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Abstract

The spatio-temporal pattern of peak Holocene warmth (Holocene thermal maximum, HTM) is traced over 140 sites across the

Western Hemisphere of the Arctic (0–180�W; north ofB60�N). Paleoclimate inferences based on a wide variety of proxy indicators
provide clear evidence for warmer-than-present conditions at 120 of these sites. At the 16 terrestrial sites where quantitative

estimates have been obtained, local HTM temperatures (primarily summer estimates) were on average 1.670.8�C higher than
present (approximate average of the 20th century), but the warming was time-transgressive across the western Arctic. As the

precession-driven summer insolation anomaly peaked 12–10 ka (thousands of calendar years ago), warming was concentrated in

northwest North America, while cool conditions lingered in the northeast. Alaska and northwest Canada experienced the HTM

between ca 11 and 9 ka, about 4000 yr prior to the HTM in northeast Canada. The delayed warming in Quebec and Labrador was

linked to the residual Laurentide Ice Sheet, which chilled the region through its impact on surface energy balance and ocean

circulation. The lingering ice also attests to the inherent asymmetry of atmospheric and oceanic circulation that predisposes the
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region to glaciation and modulates the pattern of climatic change. The spatial asymmetry of warming during the HTM resembles the

pattern of warming observed in the Arctic over the last several decades. Although the two warmings are described at different

temporal scales, and the HTM was additionally affected by the residual Laurentide ice, the similarities suggest there might be a

preferred mode of variability in the atmospheric circulation that generates a recurrent pattern of warming under positive radiative

forcing. Unlike the HTM, however, future warming will not be counterbalanced by the cooling effect of a residual North American

ice sheet.

r 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Temperatures at high latitudes generally peaked
during the first half of the present interglaciation, but
the warming occurred at different times and to varying
degrees in different places. In the Arctic, previous
research has shown strong spatial variability in the
response to insolation forcing during the early Holocene
(CAPE, 2001). This pattern can be examined to under-
stand how climate in the Arctic responded to radiative
forcing driven by changes in insolation and other
factors. By characterizing the pattern of early Holocene
warming, we can hypothesize possible mechanisms that
underlie the heterogeneity of the observed response to
forcing. Such mechanisms reflect the particular geogra-
phy of the Arctic and its feedback processes that might
influence the pattern and magnitude of potential future
changes. The spatial pattern of the Holocene thermal
maximum (HTM) can, for example, be compared with
the observed pattern of recent warming, and with the
characteristic signatures of modes of variability known
from the instrumental record.
Spatial variations in the timing and magnitude of

circum-Arctic climatic changes have long attracted the
attention of researchers. For example, Chamberlin
(1899) ascribed the longitudinal asymmetry in the
distribution of present and past glaciers around the
Arctic to the asymmetry in atmospheric circulation
associated with the geographic distribution of continents
and oceans. More recent studies have investigated
the spatio-temporal pattern of Quaternary climatic
change by comparing paleoenvironmental data with
numerical climate model output (e.g., COHMAP, 1988;
Bartlein et al., 1998; Crucifix et al., 2002). These studies
attribute trends in Holocene climate to a range of
forcing mechanisms: insolation changes governed
by orbital variations, the impact of the Laurentide
Ice Sheet in northeast North America on atmospheric
circulation and sea-surface temperature (SST),
feedbacks from land and ocean cover; atmospheric
trace-gas concentrations, and changes in coupled
atmospheric–oceanic dynamics, including synoptic-scale
circulation features, wind-driven sea-ice dynamics,
and the global thermohaline circulation. The local
effects of these broader-scale forcings were then
modulated by numerous local-scale factors including
topography, degree of soil development, and vegetation
type (Chapin et al., 2000; Eugster et al., 2000; Keyser
et al., 2000; Rupp et al., 2000).
This paper reviews the available data on the timing

and spatial pattern of the HTM—the interval of warmth
associated with the peak Holocene temperature—in the
western Arctic (0–180�W longitude). The review builds
upon the framework developed recently by an interna-
tional effort to synthesize Holocene paleoclimate data
for the entire Arctic (CAPE, 2001). Rather than data–
model comparisons at key times, however, we focus on
the spatio-temporal pattern of a time-transgressive
interval when temperatures reached their local HTM.
As used here, the ‘‘western Arctic’’ includes the part

of the Arctic within the Western Hemisphere (0–180�W
longitude) north of about 60�N latitude (Fig. 1). It
extends from Northeast Russia to Iceland, and includes
all of the North American Arctic. This Hemisphere
encompasses several key features of Arctic geography,
oceanography, and climatology. Among these are the
Greenland Ice Sheet, the only continental-scale glacier
in the Arctic to survive the present interglaciation, the
Bering Strait, the principal inflow of marine water from
the Pacific to the Arctic Ocean, the Fram Strait, the
primary avenue for water exchange between the Arctic
Ocean and the global ocean, and the Labrador and
Iceland seas, primary sites of North Atlantic Deepwater
formation.
2. Methods and approach

We compiled an extensive, although not exhaustive,
database of unpublished and published records of
Holocene paleoenvironmental change from the western
Arctic (Table 1; available at: http://www.ngdc.noaa.gov/
paleo/parcs/warm holocene.html) concentrating on con-
tinuous records from lakes and marginal seas. The
database includes 140 sites (Fig. 2) where organic and
inorganic materials from lake and marine sediment, peat
deposits, glacier ice, and boreholes have been used for
paleoclimatic inferences. Nearly all sites have contin-
uous records of paleoenvironmental change. Most
(70%) extend beyond 10 ka; shorter records were
included from sites that were ice covered until after
10 ka.
A variety of methods have been used to reconstruct

trends in Holocene climate and to determine the timing

http://www.ngdc.noaa.gov/paleo/parcs/warm_holocene.html
http://www.ngdc.noaa.gov/paleo/parcs/warm_holocene.html
http://www.ngdc.noaa.gov/paleo/parcs/warm_holocene.html
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Fig. 1. Western Arctic showing the four major regions reviewed in this paper and generalized ocean surface currents mentioned in text. AS=Alaska

Stream; EGC=East Greenland Current; IC=Irminger Current; LC=Labrador Current; NAC=North Atlatic Current; WGC=West Greenland

Current. Green line approximates modern treeline. Blue lines mark cold-water currents and red lines are warm Atlantic currents discussed in text.

D.S. Kaufman et al. / Quaternary Science Reviews 23 (2004) 529–560 531
of the HTM. Each proxy indicator has a characteristic
response time and sensitivity to climatic variations, and
each responds to different factors of the climate system.
Different proxies from the same record can therefore
yield different inferences about the timing and magni-
tude of climatic change. We use multiple proxies
wherever they are available because they provide the
strongest paleoclimatic inferences (Birks and Birks,
1980).
Most of the records in our database rely on pollen and

plant macrofossils to infer growing-season temperature
of terrestrial vegetation. Because many sites experienced
the HTM soon after local deglaciation, it is difficult in
some cases to distinguish the direct effects of climate
from non-climatic factors, such as deglacial processes
and delays related to plant dispersal. Furthermore, lakes
differ in their sensitivity to climatic change, and
interpretation of proxies can be confounded by pro-
cesses associated with lake ontongeny, especially for
lakes at less extreme, subarctic settings (e.g., Anderson
et al., in press). In addition to vegetation changes, other
studies included in this review base their paleoclimatic
inferences on the assemblage and abundance of fossil
organisms in lake and marine sediment, the range of
extralimital marine animals, and the temperatures
measured in boreholes in ice, among others. Most
proxies relate qualitatively to summer temperature, a
key climatic variable at high latitude; a small subset of
studies has produced quantitative estimates of Holocene
temperature. The quantitative estimates are based on
microfossil assemblages, treeline position, and stable-
isotope composition, each converted to temperature
using transfer functions based on modern calibration.
Borehole temperatures rely on physical models of
thermal diffusivity to reconstruct past mean annual
temperature. Inferences based on data derived from
transfer functions generally rely on a comparison with
modern conditions as indicated by the uppermost
samples in a stratigraphic record, which typically
integrate the 20th century. Only a few studies have
reconstructed effective moisture using stable isotopes
and sedimentological evidence of lake-level changes or
snow accumulation rates.
Uncertainties in reconstructing the spatio-temporal

pattern of the HTM stem from problems associated with
chronological control. Nearly all records in the database
have timescales based on 14C (ice cores are a notable
exception). The accuracy of the age models varies
among sites, and is related to a variety of factors
involving the type of material that is analyzed (e.g., bulk
sediment or macrofossils), the origin of its carbon, and
sediment reworking, among others. Accurately dating
sediment from lakes with a paucity of macrofossils,
common at high latitudes, is particularly difficult.
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Table 1

Sites used to reconstruct the spatial and temporal pattern of the Holocene thermal maximum in the western Arctic

Site IDa Site name Lat.

(�N)

Long (�W) Initiation

(cal ka)b
Termination

(cal ka)b
Citation

Central and eastern Beringia

1 El’gygytgyn Lake 67.50 �172.10 No HTM Shilo et al. (2001)

2 Gytgykai Lake 63.17 �175.00 No HTM Lozhkin et al. (1998a)

3 Patricia Lake 63.17 �176.75 No HTM Lozhkin et al. (1995)

4 Jack London Lake 70.83 179.75 11.6 10.6 Lozhkin et al. (2001)

5 Kresta Gulf exposure 66.00 179.00 9.5 8.9 Anderson et al. (2002b)

6 Lorino exposure 65.50 171.70 9.5 8.9 Anderson et al. (2002b)

7 St. Lawrence Island Sec. 3 63.75 171.50 10.5 9.0 Lozhkin et al. (1998b)

8 Flora Lake 63.30 170.30 No HTM Colinvaux (1967a)

9 North Killeak Lake 66.33 164.17 13.0 12.4 P.M. Anderson, unpub. data

10 Tungak Lake 61.23 164.01 No HTM Ager (1982)

11 Zagoskin Lake 63.45 162.11 13.1 11.6 Ager (1983, 2003)

12 Squirrel Lake 67.10 160.38 14.2 12.0 P.M. Anderson, unpub. data

13 Niliq Lake 67.52 159.73 12.9 12.5 Anderson (1988)

14 Ongivinuk Lake 59.57 159.37 No HTM Hu et al. (1996)

15 Grandfather Lake 59.80 158.52 No HTM Hu et al. (1996)

16 Meade River 70.47 157.47 10.8 8.5 Eisner and Peterson (1998)

17 Joe Lake 66.47 156.87 12.6 11.3 Anderson (1988)

18 Etivlik Lake 68.08 155.98 No HTM P.M. Anderson, unpub. data

19 Idavain Lake 58.77 155.95 10.0 9.4 Brubaker et al. (2001)

20 Headwaters Lake 67.93 155.05 No HTM Brubaker et al. (1983)

21 Snipe Lake 60.64 154.28 No HTM Patricia Anderson, unpub. data

22 Angal Lake 67.13 153.90 13.3 11.4 Brubaker et al. (1983)

23 Ranger Lake 67.15 153.65 No HTM Brubaker et al. (1983)

24 Farewell Lake 62.55 153.63 9.7 9.1 Hu et al. (1998)

25 Redstone Lake 67.15 151.63 No HTM Edwards et al. (1985)

26 Screaming Yellowlegs Pond 67.58 151.42 12.3 10.5 Edwards et al. (1985)

27 Rebel Lake 67.42 149.80 No HTM Edwards et al. (1985)

28 Imnavait Creek 68.67 149.33 13.0 9.8 Eisner (1991)

29 Crowsnest Lake 68.33 146.48 No HTM P.M. Anderson, unpub. data

30 Honeymoon Pond 64.62 138.40 10.5 7.4 Cwynar and Spear (1995)

31 Sulpher Lake 60.95 137.95 8.8 6.9 Lacourse and Gajewski (2000)

32 Lake U60 (stinky lake) 62.75 136.63 12.5 8.8 Pienitz et al. (2000)

33 Lateral Pond 65.95 135.93 No HTM Ritchie and Cwynar (1982)

34 Sleet Lake 69.29 133.82 11.6 7.7 Spear (1993); Ritchie et al. (1983)

35 Kettlehole Pond 60.06 133.80 10.1 7.0 Cwynar and Spear (1995)

36 Twin Tamarack Lake 68.30 133.42 12.9 7.9 Ritchie et al. (1983); Spear (1983)

37 Tuktoyuktuk 5 69.10 133.40 9.7 6.1 Ritchie and Hare (1971)

38 Campbell Creek Peatland 69.28 133.25 9.5 6.3 Vardy et al. (1998)

39 Reindeer Lake 69.17 132.32 9.6 7.7 Spear (1993)

40 Sweet Little Lake 67.65 132.02 11.6 8.0 G.M. MacDonald, unpub. data

41 Bluffers Pingo 69.74 131.89 11.6 8.0 Spear (1993)

42 Candelabra Lake 61.68 130.65 10.9 7.4 Cwynar and Spear (1995)

Northern continental Canada

43 Natla Bog 63.02 128.80 9.1 5.6 MacDonald (1983)

44 Andy Lake 64.65 128.08 10.0 7.0 Szeicz et al. (1995)

45 Keele Lake 64.17 127.62 9.0 7.0 Szeicz et al. (1995)

46 Bell’s Lake 65.02 127.43 9.0 7.0 Szeicz et al. (1995)

47 Lac Meleze 65.22 126.12 No HTM MacDonald (1987)

48 Hail Lake 60.03 126.02 10.1 6.9 Cwynar and Spear (1995)

49 Lake BC2 58.46 124.46 10.6 7.5 Pisaric et al. (2003)

54 Lac Demain 62.05 118.70 No HTM MacDonald (1987)

56 Wild Spear Lake 59.25 114.15 No HTM MacDonald (1987)

58 McMaster Lake 64.10 110.57 5.6 4.4 MacDonald et al. (1993) and Moser and

MacDonald (1990)

59 Queens Lake 64.12 110.57 5.6 4.4 MacDonald et al. (1993), Moser and

MacDonald (1990) and Edwards et al.

(1996)

60 Toronto Lake 63.71 109.35 6.9 3.2 MacDonald et al. (1993) and Moser and

MacDonald (1990)

D.S. Kaufman et al. / Quaternary Science Reviews 23 (2004) 529–560532
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Table 1 (continued)

Site IDa Site name Lat.

(�N)

Long (�W) Initiation

(cal ka)b
Termination

(cal ka)b
Citation

61 Waterloo Lake 63.73 108.10 6.9 3.2 MacDonald et al. (1993) and Moser and

MacDonald (1990)

62 Lake TK-20 64.09 107.49 7.1 3.6 R .uhland (2001)

70 Lake BI2 57.12 76.38 6.6 0.8 Gajewski and Garralla (1992)

71 Lake LB1 57.92 75.62 6.7 1.1 Gajewski et al. (1993)

72 Lake GB2 56.10 75.28 6.7 0.8 Gajewski et al. (1993)

73 Lake LR1 58.58 75.25 6.0 4.4 Gajewski et al. (1993)

74 Lake LR3 58.50 75.25 6.3 5.0 Gajewski and Garralla (1992)

75 Lake LT1 59.15 75.15 6.0 5.6 Gajewski and Garralla (1992)

78 Lake RAF1 58.23 72.07 5.0 2.0 Richard (1981)

80 Diana 375 Lake 60.99 69.96 7.0 5.4 Richard (1981) and Kerwin et al.

(submitted)

89 Ublik Pond 57.38 62.05 7.8 2.6 Short and Nichols (1977) and Kerwin et al.

(submitted)

90 Nain Pond 56.53 61.82 6.3 1.0 Short and Nichols (1977) and Kerwin et al.

(submitted)

94 HU87033-017 and HU87033-018 54.61 56.17 6.8 5.5 Andrews et al. (1999)

Canadian Arctic Islands

50 74MS11 71.75 124.27 7.9 2.1 Gajewski et al. (2000)

51 Muskox Lake 71.78 122.67 7.9 2.1 Gajewski et al. (2000)

52 74MS15 73.53 120.22 7.9 2.1 Gajewski et al. (2000)

53 74MS12 72.37 119.83 7.9 2.1 Gajewski et al. (2000)

55 Beaufort Sea bowheadsc 70.10 116.60 11.5 9.5 PARCS website

57 Western archipelago molluscsc 69.40 114.00 11.5 8.5 PARCS website

63 Lake PWWL 73.57 98.48 7.5 4.0 Gajewski and Frappier (2001)

64 Lake RS29 73.13 95.28 10.0 5.0 Gajewski (1995)

65 Lake RS36 72.58 95.07 11.0 6.0 Gajewski (1995)

66 Central archipelago bowheadsc 72.64 94.16 11.0 9.0 PARCS website

67 Eastern archipelago bowheadsc 75.20 86.90 11.0 8.5 PARCS website

68 N Baffin Island bowheadsc 71.90 85.00 5.5 2.5 PARCS website

69 Rock Basin Lake 78.50 76.79 7.8 4.5 Smol (1983) and Hyv.arinen (1985)

76 91039 77.27 74.33 8.8 4.5 Levac et al. (2001)

77 Agassiz Ice Cap 80.70 73.10 9.5 6.8 Koerner and Fisher (1990), Fisher et al.

(1995) and Fisher and Koerner (2003)

79 NE Baffin Island molluscsc 70.06 71.60 9.5 7.5 PARCS website

81 Patricia Bay Lake 70.47 68.50 7.5 5.8 Mode (1980)

82 Lake Hazen region 82.88 68.43 5.5 2.0 Smith (2002)

83 Hikwa Lake 63.30 67.36 4.9 2.1 Mode and Jacobs (1987)

84 INQUA Lake 62.27 66.23 7.4 4.5 Williams (1990)

85 Amarok Lake 66.28 65.75 10.2 9.3 Wolfe (1994, 1996)

86 Penny Ice Cap 67.00 65.50 9.5 6.8 Fisher et al. (1998)

87 Robinson Lake 63.40 64.27 7.8 4.5 Miller et al. (1999)

88 Fog Lake 67.18 63.25 7.6 4.2 Wolfe (2002)

91 Donard Lake 66.66 61.78 7.6 1.0 S.K. Short, unpub. data; Kerwin et al.

(submitted)

92 Dyer Lower Lake 66.62 61.65 7.6 2.6 S.K. Short, unpub. data; Kerwin et al.

(submitted)

Greenland and Iceland, terrestrial sites

93 Camp Century 77.18 61.12 8.0 4.1 Dansgaard et al. (1971)

96 Lake NAUG1 66.48 52.18 No HTM Willemse and T .ornqvist (1999)

97 Tetra Lake A 64.47 51.58 6.0 2.5 Fredskild (1983)

98 Lake SS6 66.98 51.11 7.0 4.0 McGowan et al. (2003)

99 Braya S^ 66.99 51.05 7.0 4.0 McGowan et al. (2003)

100 Lake SS2 66.98 50.97 No HTM N.J. Anderson, unpub. data

101 St Salt S^ 66.98 50.58 7.0 6.5 Bennike (2000)

102 Lake 31 67.05 50.47 4.9 3.7 Eisner et al. (1995)

103 Johs Iversen 64.40 50.20 6.2 4.0 Fredskild (1983)

104 Qipisarqo Lake 61.01 47.75 6.6 2.1 Kaplan et al. (2002)

105 Dye 3 65.20 43.8 6.0 3.0 Dahl-Jensen et al. (1998)

106 North GRIP 75.02 41.20 8.6 4.3 Johnsen et al. (2001)

107 GISP2 72.60 38.50 8.2 6.5 Grootes et al. (1993)

D.S. Kaufman et al. / Quaternary Science Reviews 23 (2004) 529–560 533
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Table 1 (continued)

Site IDa Site name Lat.

(�N)

Long (�W) Initiation

(cal ka)b
Termination

(cal ka)b
Citation

108 GISP2 72.60 38.50 8.2 6.5 Cuffey and Clow (1997)

109 GRIP 72.60 37.60 8.2 6.0 Johnsen et al. (2001)

110 GRIP 72.60 37.60 8.2 4.5 Dahl-Jensen et al. (1998)

116 Renland 71.30 26.73 8.5 5.5 Johnsen et al. (1992)

118 Lake N1, Ymer Ø 73.33 25.20 7.7 5.0 Wagner and Melles (2002)

120 Efstadalsvatn, Laugardalur 65.93 22.66 9.1 6.8 Caseldine et al. (2003)

121 Lake Basalts^ 72.72 22.47 9.0 6.5 Wagner et al. (2000) and Cremer et al.

(2001a)

122 Raffles Ø Lake 70.58 21.90 7.5 4.0 Wagner andMelles (2001) and Cremer et al.

(2001b)

125 Zackenberg delta 74.50 20.50 9.5 6.3 Christiansen et al. (2002)

126 L !omatj .orn 64.26 20.35 9.1 5.6 Vasari and Vasari (1990)

127 Hafratj .orn 65.58 20.13 9.8 5.7 Vasari and Vasari (1990)

128 Nioghalvfjerdsfjorden 79.83 19.65 7.7 4.5 Bennike and Weidick (2001)

129 Vatnskotsvatn 65.70 19.48 9.7 5.6 Hallsd !ottir (1995)

131 Vesturardalur 2 65.75 18.72 8.6 6.7 Wastl et al. (2001)

133 Krosshoosmyri, Flateyjardalur 66.08 17.90 10.3 5.6 Hallsd !ottir (1991)

Greenland and Iceland, marine sites

95 West Greenland molluscsc 67.24 52.50 10.5 6.0 PARCS website

111 JM96-1214/2-GC 67.30 30.97 9.8 7.0 Smith (2001)

112 JM96-1216/1-GC 65.96 30.63 9.0 7.2 Hagen (1995)

113 BS1191-K15 68.10 29.45 9.0 5.0 Andrews et al. (1997)

114 JM96-1207/2-GC (1206/1-GC) 68.10 29.35 6.5 4.0 Jennings et al. (2002)

115 JM96-1205/2-GC 68.07 27.84 8.0 4.0 Smith (2001)

117 MD952015 58.76 25.95 10.6 6.0 Giraudeau et al. (2000)

119 East Greenland molluscsc 72.08 24.30 10.5 6.0 PARCS website

123 B997-330 65.87 21.08 8.0 7.0 Andrews and Giraudeau (2003)

124 MD99-2269 66.62 20.85 9.0 4.9 Andrews et al. (2002); N. Ko@ unpub. data
130 HM107-04 67.22 19.05 10.7 6.1 Eir#ıksson et al. (2000)

132 HM107-05 66.90 17.90 10.3 7.0 Eir#ıksson et al. (2000)

134 PS21842-5 69.46 16.51 9.6 7.9 Ko@ et al. (1993)
135 HM57-5 69.43 13.11 10.4 6.0 Ko@ et al. (1993)
136 MD95-2011 66.96 7.60 9.0 6.7 Birks and Ko@ (2002)
137 HM57-14 67.00 6.20 10.6 9.0 Ko@ et al. (1993)
138 HM79-26 66.90 5.93 10.6 4.1 Ko@ et al. (1993)
139 HM79-6.2(6/4) 62.96 2.70 11.1 5.7 Birks and Ko@ (2002), Karpuz and Jansen

(1992) and N. Ko@ unpub. data
140 HM94-13 71.62 1.62 7.9 5.6 Ko@ et al. (1993)

aSites arranged by longitude within each of the four regions (Fig. 2). Site IDs keyed to PARCS on-line database (http://www.ngdc.noaa.gov/paleo/

parcs/.html), where additional information is tabulated on the availability of raw data in electronic format, site location, proxy indicator, quality of

age control, and rationale of paleoclimatic inferences.
b Initiation and terminations refer to the timing of the onset and ending of the Holocene thermal maximum (HTM). ND=HTM was not detected

by the paleoclimatic proxy evidence.
cLocations for bowhead whale and mollusc records are the average latitude and longitude of many 14C sample collection sites, subdivided into

groups on the basis of geographic clusters. Ages were tabulated and frequency distributions derived using a bin size of 500 yr.

D.S. Kaufman et al. / Quaternary Science Reviews 23 (2004) 529–560534
Studies that were based on fewer than three 14C analyses
for the Holocene were excluded. The age models for the
lake- and marine-sediment records in our database are
supported by an average of one 14C date per 2500 yr.
Errors in age models are undoubtedly the source of
some of the apparent variability, especially at centennial
timescales. Rather than screening individual records
that appear suspect, we retained the widest data set and
focus on the most robust trends that are clearly
exhibited at the millennial scale.
In some cases, the authors of previously published
studies explicitly stated the timing of the HTM, and the
original interpretation is usually retained in this paper,
or, in some cases, modified by the author for this study.
In other cases, the timing of the HTM was interpreted
by Working Group authors responsible for the regional
summaries. For example, we tabulated new and
previously published 14C ages on extralimital mollusc
shells and whale bones from the Canadian Arctic
Islands and East Greenland, and derived frequency

http://www.ngdc.noaa.gov/paleo/parcs/.html
http://www.ngdc.noaa.gov/paleo/parcs/.html
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histograms for select regions to infer the timing of
maximum warmth. A listing of these ages and their
sample locations, along with the sources and rationale
of the paleoclimatic inferences for all sites, and the
location of the original data, are provided in the HTM
database at the PARCS website.
Rarely is the age of the HTM constrained by 14C ages

directly adjacent to the boundaries of this interval.
Therefore, authors’ original age models were used to
interpolate the age of the HTM in 14C years. Ages were
then calibrated without estimating an associated analy-
tical error. Calibrated ages are either the mid-point of
the 1s range from the output of CALIB (Stuiver and
Reimer, 1993), or derived for the purposes of this study
from a third-order polynomial fit to the CALIB data
(cal age=10�9C3–10�5C2+1.2C–210, where C=14C age
in yr BP). The average difference between the mid-point
of the 1s range and the polynomial fit is about 150 yr for
the time interval of interest. Some ages were based on
age models that were calibrated by the original authors.
Although the specific method of calibration differs
among authors, the associated error is probably much
smaller than the accuracy of the age models themselves,
and is negligible in comparison to the subjectivity in
choosing the age boundaries (initiation and termination)
of the HTM, which were chosen to bracket the interval
of maximum post-glacial warmth. All ages given in this
paper are in calendar years.
3. Spatio-temporal pattern of the Holocene thermal

maximum

We subdivide the western Arctic into four major
regions, each with distinctive geographic and oceano-
graphic settings and unique antecedent conditions
leading into the HTM. They are from southwest to
northeast: central and eastern Beringia, northern con-
tinental Canada, Canadian Arctic Islands, and Green-
land and Iceland (Fig. 1).

3.1. Central and eastern Beringia

3.1.1. Physiographic and antecedent conditions

This region extends from Northeast Russia east to the
Mackenzie River. As a whole, Beringia includes all of
eastern Siberia, but because this review focuses on the
Western Hemisphere, we discuss only central and
eastern Beringia. Differences are evident among three
subregions: (1) central Beringia, which includes North-
east Russia, the epicontinental Bering and Chukchi seas,
and westernmost Alaska; (2) Alaska; and (3) Canadian
Beringia. The region is bordered on the south by the
North Pacific Ocean, with its prevailing easterly surface
currents (the Alaska Stream) that branch northward
through Bering Strait; on the north is the Beaufort Sea,
with surface currents dominated by the southern limb of
the Arctic Ocean gyre.
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Two physiographic features of the region strongly
influenced the evolution of its climate during the
Holocene: the vastness of its unglaciated area, and the
breadth of its shallow continental shelves. Most of
Beringia remained ice-free during the last glacial
maximum. As summer insolation increased during the
early Holocene, this was the largest region in the western
Arctic where solar energy was absorbed by land rather
than reflected by ice. While this must have facilitated a
relatively rapid response to insolation forcing, the
resultant warming was tempered by the concurrent
flooding of the epicontinental shelves. As eustatic sea
level rose, the Beringian continent was severed by
coastlines that transgressed >700 km northward from
the Pacific Ocean and southward from the Arctic Ocean.
Nearly 2� 106 km2 of emerged shelf was flooded
following the last glacial maximum, transforming
central Beringia from a continental interior to a coastal
maritime environment. The shoreline transgressed most
rapidly as summer insolation peaked, which probably
moderated the effects of increasing summer insolation
and increased the moisture content of the troposphere
over eastern Beringia.

3.1.2. Central Beringia

Paleoclimatic inferences for central Beringia are
drawn primarily from pollen records, which are sparse
and have varying levels of chronological control
(Anderson et al., 2002a). The only continuous Holocene
lake records available from mainland areas of eastern
Chukotka (El’gygytgyn, Gytgykai, and Patricia lakes;
Table 1 sites 1–3) indicate gradual post-glacial warming
beginning ca 14.9 ka and continuing through the early
Holocene, with no indication of an HTM prior to the
mid-Holocene. This interpretation is based on trends in
Pinus pumila pollen (Fig. 3a). Of all shrubs represented
in the Chukotkan Holocene records, P. pumila requires
the greatest summer warmth (mean July temperature of
12�C; Kozhevnikov, 1981). In contrast, buried organic-
rich deposits at two near-coastal sites in Chukotka
(Lorino and Kresta Gulf exposures; sites 5 and 6)
suggest climates may have been slightly warmer than
present between ca 9.7 and 9.2 ka. The strongest
evidence for the HTM in eastern Chukotka comes from
its northernmost sites. Peat began to accumulate on
Wrangel Island ca 12.9 ka and continued through the
early Holocene (Vartanyan, 1997; Lozhkin et al., 2001)
whereas organic deposits do not accumulate on the
island today, suggesting conditions were warmer and
wetter than present, with modern vegetation established
as recently as 4.4–3.3 ka (Vartanyan, 1997).
Holocene records from the Bering Sea region,

spanning from the Aleutians northward to St. Lawrence
Island, are dominated by herb taxa, indicating the
presence of tundra throughout the Holocene. Initial
studies on St. Lawrence Island (Flora Lake; site 8) did
not document significant palynological variations dur-
ing the Holocene, and indications of the HTM are
absent from the Pribilof Islands (S Bering Sea;
Colinvaux, 1967b, 1981). However, more recent work
on peat deposits (St. Lawrence Island; site 7) suggests
warmer-than-present conditions began ca 10.5 ka, and
terminating about 9 ka. Tungak Lake (SW Alaska; site
10), the most southerly mainland record in central
Beringia, shows no indication of an HTM, whereas two
lakes farther north show a westward expansion of
Populus beyond its modern limit. At Zagoskin Lake
(W Alaska, site 11), Populus forest was established ca
13.1–11.6 ka, and replaced by shrub tundra during the
early Holocene. At North Killeak Lake (N Seward
Peninsula; site 9), pollen data suggest Populus woodland
was present sometime after ca 13 ka.

3.1.3. Alaska

Various proxies imply an interval of warmer-than-
present temperatures between 11.5 and 9 ka in Alaska.
Biological evidence includes the latitudinal range exten-
sion of several animal and plant taxa. For example,
beetles found beyond their modern limits on the Arctic
Coastal Plain indicate summer temperatures of +2–3�C
ca 10.8 ka (Nelson and Carter, 1987), and beaver-
gnawed wood on the Seward Peninsula indicates a
range extension of beaver ca 10.5–9.5 ka (McCulloch
and Hopkins, 1966; Fig. 3b). Likewise, pollen in lake
sediments from northwest Alaska suggests that some
aquatic plants expanded beyond their modern ranges
(Anderson, 1988), and pollen and macrofossil evidence
from many sites in Alaska indicates that Populus

balsamifera was abundant beyond modern treeline
during this interval (Hopkins et al., 1981; Brubaker
et al., 1983; Edwards et al., 1985; Anderson, 1988; Mann
et al., 2002; Ager, 2003). Dendrochronological analyses
demonstrate that P. balsamifera responds positively to
warm temperatures during early summer (Edwards and
Dunwiddie, 1985; Lev, 1987) suggesting conditions
warmer than present (although substrate and soil
changes also play a role; Hu et al., 1993; Mann et al.,
2002).
To emphasize range extensions as evidence for the

HTM in Alaska, we focus on sites at or beyond modern
treeline. Although evidence of the HTM is absent in
many records, relatively high percentages (>2%) of
Populus pollen occur sometime between 14.2 and 9.4 ka
at several sites across northern and western Alaska. Sites
within the modern boreal forest offer palynological
evidence of compositional changes roughly coincident
with the range extensions of Populus and other taxa
(e.g., Hu et al., 1993; Bigelow and Edwards, 2001), and
pollen records from south-central Alaska suggest that
the HTM took place between 11.6 and 10.3 ka, when
Alnus sinuata spread rapidly across the south coastal
mountains (Ager, 1983, 1989). The Holocene history of
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temperature and precipitation changes for the northwest
coast of North America, including the Gulf of Alaska
region, was reconstructed using pollen-based transfer
functions (Heusser et al., 1985; Mann et al., 1998). The
reconstruction indicates warmer-than-present condi-
tions from 11 to 10 ka, followed by an interval of nearly
2�C additional warming between 10 and 8 ka, after
which temperatures declined steadily until about 5 ka.
Geomorphic evidence for the HTM in Alaska is

broadly consistent with the biological proxies. In
particular, thaw lakes developed between 12 and 9 ka
on the Arctic Coastal Plain (Edwards and Brigham-
Grette, 1990), concurrent with the rapid accumulation
of peat (Eisner 1991; Eisner and Peterson 1998), ice
wedges thawed between 11.6 and 6.5 ka on Seward
Peninsula (Hopkins et al., 1960; Hopkins, 1972), and
well-developed soils formed ca 11 ka in the Yukon-
Tanana upland (east-central Alaska; Weber et al., 1981;
Porter, 1988). Glaciers in the central Brooks Range
(N Alaska) retreated behind their modern limits, or
perhaps were ablated entirely during the early Holocene
(Calkin, 1988), glaciers in the north-central Alaska
Range (central Alaska) were less extensive than today
sometime between 11 and 7 ka (TenBrink and Waytho-
mas, 1985), and glacier ice disappeared between 9.1 and
3.2 ka in the Ahklun Mountains (SW Alaska; Levy et al.,
2003). Along the southern coast of Alaska, glacier
termini may have retreated inland from their present
positions during the early Holocene (Shephard, 1995;
Crossen et al., 2002).
Lake-sediment geochemistry and sedimentary evi-

dence of water-level fluctuations also attests to Holocene
climatic variability, but such data are available for only
a few sites in Alaska. For example, trace-element
analysis of ostracode shells from Farewell Lake (NW
Alaska Range, site 24) suggests that temperatures
peaked between 9.7 and 9.1 ka (Fig. 3c). Lake-level
reconstructions at sites in interior Alaska, including
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Birch Lake (Fig. 3d) suggest that the early Holocene was
warm and dry, with summer precipitation 25–40%
lower than today. A subsequent lake-level rise between
10.3 and 9.1 ka indicates an increase in effective
moisture (Abbott et al., 2000; Barber and Finney,
2000; Bigelow and Edwards, 2001).
The HTM appears to have been asynchronous across

Alaska. Proxies from southwest Alaska, including the
pollen record from Idavain Lake (site 19; Fig. 3e),
indicate that the HTM occurred sometime between ca 11
and 7 ka, earlier than in western and northern Alaska.
This geographic asynchrony may have resulted from
spatially uneven effects of the shoreline transgression
over Bering Land Bridge or from synoptic-scale
circulation patterns (Edwards et al., 2001); however,
dating problems cannot be excluded. Early chronologies
based on bulk lake-sediment samples may be too old by
1000–2000 yr (Oswald et al., 1999; Bigelow and Ed-
wards, 2001). Thus, it is likely that the P. balsamifera

range extension at northern Alaskan sites such as Joe
Lake (site 17) and Screaming Yellowlegs Pond (site 26)
occurred after ca 11.5 ka, following the Younger Dryas
(Figs. 3f and g).
Overall, evidence of the HTM in Alaska is less

striking than in other regions of the western Arctic, and
less pronounced than simulated by general circulation
models (Bartlein et al., 1998). For example, the Picea

treeline is not known to have been any farther north
during the Holocene than at present, as it was in
the Yukon and north-central Canada (Ritchie et al.,
1983), although the Brooks Range may have inhibited
northward movement. In addition, the timing of the
HTM is not well constrained in this region, and the
behavior of the paleoclimatic proxies may in some cases
be related to factors other than climate. Nevertheless,
when considered together the range extensions and
other indicators provide reasonable evidence for higher-
than-present summer temperatures during the early
Holocene.

3.1.4. Yukon Territory and westernmost Mackenzie

District

In northwest Canada, summer temperatures were
warmer than present beginning 10.6 ka, with a transition
to near-modern temperatures between 6.7 and 5.6 ka.
The clearest evidence for the HTM is from the
Tuktoyaktuk Peninsula, where the forest advanced
northward of its present-day limit, and then retreated
(Ritchie and Hare, 1971; Spear, 1983, 1993; Ritchie,
1984). High Picea pollen values and Picea needles in the
sediments of Sleet Lake (site 34; Fig. 3h) indicate the
presence of forest 75 km north of the modern treeline
between 12.2 and 5.6 ka, with peak pollen influx at
10.3 ka. Farther east on the Tuktoyaktuk Peninsula,
Picea appears to have arrived later, peaking between
10.3 and 9.1 ka (Spear, 1993), and spruce stumps dating
to the first half of the Holocene have been found on the
tundra of the Tuktoyaktuk Peninsula (Ritchie and Hare,
1971; Spear, 1983; Ritchie, 1984). Range extensions and
dendroclimatological evidence suggest that temperature
on the Tuktoyaktuk Peninsula was as much as +3�C
(Ritchie, 1984). Several taxa, such as Myrica, Typha,
and Populus, expanded north of their present ranges in
northwest Canada between 11.6 and 5.6 ka and centered
on 10.3 ka (Cwynar, 1982; Ritchie et al., 1983). In the
alpine tundra of central Yukon, pollen and plant
macrofossil evidence from three sites indicates that
forest occupied the region from 11.6 to 5.6 ka (Cwynar
and Spear, 1991). In the southern Yukon, the pollen
evidence is inconclusive as to age of the HTM, but
temperatures there (Cwynar, 1988), as in the Yukon in
general (Cwynar and Spear, 1995), began to cool toward
modern between 6.7 and 5.6 ka.
On the coastal plain of northwest Canada, the

formation of thermokarst lakes peaked between 11.6
and 10.3 ka (Rampton, 1988), suggesting maximal
warmth during this interval. Thickening of the active
layer between 10.3 and 9.1 ka is recorded by a wide-
spread thaw unconformity along the Arctic coast of
northwest Canada (Burn, 1997) and in the central
Yukon (Burn et al., 1986). Thermokarst collapse led
to peatland development on Tuktoyaktuk Peninsula
ca 9–8 ka (Vardy et al., 1997). Finally, pigment, diatom,
and sediment mineralogy of a saline lake in the central
Yukon (Lake U60, site 32) indicate that temperatures
and lake productivity were highest between 12.2 and
9.2 ka.

3.2. Northern continental Canada

3.2.1. Physiographic and antecedent conditions

This region spans from the Mackenzie District of the
Northwest Territories east of approximately 130�W
longitude to the coast of the Labrador Sea (Fig. 1), and
is dominated by the low-lying Canadian Shield sur-
rounding Hudson Bay with mountains in the western-
most district of Mackenzie and in Labrador. Almost the
entire region was covered by the Laurentide Ice Sheet,
which retreated northeastward across the region during
the early Holocene (Dyke and Prest, 1987a).

3.2.2. Eastern Mackenzie Mountains to Hudson Bay

The broad-scale pattern of Holocene climate change
in this subregion has been identified through evidence
from lakes (Moser and MacDonald, 1990; MacDonald
and Gajewski, 1992; MacDonald et al., 1993; Szeicz
et al., 1995; Edwards et al., 1996; Wolfe et al., 1996;
Pienitz et al., 1999; Szeicz and MacDonald, 2001),
peat (Nichols, 1975; Kay, 1979; MacDonald, 1983),
and the distribution of paleopodzols (Bryson et al.,
1965; Sorenson, 1977). Many of these studies infer a
climate warmer than present during the mid-Holocene
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(ca 8–5 ka), resulting in increased vegetation density or a
northward displacement of treeline, followed by cooling
during the late Holocene (ca 4–2 ka). The timing of
maximum warmth in central Canada varied across the
region (Fig. 4) and lagged eastern Beringia and north-
west Canada. Analysis of pollen and macrofossils from
Natla Bog (site 43; Fig. 4a) and lake cores from the
Mackenzie Mountains (western NWT; sites 44–46)
indicates an advance of the Picea treeline to positions
slightly higher than the modern treeline between about
8.0 and 7.0 ka, and a retreat after about 4.0 ka. Farther
east on the Canadian Shield, pollen and diatoms from
Queen’s and Toronto lakes (central NWT; sites 59 and
60) show a period of rapid forest–tundra expansion 6.0–
3.5 ka, similar to other sites near treeline northeast of
Yellowknife (Moser and MacDonald, 1990; MacDonald
et al., 1993; Fig. 4b). Diatom, isotopic, geochemical, and
sediment records from these treeline lakes indicate that
the period of treeline advance coincided with changes in
lake ecosystems. Lake productivity and dissolved
organic carbon increased, pH decreased, and the lake
water d18O decreased as effective moisture increased
(MacDonald et al., 1993; Edwards et al., 1996; Pienitz
et al., 1999; Wolfe et al., 1996; R .uhland, 2001). During
the HTM at lake TK-20 (site 62), diatom diversity
increased dramatically, with the first appearance of
centric, planktonic taxa triggered by a moister and
warmer climate (Fig. 4c). However, relatively low
abundances of Picea mariana pollen suggest that spruce
likely did not invade the catchment.
The d18O of organic matter from lakes in north-

central Canada suggests an increase in the mean annual
temperature of about 3�C between about 5.6 and 3.3 ka,
with a 10–15% increase in summer relative humidity
compared to present (Edwards et al., 1996; Pienitz et al.,
1999; Fig. 4d). In contrast, during the early Holocene,
precipitation was enriched in 18O at a time when
temperatures were at least as low as present and are
discordant with the isotope-temperature relation that
was established after 5.6 ka, perhaps reflecting an
increase in the efficiency of long-distance moisture
transport.
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During the HTM the permafrost zone shifted north-
ward by about 300–500 km of its present distribution
(Zoltai, 1995). This shift was associated with peatland
development through thermokarst collapse, the forma-
tion of fen over poorly drained mineral soils, and peat
formation over shallow ponds (Zoltai, 1995; Vardy et al.,
1997). Peatlands started to develop ca 11.6 ka in most
ice-free areas of central Canada, probably in response to
both warming and increased moisture (Zoltai and
Tarnocai, 1975; MacDonald, 1987; Zoltai and Vitt,
1990; MacDonald and McLeod, 1996; Gajewski et al.,
2001). At the southern edge of the boreal forest,
peatland development was either delayed, or in some
cases early Holocene peatlands were dessicated until
after the HTM (6–5 ka), when effective moisture
increased (Zoltai and Vitt, 1990; Hutton et al., 1994;
Gajewski et al., 2001). Peatlands in central NWT are
younger than 6 ka whereas those to the west, where
deglaciation occurred earlier, are older than 6 ka (Zoltai,
1995). The increased dominance of Sphagnum marked
the subsequent cooling (Zoltai, 1995; Vardy et al., 1997,
1998).

3.2.3. Quebec and Labrador

The Laurentide Ice Sheet lingered until about 6.8 ka
in northern Quebec and Labrador and impacted climate
in this subregion long after adjacent areas had warmed
(COHMAP, 1988; Richard, 1995). Southeast Labrador
may have experienced the HTM ca 8–6 ka (Sawada et al.,
1999) whereas northern sites, in regions that were
deglaciated late, may have peaked as late as 3.7 ka,
when Picea replaced Alnus pollen at most sites in the
lichen woodland and forest tundra (Gajewski and
Garralla, 1992; Gajewski et al., 1993, 1996). Pollen
evidence from some treeline sites suggests a slight
expansion of Picea treeline or increased density of taxa
between 5 and 2 ka (Short and Nichols, 1977; Richard,
1981). Detailed analysis of paleosols, soil charcoal, and
macrofossils indicates a limited northward expansion of
spruce in Quebec (Payette and Lavoie, 1994). Quanti-
tative, pollen-based July temperature reconstructions
(using response surface and modern analog techniques)
suggest the local HTM (+2�C) took place 3.7 ka at two
tundra sites (Ublik Lake and Nain Pond; sites 89 and
90) in northeast Labrador (Fig. 4f). The timing and
magnitude of the HTM is less clear in tundra regions of
northern Quebec. The Diana 375 Lake pollen record
(site 80) suggests that the HTM (+1�C) began at 6.3 ka
and was terminated by 5.0 ka. Evidence for the HTM is
less apparent in the forest tundra regions of northwest
Quebec, where Picea increased gradually (Richard,
1981; Gajewski and Garralla, 1992; Gajewski et al.,
1993, 1996). Quantitative reconstructions at lake LB1
(NW Quebec; site 71) suggest that July temperatures
warmed to near present immediately after the last
remnants of the Laurentide Ice Sheet had melted, and
peaked (+0.5�C) between 6.3 and about 2 ka (Kerwin
et al., submitted; Fig. 4f). Modern-analog-based pollen
methods suggest that the temperature during the HTM
in this region was only slightly higher than present
(+1�C; Sawada et al., 1999).
On the Labrador shelf, meltwater from the residual

Laurentide Ice Sheet suppressed SSTs until the middle
Holocene (Levac and deVernal, 1997; Andrews et al.,
1999). For example, the Arctic freshwater benthic
foraminifera Elphidium excavatum forma clavata domi-
nated the assemblages in Cartwright Saddle (site 94) on
the Labrador Shelf from ca 12–6 ka. It then disappeared
until the onset of Neoglaciation (4–5 ka).

3.3. Canadian Arctic Islands

3.3.1. Physiographic and antecedent conditions

This region spans from the west coasts of Banks and
the Queen Elizabeth islands, which border the Arctic
Ocean, to the east coasts of Baffin and Ellesmere islands,
which rim Baffin Bay in the northwest North Atlantic
Ocean (Fig. 1). In between are numerous channels and
sounds, which were occupied by the Laurentide and
Innuitian ice sheets. Relief increases eastward, culminat-
ing in high plateaus and fretted mountain ranges that
presently support the largest ice caps in the Canadian
Arctic. Isostatic uplift following deglaciation influenced
the discharge of ocean currents and sea ice as the
channels rebounded and shallowed during the Holo-
cene. Most of the archipelago was deglaciated during
the interval between 11.5 and 9.0 ka, but not until ca
8 ka in the Foxe Basin–Baffin Island region and
Ellesmere and Axel Heiberg islands. The terrestrial
remnant of the Laurentide Ice Sheet slowly retreated
toward the present-day Barnes Ice Cap (Baffin Island),
which still contains residual Pleistocene ice in its lower
levels (Hooke and Clausen, 1982). Because of the
difference in the timing of deglaciation, the Baffin
subregion is considered separately. Proxy records from
ice cores and from areas that were deglaciated early
show evidence of a two-fold HTM. Records from areas
deglaciated later show only the later, middle Holocene
maximum.

3.3.2. Arctic Islands

The interval of rapid deglaciation following the
Younger Dryas (11.5–9.0 ka) was also the period of
maximum Holocene warmth (Fig. 5). The strongest
indication is the melt-layer record of the Agassiz Ice Cap
(NW Ellesmere Island; site 77), which shows elevated
percent melt between 10 and 6.5 ka, peaking between 10
and 9 ka (Fig. 5a). Maximum concentrations of pollen,
particularly Picea and Pinus, are also found in the
Agassiz Ice Cap during this time period (Bourgeois et al.,
2000) suggesting a strengthened atmospheric circulation.
In contrast, the Agassiz ice core d18O record shows a
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Islands. (a) Melt record, Agassiz Ice Cap, northern Ellesmere Island

showing the percentage of annual layers in a 50-year interval that

contains ice formed by melting near the surface in summer; the record

assumes no change in snow accumulation rate (Fisher and Koerner,

2003). (b) Occurrence of bowhead whale bones based on frequency

distribution of 14C ages (bin size=500 yr) in four areas: (1) Beaufort

Sea (70.170.6�N latitude, 116.671.5�W longitude, n ¼ 38), (2)
northeastern islands (75.270.9�N latitude, 86.973.6�W longitude,

n ¼ 98), (3) central islands (72.671.1�N latitude, 94.274.8�W long-

itude, n ¼ 118), and (4) northern Baffin Island (71.970.6�N latitude,

85.172.2�W longitude, n ¼ 204) (data compiled by A.S. Dyke;

available at PARCS website). (c) Occurrence of thermophilic molluscs

based on the frequency distribution of 14C ages (bin size=500yr) in

two areas: (1) northeastern Baffin Island (70.171.6�N latitude,

71.675.4�W longitude, n ¼ 53; mean71s) and (2) western Arctic
Islands (69.471.4�N latitude, 114.073.6�W longitude, n ¼ 66) (data
compiled by A.S. Dyke; available at PARCS website). (d) Pollen-

inferred summer temperature, Donard Lake (Kerwin et al., submitted).
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somewhat delayed maximum at 8.5 ka, possibly reflect-
ing the depleted d18O of ‘‘recycled’’ Laurentide Ice Sheet
meltwater and northern ocean surfaces (Fisher, 1992;
Fisher et al., 2003). This effect might have similarly
influenced other ice-core records in the North Atlantic
region, including Greenland.
The history of sea-ice cover in the Archipelago has

been inferred from the distribution of more than 1000
bowhead whalebone remains (Dyke et al., 1996a; Dyke
and Savelle, 2001; Fig. 5b) and walrus bones (Dyke et al.,
1999) in raised marine deposits. Seasonal migrations
of both animals are constrained by the patterns of
ice break-up and freeze-up. Atlantic bowheads reached
their maximum abundance in the channels of the eastern
and central Arctic Archipelago from 11.5 to 8.5 ka,
but were excluded from areas along northeastern
Baffin Island. Pacific bowheads reached their maximum
abundance in the western Arctic channels connecting
to the Beaufort Sea at the same time. During that
interval, whales extended into areas well beyond their
present ranges, then retreated abruptly at about 8.5 ka.
The bowhead range may have expanded as sea-ice
export from the Archipelago was enhanced by
abundant meltwater during the interval of rapid
glacial recession. Alternatively, greater summer warmth
may alone account for reduced summer sea-ice
cover. Sea-salt sodium concentrations in Penny Ice
Cap (SE Baffin Island; Fisher et al., 1998) and the
Greenland Ice Sheet (Mayewski et al., 1997) are at
highest levels in early Holocene ice (11.5–9.0 ka),
consistent with minimal sea-ice cover. Bowhead whale
ranges re-expanded in the middle Holocene (6–3 ka).
Although the range did not attain early Holocene
extent, the re-expansion was concurrent with the
advance of treeline in the region to the south, the
HTM in that area.
Available records indicate that molluscs did not

survive the last glacial maximum in continental shelf
waters in the western Arctic Ocean. With submergence
of Bering Strait ca 13 ka, cold-water-tolerant molluscs
Hiatella arctica and Portlandia arctica entered the
western Arctic Ocean. At 11.5 ka, two boreal-subarctic
thermophiles, Mytilus edulis and Macoma balthica, then
spread from Bering Strait along the Beaufort Sea coast
at least as far as the modern limit of M. edulis,
coincident with the entry of Pacific bowheads. These
thermophilous molluscs require summer SSTs above
0�C for successful dispersion of larvae. Thus, SST rose
above current values immediately following 11.5 ka and
the abundance of dated thermophilous molluscs from
the Canadian archipelago reached a maximum during
the interval 11.5–8.5 ka (Fig. 5c). M. balthica then
withdrew from the western Arctic during the late
Holocene.

3.3.3. Baffin Island and Baffin Bay region

The record of thermophilous molluscs in the Baffin
Bay area indicates changes in coastal marine conditions
during the early Holocene (Andrews, 1972; Fig. 5c).
Molluscs first reached their modern limit in eastern
Baffin Bay at 10.0 ka, thus signaling the establishment of
the West Greenland Current, the only warm current in
the region (Funder and Weidick, 1991; Dyke et al.,
1996b). Shortly thereafter, boreal-subarctic molluscs
extended along the east coast of Baffin Island, as much
as 1000 km north of their modern limits; records are
insufficient to establish the timing of the HTM.
However, two boreal molluscs, Panopea norvegica and
Arctica islandica, occupied southeastern Baffin Bay by
9.4 ka, then withdrew prior to 4.5 ka (Funder and
Weidick, 1991), thus defining the interval of maximum
warming of the West Greenland Current. Retraction to
modern limits along the east coast of Baffin Island
occurred as the Baffin Current cooled about 3 ka.
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Similarly, dinoflagellates in northern Baffin Bay indicate
that SST reached close to modern as early as 9.6 ka, and
was higher than present between 6.4 and 3.6 ka (Levac
et al., 2001).
The Baffin Bay thermophilic molluscs did not extend

into the central archipelago. Their farthest northwest
occurrences were in Navy Board Inlet (NW Baffin
Island), Smith Sound (SE Ellesmere Island), and
adjacent Greenland. This distribution, and the absence
of the West Greenland Current before 10 ka, constrains
our interpretation of warming within the archipelago
during the HTM. The extended bowhead range
11.5–9.0 ka requires greater summer sea-ice clearance
than occurs today, hence temperatures above the –1.8�C
freezing point of sea water. But the failure of thermo-
philic molluscs to enter suggests that summer SST did
not rise much, if any, above 0�C.
The longest well-dated pollen records from the region

are from easternmost Baffin Island. Donard Lake (site
91; Fig. 5d) shows a three-step warming: initial warming
at 14.4 ka, a second step dominated by grass pollen
beginning ca 12 ka, and a final step about 9 ka. Glaciers
advanced at 9.5–8.6 ka, and again at ca 5.7 ka continu-
ing to the present (Moore, 1996; Moore et al., 2001).
Maximum pollen accumulation rates (partly exotic taxa)
occurred between 8.6 and 5.7 ka, presumably represent-
ing the local HTM. Peak warmth at 6 ka is estimated at
+1�C for Donard Lake, and for nearby Fog (site 88)
and Dyer Lower lakes (site 92), based on unpublished
pollen records (Kerwin et al., submitted). At Robinson
Lake (site 87), organic sedimentation began ca 12.1 ka,
grass tundra was succeeded by sedge tundra at 9 ka, and
maximum pollen accumulation occurred 9–5 ka, as at
Donard Lake. This zone might represent the HTM, or it
might mainly record exotic pollen influx from Quebec–
Labrador. The possibility that local pollen (and thus the
local HTM) is obscured is further indicated by diatoms
from Donard and Robinson lakes, as well as from
Amarok Lake (site 85), a tarn with a basal age
>11.3 ka. Organic sedimentation rate and diatom
productivity indicate that the HTM was 10.2–9.3, earlier
than suggested by the pollen (Wolfe, 1994, 1996).
Two lakes on Somerset Island (lakes RS29 and RS36;

sites 64 and 65) that were deglaciated about 10.3 ka have
maximum pollen accumulation rates between 10.3 and
6.0 ka, suggesting maximum plant density on the land-
scape at that time. Similarly, a lake on Prince of Wales
Island (Lake PWWL, site 63) contains maximum pollen
concentrations before 5 ka. Farther west, on Banks
Island, four relatively poorly dated pollen records (sites
50–53) with basal ages of about 9 ka indicate maximum
temperatures between 7 and 2 ka. On Ellesmere Island,
algal populations from lake sediments are largely
controlled by the extent of summer lake-ice cover (Smol,
1983; Smith, 2002). For example, diatom and pollen
records from Rock Basin Lake (site 69) indicate higher
temperatures from about 8.4 to 4.5 ka. An increase in
diatom concentrations beginning about 5.5 ka and
peaking at 3.5 ka marks a later local HTM at several
lakes in the Lake Hazen area (NE Ellesmere Island; site
82), where warm conditions continued until about
2.0 ka. This area was not deglaciated until 8.4–6.8 ka,
contributing to the delayed warming in comparison with
Rock Basin Lake.

3.4. Greenland and Iceland

3.4.1. Physiographic and antecedent conditions

This region includes Greenland and Iceland and their
relatively narrow continental shelves (Fig. 1). Greenland
spans the entire latitudinal range of the North American
Arctic. It supports the single remaining ice sheet in the
Arctic, from which premier paleoclimate records have
been extracted. The ice sheet cools the region through its
self-sustaining influence on atmospheric circulation, sea-
surface salinity, and energy balance. It also responds
dynamically to climatic changes, through both tempera-
ture and accumulation forcing (Cuffey and Clow, 1997).
The climate of this region is also influenced by ocean

currents in the Labrador and Greenland seas (Fig. 1).
The northward-flowing North Atlantic Current bifur-
cates around Iceland. The western branch (the Irminger
Current) flows into Denmark Strait and converges with
the southward-flowing East Greenland Current. They
join and flow westward to form the West Greenland
Current, which flows into Baffin Bay and joins the
southward-flowing Labrador Current. The convergence
of warm, subtropical water with cold polar water, gives
rise to high precipitation rates in southern Greenland
and cold continental temperatures that promote glacer-
ization. In this region, climate is not only influenced by
changes in ocean circulation, but can itself influence the
entire globe through changes in the production of
deepwater in the North Atlantic Ocean (Broecker and
Denton, 1989), including abrupt changes on decadal
timescales (Clark et al., 2002). During the early
Holocene, this region was strongly impacted by the
waning Laurentide Ice Sheet, which transmitted its
effect to key areas of ocean convection through both the
atmosphere and the ocean.

3.4.2. Greenland

In general, peak warmth in Greenland appears to
have occurred between 9 and 5 ka, depending on which
temperature proxy is considered (Fig. 6). Borehole
temperature inversions from the GRIP (site 109/110)
and Dye 3 (site 105) ice-core sites show maxima between
8 and 5 ka, and 6 and 3 ka, respectively (Fig. 6a). The
isotope profile from North GRIP (site 106) and bore-
hole-temperature-calibrated isotope data from GISP2
(site 108) suggest somewhat earlier and smaller ampli-
tude maxima (Fig. 6b). Dye 3, located at lower
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elevation, closer to the ocean, and to the southwest,
shows at least twice the amplitude of change compared
with the Greenland summit (Cuffey and Clow, 1997:
Dahl-Jensen et al., 1998). Thus, the magnitude of HTM
warmth was likely greater in southwest Greenland, and
at lower elevations or closer to the ocean than at the
summit or at higher latitudes.
Lacustrine evidence also suggests that warming and

subsequent cooling were spatially variable across Green-
land (Fredskild, 1992; Anderson et al., 2004). In south
Greenland, the HTM took place between ca 8 and 2 ka
(Fredskild, 1973), with warmest conditions ca 7.5 ka
(Fredskild, 1984). In the Godth(absfjord area (site 103),
evidence for the HTM is equivocal, but was probably
associated with a rise in Betula nana and Juniperus

pollen between 7 and 4 ka (Fig. 6c), and as recently as
3.5 ka at one site (Terte Lake A, site 97). At Qipisarqo
Lake (site 104), the HTM peaked 6 ka and lasted until
about 3 ka, on the basis of biogenic silica and
organic carbon concentrations (Fig. 6d) (Kaplan et al.,
2002). However, chironomid assemblages from this
lake suggest a much earlier HTM (9–7 ka) and
the possibility that catchment evolution exerted an
equally strong control on primary productivity in the
lake as did summer temperature (Wooller et al., in
review; Fig. 6e).
In west Greenland, the thermophilic ostracode

Ilyocepris bradyi indicates a period of maximum water
temperature between 7.0 and 6.5 ka (St Salt S^, site 101).
Lake-water conductivity inferred from diatom assem-
blages in two nearby, closed-basin, oligosaline lakes
(lakes SS6 and Bray S^; sites 98 and 99) suggests high
evaporation rates between 8 and 5 ka, presumably
reflecting greater warmth. d18O analyses from the same
lakes indicate considerable evaporative enrichment ca
7 ka whereas chironomid-inferred temperatures for lake
SS2 (site 100) show no major trend during the Holocene,
despite substantial changes in chironomid species
abundance (N.J. Anderson, K.P. Brodersen, and M.J.
Leng, unpub. data). Glacial fluctuations and extralimital
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subarctic molluscs along the west coast of Greenland
indicate that the HTM occurred between ca 8.0 and
3.5 ka (Kelly, 1980). The ages of extralimital boreal taxa,
however, are generally older (Funder and Weidick,
1991), indicating warmest nearshore temperatures be-
tween ca 10.5 and 6 ka (Fig. 6f).
Relatively few lake-sediment records have been

recovered from east Greenland. Biogenic silica concen-
trations and diatom assemblages indicate that the HTM
occurred between 9 and 6 ka at Lake Basalts^ (site 121;
Fig. 6g). This agrees with the occurrence of thermophilic
molluscs along the east coast (Fig. 6f; Hjort and Funder,
1974) and marine records from off the Greenland east
coast. The percentage of Betula. nana pollen in lake N1
(Ymer Island, site 118) places the HTM at 7.7–5.0 ka.
The HTM in north Greenland was quite different,

with warmer but drier conditions prevalent until 5 ka
(Fredskild, 1984). On the Cary Islands, peat was
deposited between ca 6.5 and 4.5 ka and is interpreted
to represent the HTM (Brassard and Blake, 1978).
Because thermophilic plants did not survive in

Greenland during the last glacial maximum, their
immigration was delayed by the lack of a terrestrial
connection. The later initiation of the HTM inferred
from ecological indicators in lake sediments from some
localities, compared with records offshore (see below),
may reflect the lag associated with colonization. Lake
sediments tend to indicate a more variable early
Holocene than do ice cores, which may reflect the
influence of catchment processes, lake development, and
the sensitivity of lakes to regional climate development
(Anderson et al., 2004). On the other hand, sediment
carbon content at lake NAUJG1 (site 96; Fig. 6h) in
west Greenland is strongly correlated with proxies from
the ice-core record, supporting the association between
organic production and regional climate.
Offshore, on the east Greenland shelf (site 114), the

HTM began after the influence of meltwater declined at
ca 10.9 ka. The HTM is recognized as the interval of
lowest ice-rafted detritus (IRD) content and highest
percentages of Cassidulina neoteretis, a benthic forami-
nifera species inhabiting slightly modified Atlantic
Intermediate Water. This occurred from 9 to 5 ka, with
peak warmth (lowest IRD) possibly between 7 and 5 ka,
concurrent with the retreat of the Greenland Ice Sheet
behind its present margins (Funder, 1989). Warming
and subsequent cooling occurred earlier on the east
Greenland margin south of the Denmark Strait (site
111) compared with north of the strait (site 115). By
7 ka, the modern circulation regime was established,
with the East Greenland Current dominating the shelf.
The HTM appears to have ended relatively abruptly in
many areas of the North Atlantic region with an interval
of increased particle-size sedimentation ca 5.7 ka (Steig,
1999; Bond et al., 2001), which occurred during an
interval of high d18O values (cold or salty conditions, or
both) in North Iceland benthic foraminifera (Andrews
and Giraudeau, 2003; Castaneda et al., in review). At
about the same time, sites on the east Greenland margin
are marked by a strong influx of IRD (Andrews et al.,
1997; Jennings et al., 2002).

3.4.3. Iceland

Presently, there are no continuous records of climatic
evolution that span the Holocene from Iceland.
Although little quantitative data are available, Iceland
is generally thought to have experienced longer, warmer
summers during the early Holocene. Most records are
based on either glacial geomorphology, which is
episodic, or on vegetation change over a limited time,
which is difficult to evaluate in the context of long-term
ecosytem evolution. The most complete record in
Northern Iceland is from a treeline site (Vestur!ardalur,
site 131), where macrofossils indicate that Betula

expanded to near its maximum Holocene distribution
by 8.6 ka. A distinct maximum of Betula pubescens and
pollen accumulation rates between ca 7.5 and 6.7 ka
suggests a later HTM, however. This is in accordance
with results from Vatnskotsvatn (site 129), where a
Betula forest was established between 9.7 and 5.6 ka and
pollen influx peaked around 7.8 ka. In southern Iceland
(L !omatj .orn, site 126), Betula pollen appeared just after
8.9 ka, with forests inferred to have been most dense
between 8.1 and 5.6 ka. In northwest Iceland (Efsta-
dalsvatn, site 120), a chironomid-based reconstruction
indicates highest summer temperatures ca 9.1 ka; tem-
perature continued to rise there until 4.4 ka. The earlier
warming is consistent with the marine record from the
adjacent continental shelves (see below), indicating a lag
between the onset of warmth and the establishment of
Betula.
The evolution of Holocene climate has been studied

offshore of Iceland (e.g., Hagen, 1995; Eir#ıksson et al.,
2000). Carbonate accumulation, a measure of net
marine productivity, clearly indicates early Holocene
warmth, with maximum values around 5–4 ka (Andrews
et al., 2001; Andrews and Giraudeau, 2003). Sediment
from Gardar Drift south of Iceland (site 117) records the
influence of the North Atlantic Drift after 11.2 ka.
Coccolith assemblages indicate that the site warmed
progressively from 10 to 6 ka, with SST reaching +2–
3�C between 7 and 6 ka. Subsequent to 6 ka, cooling
coincided with increased freshwater advection. North of
Iceland (site 123), the HTM occurred between 9.0 and
6.2 ka, peaking at 7.0 ka on the basis of d18O composi-
tion of benthic forams. Coccolith species assemblages
indicate that Atlantic Water was present from 10.0 to
6.2 ka. Faunal changes at sites north of Iceland show
that the HTM occurred between 10.3 and 6.7 ka
(Eir#ıksson et al., 2000; Jiang et al., 2002). Similarly,
cores from fjord and shelf settings northwest of Iceland
contain carbonate evidence for the HTM between 10.3
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and 6.7 ka (Geirsd !ottir et al., 2002; Andrews et al.,
2003). Both the terrestrial and the marine records reflect
cooling and fluctuating conditions beginning 6.7 ka, a
dramatic decrease in pollen content around 6.1 ka, and a
further decline in both records around 3.3 ka.

3.5. Summary: spatio-temporal pattern of the HTM,

western Arctic

At the 120 sites across the western Arctic that
reported evidence for the HTM, the warmest interval
(primarily based on indicators of summer temperature)
of the Holocene began on average 8.972.1 ka
(mean71s; median=9.0 ka) and ended 5.972.6 ka
(median=6.0 ka). The large standard deviation asso-
ciated with the timing of the HTM is indicative of the
strong spatial heterogeneity of this time-transgressive
event, and is clearly expressed by maps of HTM
initiation and termination isochrons (Fig. 7). Much of
the variability is longitudinal (Fig. 8). Eastern Beringia
clearly warmed earlier than northern continental Cana-
da; nearly all sites where warming took place prior to ca
11 ka are in Alaska, whereas sites where the HTM was
significantly later (after 7 ka) are in the central interior
of Canada surrounding Hudson Bay. On average, sites
in central and eastern Beringia experienced the HTM by
11.371.5 ka (n ¼ 25) (Table 2); some sites (n ¼ 15),
mainly in central Beringia, do not reveal palynological
evidence for warmer-than-present conditions anytime
during the post-glacial interval. In contrast, the HTM in
northern continental Canada was delayed until
7.371.6 ka (n ¼ 22), with an additional three sites
lacking clear evidence for the HTM. The timing of the
HTM was generally similar among sites in both marine
and terrestrial settings (Table 2). Taken together, HTM
conditions in the Canadian Arctic Islands and the
Greenland–Iceland regions, were reached 8.671.6 ka,
with all but two sites reporting clear evidence of an
HTM.
Regions tended to cool in the order that they warmed.

The HTM ended first in central and eastern Beringia
(9.172.0 ka), then in Greenland–Iceland (5.471.4 ka),
the Canadian Arctic Islands (4.972.6 ka), and finally in
northern continental Canada (4.372.2 ka). The dura-
tion of the HTM tended to be shorter in central and
eastern Beringia than in other regions of the western
Arctic. On average, it lasted 220071300 yr in central
and eastern Beringia, compared with 310071700 yr in
northern continental Canada, and 340071400 in the
Canadian Arctic Islands and Greenland–Iceland. The
standard deviations for the timing of HTM terminations
both within and between each of the four regions are
about 20% higher than the standard deviations for the
timing of the initiation, suggesting that the cooling was
more variable than the warming. This is counter-
intuitive considering that the onset of the HTM in the
North Atlantic region was interrupted by abrupt melt-
water releases from the decaying Laurentide Ice Sheet
whereas, during the later part of the Holocene,
geography was similar to present and the disruptions
by the ice sheet were absent.
Quantitative estimates of the magnitude of tempera-

ture increase during the HTM have been reported at
only 16 terrestrial and coastal sites and eight open-
marine sites in the western Arctic (Table 3). Despite the
variety of approaches used, all estimates from terrestrial
sites fall within the narrow range of 0.5–3�C and
average 1.670.8�C. Marine sites recorded more than
twice the increase in temperature during the HTM
(3.871.9�C; n ¼ 9).
4. Causes of the HTM and its spatio-temporal pattern

4.1. Direct forcing and climatic feedbacks

Broadly speaking, early Holocene warmth was driven
by earth’s orbital variations. Precessional forcing
culminated 12–10 ka, when total annual insolation was
1Wm�2 higher than present at 60�N, and 5Wm�2

higher at the pole (Berger and Loutre, 1991). At that
time, insolation at 60�N during summer (June) was 10%
higher than today, and only slightly lower during winter
(December) (Fig. 9).
Compared to the increase in summer insolation,

radiative forcing by changes in atmospheric trace-gas
concentrations was minor during the early Holocene.
CO2 attained concentrations near its pre-industrial level
by about 11 ka and remained constant during the early
Holocene (Inderm .uhle et al., 2000), while CH4 decreased
slightly (Blunier et al., 1995) (Fig. 9). In contrast, as the
climate warmed, the water-vapor content of the atmo-
sphere probably increased (e.g., Foley et al., 1994), and
the flux of heat and moisture from the tropics to the
Arctic probably strengthened, resulting in a positive
feedback on warming. As it appears to have done over
the latter part of the 20th century (Folland et al., 2001),
the pattern of increased atmospheric water vapor
probably mirrored that of temperature.
Climatic feedbacks of radiative forcing during the

early Holocene were spatially variable. The extent of
snow and ice cover was reduced and the pattern of
vegetation cover was altered. Both impacted the
distribution of energy absorbed during the summer,
and altered the surficial energy and water balances
sufficiently to carry into the fall and winter months.
Feedbacks involving the reduction in glacier and sea-ice
extent were particularly significant for high-latitude
amplification of warming. Vegetated land and open
sea have much lower albedo and a higher heat capacity
than ice. As ice cover decreased and summer insolation
increased, more solar energy was stored in summer and
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Fig. 7. Spatio-temporal pattern of the Holocene thermal maximum (HTM) in the western Arctic. (a) Initiation and (b) termination of the HTM.

Gray dots indicate equivocal evidence for the HTM. Dot colors indicate bracketing ages of the HTM, which are contoured using the same color

scheme. Sites are listed in Table 1. These maps with references to each site and additional information are available at the PARCS website.
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then re-radiated during the winter (e.g., Gildor and
Tziperman, 2001). Year-round warming was also likely
facilitated by the expansion of forests over tundra,
further reducing surface albedo and leading to a positive
feedback (Foley et al., 1994; Chapin et al., 2000). The
positive feedback on temperature by land-surface
changes probably had a distinct spatial pattern, with
earlier and larger responses occurring in regions where
snow cover was low and vegetation was readily
converted from steppe or tundra to high shrub or
forest, as in Beringia. The distribution of sea ice in
response to circulation changes also contributed to the
spatial pattern of warming. Simulations of 6 ka climate
by GCMs with a dynamical sea-ice routine show a
thickening of sea ice in the western Arctic and a thinning
in the eastern Arctic (Vavrus, 1999; Vavrus and
Harrison, 2003), suggesting a negative feedback on
surface-temperature response to insolation forcing.
Although the geography of boreal-forest expansion
(MacDonald and Gajewski, 1992) and glacier-ice retreat
(Dyke and Prest, 1987a, b) during the early Holocene
are relatively well known for the western Arctic, no
detailed reconstructions of sea-ice extent are yet avail-
able (Smith et al., 2003). The extent to which the
warming during the HTM can be attributed to these
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Table 2

Summary statistics for the timing of initiation and termination of the Holoc

Arctic

Region Initiation (cal ka) Termination

Mean 1s Mean

Central-eastern Beringia 11.3 1.5 9.1

Northern continental Canada 7.3 1.6 4.3

Canadian Arctic Islands 8.6 1.8 4.9

Greenland–Iceland 8.6 1.5 5.4

Arctic Islands+Greenland–Iceland 8.6 1.6 5.2

Greenland–Iceland, terrestrial 7.9 1.3 5.0

Greenland–Iceland, marine 9.5 1.3 6.1
various feedbacks is the topic of ongoing modeling
research (e.g., TEMPO, 1996).
Superposed on the relatively slow changes in incom-

ing solar radiation and atmospheric composition, high-
er-frequency variations in solar output, and volcanic
activity affected the radiative forcing during the early
Holocene (e.g., Nesje and Johannessen, 1992). For
example, millennial-scale variations in the delivery of
ice-rafted detritus to the North Atlantic Ocean (Bond
et al., 2001), of sea-salt content of the Greenland Ice
Sheet (O’Brien et al., 1995), the grain size of magnetic
minerals in marine sediment off northern Iceland
(Andrews et al., 2003) and the concentration of biogenic
silica in lake sediment at Arolik Lake (SW Alaska; Hu
et al., 2003) seem to correspond with changes in solar
irradiance, as inferred from cosmogenic isotope (10Be
and 14C) records from ice cores and tree rings. At the
millennial timescale, the amplitude and duration of the
climate response to solar forcing was probably small
(Cubasch et al., 1997; Viau, 2003), at most a few Wm�2

(Stuiver et al., 1995). Similarly, volcanic forcing
operated on shorter temporal scales than insolation
forcing, and was more regional in scope (e.g., Zielinski
et al., 1994; White et al., 1997; Briffa et al., 1998;
Gervais and MacDonald, 2001).

4.2. The Laurentide Ice Sheet

Eastern Beringia generally responded in-phase with
the summer insolation anomaly whereas sites in north-
east North America attained their local HTM several
thousand years later. The delay in the northeast can be
attributed, at least in part, to the impact of the residual
Laurentide Ice Sheet on the coupled oceanic and
atmospheric circulation in the North Atlantic sector.
The thermal inertia of the Laurentide Ice Sheet, and
other residual ice masses, and its topographic expres-
sion, affected climate as downstream areas were cooled
by advection through the atmosphere, and by meltwater
and iceberg discharge into the adjacent seas. The ice
lingered well after peak summer insolation, with the
ene thermal maximum, and its duration, in regions across the western

(cal ka) Duration (� 103 yr) Total (n) Lacks

evidence (n)

1s Mean 1s

2.0 2.2 1.3 25 15

2.2 3.1 1.7 23 3

2.6 3.7 1.5 27 0

2.0 3.2 1.3 45 2

2.0 3.4 1.4 72 0

1.3 3.0 1.0 26 2

1.3 3.5 1.5 19 0
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Table 3

Increase in summer temperature, relative to average 20th century conditions, during the Holocene thermal maximum

Locationa Lat. (�N) Long. (�W) Climate proxy Peak (cal ka) Temp. (�C) Citation for temp. estimate

Terrestrial sites

Alaskan coastal plain 69.7 154.9 Insect fauna 10.8 2–3 Nelson and Carter (1987)

Sleet Lake, NWT 69.3 133.8 Spruce pollen, macros 9.7 3 Spear (1993)

Queen’s Lake, NWT 64.1 110.6 Stable isotopes 5.0 3b Edwards et al. (1996)

Lake LB1, Quebec 57.9 75.6 Pollen 3.0 0.5 Kerwin et al. (submitted)

Lake LR1, Quebec 58.6 75.3 Pollen 5.0 0.5 Sawada et al. (1999)

Diana 375 Lake 61.0 70.0 Pollen 5.8 1 Kerwin et al. (submitted)

Patricia Bay Lake 70.5 68.5 Pollen 7.4 1 Kerwin et al. (submitted)

Hikwa Lake 63.3 67.4 Pollen 3.4 2 Kerwin et al. (submitted)

Fog Lake 67.2 63.3 Pollen 5.7 1 Kerwin et al. (submitted)

Donard Lake 66.7 61.8 Pollen 5.7 1 Kerwin et al. (submitted)

Dyer Lower 66.6 61.7 Pollen 5.7 1 Kerwin et al. (submitted)

Agassiz, Ellesmere Is 80.7 73.1 Ice core melt layers 9.0 2 Koerner and Fisher (1990)

GISP2, Summit Greenland 72.6 38.5 Borehole temperature 7.7 1–2 Cuffey and Clow (1997)

GRIP, Summit Greenland 72.6 37.6 Borehole temperature 6.0 2 Dahl-Jensen et al. (1998)

Dye 3, SW Greenland 65.2 43.8 Borehole temperature 4.5 2 Dahl-Jensen et al. (1998)

Vestur!ardalur, N Iceland 65.8 18.7 Pollen, macros, LOI 7.1 1.5 Wastl et al. (2001)

Marine sites

Central Arctic Archipelago 73.6 86.0 Whales and molluscs 9.5 1 A.S. Dyke and J.M. Savelle (unpub.)

MD95-2015, Gardar Drift 58.8 26.0 Coccoliths 6.5 2–3 Giraudeau et al. (2000)

MD99-2269, Iceland Shelf 66.6 20.9 Diatoms 7.9 6.6 Andrews et al. (2002)

PS21842-5, Iceland Plateau 69.5 16.5 Diatoms 8.5 6 Ko@ et al. (1993)
HM57-15, Iceland Plateau 69.4 13.1 Diatoms 7.9 5 Ko@ et al. (1993)
MD95-2011, Norwegian Sea 67.0 7.6 Diatoms 8.6 4.5 Birks and Ko@ (2002)
HM57-14, Norwegian Sea 67.0 6.2 Diatoms None 3.5 Ko@ et al. (1993)
HM79-26, Norwegian Sea 66.9 5.9 Diatoms None 4 Ko@ et al. (1993)
HM94-13, Greenland Basin 71.6 1.6 Diatoms None 2.5 Ko@ et al. (1993)

aAdditional information at the PARCS website.
bMean annual air temperature; others are primarily summer temperature estimates.
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final collapse of the Foxe Basin dome about 7.5 ka
(Andrews, 1989). The impact of melting ice on ocean
convection persisted even after the removal of ice from
major calving margins 9–8 ka (Andrews, 1987; Dyke
et al., 2002). Freshwater was conveyed to the adjacent
seas, including the Arctic Ocean, via meltwater runoff
and drainage of massive proglacial lakes that fringed the
retreating ice sheet (Andrews, 1987; Dyke and Prest,
1987a, b; Barber et al., 1999; Licciardi et al., 1999;
Fisher et al., 2002; Leverington et al., 2002; Teller et al.,
2002). For example, North Atlantic cooling centered
around 8.2 ka, and attributed to the drainage of ice-
dammed lakes in the Hudson Bay region (Alley et al.,
1997), is reflected in the overall frequency distribution of
the ages of HTM initiation (Fig. 8). Sites tended to reach
their local HTM either before or after this event.
GCMs help quantify the effect of residual Laurentide

Ice Sheet on the atmospheric circulation. Sensitivity
tests show that the simulated 9-ka ice sheet counter-
acted insolation-induced warming by 2�C over north-
east North America and downstream over the North
Atlantic (Kutzbach and Guetter, 1986; COHMAP,
1988; Mitchell et al., 1988). Similarly, more recent
modeling (Pollard et al., 1998; CAPE, 2001) shows that
anticyclonic circulation persisted at 10 ka, despite the
retracted Laurentide Ice Sheet, and that the polar jet
was displaced southward over the North Atlantic
Ocean, influencing climate in the northern US (Kirby
et al., 2002). The expansion of Betula from west to east
across Alaska and northern Canada might reflect the
‘‘upstream’’ influence of the waning Laurentide Ice
Sheet. First, its influence on circulation diminished,
allowing a moister, westerly flow from the Pacific Ocean
to resume. Second, the direct cooling effect of the ice
migrated eastward as the ice sheet melted (Bartlein et al.,
1992; Edwards and Barker, 1994). The high proportion
of tree pollen in the Agassiz ice core (Bourgeois et al.,
2001) may also be a reflection of this circulation.
Early Holocene ice sheets of northeast North America

further affected climate by altering the exchange of
water between the Arctic and North Atlantic oceans.
During the early Holocene, the Laurentide and Innui-
tian ice sheets blocked the Canadian High Arctic
channels (Dyke, 1999; Dyke et al., 2002), implying an
increased flux of Atlantic Water through Fram Strait to
conserve the mass balance. Areas under the direct inflow
of Atlantic Water warmed earliest, by 10 ka, and most
dramatically, by up to 5�C (Ko@ et al., 1993). The
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Fig. 9. Global and regional boundary conditions for Holocene climate in the western Arctic. (a) Insolation anomaly for June–September at 65�N

(Berger and Loutre, 1991). (b) Approximate ice volume for Antarctica, Europe, and North America, plotted as sea-level equivalent (Peltier, 1994). (c)

Approximate extent of continental shelf area exposed as shorelines transgressed the Bering and Chukchi platforms, based on eustatic sea-level record

and present-day bathymetry (Manley, 2002). (d) Concentration of atmospheric CO2 from Antarctica ice cores (Inderm .uhle et al., 2000). (e)

Concentration of atmospheric CH4 from Greenland ice core (GISP2; Brook et al., 1996).
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increased advection of warm Atlantic Water into the
Arctic Ocean during the earliest Holocene could have
contributed to the increased melting on the Agassiz Ice
Cap (Fisher et al., 1995; Fisher and Koerner, 2003), the
presence of the bowhead whales (Dyke and Savelle,
2001), and the expansion of forests in northwest Canada
(Ritchie et al., 1983). It also suggests a stronger-than-
present flux of modified Atlantic Water along the east
Greenland margin (Ko@ and Jansen, 1994; Jennings
et al., 2002). Farther east, a stronger-than-present flow
of warm Atlantic Water is also evident by 10 ka along
the north coast of Scandinavia (CAPE, 2001).
As the ice sheets melted, their mass was transferred to

the ocean, resulting in local isostatic and global eustatic
effects. At some sites in Beringia, for example, the HTM
may have been terminated as marginal seas transgressed
their continental shelves. Within the limits of Pleistocene
ice sheets, delayed isostatic rebound may have altered
ocean circulation. In the Canadian Arctic, channels were
100–150m deeper than present (Andrews et al., 1991)
allowing modified Atlantic Water to have flowed into
Baffin Bay. Molluscan fauna indicative of warmer water
are reported for this interval, but it is unclear whether
this is due solely to the modified Atlantic Water from
the Arctic Ocean or whether it reflects increased
advection of Irminger Current water via the West
Greenland Current (Andrews, 1973; Dyke and Peltier,
2000).
Although the residual Laurentide Ice Sheet pro-

foundly affected the climate of northeast Canada and
the North Atlantic region during the early Holocene, its
influence is difficult to separate from climatic factors
that enabled the ice sheet to linger under conditions of
increasing summer insolation. Persistent glacier cover,
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such as that over Labrador and Quebec (Dyke and
Prest, 1987a, b) that lasted well into the Holocene, may
have owed its existence to Holocene atmospheric
dynamics and increased precipitation at the end of the
last ice age (Kapsner et al., 1995; Alley et al., 1997). Self-
sustaining feedbacks, including high albedo and input of
freshwater, would have augmented cooling and delayed
warming around the ice-sheet margins until thousands
of years after the summer insolation maximum. As the
ice mass diminished, its response time would have
likewise decreased, allowing a more rapid reaction to
temperature and precipitation changes, perhaps facil-
itating dynamic ice-margin fluctuations and their
accompanying impacts on the adjacent ocean (e.g.,
Kaufman et al., 1993; Pfeffer et al., 1997).

4.3. Atmospheric circulation

In addition to the direct effects of changing boundary
conditions and the feedbacks that resulted, the asyn-
chronicity in early Holocene warming was also governed
by changes in atmospheric circulation. For example, the
spatio-temporal pattern of boreal treeline fluctuations
has been attributed to the geometry of the Arctic frontal
zone in summer (e.g., Moser and MacDonald, 1990).
Similarly, the delayed termination of the HTM in the
forest–tundra of northern Quebec compared to sites
farther north might suggest that the polar front
remained north of the present forest–tundra boundary
until 2 ka, when the front moved southward, subjecting
these sites to more frequent summertime Arctic air
masses (Kerwin et al., submitted). Variations in snow
cover, sea ice, and SSTs are influenced by (and
themselves influence) the strength and position of
prominent surface-pressure features such as the Icelan-
dic and Aleutian lows, and anticyclones and cyclones of
the Arctic Basin (Serreze et al., 1993, 2000). During the
HTM, the locations of these ‘‘centers of action’’ were
probably similar to today because they are basically
determined by the major physiographic features and by
land/ocean contrasts; however, their magnitude (anoma-
lies) and spatial extent varied with time (e.g., Diaz and
Andrews, 1982).
Paleoclimate simulations by GCMs show a weakening

of the Aleutian low in winter, and strengthening of the
eastern Pacific and Bermuda high-pressure systems in
summer as the climate evolved following the last glacial
maximum (COHMAP, 1988; Bartlein et al., 1998).
GCM simulations for the early Holocene suggest that
the remnant Laurentide Ice Sheet caused spatial
variability in the sign and extent of these pressure
anomalies (Mitchell et al., 1988; Mitchell, 1990). At 6 ka,
GCM simulations indicate positive pressure anomalies
over the North Pacific and negative pressure anomalies
over the Arctic Ocean (e.g., Hewitt and Mitchell, 1996;
Lorenz et al., 1996). In the North Atlantic region,
higher-than-present SSTs further enhanced summer
warming at that time (Kerwin et al., 1999).
The spatial pattern of warming observed during the

last five decades (e.g., Serreze et al., 2000) resembles the
pattern of early Holocene warmth, suggesting that
similarities between the two warming phenomena might
exist. A growing body of evidence links this pattern of
warming and related environmental changes with the
Arctic Oscillation (AO), a fundamental mode of North-
ern Hemisphere atmospheric variability (e.g., Thompson
and Wallace, 1998). The high-index state of the AO is
characterized by decreased sea-level pressure centered
over the pole, and enhanced surface westerly winds that
cool northeast North America. Cyclonic circulation in
the Arctic Ocean is strengthened, forcing freshwater and
sea ice through Fram Strait and the Canadian Archipe-
lago, and lowering surface temperatures over the
Labrador Sea. The high index of the AO is associated
with increased surface pressure over the northeast
Pacific Ocean, resulting in increased temperatures in
the subarctic west of Hudson Bay.
Two differences emerge between the recent warming

pattern associated with the AO index and the pattern
reconstructed by our paleodata. First, in its high-index
state, the AO suggests a negative temperature anomaly
in Alaska, whereas the paleodata indicate warming
during peak summer insolation. The same issue con-
cerns the instrumental data: warming has occurred in
Alaska as the AO indexed has increased. Part of this
mismatch might be explained by the strongly hetero-
geneous response of surface climate in Beringia to even
small shifts in the strength or position of circulation
patterns in the North Pacific (Mock et al., 1998;
Edwards et al., 2001), but this mechanism cannot
account for continental-scale patterns. Second, the
high-index state of the AO is associated with a
weakening of the Beaufort High and a strengthening
of cyclonic circulation of surface currents in the Arctic
Ocean. The distribution of driftwood in the Canadian
Archipelago, however, indicates that the Beaufort Gyre
may have been strengthened or shifted westward during
the early Holocene (Dyke and Savelle, 2000).
The AO is known to fluctuate as an intrinsic mode of

atmospheric variability on relatively short timescales
(daily to interannual), and it is detectable in proxy data
at multi-centennial timescales (Rimbu et al., 2001;
Luterbacher et al., 2002). A mechanistic (as opposed
to purely correlative) linkage with the much lower-
frequency climate variability represented by early
Holocene warmth is difficult to develop, and unlikely
to represent an intrinsic mode of atmospheric variability
alone. Millennial-scale changes are more easily ascribed
to changes in thermohaline circulation, variations in
solar output, or to climate feedbacks, none of which
would necessarily be expected to result in an AO-like
pattern. The self-sustaining properties of the remnant ice
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sheet in northeast North America and the geographic
and oceanographic predisposition of that region to
glaciation afford a reasonable explanation for the
delayed warmth during the early Holocene. None-
theless, current understanding of the physical mechan-
isms controlling the AO suggests that its increasing
trend late in the 20th century might be ascribed to
radiative forcing from increased atmospheric CO2
(Moritz et al., 2002). An AO response to solar forcing
on millennial timescales is also suggested from some
paleodata compilations and modeling results (Shindell
et al., 2001; Noren et al., 2002; Rimbu et al., 2003). If so,
then it is reasonable to infer that forcing by summer
insolation during the early Holocene may have been
accompanied by an increased tendency for the AO index
to remain elevated. Other climate modes that feature
recurring atmospheric circulation anomaly patterns, like
ENSO, have distinctive surface-climate responses in the
Arctic (e.g., Hurrell, 1996) that could also have
promoted additional spatial variability during the
HTM.
5. Conclusion

The HTM in the western Arctic was forced primarily
by insolation changes governed by orbital variations
that scaled with latitude. Despite the symmetrical
forcing, the HTM occurred earlier in Alaska and
northwest Canada, beginning ca 11 ka, than in the
Hudson Bay region, where the HTM was delayed until
after the final melting of the Laurentide Ice Sheet,
ca 7 ka. The HTM in regions strongly influenced by the
North Atlantic and Arctic Oceans (Canadian Arctic
Islands, Greenland, and Iceland) tended to occur
ca 9 ka. The pronounced spatial and temporal asym-
metry in the response to symmetrical forcing under-
scores the roles of land-cover feedbacks and coupled
atmospheric–oceanic dynamics, especially the north-
ward penetration of relatively warm Atlantic Water, as
modulators of climatic change in the western Arctic. The
lingering ice sheets and their interaction with fluctuat-
ing, meridionally oriented ocean currents in the North
Atlantic sector resulted in a fundamentally different
response compared with the Pacific sector, where the
circulation regime is more zonal.
The timing of the HTM varied spatially, but the

increase in temperature relative to present was about the
same around the western Arctic. At the 16 terrestrial
sites where quantitative estimates have been reported,
temperatures (mainly summer estimates) were
1.670.8�C higher during the HTM than present
(approximately the average 20th century). Although
the data are sparse, warming in northeast North
America appears to have been similar in magnitude to
the eastern Beringian sector, relative to modern condi-
tions, even though warming in the northeast took
place significantly later in the precessional cycle,
when insolation forcing was diminished. Warming
in the northeast was augmented by a stronger-than-
present northward flow of warm Atlantic Water at that
time.
The delayed warming in northeastern North America

was associated with the cooling effect of the residual
Laurentide Ice Sheet. The self-sustaining feedbacks of
the lingering ice and its interaction with ocean circula-
tion is the leading candidate for the overall asymmetric
response exhibited by the paleodata. We cannot discern,
however, the extent to which the delayed warming in
northeastern North America might have been a response
to, rather than the cause of, the inherent asymmetry of
ocean and atmospheric circulation, which favors glacial
conditions in the northwestern North Atlantic over
other locations at the same latitude. Spatially varying
amplification of the direct effects of insolation forcing
also played a role in modulating the spatio-temporal
pattern of warming. Regardless of the governing
mechanism, the longitudinally asymmetric pattern of
warming during the early Holocene exemplifies the
contrasting response of the Pacific and Atlantic sectors
to symmetrical forcing. This AO-like pattern might
represent a preferred mode of variation in the Arctic
that could recur in the future. Unlike early Holocene
warming, however, future warming will not be counter-
balanced by the cooling effects of a residual, decaying
North American ice sheet.
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