the 1402 
time, clinical course, and time * clinical course (TxCC) terms. 1403 

Supplementary File 1P. Importance metrics for supervised learning of the 1404 
transcriptome. The relative importance of genes according to the random forests (accuracy 1405 
decrease) and lasso (number of models in which each gene had a non-zero coefficient during 1406 
cross-validation) models. The metrics are normalised such that the most important gene has 1407 
a value of 1. 1408 

Supplementary File 1Q. Importance metrics for supervised learning of the proteome. 1409 
The relative importance of proteins according to the random forests (accuracy decrease) and 1410 
lasso (number of models in which each protein had a non-zero coefficient during cross-1411 
validation) models. The metrics are normalised such that the most important gene has a value 1412 
of 1. 1413 

Supplementary File 1R. Multi-omic supervised learning importance metrics. The relative 1414 
importance of features (genes or proteins) according to the random forests (accuracy 1415 
decrease) and lasso (number of models in which each feature had a non-zero coefficient 1416 
during cross-validation) models. The metrics are normalised such that the most important 1417 
gene has a value of 1. 1418 

Supplementary File 1S. Paired differential expression analysis of pre-infection versus 1419 
convalescent samples. Contains the linear mixed model estimates and corresponding P-1420 
values for each gene.  1421 

Supplementary File 1T. Gene set enrichment of convalescence analysis. Contains the 1422 
linear mixed model estimates and corresponding P-values for each GSVA gene set, for both 1423 
the Wave 1 and Wave 2 cohorts. The column “Aggregated Score” represents the RRA score 1424 
for the P-values from both cohorts. 1425 

  1426 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

59 
 

REFERENCES 1427 
1. Mann, E. R. et al. Longitudinal immune profiling reveals key myeloid signatures 1428 

associated with COVID-19. Sci. Immunol. 5, eabd6197 (2020) 1429 
doi:10.1126/sciimmunol.abd6197. 1430 

2. Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with 1431 
poor prognosis. Nat. Med. (2020) doi:10.1038/s41591-020-1038-6. 1432 

3. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in 1433 
COVID-19. Nat. Med. 27, 904–916 (2021) doi:10.1038/s41591-021-01329-2. 1434 

4. Bernardes, J. P. et al. Longitudinal Multi-omics Analyses Identify Responses of 1435 
Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. 1436 
Immunity 53, 1296-1314.e9 (2020) doi:https://doi.org/10.1016/j.immuni.2020.11.017. 1437 

5. Szabo, P. A. et al. Longitudinal profiling of respiratory and systemic immune responses 1438 
reveals myeloid cell-driven lung inflammation in severe COVID-19. Immunity 54, 797-1439 
814.e6 (2021) doi:https://doi.org/10.1016/j.immuni.2021.03.005. 1440 

6. Bergamaschi, L. et al. Longitudinal analysis reveals that delayed bystander CD8+ T cell 1441 
activation and early immune pathology distinguish severe COVID-19 from mild disease. 1442 
Immunity 54, 1257-1275.e8 (2021) doi:https://doi.org/10.1016/j.immuni.2021.05.010. 1443 

7. Ahern, D. J. et al. A blood atlas of COVID-19 defines hallmarks of disease severity and 1444 
specificity. Cell 185, 916-938.e58 (2022) doi:10.1016/j.cell.2022.01.012. 1445 

8. Filbin, M. R. et al. Longitudinal proteomic analysis of severe COVID-19 reveals survival-1446 
associated signatures, tissue-specific cell death, and cell-cell interactions. Cell Reports 1447 
Med. 2, 100287 (2021) doi:10.1016/j.xcrm.2021.100287. 1448 

9. Gisby, J. et al. Longitudinal proteomic profiling of dialysis patients with COVID-19 1449 
reveals markers of severity and predictors of death. Elife 10, 2020.11.05.20223289 1450 
(2021) doi:10.7554/eLife.64827. 1451 

10. Rodriguez, L. et al. Systems-Level Immunomonitoring from Acute to Recovery Phase 1452 
of Severe COVID-19. Cell reports. Med. 1, 100078 (2020) 1453 
doi:10.1016/j.xcrm.2020.100078. 1454 

11. Demichev, V. et al. A time-resolved proteomic and prognostic map of COVID-19. Cell 1455 
Syst. 12, 780-794.e7 (2021) doi:https://doi.org/10.1016/j.cels.2021.05.005. 1456 

12. Gutmann, C. et al. SARS-CoV-2 RNAemia and proteomic trajectories inform 1457 
prognostication in COVID-19 patients admitted to intensive care. Nat. Commun. 12, 1458 
3406 (2021) doi:10.1038/s41467-021-23494-1. 1459 

13. Galbraith, M. D. et al. Seroconversion stages COVID19 into distinct pathophysiological 1460 
states. Elife 10, e65508 (2021) doi:10.7554/eLife.65508. 1461 

14. Paranjpe, I. et al. Proteomic Characterization of Acute Kidney Injury in Patients 1462 
Hospitalized with SARS-CoV2 Infection. medRxiv 2021.12.09.21267548 (2021) 1463 
doi:10.1101/2021.12.09.21267548. 1464 

15. Su, C.-Y. et al. Circulating proteins to predict adverse COVID-19 outcomes. medRxiv 1465 
2021.10.04.21264015 (2021) doi:10.1101/2021.10.04.21264015. 1466 

16. Sullivan, K. D. et al. The COVIDome Explorer researcher portal. Cell Rep. 36, (2021) 1467 
doi:10.1016/j.celrep.2021.109527. 1468 

17. Horby, P. et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 1469 
384, 693–704 (2021) doi:10.1056/NEJMoa2021436. 1470 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

60 
 

18. Gordon, A. C. et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with 1471 
Covid-19. N. Engl. J. Med. 384, 1491–1502 (2021) doi:10.1056/NEJMoa2100433. 1472 

19. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a 1473 
randomised, controlled, open-label, platform trial. Lancet (London, England) 397, 1474 
1637–1645 (2021) doi:10.1016/S0140-6736(21)00676-0. 1475 

20. Kalil, A. C. et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N. 1476 
Engl. J. Med. 384, 795–807 (2021) doi:10.1056/NEJMoa2031994. 1477 

21. Williamson, E. J. et al. Factors associated with COVID-19-related death using 1478 
OpenSAFELY. Nature 584, 430–436 (2020) doi:10.1038/s41586-020-2521-4. 1479 

22. Goffin, E. et al. COVID-19-related mortality in kidney transplant and haemodialysis 1480 
patients: a  comparative, prospective registry-based study. Nephrol. Dial. Transplant.  1481 
Off. Publ. Eur.  Dial. Transpl. Assoc. - Eur. Ren. Assoc. 36, 2094–2105 (2021) 1482 
doi:10.1093/ndt/gfab200. 1483 

23. Chen, J.-J. et al. Immunogenicity Rates After SARS-CoV-2 Vaccination in People With 1484 
End-stage Kidney  Disease: A Systematic Review and Meta-analysis. JAMA Netw. 1485 
open 4, e2131749 (2021) doi:10.1001/jamanetworkopen.2021.31749. 1486 

24. Anand, S. et al. Antibody Response to COVID-19 Vaccination in Patients Receiving 1487 
Dialysis. J. Am. Soc. Nephrol. 32, 2435–2438 (2021) doi:10.1681/ASN.2021050611. 1488 

25. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for 1489 
microarray and RNA-Seq data. BMC Bioinformatics 14, 7 (2013) doi:10.1186/1471-1490 
2105-14-7. 1491 

26. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with 1492 
severe COVID-19. Nat. Med. 26, 1070–1076 (2020) doi:10.1038/s41591-020-0944-y. 1493 

27. Liu, G. et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the 1494 
SARS-CoV-2 papain-like protease to evade host innate immunity. Nat. Microbiol. 6, 1495 
467–478 (2021) doi:10.1038/s41564-021-00884-1. 1496 

28. Hachim, M. Y. et al. Interferon-Induced Transmembrane Protein (IFITM3) Is 1497 
Upregulated Explicitly in SARS-CoV-2 Infected Lung Epithelial Cells. Front. Immunol. 1498 
11, 1372 (2020) doi:10.3389/fimmu.2020.01372. 1499 

29. Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network 1500 
analysis. BMC Bioinformatics 9, (2008) doi:10.1186/1471-2105-9-559. 1501 

30. Velten, B., Braunger, J. M., Arnol, D., Argelaguet, R. & Stegle, O. Identifying temporal 1502 
and spatial patterns of variation from multi-modal data using MEFISTO. bioRxiv 1503 
2020.11.03.366674 (2020) doi:10.1101/2020.11.03.366674. 1504 

31. Bagheri-Hosseinabadi, Z., Abbasi, M., Kahnooji, M., Ghorbani, Z. & Abbasifard, M. The 1505 
prognostic value of S100A calcium binding protein family members in predicting severe 1506 
forms of COVID-19. Inflamm. Res. 71, 369–376 (2022) doi:10.1007/s00011-022-1507 
01545-7. 1508 

32. Schett, G., McInnes, I. B. & Neurath, M. F. Reframing Immune-Mediated Inflammatory 1509 
Diseases through Signature Cytokine Hubs. N. Engl. J. Med. 385, 628–639 (2021) 1510 
doi:10.1056/NEJMra1909094. 1511 

33. Shilts, J. et al. LRRC15 mediates an accessory interaction with the SARS-CoV-2 spike 1512 
protein. bioRxiv 2021.09.25.461776 (2021) doi:10.1101/2021.09.25.461776. 1513 

34. Song, J. et al. LRRC15 is an inhibitory receptor blocking SARS-CoV-2 spike-mediated 1514 
entry in trans. bioRxiv : the preprint server for biology (2021) 1515 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

61 
 

doi:10.1101/2021.11.23.469714. 1516 

35. Ng, J. H. et al. Outcomes of patients with end-stage kidney disease hospitalized with 1517 
COVID-19. Kidney Int. (2020) doi:10.1016/j.kint.2020.07.030. 1518 

36. Mei, Q. et al. Regulation of DNA replication-coupled histone gene expression. 1519 
Oncotarget 8, 95005–95022 (2017) doi:10.18632/oncotarget.21887. 1520 

37. Singh, R. K., Kabbaj, M.-H. M., Paik, J. & Gunjan, A. Histone levels are regulated by 1521 
phosphorylation and ubiquitylation-dependent  proteolysis. Nat. Cell Biol. 11, 925–933 1522 
(2009) doi:10.1038/ncb1903. 1523 

38. Silk, E., Zhao, H., Weng, H. & Ma, D. The role of extracellular histone in organ injury. 1524 
Cell Death Dis. 8, e2812 (2017) doi:10.1038/cddis.2017.52. 1525 

39. Bojkova, D. et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy 1526 
targets. Nature 583, 469–472 (2020) doi:10.1038/s41586-020-2332-7. 1527 

40. Finkel, Y. et al. SARS-CoV-2 uses a multipronged strategy to impede host protein 1528 
synthesis. Nature 594, 240–245 (2021) doi:10.1038/s41586-021-03610-3. 1529 

41. Vlahos, R. et al. Inhibition of Nox2 Oxidase Activity Ameliorates Influenza A Virus-1530 
Induced Lung Inflammation. PLOS Pathog. 7, e1001271 (2011). 1531 

42. Lang, P. A. et al. Reactive oxygen species delay control of lymphocytic choriomeningitis 1532 
virus. Cell Death Differ. 20, 649–658 (2013) doi:10.1038/cdd.2012.167. 1533 

43. Randzavola, L. O. et al. EROS-mediated control of NOX2 and P2X7 biosynthesis. 1534 
bioRxiv 2021.09.14.460103 (2021) doi:10.1101/2021.09.14.460103. 1535 

44. Ng, B., Cook, S. A. & Schafer, S. Interleukin-11 signaling underlies fibrosis, 1536 
parenchymal dysfunction, and chronic  inflammation of the airway. Exp. Mol. Med. 52, 1537 
1871–1878 (2020) doi:10.1038/s12276-020-00531-5. 1538 

45. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 1539 
110–115 (2017) doi:10.1038/nature24676. 1540 

46. Kiernan, K. & MacIver, N. J. The Role of the Adipokine Leptin in Immune Cell Function 1541 
in Health and Disease. Front. Immunol. 11, 622468 (2020) 1542 
doi:10.3389/fimmu.2020.622468. 1543 

47. Segerer, S. E. et al. The glycoprotein-hormones activin A and inhibin A interfere with 1544 
dendritic cell  maturation. Reprod. Biol. Endocrinol. 6, 17 (2008) doi:10.1186/1477-1545 
7827-6-17. 1546 

48. Rapp, M. et al. CCL22 controls immunity by promoting regulatory T cell communication 1547 
with  dendritic cells in lymph nodes. J. Exp. Med. 216, 1170–1181 (2019) 1548 
doi:10.1084/jem.20170277. 1549 

49. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening 1550 
COVID-19. Science 370, (2020) doi:10.1126/science.abd4570. 1551 

50. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening 1552 
COVID-19. Science 370, (2020) doi:10.1126/science.abd4585. 1553 

51. Ho, F. K. et al. Thromboembolic Risk in Hospitalized and Nonhospitalized COVID-19 1554 
Patients: A  Self-Controlled Case Series Analysis of a Nationwide Cohort. Mayo Clin. 1555 
Proc. 96, 2587–2597 (2021) doi:10.1016/j.mayocp.2021.07.002. 1556 

52. Gorog, D. A. et al. Current and novel biomarkers of thrombotic risk in COVID-19: a 1557 
Consensus Statement  from the International COVID-19 Thrombosis Biomarkers 1558 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

62 
 

Colloquium. Nat. Rev. Cardiol. 1–21 (2022) doi:10.1038/s41569-021-00665-7. 1559 

53. Katsoularis, I. et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding 1560 
after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ 1561 
377, (2022) doi:10.1136/bmj-2021-069590. 1562 

54. Greinacher, A. et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 1563 
Vaccination. N. Engl. J. Med. 384, 2092–2101 (2021) doi:10.1056/NEJMoa2104840. 1564 

55. Schultz, N. H. et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 1565 
Vaccination. N. Engl. J. Med. 384, 2124–2130 (2021) doi:10.1056/NEJMoa2104882. 1566 

56. Greinacher, A. et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic 1567 
thrombocytopenia. Blood 138, 2256–2268 (2021) doi:10.1182/blood.2021013231. 1568 

57. Ewels, P. A. et al. The nf-core framework for community-curated bioinformatics 1569 
pipelines. Nat. Biotechnol. 38, 276–278 (2020) doi:10.1038/s41587-020-0439-x. 1570 

58. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. 1571 
Biotechnol. 35, 316–319 (2017) doi:10.1038/nbt.3820. 1572 

59. Andrews, S. et al. FastQC: a quality control tool for high throughput sequence data. 1573 
(2012). 1574 

60. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing 1575 
reads. EMBnet.journal; Vol 17, No 1 Next Gener. Seq. Data Anal.  - 1576 
10.14806/ej.17.1.200  (2011). 1577 

61. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 1578 
(2013) doi:10.1093/bioinformatics/bts635. 1579 

62. Anders, S., Pyl, P. T. & Huber, W. HTSeq--a Python framework to work with high-1580 
throughput sequencing data. Bioinformatics 31, 166–169 (2015) 1581 
doi:10.1093/bioinformatics/btu638. 1582 

63. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for 1583 
differential expression analysis of digital gene expression data. Bioinformatics 26, 139–1584 
140 (2010) doi:10.1093/bioinformatics/btp616. 1585 

64. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential 1586 
expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010) doi:10.1186/gb-1587 
2010-11-3-r25. 1588 

65. Howe, K. L. et al. Ensembl 2021. Nucleic Acids Res. 49, D884–D891 (2021) 1589 
doi:10.1093/nar/gkaa942. 1590 

66. Tweedie, S. et al. Genenames.org: the HGNC and VGNC resources in 2021. Nucleic 1591 
Acids Res. 49, D939–D946 (2021) doi:10.1093/nar/gkaa980. 1592 

67. John, C. R. et al. M3C: Monte Carlo reference-based consensus clustering. Sci. Rep. 1593 
10, 1–14 (2020) doi:10.1038/s41598-020-58766-1. 1594 

68. Uhlen, M. et al. Tissue-based map of the human proteome. Science (80-. ). 347, 1595 
1260419–1260419 (2015) doi:10.1126/science.1260419. 1596 

69. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models 1597 
Using lme4. J. Stat. Softw. 67, (2015) doi:10.18637/jss.v067.i01. 1598 

70. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in 1599 
Linear Mixed Effects Models. J. Stat. Softw. 82, (2017) doi:10.18637/jss.v082.i13. 1600 

71. Hoffman, G. E. & Roussos, P. Dream: powerful differential expression analysis for 1601 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/


   
 

63 
 

repeated measures designs. Bioinformatics 37, 192–201 (2021) 1602 
doi:10.1093/bioinformatics/btaa687. 1603 

72. Hoffman, G. E. & Schadt, E. E. variancePartition: interpreting drivers of variation in 1604 
complex gene expression studies. BMC Bioinformatics 17, 483 (2016) 1605 
doi:10.1186/s12859-016-1323-z. 1606 

73. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1607 
1739–1740 (2011) doi:10.1093/bioinformatics/btr260. 1608 

74. Buang, N. et al. Type I interferons affect the metabolic fitness of CD8+ T cells from 1609 
patients with systemic lupus erythematosus. Nat. Commun. 12, 1980 (2021) 1610 
doi:10.1038/s41467-021-22312-y. 1611 

75. Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation for gene list integration 1612 
and meta-analysis. Bioinformatics 28, 573–580 (2012) 1613 
doi:10.1093/bioinformatics/btr709. 1614 

76. Li, J. et al. Application of Weighted Gene Co-expression Network Analysis for Data from 1615 
Paired Design. Sci. Rep. 8, 622 (2018) doi:10.1038/s41598-017-18705-z. 1616 

77. Bakdash, J. Z. & Marusich, L. R. Repeated measures correlation. Front. Psychol. 8, 1–1617 
13 (2017) doi:10.3389/fpsyg.2017.00456. 1618 

78. Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster 1619 
tree: The Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008) 1620 
doi:10.1093/bioinformatics/btm563. 1621 

79. Perperoglou, A., Sauerbrei, W., Abrahamowicz, M. & Schmid, M. A review of spline 1622 
function procedures in R. BMC Med. Res. Methodol. 19, 1–16 (2019) 1623 
doi:10.1186/s12874-019-0666-3. 1624 

80. Wu, T. et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. 1625 
Innov. 2, 100141 (2021) doi:https://doi.org/10.1016/j.xinn.2021.100141. 1626 

81. Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues 1627 
with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019) doi:10.1038/s41587-019-1628 
0114-2. 1629 

82. Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression 1630 
profiles. Nat. Methods 12, 453–457 (2015) doi:10.1038/nmeth.3337. 1631 

83. Velten, B. et al. Identifying temporal and spatial patterns of variation from multimodal 1632 
data using MEFISTO. Nat. Methods 19, (2022) doi:10.1038/s41592-021-01343-9. 1633 

84. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 28, 1634 
1–26 (2008) doi:10.18637/jss.v028.i05. 1635 

85. Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear 1636 
Models via Coordinate Descent. J. Stat. Softw. 33, 1–22 (2010) 1637 
doi:10.18637/jss.v033.i01. 1638 

 1639 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2022. ; https://doi.org/10.1101/2022.04.29.22274267doi: medRxiv preprint 

https://doi.org/10.1101/2022.04.29.22274267
http://creativecommons.org/licenses/by-nd/4.0/

