
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=rics20

Information, Communication & Society

ISSN: 1369-118X (Print) 1468-4462 (Online) Journal homepage: https://www.tandfonline.com/loi/rics20

Thinking critically about and researching
algorithms

Rob Kitchin

To cite this article: Rob Kitchin (2017) Thinking critically about and researching algorithms,
Information, Communication & Society, 20:1, 14-29, DOI: 10.1080/1369118X.2016.1154087

To link to this article: https://doi.org/10.1080/1369118X.2016.1154087

Published online: 25 Feb 2016.

Submit your article to this journal

Article views: 8775

View related articles

View Crossmark data

Citing articles: 95 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=rics20
https://www.tandfonline.com/loi/rics20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/1369118X.2016.1154087
https://doi.org/10.1080/1369118X.2016.1154087
https://www.tandfonline.com/action/authorSubmission?journalCode=rics20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=rics20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/1369118X.2016.1154087
https://www.tandfonline.com/doi/mlt/10.1080/1369118X.2016.1154087
http://crossmark.crossref.org/dialog/?doi=10.1080/1369118X.2016.1154087&domain=pdf&date_stamp=2016-02-25
http://crossmark.crossref.org/dialog/?doi=10.1080/1369118X.2016.1154087&domain=pdf&date_stamp=2016-02-25
https://www.tandfonline.com/doi/citedby/10.1080/1369118X.2016.1154087#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/1369118X.2016.1154087#tabModule

Thinking critically about and researching algorithms
Rob Kitchin

NIRSA, National University of Ireland Maynooth, County Kildare, Ireland

ABSTRACT
More and more aspects of our everyday lives are being mediated,
augmented, produced and regulated by software-enabled
technologies. Software is fundamentally composed of algorithms:
sets of defined steps structured to process instructions/data to
produce an output. This paper synthesises and extends emerging
critical thinking about algorithms and considers how best to
research them in practice. Four main arguments are developed.
First, there is a pressing need to focus critical and empirical
attention on algorithms and the work that they do given their
increasing importance in shaping social and economic life.
Second, algorithms can be conceived in a number of ways –
technically, computationally, mathematically, politically, culturally,
economically, contextually, materially, philosophically, ethically –
but are best understood as being contingent, ontogenetic and
performative in nature, and embedded in wider socio-technical
assemblages. Third, there are three main challenges that hinder
research about algorithms (gaining access to their formulation;
they are heterogeneous and embedded in wider systems; their
work unfolds contextually and contingently), which require
practical and epistemological attention. Fourth, the constitution
and work of algorithms can be empirically studied in a number of
ways, each of which has strengths and weaknesses that need to
be systematically evaluated. Six methodological approaches
designed to produce insights into the nature and work of
algorithms are critically appraised. It is contended that these
methods are best used in combination in order to help overcome
epistemological and practical challenges.

ARTICLE HISTORY
Received 30 September 2015
Accepted 10 February 2016

KEYWORDS
Algorithm; code;
epistemology; methodology;
research

Introduction: why study algorithms?

The era of ubiquitous computing and big data is now firmly established, with more and
more aspects of our everyday lives – play, consumption, work, travel, communication,
domestic tasks, security, etc. – being mediated, augmented, produced and regulated by
digital devices and networked systems powered by software (Greenfield, 2006; Kitchin
& Dodge, 2011; Manovich, 2013; Steiner, 2012). Software is fundamentally composed of
algorithms – sets of defined steps structured to process instructions/data to produce an
output – with all digital technologies thus constituting ‘algorithm machines’ (Gillespie,
2014a). These ‘algorithm machines’ enable extensive and complex tasks to be tackled
that would be all but impossible by hand or analogue machines. They can performmillions

© 2016 Informa UK Limited, trading as Taylor & Francis Group

CONTACT Rob Kitchin rob.kitchin@nuim.ie

INFORMATION, COMMUNICATION & SOCIETY, 2017
VOL. 20, NO. 1, 14–29
http://dx.doi.org/10.1080/1369118X.2016.1154087

mailto:rob.kitchin@nuim.ie
http://www.tandfonline.com

of operations per second; minimise human error and bias in how a task is performed; and
can significantly reduce costs and increase turnover and profit through automation and
creating new services/products (Kitchin & Dodge, 2011). As such, dozens of key sets of
algorithms are shaping everyday practices and tasks, including those that perform
search, secure encrypted exchange, recommendation, pattern recognition, data com-
pression, auto-correction, routing, predicting, profiling, simulation and optimisation
(MacCormick, 2013).

As Diakopoulos (2013, p. 2) argues: ‘We’re living in a world now where algorithms
adjudicate more and more consequential decisions in our lives.…Algorithms, driven
by vast troves of data, are the new power brokers in society.’ Steiner (2012, p. 214) thus
contends:

algorithms already have control of your money market funds, your stocks, and your retire-
ment accounts. They’ll soon decide who you talk to on phone calls; they will control the
music that reaches your radio; they will decide your chances of getting lifesaving organs
transplant; and for millions of people, algorithms will make perhaps the largest decision of
in their life: choosing a spouse.

Similarly, Lenglet (2011), MacKenzie (2014), Arnoldi (2016), Pasquale (2015) document
how algorithms have deeply and pervasively restructured how all aspects of the finance
sector operate, from how funds are traded to how credit agencies assess risk and sort cus-
tomers. Amoore (2006, 2009) details how algorithms are used to assess security risks in the
‘war on terror’ through the profiling passengers and citizens. With respect to the creation
of Wikipedia, Geiger (2014, p. 345) notes how algorithms ‘help create new articles, edit
existing articles, enforce rules and standards, patrol for spam and vandalism, and generally
work to support encyclopaedic or administrative work.’ Likewise, Anderson (2011) details
how algorithms are playing an increasingly important role in producing content and med-
iating the relationships between journalists, audiences, newsrooms and media products.

In whatever domain algorithms are deployed they appear to be having disruptive and
transformative effect, both to how that domain is organised and operates, and to the
labour market associated with it. Steiner (2012) provides numerous examples of how
algorithms and computation have led to widespread job losses in some industries
through automation. He concludes

programmers now scout new industries for soft spots where algorithms might render old
paradigms extinct, and in the process make mountains of money…Determining the next
field to be invaded by bots [automated algorithms] is the sum of two simple functions: the
potential to disrupt plus the reward for disruption. (Steiner, 2012, pp. 6, 119)

Such conclusions have led a number of commentators to argue that we are now entering
an era of widespread algorithmic governance, wherein algorithms will play an ever-
increasing role in the exercise of power, a means through which to automate the disciplin-
ing and controlling of societies and to increase the efficiency of capital accumulation.
However, Diakopoulos (2013, p. 2, original emphasis) warns that: ‘What we generally
lack as a public is clarity about how algorithms exercise their power over us.’ Such
clarity is absent because although algorithms are imbued with the power to act upon
data and make consequential decisions (such as to issue fines or block travel or approve
a loan) they are largely black boxed and beyond query or question. What is at stake

INFORMATION, COMMUNICATION & SOCIETY 15

then with the rise of ‘algorithm machines’ is new forms of algorithmic power that are
reshaping how social and economic systems work.

In response, over the past decade or so, a growing number of scholars have started to
focus critical attention on software code and algorithms, drawing on and contributing
to science and technology studies, new media studies and software studies, in order to
unpack the nature of algorithms and their power and work. Their analyses typically
take one of three forms: a detailed case study of a single algorithm, or class of algorithms,
to examine the nature of algorithms more generally (e.g., Bucher, 2012; Geiger, 2014;
Mackenzie, 2007; Montfort et al., 2012); a detailed examination of the use of algorithms
in one domain, such as journalism (Anderson, 2011), security (Amoore, 2006, 2009) or
finance (Pasquale, 2014, 2015); or a more general, critical account of algorithms, their
nature and how they perform work (e.g., Cox, 2013; Gillespie, 2014a, 2014b; Seaver, 2013).

This paper synthesises, critiques and extends these studies. Divided into two main sec-
tions – thinking critically about and researching algorithms – the paper makes four key
arguments. First, as already noted, there is a pressing need to focus critical and empirical
attention on algorithms and the work that they do in the world. Second, it is most pro-
ductive to conceive of algorithms as being contingent, ontogenetic, performative in
nature and embedded in wider socio-technical assemblages. Third, there are three main
challenges that hinder research about algorithms (gaining access to their formulation;
they are heterogeneous and embedded in wider systems; their work unfolds contextually
and contingently), which require practical and epistemological attention. Fourth, the con-
stitution and work of algorithms can be empirically studied in a number of ways, each of
which has strengths and weaknesses that need to be systematically evaluated. With respect
to the latter, the paper provides a critical appraisal of six methodological approaches that
might profitably be used to produce insights into the nature and work of algorithms.

Thinking critically about algorithms

While an algorithm is commonly understood as a set of defined steps to produce particular
outputs it is important to note that this is somewhat of a simplification. What constitutes
an algorithm has changed over time and they can be thought about in a number of ways:
technically, computationally, mathematically, politically, culturally, economically, contex-
tually, materially, philosophically, ethically and so on.

Miyazaki (2012) traces the term ‘algorithm’ to twelfth-century Spain when the scripts of
the Arabian mathematician Muḥammad ibn Mūsā al-Khwārizmī were translated into
Latin. These scripts describe methods of addition, subtraction, multiplication and division
using numbers. Thereafter, ‘algorism’meant ‘the specific step-by-step method of perform-
ing written elementary arithmetic’ (Miyazaki, 2012, p. 2) and ‘came to describe any
method of systematic or automatic calculation’ (Steiner, 2012, p. 55). By the mid-twentieth
century and the development of scientific computation and early high level programming
languages, such as Algol 58 and its derivatives (short for ALGOrithmic Language), an
algorithm was understood to be a set of defined steps that if followed in the correct
order will computationally process input (instructions and/or data) to produce a
desired outcome (Miyazaki, 2012).

From a computational and programming perspective an ‘Algorithm = Logic + Control’;
where the logic is the problem domain-specific component and specifies the abstract

16 R. KITCHIN

formulation and expression of a solution (what is to be done) and the control component
is the problem-solving strategy and the instructions for processing the logic under differ-
ent scenarios (how it should be done) (Kowalski, 1979). The efficiency of an algorithm can
be enhanced by either refining the logic component or by improving the control over its
use, including altering data structures (input) to improve efficiency (Kowalski, 1979). As
reasoned logic, the formulation of an algorithm is, in theory at least, independent of pro-
gramming languages and the machines that execute them; ‘it has an autonomous existence
independent of “implementation details”’ (Goffey, 2008, p. 15).

Some ideas explicitly take the form of an algorithm. Mathematical formulae, for
example, are expressed as precise algorithms in the form of equations. In other cases pro-
blems have to be abstracted and structured into a set of instructions (pseudo-code) which
can then be coded (Goffey, 2008). A computer programme structures lots of relatively
simple algorithms together to form large, often complex, recursive decision trees
(Neyland, 2015; Steiner, 2012). The methods of guiding and calculating decisions are
largely based on Boolean logic (e.g., if this, then that) and the mathematical formulae
and equations of calculus, graph theory and probability theory. Coding thus consists of
two key translation challenges centred on producing algorithms. The first is translating
a task or problem into a structured formula with an appropriate rule set (pseudo-code).
The second is translating this pseudo-code into source code that when compiled will
perform the task or solve the problem. Both translations can be challenging, requiring
the precise definition of what a task/problem is (logic), then breaking that down into a
precise set of instructions, factoring in any contingencies such as how the algorithm
should perform under different conditions (control). The consequences of mistranslating
the problem and/or solution are erroneous outcomes and random uncertainties (Drucker,
2013).

The processes of translation are often portrayed as technical, benign and commonsen-
sical. This is how algorithms are mostly presented by computer scientists and technology
companies: that they are ‘purely formal beings of reason’ (Goffey, 2008, p. 16). Thus, as
Seaver (2013) notes, in computer science texts the focus is centred on how to design an
algorithm, determine its efficiency and prove its optimality from a purely technical per-
spective. If there is discussion of the work algorithms do in real-world contexts this con-
centrates on how algorithms function in practice to perform a specific task. In other words,
algorithms are understood ‘to be strictly rational concerns, marrying the certainties of
mathematics with the objectivity of technology’ (Seaver, 2013, p. 2). ‘Other knowledge
about algorithms – such as their applications, effects, and circulation – is strictly out of
frame’ (Seaver, 2013, pp. 1–2). As are the complex set of decision-making processes
and practices, and the wider assemblage of systems of thought, finance, politics, legal
codes and regulations, materialities and infrastructures, institutions, inter-personal
relations, which shape their production (Kitchin, 2014).

Far from being objective, impartial, reliable and legitimate, critical scholars argue that
algorithms possess none of these qualities except as carefully crafted fictions (Gillespie,
2014a). As Montfort et al. (2012, p. 3) note, ‘[c]ode is not purely abstract and mathemat-
ical; it has significant social, political, and aesthetic dimensions,’ inherently framed and
shaped by all kinds of decisions, politics, ideology and the materialities of hardware and
infrastructure that enact its instruction. Whilst programmers might seek to maintain a
high degree of mechanical objectivity – being distant, detached and impartial in how

INFORMATION, COMMUNICATION & SOCIETY 17

they work and thus acting independent of local customs, culture, knowledge and context
(Porter, 1995) – in the process of translating a task or process or calculation into an algor-
ithm they can never fully escape these. Nor can they escape factors such as available
resources and the choice and quality of training data; requirements relating to standards,
protocols and the law; and choices and conditionalities relating to hardware, platforms,
bandwidth and languages (Diakopoulos, 2013; Drucker, 2013; Kitchin & Dodge, 2011;
Neyland, 2015). In reality then, a great deal of expertise, judgement, choice and constraints
are exercised in producing algorithms (Gillespie, 2014a). Moreover, algorithms are created
for purposes that are often far from neutral: to create value and capital; to nudge behaviour
and structure preferences in a certain way; and to identify, sort and classify people.

At the same time, ‘programming is… a live process of engagement between thinking
with and working on materials and the problem space that emerges’ (Fuller, 2008,
p. 10) and it ‘is not a dry technical exercise but an exploration of aesthetic, material,
and formal qualities’ (Montfort et al., 2012, p. 266). In other words, creating an algorithm
unfolds in context through processes such as trial and error, play, collaboration, discussion
and negotiation. They are ontogenetic in nature (always in a state of becoming), teased
into being: edited, revised, deleted and restarted, shared with others, passing through mul-
tiple iterations stretched out over time and space (Kitchin & Dodge, 2011). As a result,
they are always somewhat uncertain, provisional and messy fragile accomplishments (Gil-
lespie, 2014a; Neyland, 2015). And such practices are complemented by many others, such
as researching the concept, selecting and cleaning data, tuning parameters, selling the idea
and product, building coding teams, raising finance and so on. These practices are framed
by systems of thought and forms of knowledge, modes of political economy, organis-
ational and institutional cultures and politics, governmentalities and legalities, subjectiv-
ities and communities. As Seaver (2013, p. 10) notes, ‘algorithmic systems are not
standalone little boxes, but massive, networked ones with hundreds of hands reaching
into them, tweaking and tuning, swapping out parts and experimenting with new
arrangements.’

Creating algorithms thus sits at the ‘intersection of dozens of… social and material
practices’ that are culturally, historically and institutionally situated (Montfort et al.,
2012, p. 262; Napoli, 2013; Takhteyev, 2012). As such, as Mackenzie (2007, p. 93)
argues treating algorithms simply ‘as a general expression of mental effort, or, perhaps
even more abstractly, as process of abstraction, is to lose track of proximities and relation-
alities that algorithms articulate.’ Algorithms cannot be divorced from the conditions
under which they are developed and deployed (Geiger, 2014). What this means is that
algorithms need to be understood as relational, contingent, contextual in nature,
framed within the wider context of their socio-technical assemblage. From this perspec-
tive, ‘algorithm’ is one element in a broader apparatus which means it can never be under-
stood as a technical, objective, impartial form of knowledge or mode of operation.

Beyond thinking critically about the nature of algorithms, there is also a need to con-
sider their work, effects and power. Just as algorithms are not neutral, impartial
expressions of knowledge, their work is not impassive and apolitical. Algorithms
search, collate, sort, categorise, group, match, analyse, profile, model, simulate, visualise
and regulate people, processes and places. They shape how we understand the world and
they do work in and make the world through their execution as software, with profound
consequences (Kitchin & Dodge, 2011). In this sense, they are profoundly performative

18 R. KITCHIN

as they cause things to happen (Mackenzie & Vurdubakis, 2011). And while the creators
of these algorithms might argue that they ‘replace, displace, or reduce the role of biased
or self-serving intermediaries’ and remove subjectivity from decision-making, compu-
tation often deepens and accelerates processes of sorting, classifying and differentially
treating, and reifying traditional pathologies, rather than reforming them (Pasquale,
2014, p. 5).

Far from being neutral in nature, algorithms construct and implement regimes of
power and knowledge (Kushner, 2013) and their use has normative implications (Ander-
son, 2011). Algorithms are used to seduce, coerce, discipline, regulate and control: to guide
and reshape how people, animals and objects interact with and pass through various
systems. This is the same for systems designed to empower, entertain and enlighten, as
they are also predicated on defined rule-sets about how a system behaves at any one
time and situation. Algorithms thus claim and express algorithmic authority (Shirky,
2009) or algorithmic governance (Beer, 2009; Musiani, 2013), often through what
Dodge and Kitchin (2007) term ‘automated management’ (decision-making processes
that are automated, automatic and autonomous; outside of human oversight). The conse-
quence for Lash (2007) is that society now has a new rule set to live by to complement
constitutive and regulative rules: algorithmic, generative rules. He explains that such
rules are embedded within computation, an expression of ‘power through the algorithm’;
they are ‘virtuals that generate a whole variety of actuals. They are compressed and hidden
and we do not encounter them in the way that we encounter constitutive and regulative
rules.… They are… pathways through which capitalist power works’ (Lash, 2007, p. 71).

It should be noted, however, that the effects of algorithms or their power is not always
linear or always predictable for three reasons. First, algorithms act as part of a wider
network of relations which mediate and refract their work, for example, poor input
data will lead to weak outcomes (Goffey, 2008; Pasquale, 2014). Second, the performance
of algorithms can have side effects and unintended consequences, and left unattended or
unsupervised they can perform unanticipated acts (Steiner, 2012). Third, algorithms can
have biases or make mistakes due to bugs or miscoding (Diakopoulos, 2013; Drucker,
2013). Moreover, once computation is made public it undergoes a process of domesti-
cation, with users embedding the technology in their lives in all kinds of alternative
ways and using it for different means, or resisting, subverting and reworking the algor-
ithms’ intent (consider the ways in which users try to game Google’s PageRank algorithm).
In this sense, algorithms are not just what programmers create, or the effects they create
based on certain input, they are also what users make of them on a daily basis (Gillespie,
2014a).

Steiner’s (2012, p. 218) solution to living with the power of algorithms is to suggest
that we ‘[g]et friendly with bots.’ He argues that the way to thrive in the algorithmic
future is to learn to ‘build, maintain, and improve upon code and algorithms,’ as if
knowing how to produce algorithms protects oneself from their diverse and pernicious
effects across multiple domains. Instead, I would argue, there is a need to focus more
critical attention on the production, deployment and effects of algorithms in order to
understand and contest the various ways that they can overtly and covertly shape life
chances. However, such a programme of research is not as straightforward as one
might hope, as the next section details.

INFORMATION, COMMUNICATION & SOCIETY 19

Researching algorithms

The logical way to flesh out our understanding of algorithms and the work they do in the
world is to conduct detailed empirical research centrally focused on algorithms. Such
research could approach algorithms from a number of perspectives:

a technical approach that studies algorithms as computer science; a sociological approach
that studies algorithms as the product of interactions among programmers and designers;
a legal approach that studies algorithms as a figure and agent in law; a philosophical approach
that studies the ethics of algorithms, (Barocas, Hood, & Ziewitz, 2013, p. 3)

and a code/software studies’ perspective that studies the politics and power embedded in
algorithms, their framing within a wider socio-technical assemblage and how they reshape
particular domains. There are a number of methodological approaches that can be used to
operationalise such research, six of which are critically appraised below. Before doing so,
however, it is important to acknowledge that there are three significant challenges to
researching algorithms that require epistemological and practical attention.

Challenges

Access/black boxed
Many of the most important algorithms that people encounter on a regular basis and
which (re)shape how they perform tasks or the services they receive are created in environ-
ments that are not open to scrutiny and their source code is hidden inside impenetrable
executable files. Coding often happens in private settings, such as within companies or
state agencies, and it can be difficult to negotiate access to coding teams to observe
them work, interview programmers or analyse the source code they produce. This is
unsurprising since it is often a company’s algorithms that provide it with a competitive
advantage and they are reluctant to expose their intellectual property even with non-dis-
closure agreements in place. They also want to limit the ability of users to game the algor-
ithm to unfairly gain a competitive edge. Access is a little easier in the case of open-source
programming teams and open-source programmes through repositories such as Github,
but while they provide access to much code, this is limited in scope and does not
include key proprietary algorithms that might be of more interest with respect to
holding forms of algorithmic governance to account.

Heterogeneous and embedded
If access is gained, algorithms, as Seaver (2013) notes, are rarely straightforward to decon-
struct. Within code algorithms are usually woven together with hundreds of other algor-
ithms to create algorithmic systems. It is the workings of these algorithmic systems that we
are mostly interested in, not specific algorithms, many of which are quite benign and pro-
cedural. Algorithmic systems are most often ‘works of collective authorship, made, main-
tained, and revised by many people with different goals at different times’ (Seaver, 2013,
p. 10). They can consist of original formulations mashed together with those sourced from
code libraries, including stock algorithms that are re-used in multiple instances. Moreover,
they are embedded within complex socio-technical assemblages made up of a hetero-
geneous set of relations including potentially thousands of individuals, data sets,
objects, apparatus, elements, protocols, standards, laws, etc. that frame their development.

20 R. KITCHIN

Their construction, therefore, is often quite messy, full of ‘flux, revisability, and nego-
tiation’ (p. 10), making unpacking the logic and rationality behind their formulation dif-
ficult in practice. Indeed, it is unlikely that any one programmer has a complete
understanding of a system, especially large, complex ones that are built by many teams
of programmers, some of whom may be distributed all over the planet or may have
only had sight of smaller outsourced segments. Getting access to a credit rating
agency’s algorithmic system then might give an insight into its formula for assessing
and sorting individuals, its underlying logics and principles, and how it was created and
works in practice, but will not necessarily provide full transparency as to its full reasoning,
workings or the choices made in its construction (Bucher, 2012; Chun, 2011).

Ontogenetic, performative and contingent
As well as being heterogeneous and embedded, algorithms are rarely fixed in form and
their work in practice unfolds in multifarious ways. As such, algorithms need to be recog-
nised as being ontogenetic, performative and contingent: that is, they are never fixed in
nature, but are emergent and constantly unfolding. In cases where an algorithm is
static, for example, in firmware that is not patched, its work unfolds contextually, reactive
to input, interaction and situation. In other cases, algorithms and their instantiation in
code are often being refined, reworked, extended and patched, iterating through various
versions (Miyazaki, 2012). Companies such as Google and Facebook might be live
running dozens of different versions of an algorithm to assess their relative merits, with
no guarantee that the version a user interacts with at one moment in time is the same
as five seconds later. In some cases, the code has been programmed to evolve,
re-writing its algorithms as it observes, experiments and learns independently of its crea-
tors (Steiner, 2012).

Similarly, many algorithms are designed to be reactive and mutable to inputs. As
Bucher (2012) notes, Facebook’s EdgeRank algorithm (that determines what posts and
in what order are fed into each users’ timeline) does not act from above in a static,
fixed manner, but rather works in concert with the each individual user, ordering posts
dependent on how one interacts with ‘friends.’ Its parameters then are contextually
weighted and fluid. In other cases, randomness might be built into an algorithm’s
design meaning its outcomes can never be perfectly predicted. What this means is that
the outcomes for users inputting the same data might vary for contextual reasons (e.g.,
Mahnke and Uprichard (2014) examined Google’s autocomplete search algorithm by
typing in the same terms from two locations and comparing the results, finding differences
in the suggestions the algorithm gave), and the same algorithms might be being used in
quite varied and mutable ways (e.g., for work or for play). Examining one version of an
algorithm will then provide a snapshot reading that fails to acknowledge or account for
the mutable and often multiple natures of algorithms and their work (Bucher, 2012).

Algorithms then are often ‘out of control’ in the sense that their outcomes are some-
times not easily anticipated, producing unexpected effects in terms of their work in the
world (Mackenzie, 2005). As such, understanding the work and effects of algorithms
needs to be sensitive to their contextual, contingent unfolding across situation, time
and space. What this means in practice is that single or limited engagements with algor-
ithms cannot be simply extrapolated to all cases and that a set of comparative case studies

INFORMATION, COMMUNICATION & SOCIETY 21

need to be employed, or a series of experiments performed with the same algorithm oper-
ating under different conditions.

Approaches

Keeping in mind these challenges, this final section critically appraises six methodological
approaches for researching algorithms that I believe present the most promise for shed-
ding light on the nature and workings of algorithms, their embedding in socio-technical
systems, their effects and power, and dealing with and overcoming the difficulties of
gaining access to source code. Each approach has its strengths and drawbacks and their
use is not mutually exclusive. Indeed, I would argue that there would be much to be
gained by using two or more of the approaches in combination to compensate for the
drawbacks of employing them in isolation. Nor are they the only possible approaches,
with ethnomethodologies, surveys and historical analysis using archives and oral histories
offering other possible avenues of analysis and insight.

Examining pseudo-code/source code
Perhaps the most obvious way to try and understand an algorithm is to examine its
pseudo-code (how a task or puzzle is translated into a model or recipe) and/or its con-
struction in source code. There are three ways in which this can be undertaken in practice.
The first is to carefully deconstruct the pseudo-code and/or source code, teasing apart the
rule set to determine how the algorithm works to translate input to produce an outcome
(Krysa & Sedek, 2008). In practice this means carefully sifting through documentation,
code and programmer comments, tracing out how the algorithm works to process data
and calculate outcomes, and decoding the translation process undertaken to construct
the algorithm. The second is to map out a genealogy of how an algorithm mutates and
evolves over time as it is tweaked and rewritten across different versions of code. For
example, one might deconstruct how an algorithm is re-scripted in multiple instantiations
of a programme within a code library such as github. Such a genealogy would reveal how
thinking with respect to a problem is refined and transformed with respect to how the
algorithm/code performs ‘in the wild’ and in relation to new technologies, situations
and contexts (such as new platforms or regulations being introduced). The third is to
examine how the same task is translated into various software languages and how it
runs across different platforms. This is an approach used by Montfort et al. (2012) in
their exploration of the ‘10 PRINT’ algorithm, where they scripted code to perform the
same task in multiple languages and ran it on different hardware, and also tweaked the
parameters, to observe the specific contingencies and affordances this introduced.

While these methods do offer the promise of providing valuable insights into the ways
in which algorithms are built, how power is vested in them through their various par-
ameters and rules, and how they process data in abstract and material terms to complete
a task, there are three significant issues with their deployment. First, as noted by Chandra
(2013), deconstructing and tracing how an algorithm is constructed in code and mutates
over time is not straightforward. Code often takes the form of a ‘Big Ball of Mud’: ‘[a] hap-
hazardly structured, sprawling, sloppy, duct-tape and bailing wire, spaghetti code jungle’
(Foote & Yoder, 1997; cited in Chandra, 2013, p. 126). Even those that have produced it
can find it very difficult to unpack its algorithms and routines; those unfamiliar with its

22 R. KITCHIN

development can often find that the ball of mud remains just that. Second, it requires that
the researcher is both an expert in the domain to which the algorithm refers and possesses
sufficient skill and knowledge as a programmer that they can make sense of a ‘Big Ball of
Mud’; a pairing that few social scientists and humanities scholars possess. Third, these
approaches largely decontextualise the algorithm from its wider socio-technical assem-
blage and its use.

Reflexively producing code
A related approach is to conduct auto-ethnographies of translating tasks into pseudo-code
and the practices of producing algorithms in code. Here, rather than studying an algor-
ithm created by others, a researcher reflects on and critically interrogates their own experi-
ences of translating and formulating an algorithm. This would include an analysis of not
only the practices of exploring and translating a task, originating and developing ideas,
writing and revising code, but also how these practices are situated within and shaped
by wider socio-technical factors such as regulatory and legal frameworks, form of knowl-
edge, institutional arrangements, financial terms and conditions, and anticipated users and
market. Ziewitz (2011) employed this kind of approach to reflect on producing a random
routing algorithm for directing a walking path through a city, reflecting on the ontological
uncertainty in the task itself (that there is often an ontological gerrymandering effect at
work as the task itself is re-thought and re-defined while the process of producing an
algorithm is undertaken), and the messy, contingent process of creating the rule set and
parameters in practice and how these also kept shifting through deferred accountability.
Similarly, Ullman (1997) uses such an approach to consider the practices of developing
software and how this changed over her career.

While this approach will provide useful insights into how algorithms are created, it also
has a couple of limitations. The first is the inherent subjectivities involved in doing an
auto-ethnography and the difficulties of detaching oneself and gaining critical distance
to be able to give clear insight into what is unfolding. Moreover, there is the possibility
that in seeking to be reflexive what would usually take place is inflected in unknown
ways. Further, it excludes any non-representational, unconscious acts from analysis.
Second, one generally wants to study algorithms and code that have real concrete
effects on peoples’ everyday lives, such as those used in algorithmic governance. One
way to try and achieve this is to contribute to open-source projects where the code is incor-
porated into products that others use, or to seek access to a commercial project as a pro-
grammer (on an overt, approved basis with non-disclosure agreements in place). The
benefit here is that the method can be complemented with the sixth approach set out
below, examining and reflecting on the relationship between the production of an algor-
ithm and any associated ambitions and expectations vis-à-vis how it actually does work in
the world.

Reverse engineering
In cases where the code remains black boxed, a researcher interested in the algorithm at
the heart of its workings is left with the option of trying to reverse engineer the compiled
software. Diakopoulos (2013, p. 13) explains that ‘[r]everse engineering is the process of
articulating the specifications of a system through a rigorous examination drawing on
domain knowledge, observation, and deduction to unearth a model of how that system

INFORMATION, COMMUNICATION & SOCIETY 23

works.’While software producers might desire their products to remain opaque, each pro-
gramme inherently has two openings that enable lines of enquiry: input and output. By
examining what data are fed into an algorithm and what output is produced it is possible
to start to reverse engineer how the recipe of the algorithm is composed (how it weights
and preferences some criteria) and what it does.

The main way this is attempted is by using carefully selected dummy data and seeing
what is outputted under different scenarios. For example, researchers might search Google
using the same terms on multiple computers in multiple jurisdictions to get a sense of how
its PageRank algorithm is constructed and works in practice (Mahnke & Uprichard, 2014),
or they might experiment with posting and interacting with posts on Facebook to try and
determine how its EdgeRank algorithm positions and prioritises posts in user time lines
(Bucher, 2012), or they might use proxy servers and feed dummy user profiles into e-com-
merce systems to see how prices might vary across users and locales (Wall Street Journal,
detailed in Diakopoulos, 2013). One can also get a sense of an algorithm by ‘looking closely
at how information must be oriented to face them, how it is made algorithm-ready’; how
the input data are delineated in terms of what input variables are sought and structured,
and the associated meta-data (Gillespie, 2014a). Another possibility is to follow debates on
online forums by users about how they perceive an algorithm works or has changed, or
interview marketers, media strategists, and public relations firms that seek to game an
algorithm to optimise an outcome for a client (Bucher, 2012).

While reverse engineering can give some indication of the factors and conditions
embedded into an algorithm, they generally cannot do so with any specificity (Seaver,
2013). As such, they usually only provide fuzzy glimpses of how an algorithm works in
practice but not its actual constitution (Diakopoulos, 2013). One solution to try and
enhance clarity has been to employ bots, which posing as users, can more systematically
engage with a system, running dummy data and interactions. However, as Seaver (2013)
notes, many proprietary systems are aware that many people are seeking to determine and
game their algorithm, and thus seek to identify and block bot users.

Interviewing designers or conducting an ethnography of a coding team
While deconstructing or reverse engineering code might provide some insights into the
workings of an algorithm, they provide little more than conjecture as to the intent of
the algorithm designers, and examining that and how and why an algorithm was produced
requires a different approach. Interviewing designers and coders, or conducting an ethno-
graphy of a coding team, provides a means of uncovering the story behind the production
of an algorithm and to interrogate its purpose and assumptions.

In the first case, respondents are questioned as to how they framed objectives, created
pseudo-code and translated this into code, and quizzed about design decisions and choices
with respect to languages and technologies, practices, influences, constraints, debates
within a team or with clients, institutional politics and major changes in direction over
time (Diakopoulos, 2013; MacKenzie, 2014; Mager, 2012). In the second case, a researcher
seeks to spend time within a coding team, either observing the work of the coders, discuss-
ing it with them, and attending associated events such as teammeetings, or working in situ
as part of the team, taking an active role in producing code. An example of the former is
Rosenberg’s (2007) study of one company’s attempt to produce a new product conducted
over a three-year period in which he was given full access to the company, including

24 R. KITCHIN

observing and talking to coders, and having access to team chat rooms and phone confer-
ences. An example of the latter is Takhteyev’s (2012) study of an open-source coding
project in Rio de Janeiro where he actively worked on developing the code, as well as
taking part in the social life of the team. In both cases, Rosenberg and Takhteyev generate
much insight into the contingent, relational and contextual way in which algorithms and
software are produced, though in neither case are the specificities of algorithms and their
work unpacked and detailed.

Unpacking the full socio-technical assemblage of algorithms
As already noted, algorithms are not formulated or do not work in isolation, but form part
of a technological stack that includes infrastructure/hardware, code platforms, data and
interfaces, and are framed and conditions by forms of knowledge, legalities, governmen-
talities, institutions, marketplaces, finance and so on. A wider understanding of algorithms
then requires their full socio-technical assemblage to be examined, including an analysis of
the reasons for subjecting the system to the logic of computation in the first place. Exam-
ining algorithms without considering their wider assemblage is, as Geiger (2014) argues,
like considering a law without reference to the debate for its introduction, legal insti-
tutions, infrastructures such as courts, implementers such as the police, and the operating
and business practices of the legal profession. It also risks fetishising the algorithm and
code at the expense of the rest of the assemblage (Chun, 2011).

Interviews and ethnographies of coding projects, and the wider institutional apparatus
surrounding them (e.g., management and institutional collaboration), start to produce
such knowledge, but they need to supplemented with other approaches, such as a discur-
sive analysis of company documents, promotional/industry material, procurement tenders
and legal and standards frameworks; attending trade fairs and other inter-company inter-
actions; examining the practices, structures and behaviour of institutions; and document-
ing the biographies of key actors and the histories of projects (Montfort et al., 2012;
Napoli, 2013). Such a discursive analysis will also help to reveal how algorithms are ima-
gined and narrated, illuminate the discourses surrounding and promoting them, and how
they are understood by those that create and promote them. Gaining access to such a wider
range of elements, and being able to gather data and interlink them to be able to unpack a
socio-technical assemblage, is no easy task but it is manageable as a large case study,
especially if undertaken by a research team rather than a single individual.

Examining how algorithms do work in the world
Given that algorithms do active work in the world it is important not only to focus on the
construction of algorithms, and their production within a wider assemblage, but also to
examine how they are deployed within different domains to perform a multitude of
tasks. This cannot be simply denoted from an examination of the algorithm/code alone
for two reasons. First, what an algorithm is designed to do in theory and what it actually
does in practice do not always correspond due to a lack of refinement, miscodings, errors
and bugs. Second, algorithms perform in context – in collaboration with data, technol-
ogies, people, etc. under varying conditions – and therefore their effects unfold in contin-
gent and relational ways, producing localised and situated outcomes. When users employ
an algorithm, say for play or work, they are not simply playing or working in conjunction
with the algorithm, rather they are ‘learning, internalizing, and becoming intimate with’ it

INFORMATION, COMMUNICATION & SOCIETY 25

(Galloway, 2006, p. 90); how they behave is subtly reshaped through the engagement, but
at the same time what the algorithm does is conditional on the input it receives from the
user. We can therefore only know how algorithms make a different to everyday life by
observing their work in the world under different conditions.

One way to undertake such research is to conduct ethnographies of how people engage
with and are conditioned by algorithmic systems and how such systems reshape how
organisations conduct their endeavours and are structured (e.g., Lenglet, 2011). It
would also explore the ways in which people resist, subvert and transgress against the
work of algorithms, and re-purpose and re-deploy them for purposes they were not orig-
inally intended. For example, examining the ways in which various mobile and web appli-
cations were re-purposed in the aftermath of the Haiti earthquake to coordinate disaster
response, remap the nation and provide donations (Al-Akkad et al., 2013). Such research
requires detailed observation and interviews focused on the use of particular systems and
technologies by different populations and within different scenarios, and how individuals
interfaced with the algorithm through software, including their assessments as to their
intentions, sense of what is occurring and associated consequences, tactics of engagement,
feelings, concerns and so on. In cases where an algorithm is black boxed, such research is
also likely to shed some light on the constitution of the algorithm itself.

Conclusion

On an average day, people around the world come into contact with hundreds of algor-
ithms embedded into the software that operates communications, utilities and transport
infrastructure, and powers all kinds of digital devices used for work, play and consump-
tion. These algorithms have disruptive and transformative effect, reconfiguring how
systems operate, enacting new forms of algorithmic governance and enabling new
forms of capital accumulation. Yet, despite their increasing pervasiveness, utility and
the power vested in them to act in autonomous, automatic and automated ways, to
date there has been limited critical attention paid to algorithms in contrast to the vast lit-
erature that approaches algorithms from a more technical perspective. This imbalance in
how algorithms are thought about and intellectually engaged with is perhaps somewhat
surprising given what is at stake in a computationally rich world. As such, there is a press-
ing need for critical attention across the social sciences and humanities to be focused on
algorithms and forms of algorithmic governance. The contribution of this paper to this
endeavour has been to: advance an understanding of algorithms as contingent, ontogen-
etic, performative in nature and embedded in wider socio-technical assemblages; to detail
the epistemological and practical challenges facing algorithm scholars; and to critically
appraise six promising methodological options to empirically research and make sense
of algorithms. It is apparent from the studies conducted to date that there is a range of
different ways of making sense of algorithms and the intention of the paper has not
been to foreclose this diversity, but rather to encourage synthesis, comparison and evalu-
ation of different positions and to create new ones. Indeed, the more angles taken to
uncover and debate the nature and work of algorithms the better we will come to know
them.

Likewise, the six approaches appraised were selected because I believe they hold the
most promise in exposing how algorithms are constructed, how they work within socio-

26 R. KITCHIN

technical assemblages and how they perform actions and make a difference in particular
domains, but they are by no means the only approaches that might be profitably
pursued. My contention is, given each approach’s varying strengths and weaknesses,
that how they reveal the nature and work of algorithms needs to be systematically eval-
uated through methodologically focused research. Studies that have access to the
pseudo-code, code and coders may well be the most illuminating, though they still
face a number of challenges, such as deciphering how the algorithm works in practice.
Moreover, there is a need to assess: (1) how they might be profitably used in conjunction
with each other to overcome epistemological and practical challenges; (2) what other
methods might be beneficially deployed in order to better understand the nature, pro-
duction and use of algorithms? With respect to the latter, such methods might
include ethnomethodologies, surveys, historical analysis using archives and oral his-
tories, and comparative case studies. As such, while the approaches and foci I have
detailed provide a useful starting set that others can apply, critique, refine and extend,
there are others that can potentially emerge as critical research and thinking on algor-
ithms develops and matures.

Acknowledgements

Many thanks to Tracey Lauriault, Sung-Yueh Perng and the referees for comments on earlier ver-
sions of this paper.

Disclosure statement

No potential conflict of interest was reported by the author.

Funding

The research for this paper was funded by a European Research Council Advanced Investigator
award [ERC-2012-AdG-323636-SOFTCITY].

Notes on contributor

Rob Kitchin is a professor and ERC Advanced Investigator at the National University of
Ireland Maynooth. He is currently a principal investigator on the Programmable City
project, the Digital Repository of Ireland, the All-Island Research Observatory and the
Dublin Dashboard. [email: rob.kitchin@nuim.ie]

References

Al-Akkad, A., Ramirez, L., Denef, S., Boden, A., Wood, L., Buscher, M., & Zimmermann, A. (2013).
‘Reconstructing normality’: The use of infrastructure leftovers in crisis situations as inspiration for
the design of resilient technology. Proceedings of the 25th Australian Computer-Human
Interaction Conference: Augmentation, Application, Innovation, Collaboration (pp. 457–466).
New York, NY: ACM. Retrieved October 16, 2014, from http://dl.acm.org/citation.cfm?doid=
2541016.2541051

Amoore, L. (2006). Biometric borders: Governing mobilities in the war on terror. Political
Geography, 25, 336–351.

INFORMATION, COMMUNICATION & SOCIETY 27

mailto:rob.kitchin@nuim.ie
http://dl.acm.org/citation.cfm?doid=2541016.2541051
http://dl.acm.org/citation.cfm?doid=2541016.2541051

Amoore, L. (2009). Algorithmic war: Everyday geographies of the war on terror. Antipode, 41, 49–
69.

Anderson C. W. (2011). Deliberative, agonistic, and algorithmic audiences: Journalism’s vision of
its public in an age of audience. Journal of Communication, 5, 529–547.

Arnoldi, J. (2016). Computer algorithms, market manipulation and the institutionalization of high
frequency trading. Theory, Culture & Society, 33(1), 29–52.

Barocas, S., Hood, S., & Ziewitz, M. (2013). Governing algorithms: A provocation piece. Retrieved
October 16, 2014, from http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2245322

Beer, D. (2009). Power through the algorithm? Participatory Web cultures and the technological
unconscious. New Media and Society, 11(6), 985–1002.

Bucher, T. (2012). ‘Want to be on the top?’ Algorithmic power and the threat of invisibility on
Facebook. New Media and Society, 14(7), 1164–1180.

Chandra, V. (2013). Geek sublime: Writing fiction, coding software. London: Faber.
Chun, W. H. K. (2011). Programmed visions. Cambridge: MIT Press.
Cox, G. (2013). Speaking code: Coding as aesthetic and political expression. Cambridge: MIT Press.
Diakopoulos, N. (2013). Algorithmic accountability reporting: On the investigation of black boxes. A

Tow/Knight Brief. Tow Center for Digital Journalism, Columbia Journalism School. Retrieved
August 21, 2014, from http://towcenter.org/algorithmic-accountability-2/

Dodge, M., & Kitchin, R. (2007). The automatic management of drivers and driving spaces.
Geoforum, 38(2), 264–275.

Drucker, J. (2013). Performative materiality and theoretical approaches to interface. Digital
Humanities Quarterly, 7(1). Retrieved June 5, 2014, from http://www.digitalhumanities.org/
dhq/vol/7/1/000143/000143.html

Foote, B., & Yoder, J. (1997). Big Ball of Mud. Pattern Languages of Program Design, 4, 654–692.
Fuller, M. (2008). Introduction. In M. Fuller (Ed.), Software studies – A lexicon (pp. 1–14).

Cambridge: MIT Press.
Galloway, A. R. (2006). Gaming: Essays on algorithmic culture. Minneapolis: University of

Minnesota Press.
Geiger, S. R. (2014). Bots, bespoke, code and the materiality of software platforms. Information,

Communication & Society, 17(3), 342–356.
Gillespie, T. (2014a). The relevance of algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot

(Eds.), Media technologies: Essays on communication, materiality, and society (pp. 167–193).
Cambridge: MIT Press.

Gillespie, T. (2014b, June 25). Algorithm [draft] [#digitalkeyword]. Culture Digitally. Retrieved
October 16, 2014, from http://culturedigitally.org/2014/06/algorithm-draft-digitalkeyword/

Goffey, A. (2008). Algorithm. In M. Fuller (Ed.), Software studies – A lexicon (pp. 15–20).
Cambridge: MIT Press.

Greenfield, A. (2006). Everyware: The dawning age of ubiquitous computing. Boston, MA: New
Riders.

Kitchin, R. (2014). The data revolution: Big data, open data, data infrastructures and their conse-
quences. London: Sage.

Kitchin, R., & Dodge, M. (2011). Code/space: Software and everyday life. Cambridge: MIT Press.
Kowalski, R. (1979). Algorithm = Logic + Control. Communications of the ACM, 22(7), 424–436.
Krysa, J., & Sedek, G. (2008). Source code. In M. Fuller (Ed.), Software studies – A lexicon (pp. 236–

242). Cambridge: MIT Press.
Kushner, S. (2013). The freelance translation machine: Algorithmic culture and the invisible indus-

try. New Media & Society, 15(8), 1241–1258.
Lash, S. (2007). Power after hegemony: Cultural studies in mutation. Theory, Culture & Society, 24

(3), 55–78.
Lenglet, M. (2011). Conflicting codes and codings: How algorithmic trading is reshaping financial

regulation. Theory, Culture & Society, 28(6), 44–66.
MacCormick, J. (2013). Nine algorithms that changed the future: The ingenious ideas that drive

today’s computers. Princeton, NJ: Princeton University Press.

28 R. KITCHIN

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2245322
http://towcenter.org/algorithmic-accountability-2/
http://www.digitalhumanities.org/dhq/vol/7/1/000143/000143.html
http://www.digitalhumanities.org/dhq/vol/7/1/000143/000143.html
http://culturedigitally.org/2014/06/algorithm-draft-digitalkeyword/

Mackenzie, A. (2005). The performativity of code: Software and cultures of circulation. Theory,
Culture & Society, 22(1), 71–92.

Mackenzie, A. (2007). Protocols and the irreducible traces of embodiment: The Viterbi algorithm
and the mosaic of machine time. In R. Hassan & R. E. Purser (Eds.), 24/7: Time and temporality
in the network society (pp. 89–106). Stanford, CA: Stanford University Press.

Mackenzie, A., & Vurdubakis, T. (2011). Code and codings in Crisis: Signification, performativity
and excess. Theory, Culture & Society, 28(6), 3–23.

MacKenzie, D. (2014). A sociology of algorithms: High-frequency trading and the shaping of markets.
Working paper, University of Edinburgh. Retrieved July 6, 2015, from http://www.sps.ed.ac.
uk/__data/assets/pdf_file/0004/156298/Algorithms25.pdf

Mager, A. (2012). Algorithmic ideology: How capitalist society shapes search engines. Information,
Communication, & Society, 15(5), 769–787.

Mahnke, M., & Uprichard, E. (2014). Algorithming the algorithm. In R. König & M. Rasch (Eds.),
Society of the query reader: Reflections on web search (pp. 256–270). Amsterdam: Institute of
Network Cultures.

Manovich, L. (2013). Software takes control. New York, NY: Bloomsbury.
Miyazaki, S. (2012). Algorhythmics: Understanding micro-temporality in computational cultures.

Computational Culture, Issue 2. Retrieved June 25, 2014, from http://computationalculture.net/
article/algorhythmics-understanding-micro-temporality-in-computational-cultures

Montfort, N., Baudoin, P., Bell, J., Bogost, I., Douglass, J., Marino, M. C.,…Vawter, N. (2012). 10
PRINT CHR$ (205.5 + RND (1)): GOTO 10. Cambridge: MIT Press.

Musiani, F. (2013). Governance by algorithms. Internet Policy Review, 2(3). Retrieved October 7,
2014, from http://policyreview.info/articles/analysis/governance-algorithms

Napoli, P. M. (2013, May). The algorithm as institution: Toward a theoretical framework for auto-
mated media production and consumption. Paper presented at the Media in Transition
Conference, Massachusetts Institute of Technology, Cambridge, MA. Retrieved from ssrn.
com/abstract = 2260923

Neyland, D. (2015). On organizing algorithms. Theory, Culture & Society, 32(1), 119–132.
Pasquale, F. (2014). The emperor’s new codes: Reputation and search algorithms in the finance sector.

Draft for discussion at the NYU ‘Governing Algorithms’ conference. Retrieved October 16, 2014,
from http://governingalgorithms.org/wp-content/uploads/2013/05/2-paper-pasquale.pdf

Pasquale, F. (2015). The black box society: The secret algorithms that control money and information.
Cambridge, MA: Harvard University Press.

Porter, T. M. (1995). Trust in numbers: The pursuit of objectivity in science and public life. Princeton,
NJ: Princeton University Press.

Rosenberg, S. (2007). Dreaming in code: Two dozen programmers, three years, 4,732 bugs, and one
quest for transcendent software. New York: Three Rivers Press.

Seaver, N. (2013). Knowing Algorithms. Media in Transition 8, Cambridge, MA. Retrieved August
21, 2014, from http://nickseaver.net/papers/seaverMiT8.pdf

Shirky, C. (2009). A speculative post on the idea of algorithmic authority. Shirky.com. Retrieved
October 7, 2014, from http://www.shirky.com/weblog/2009/11/a-speculative-post-on-the-idea-
of-algorithmic-authority/

Steiner, C. (2012). Automate this: How algorithms took over our markets, our jobs, and the world.
New York, NY: Portfolio.

Takhteyev, Y. (2012). Coding places: Software practice in a South American City. Cambridge: MIT
Press.

Ullman, E. (1997). Close to the machine. San Francisco, CA: City Lights Books.
Ziewitz, M. (2011, September 29). How to think about an algorithm? Notes from a not quite random

walk. Discussion paper for Symposium on ‘Knowledge Machines between Freedom and Control’.
Retrieved August 21, 2014, from http://ziewitz.org/papers/ziewitz_algorithm.pdf

INFORMATION, COMMUNICATION & SOCIETY 29

http://www.sps.ed.ac.uk/__data/assets/pdf_file/0004/156298/Algorithms25.pdf
http://www.sps.ed.ac.uk/__data/assets/pdf_file/0004/156298/Algorithms25.pdf
http://computationalculture.net/article/algorhythmics-understanding-micro-temporality-in-computational-cultures
http://computationalculture.net/article/algorhythmics-understanding-micro-temporality-in-computational-cultures
http://policyreview.info/articles/analysis/governance-algorithms
http://governingalgorithms.org/wp-content/uploads/2013/05/2-paper-pasquale.pdf
http://nickseaver.net/papers/seaverMiT8.pdf
http://www.shirky.com/weblog/2009/11/a-speculative-post-on-the-idea-of-algorithmic-authority/
http://www.shirky.com/weblog/2009/11/a-speculative-post-on-the-idea-of-algorithmic-authority/
http://ziewitz.org/papers/ziewitz_algorithm.pdf

	Abstract
	Introduction: why study algorithms?
	Thinking critically about algorithms
	Researching algorithms
	Challenges
	Access/black boxed
	Heterogeneous and embedded
	Ontogenetic, performative and contingent

	Approaches
	Examining pseudo-code/source code
	Reflexively producing code
	Reverse engineering
	Interviewing designers or conducting an ethnography of a coding team
	Unpacking the full socio-technical assemblage of algorithms
	Examining how algorithms do work in the world

	Conclusion
	Acknowledgements
	Disclosure statement
	Notes on contributor
	References

