
Design and implementation of an
intrusion detection system (IDS)
for in-vehicle networks
Master’s thesis in Computer Systems and Networks

NORÄS SALMAN
MARCO BRESCH

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Design and implementation of an intrusion
detection system (IDS) for in-vehicle networks

NORÄS SALMAN
MARCO BRESCH

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Design and implementation of an intrusion detection system (IDS) for in-vehicle
networks
NORÄS SALMAN
MARCO BRESCH

© NORÄS SALMAN & MARCO BRESCH, 2017.

Supervisor: Tomas Olovsson, Computer Science and Engineering.
Advisor: Nasser Nowdehi, Volvo Car Corporation
Examiner: Erland Jonsson, Computer Science and Engineering.

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv

Design and implementation of an intrusion detection system (IDS) for in-vehicle
networks

NORÄS SALMAN & MARCO BRESCH

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The Controller Area Network (CAN) was specified with no regards to security mech-
anisms at all. This fact in combination with the widespread adoption of the CAN
standard for connecting more than a hundred Electrical Control Units (ECUs),
which control almost every aspect of modern cars, makes the CAN bus a valu-
able target for adversaries. As vehicles are safety-critical systems and the physical
integrity of the driver has the highest priority, it is necessary to invent suitable
countermeasures to limit CAN’s security risks. As a matter of fact, the close resem-
blances of in-vehicle networks to traditional computer networks, enables the use of
conventional countermeasures, e.g. Intrusion Detection Systems (IDS).

We propose a software-based light-weight IDS relying on properties extracted from
the signal database of a CAN domain. Further, we suggest two anomaly-based
algorithms based on message cycle time analysis and plausibility analysis of messages
(e.g. speed messages). We evaluate our IDS on a simulated setup, as well as a real
in-vehicle network, by performing attacks on different parts of the network. Our
evaluation shows that the proposed IDS successfully detects malicious events such
as injection of malformed CAN frames, unauthorized CAN frames, speedometer
plausibility detection and Denial of Service (DoS) attacks.

Based on our experience of implementing an in-vehicle IDS, we discuss potential
challenges and constraints that engineers might face during the process of imple-
menting an IDS system for in-vehicle networks. We believe that the results of this
work can contribute to more advanced research in the field of intrusion detection
systems for in-vehicle networks and thereby add to a safer driving experience.

Keywords: Controller area network, in-vehicle network, embedded security, intrusion
detection system, engineering, project, thesis.

v

Acknowledgements
We want to extend our thanks to our supervisors: Nasser Nowdehi at Volvo Car
Corporation and Tomas Olovsson at Chalmers University of Technology. Last but
not least we want to thank Erland Jonsson, at Chalmers University of Technology,
for being our examiner.

Noräs Salman & Marco Bresch, Gothenburg, June 2017

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Scope . 2
1.2 Objectives . 2
1.3 Limitations . 3
1.4 Methodology . 3
1.5 Structure of the report . 3

2 Background 5
2.1 Vehicular communication technologies 5
2.2 External communications . 5
2.3 Internal communications . 6
2.4 Accessing the network . 8

3 Controller Area Networks 9
3.1 Background . 9
3.2 CAN Architecture OSI . 9
3.3 Physical layer . 10

3.3.1 Bit representation . 10
3.3.2 Bit stuffing . 11
3.3.3 Dominant and recessive logical bus states 11

3.4 Data link layer . 12
3.4.1 Medium access control . 12

3.4.1.1 CAN frames . 12
3.4.1.2 Carrier sense multiple access with collision avoidance 13
3.4.1.3 Arbitration . 14
3.4.1.4 Error handling and signaling 15
3.4.1.5 Fault confinement 15

3.4.2 Logical link control . 16
3.5 Signal databases . 16

4 Attacking Controller Area Networks 19
4.1 CAN security considerations . 19
4.2 Known security measures for in-vehicle networks 21

ix

Contents

4.2.1 Message encryption and signing 21
4.2.2 Node authentication . 21
4.2.3 Firewalls and policy enforcement 22
4.2.4 Honeypots . 22

5 Intrusion Detection Systems (IDS) 23
5.1 Intrusion detection system types and classification 23

5.1.1 Data collection techniques . 24
5.1.2 Data analysis techniques . 25

5.1.2.1 Signature-based detection 25
5.1.2.2 Anomaly-based detection 25
5.1.2.3 Specification-based detection 26

5.1.3 Stateful vs Stateless Intrusion detection systems 26
5.2 Intrusion detection system architecture 26

6 In-vehicle intrusion detection systems 29
6.1 Related work . 29
6.2 Challenges and constraints . 30

6.2.1 Hardware constraints . 31
6.2.2 Detection method and data selection 31
6.2.3 Detection accuracy and performance 31
6.2.4 Placement . 32
6.2.5 Response to an attack . 32
6.2.6 Log storage, post analysis and updates 32
6.2.7 Cost . 32

7 Setup and Design 35
7.1 Experimental setup . 35

7.1.1 CANoe . 35
7.1.2 Signal database . 36
7.1.3 Simulation setup . 37
7.1.4 Real vehicle setup . 38

7.2 System design and structure . 39

8 Implementation of an IDS system 41
8.1 Specification-based detection . 41

8.1.1 Message parameter misuse . 41
8.1.2 Unauthorized message detection 43

8.2 Anomaly-based detection . 44
8.2.1 Speedometer plausibility detection 44
8.2.2 Frequency change detection 46

9 Results 49
9.1 Specification-based attacks . 49

9.1.1 Unauthorized message detection 49
9.2 Anomaly-based attacks . 50

9.2.1 Plausibility detection . 50

x

Contents

9.2.1.1 Constant speed injection 50
9.2.1.2 Stealthy changing speed injection 51

9.2.2 Frequency change detection 52
9.2.2.1 Injecting limited number of messages 52
9.2.2.2 Injection with identical cycle time 53
9.2.2.3 Aggressive message injection 54

10 Discussion 57

11 Conclusion 61

Bibliography 63

A Appendix 1 I
A.1 Attack simulation . I

A.1.1 Message sniffing . I
A.1.2 Message injection . II

A.1.2.1 Injection of a single message II
A.1.2.2 Injection of messages with identical cycle time III
A.1.2.3 Aggressive message injection IV

A.1.3 Denial of service attacks . IV
A.1.3.1 Malformed message injection IV
A.1.3.2 Flood attack . V

xi

Contents

xii

List of Figures

1.1 Controller Area Network standards 2

2.1 External vehicle communications . 6
2.2 Internal communications . 7

3.1 The operational layers of CAN in the OSI model 10
3.2 Non-Return-to-Zero encoding example 11
3.3 Bit stuffing example . 11
3.4 Dominant and recessive logical bus states 12
3.5 CAN data frame structure . 13
3.6 CSMA/CA example . 14
3.7 arbitration . 14
3.8 A conversion example using the signal database 17

4.1 Sniffing CAN frames . 19
4.2 Injecting arbitrary packets on the CAN bus 20
4.3 Tampering of legitimate CAN frames 20
4.4 Dropping of CAN frames . 21

5.1 Intrusion detection systems classification 24
5.2 Intrusion detection system architecture 27
5.3 Snort IDS architecture . 27

7.1 Snapshot of the CANoe software GUI 35
7.2 The signal database in CANoe . 36
7.3 Example Gateway_2 message signals 37
7.4 CAN frame data to signal mapping (Signals) 37
7.5 The project’s simulation setup . 37
7.6 Real vehicle experimental setup . 38
7.7 Real experimental vehicle network architecture 39
7.8 The proposed architecture of the in-vehicle IDS 40

8.1 Placement of an IDS node with malformed frame detection rules . . . 42
8.2 Placement of an IDS node with unauthorized message detection rule . 43
8.3 Speed signal value conversion in signal database 45
8.4 A plot showing the cycle times between consecutive messages 47
8.5 The lower bound of the cycle time difference analysis experiment . . . 48

xiii

List of Figures

9.1 Constant speed message injection detection 51
9.2 Changing speed message injection detection 52
9.3 Same cycle time injection detection behaviour 54
9.4 Flooding attack detection . 55

A.1 Radio information text change by injecting a none-cyclic message . . III

xiv

List of Tables

5.1 Intrusion detection system output categories 23

6.1 In-vehicle IDS sensors [17] . 30

8.1 An example of specification and rule pairs for message parameter
misuse detection . 42

8.2 Speed value shift analysis . 46

9.1 Evaluation results for message parameter misuse and location change
detection . 50

9.2 Evaluation results for injecting limited number of messages 53
9.3 Evaluation results for message injection with identical cycle time . . . 53
9.4 Evaluation results for message injection with less than identical cycle

time . 54
9.5 Evaluation results for aggressive message injection 55

xv

List of Tables

xvi

1
Introduction

In the last decades, technology has affected many different aspects of our lives with
the aim to bring more comfort and ease of performing everyday tasks. Automotive
vehicles have been a fundamental tool for our everyday life for the last century. The
car evolution went through several dramatic changes. For instance, cars went from
having steam powered engines to gasoline engines and now it is more common to see
electrical powered engines. Not long ago, cars were completely mechanical systems
that consisted of only mechanical components and some electrical units connected
by wires. One of the most important changes was the introduction of Electrical
Control Units (ECU), which are small embedded systems.

The in-vehicle network of a modern car consists of more than a hundred ECUs
that control almost every functionality of the car, including safety critical functions,
such as acceleration, braking and steering. These ECUs communicate over multi-
ple sub-networks and gateways, using different communication technologies such as
CAN, LIN, MOST, and FlexRay.

The Controller Area Network (CAN) which was proposed by Bosch in 1983
[11], enables the ECUs to communicate over a serial-bus. The CAN specification
[2], includes different message formats, error handling mechanisms and how to do
bus arbitration. However, the CAN bus was not designed with security in mind
and cannot guarantee any security properties, such as confidentiality, authenticity,
availability, integrity and non-repudiation [25]. For example, the CAN bus is prone
to spoofing attacks because messages on the bus are broadcasted and ECUs have no
mechanisms to verify the authenticity of the messages. Other attack vectors exist,
for instance, it is possible for an attacker to perform a Denial of Service attack (DoS)
on a CAN bus by misusing the error detection mechanism of CAN.

Cars are safety-critical systems, where malfunction of in-vehicle ECUs can
lead to serious injuries or death of passengers or near-by pedestrians. Therefore, it
is of highest importance to develop mechanisms to detect such attacks and protect
the in-vehicle network against them. In traditional IT security, Intrusion Detection
Systems (IDS) are well-known measures for securing communications. An IDS is
a software for monitoring the network or the host for malicious activities, which
are defined by rules or patterns. However, when working with ECUs the engineers
have to deal with several resource constraints, such as limited processing power and
limited memory, as well as compatibility and backward compatibility requirements.

In this thesis, we explore the state of the art approach for IDS development

1

1. Introduction

for attacks against the Controller Area Network. Furthermore, we discuss the en-
gineering challenges to build such systems and deploy them as a feasible security
solutions.

1.1 Scope

Modern cars have several built-in communication technologies used for entertain-
ment, diagnosis, customer service and internal control. All these technologies can
be used as an attack vector by malicious individuals. However, this thesis is only
concerned with the security of the internal communication and the CAN bus in
particular.

Multiple types of CAN frames exist, such as flexible data-rate CAN (CAN-
FD) and ISO 11898-4 time triggered CAN (TTCAN), in addition to the standard
CAN frames. This thesis focuses on the investigation of standard CAN frames (ISO
11898-1). Figure 1.1 gives an overview over the different branches the CAN standard
is divided into.

Figure 1.1: Control Area Network standards

1.2 Objectives

This thesis aims to identify the constraints and requirements of developing IDSs for
modern vehicles by implementing a prototype of a lightweight IDS on an experi-
mental in-vehicle network. The findings in this thesis can contribute to a deeper
understanding of the practical challenges of implementing IDS for in-vehicle net-
works, which can result in a further step towards a more secure driving experience.
Hence, the specific questions that drive this research are:

• Which aspects of the architecture must be considered in the design of an IDS?
• How should monitoring sensors be distributed over different domains?
• What aspects of the communication must be inspected for attack detection?
• What type of attacks can be locally detected?

The practical goal of this project is to build a lightweight prototype IDS that
is able to successfully detect simulated attacks.

2

1. Introduction

1.3 Limitations

It is beyond the scope of this thesis to investigate the process of how an attacker
can get access to the network. We assume that an adversary already found an entry
point to the CAN bus and is using a compromised ECU to conduct the attacks.
This assumption allows the attacker to alter the ECU behaviour partially or com-
pletely. Additionally, the main focus lies in implementing the core functionality of
an IDS, namely detection of attacks, the work is not concerned with any prevention
mechanisms of attacks.

1.4 Methodology

Our work is divided into several steps. The first step consists of a literature re-
view, which is necessary to understand the architecture of the in-vehicle network, in
particular CAN and identifying its limitations and the state of the art of designing
an in-vehicle IDS. Further, we investigate the signal database, which defines the
properties of the CAN network, the ECUs connected to the bus and the transmitted
CAN messages. This helps to identify the types of messages that are important
to consider when creating the rules for the IDS. The following step is to analyze
CAN frames collected from the communication inside an experimental in-vehicle
network. We then gather further information about the structure and behaviour
of CAN frames, identify patterns and extract signatures that can be used for the
implementation of the IDS.

Based on the gained knowledge, we implement a lightweight IDS for the CAN
bus. We use a software called CANoe with a special hardware component that helps
us in simulating a CAN network. A major advantage of CANoe is that it provides
a full framework for developing, simulating and testing in-vehicle networks. Using
CANoe, we are able to simulate different attacks to evaluate the effectiveness of our
IDS.

The detection rate and the effectiveness of an IDS are evaluated by measuring
the occurrences of true-positive, false-positive, true-negative and false-negative re-
sults. The same evaluation criteria is used when presenting the results and testing
our prototype IDS.

1.5 Structure of the report

This report has been organized in the following way. The first Section gives a
short introduction of the subject together with the methodology that we have used.
Section 2, begins by laying out the theoretical background for the research, and looks
at different vehicular communication types and their architecture. Next in Section 3,
we give a comprehensive review of the CAN standard, its protocols, followed by a list
of security considerations in Section 4. In Section 5, we give a brief introduction to

3

1. Introduction

IDS systems, their types and architecture and in Section 6, we summarize previous
in-vehicle network IDS research.

The remaining part of the report proceeds as follows: in Section 7, we include a
detailed overview of the experimental setup we have used. In Section 8, we continue
with describing our implementation of the lightweight IDS for in-vehicle networks
and discuss the results in Section 9.

In Section 10, we discuss the implication of our findings in regards to the con-
straints of the in-vehicle network and we identify areas that require further research.
Section 11, concludes the entire thesis connecting various theoretical and practical
strands in order to evaluate our discoveries and results.

4

2
Background

2.1 Vehicular communication technologies

Different components inside the vehicle require cooperation from other devices and
sensors in order to perform their assigned tasks. This requires a one-directional
or sometimes multi-directional communication line between these devices. All the
communications between the internal components of the vehicle are referred to as
internal vehicular communication. Other communication technologies exist, that
provide a communication interface for outside devices to perform tasks such as
diagnostics or firmware updates. Moreover, functionalities that give the passengers
the ability to stay connected to the internet are getting more popular. These kind of
communications and all communications that include an outside party are referred
to as external communication.

2.2 External communications

Cars are getting more computerized and more communication technologies are used
to remotely control several features of the car, and connectivity in modern cars has
become a necessity.

Manufacturers are trying to give the consumer more ways to remotely con-
trol several aspects of the car [23] using more than the traditional radio-controlled
door unlocking functionality. For example, WiFi (IEEE 802.11) and Cellular com-
munication such as GSM, 3G, 4G are becoming a more standard option. These
communication technologies are also used to control some aspects of the vehicle like
turning on air conditioning and even starting the engine. GPS for navigation, and
Bluetooth for hands free usage of smart phones, have been used in the past decade.
All these technologies and more [14] are becoming available as stock options for the
consumers.

Additionally, from the manufacturers point-of-view, diagnostics messages are
required for pushing remote Firmware update Over The Air (FOTA) [22] to make
sure that the customer gets the best aftermarket experience. Manufacturer may also
request to receive periodical report about the vehicles to provide remote support.
These communications are usually done through VPNs provided by the manufacture
or third-party services.

5

2. Background

New vehicle communication technologies such as Vehicle-to-Vehicle (V2V),
Vehicle-to-Infrastructures (V2I) and Vehicle Ad-hoc Networks (VANETs) [29] are
said to be auspicious, and the usage of such technologies promises a safer driving
experience.

All of the previous concepts show how much the technology is affecting the
design and driving experience of modern cars. Figure 2.1 presents a breakdown of
the several communication technologies that are influencing the car.

Figure 2.1: External vehicle communications

2.3 Internal communications

Almost all functions in the modern car are controlled by one or more Electronic
Control Units (ECU). An ECU is a small size embedded computer system that has
real time computing, time constraints, and low power consumption. The ECU’s
main responsibility is to collaborate to share sensor information using messages.
The ECUs can be categorized [18] into five different groups:

• Power-train
• Comfort-train
• Safety
• Infotainment
• Telematics

The power train is responsible for handling car control and navigation function-
alities such as brakes, gearshifts and engine acceleration. The safety group includes
the control of passenger safety functionalities, for instance, airbags, tire pressure and
collision avoidance. The comfort train covers components such as thermal control,
windows control, parking assistance. Infotainment includes multimedia, audio and
video streaming, traffic and weather information. Finally, telematics covers the ex-
ternal network applications and mobile communication such as WiFi, internet and
mobile application controlled services.

An in-vehicle network consists of several buses and ECU’s that form a network.
The ECUs in the car are connected through multiple communication technologies

6

2. Background

such as CAN, LIN, FlexRay, MOST and Ethernet. They transfer and read messages
transmitted within multiple in-vehicle local area network (LAN) domains, in order
to coordinate and collaborate on controlling a range of operations. Special ECUs
known as gateways, forward the messages from one domain to another in case the
sender and receiver do not share the same LAN. Figure 2.2 shows how an in-vehicle
network can be constructed.

Figure 2.2: Internal communications

The most common bus technology in modern cars is the Control Area Network
(CAN), which provides an efficient, fast, reliable and economical link between the
ECUs. It allows the connected ECUs to broadcast messages bi-directionally over
the bus using only a single channel.

Local Interconnect Network (LIN) is another serial bus intercommunication
technology that works like CAN. It has a lower cost, and it is often used for appli-
cations that are not relying on strict real-time deadlines to function correctly.

FlexRay is a superior protocol to the CAN that provides high speed commu-
nication for time sensitive functionalities including backbone systems, drive-by-wire
and brake-by-wire. It was designed with a much faster and more reliable commu-
nication than CAN. Unlike CAN, FlexRay offers two-channel communication and
multiple topologies such as star, ring and more. In terms of cost, FlexRay is more
expensive.

Media Oriented Systems Transport (MOST) is another high speed bus com-
munication standard for multimedia networks in vehicles that use a ring topology.
It is used to transmit video and audio data, and has a high bandwidth.

Audio Video Bridging (Ethernet AVB) and its superior Time-Sensitive Net-
working (Ethernet TSN IEEE 802.1) are getting more used in modern cars’ in-vehicle
multimedia fields to transfer audio and video data. It provides a high speed com-
munication with synchronization, and resolves problems such as buffering, lag and
jitter.

7

2. Background

2.4 Accessing the network

The On-Board Diagnostics port (OBD) provides uncomplicated access to the in-
vehicle network for troubleshooting problems by performing sensor readings, firmware
modification detections and error codes readings.

Different countries have different legislations and standards for this port. For
instance, in the United States, the OBD port should be able to perform readings
from specific domains of the CAN bus, such as the power-train.

Its successor, the Unified Diagnostic Service (UDS) standard gives more capa-
bilities and more access to the CAN network, such as flashing ECU firmware, read
and write ECU memory locations and override ECU I/O [9]. However, being able to
perform such access usually requires going through an authentication-like scheme,
e.g. challenge-response.

8

3
Controller Area Networks

3.1 Background

The controller area network was created in the beginning of 1980s by Robert Bosch
Inc, an automotive supplier from Germany, in an effort to reduce the convoluted
wiring inside the vehicle and substitute it with a two-wire bus [19]. It is standardized
as ISO 11898 and ISO 11898-2 (which includes among others, a faster transmission
rate ISO 211898-2 is not part of this thesis).

The standard was rapidly accepted by a large number of automotive manufac-
turers and it has been adapted to other areas as well, e.g the European Organization
for Nuclear Research (CERN) relies on CAN for acquiring and controlling parame-
ters in their Proton Synchrotron Booster [1].

The original specification paper from BOSCH [2] points out the following prop-
erties of CAN, which led to the widespread adoption of the standard:

• Prioritization of messages.
• Guarantee of latency times.
• Configuration flexibility.
• Multicast reception with time synchronization.
• System wide data consistency.
• Multimaster.
• Error detection and signalling.
• Automatic re-transmission of corrupted messages as soon as the bus is idle

again and distinction between temporary errors and permanent failures of
nodes and autonomous switching off of defect nodes.

3.2 CAN Architecture OSI

This section explains the architecture and different components of CAN and CAN
nodes. Furthermore, it outlines how CAN is classified in the ISO/OSI reference
model for network protocols.

9

3. Controller Area Networks

The ISO/OSI model consists of seven different layers. CAN mainly operates
in two of them. The physical layer is used for for signaling on the bit level, e.g. bit
time synchronization or bit encoding and decoding.

The main features of CAN are located in the data link layer, which is further
segmented into Logical Link Control layer (LLC) and Medium Access Control layer
(MAC). The capacity of the LLC include, among other things, overload notifications
and assistance for data transfer. MAC contains the central features that make
CAN reliable, these features include: methods for confining faults and signaling of
different errors; regulating the frames on the bus; and most importantly carrying out
arbitration on the frames in case two nodes want to send frames at the same time.
These concepts are explained in greater detail in the following sections. Figure 3.1,
displays the distinct layers of the OSI model and highlights the operational layer for
the CAN bus.

Figure 3.1: The operational layers of CAN in the OSI model

3.3 Physical layer

The physical layer of CAN is concerned with defining how to send signals and the
correct encoding of bits. In order to accomplish this task, several concepts are
specified in the original CAN specification. This section explains these concepts.

3.3.1 Bit representation

CAN uses Non-Return-to-Zero (NRZ) bit encoding [7]. This encoding is rather
trivial and describes that after a value of 1 is detected in the bit stream, the following
bit does not have to be changed to a 0 immediately and the voltage can be maintained
for a longer period of time.

To summarize, NRZ only encodes negative and positive signals and ignores
zero signals. Figure 3.2, outlines how NRZ works in practice. It highlights the fact
that a signal can remain in the same state for a longer period of time, which is a
problem, because it can lead to a desynchronization of the communication.

10

3. Controller Area Networks

Figure 3.2: Non-Return-to-Zero encoding example

In order to ensure the accurate transfer of data, all participating nodes are
synchronized and adjusted to the same clock rate. The synchronization of the clocks
themselves is not achieved by a sovereign clock signal, but rather the CAN frames
on the bus are utilized. All nodes connected to the CAN bus are listening for frames
and synchronize their internal clocks to the clock of the transmitting node.

The point of reference for this hard synchronization is the Start of Frame bit
of the CAN frame. Following differences in the polarities in the CAN frame will be
used for the soft synchronization.

3.3.2 Bit stuffing

In order to thwart the aforementioned desynchronization of the communication,
the CAN uses a practice called Bit stuffing. The central idea behind bit stuffing
is to inject a bit of reversed polarity, after five bits of equal polarity have been
determined in the communication, and thus enforce the correct synchronization.
Figure 3.3 demonstrates how a bit is stuffed into the communication.

Figure 3.3: Bit stuffing example

In the context of bit stuffing and the individual fields of a CAN frame, it is
important to mention that not all fields become stuffed in this way, for instance,
the CRC delimiter, the ACK and the EOF field are all of a fixed size and are not
allowed to be stuffed.

3.3.3 Dominant and recessive logical bus states

For the transmission of signals, CAN uses two distinct wires: the CAN High (CANH)
and CAN Low (CANL) wire. When no signals are transmitted on the bus, these

11

3. Controller Area Networks

wires are said to be in an idle state and the voltage amounts to 2.5V. After the
first bit has been transmitted the CANH wire increases its voltage to 3.75V and the
CANL wire decreases its voltage to 1.25V. Figure 3.4 highlights the transition from
the idle state to the increase or decrease of the voltage on the wires. Note that the
difference between these two states is exactly 2.5V.

Figure 3.4: Dominant and recessive logical bus states

Following the differences in the voltage on the wires, the bus can be in two
distinct logical states: recessive or dominant.

• The bus is said to be in a recessive state when transmitting a "1" if “the
differential voltage on CANH and CANL is less than the minimum threshold
(less than 0.5V receiver input or less than 1.5V transmitter output)” [20].

• The bus will enter the dominant state, i.e. transmitting a logical "0" if
“the differential voltage on CANH and CANL is greater than the minimum
threshold” [20].

3.4 Data link layer

The data link layer is further divided into two sub-layers. The Medium Access
Control (MAC) and the Logical Link Control (LLC). In this section, we explain
these sub-layers in greater detail and highlight important concepts and operations.
We also give an overview on how we utilize the signal database files.

3.4.1 Medium access control

The MAC sub-layer has a set of the most important operations that handle several
aspects of the transmission of CAN frames.

3.4.1.1 CAN frames

The communication inside CAN is comprised of four main frames or message types:
the data frame, the remote frame, the error frame and the overload frame, all of

12

3. Controller Area Networks

which are further divided into several fields [5].
The majority of the communication proceeds through data frames which con-

stitute of the data field, the arbitration field, Cyclic Redundancy Check (CRC) field
and acknowledge field. The arbitration field further contains an 11-bit identifier field
and a Remote Transmission Request (RTR) field, which is used in the arbitration
and must be set to a dominant bit in case of a data frame[2]. The data field then
follows, which can be 8 byte in total, followed by the cyclic redundancy check field.
The structure of the data frame and its distinct fields is illustrated in Figure 3.5.

Figure 3.5: CAN data frame structure

The next important frame is the remote frame with the purpose of acquiring
data from different nodes. It contains the same fields as the data frame, except that
there is no possibility to attach data to this frame and the RTR bit is marked as
a recessive bit. An overload frame will only be sent out if there is too much traffic
originating from one node. The main function of this frame is to add an extra delay
between messages.

If an erroneous frame is detected during the communication between nodes, a
special error frame will be sent out. This frame has a distinct layout from normal
frames and has the purpose to notify all nodes connected to the bus of the corrupted
frame. The emitter of this frame is able to resend the message. One issue that could
emerge with error frames is, the flooding of the network with error messages. To
avoid the flooding, each CAN node implements an error counter.

3.4.1.2 Carrier sense multiple access with collision avoidance

A significant feature of CAN is the MAC protocol Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA). It’s responsibility lies in managing and avoiding
communication collisions, in case several nodes are trying to access and send frames
on the bus at the same time [8].

As some frames are of safety critical nature, e.g. frames which control the
vehicle’s speed, it is not acceptable to simply drop the frames or delay them for an
extended amount of time. During the communication on the bus, only one node at
a time is able to send frames, all other nodes have to wait and monitor the bus [2].

If the bus is busy and two CAN nodes want to send frames at the same time
they have to wait until the bus is free again, this is achieved by observing the bus

13

3. Controller Area Networks

for the intermission frame. The node that wants to send a high priority frame is
capable of doing so. Low-priority frames can be sent after observing the intermission
field again.

This arbitration of low and high priority frames is a crucial feature of CAN.
Figure 3.6 exhibits how a multiple access is sensed and how CSMA/CA resolves this
conflict.

Figure 3.6: CSMA/CA example

3.4.1.3 Arbitration

Since all nodes share the same bus, there must be a correct procedure in case two
nodes want to send frames at the same time.

CAN differentiates between different priority messages, the frame with the
highest priority has the smallest ID and vice versa. Figure 3.7 illustrates the ar-
bitration process. can be seen that the frames are identical up to the first three
bits. Following, it is observable that node A is sending out a dominant bit (‘0’) and
node B is sending a recessive bit (‘1’) and therefore loses the arbitration. Node A
is allowed to continue sending frames while node B has to wait.

Figure 3.7: Arbitration process

14

3. Controller Area Networks

3.4.1.4 Error handling and signaling

As stated before, if a frame does not follow the specification or is malformed, an error
frame is generated to notify the nodes on the bus. This is happening if the frame
is not passing certain error checks. There are five different error types distributed
over the message and bit level.

A bit error is identified, if the node that is emitting a bit on the bus, discovers
that the bit has changed since sending it out. The only exception to this rule is,
when the arbitration is executed on the bus and the node is sending out a recessive
bit but is noticing a dominant bit. In order for this not being detected as a bit error,
the emitting node has to send out a passive error flag before participating in the
arbitration.

Before a node sends out a frame onto the bus, it calculates the CRC and saves
it in the CRC field of the frame. Upon receiving the frame, the receiving node also
calculates the CRC. If the calculated CRC differs from the CRC value found in the
frame, a CRC error is detected.

If it is detected that after five consecutives bits, the bit has not changed to
the opposite polarity, e.g a dominant bit after five recessive bits, a stuff error is
detected on the bus.

Some fields and frames have a fixed-format[2]. These fields are: ACK, CRC,
EOF, intermission and overload frames. If the receiving node detects illegal bits in
these fields, a form error is encountered.

The last error type is an acknowledgement error, which is detected if the
bit inside the ACK field is not a dominant one. If a node detects one of these errors,
it informs other nodes on the bus by sending out an ERROR flag. In the case of a
CRC error, the flag is sent out after the ACK field. For all other error types, the
flag will immediately be sent with the next bit following the erroneous bit.

3.4.1.5 Fault confinement

If an error is detected on the bus, it is crucial to handle the error in a gracious
way in order to avoid disturbing the normal communication and risk of further
complications. A participating node on the CAN bus can be in one of three distinct
failure states [2]: error passive, error active and a node can be completely taken off
the bus by being in a “bus off ” state.

Whenever a node is in a “error passive” state, it sends out a passive error
flag after determining an error, and has to wait a certain time before the node can
participate in the communication again.

A node in the “error active” state sends out an active error flag, but is still
capable of engaging in the communication on the bus.

Finally, a node is in a “bus off ” state. In this state, the node is completely
restricted in participating in any kind of communication on the bus.

The decision when a node should enter a certain error state, is handled by two

15

3. Controller Area Networks

counters that are implemented in every node on the bus: the transmit error counter
and the receive error counter. Based on certain rules, these counters are incremented
or decremented respectively. For instance, if the transmit error counter of a node is
>= 256, it switches into the bus off state. The specification of CAN requires that a
node which has an error counter greater than 96 is considered as highly disturbed
[2].

3.4.2 Logical link control

The Logical Link Control-layer (LLC) is another sub-layer of the datalink-layer.
In the context of CAN, the main responsibilities of this layer are described in the
official specification by BOSCH [2]:

• Providing services for data transfer and for remote data request
• Deciding which messages received by the LLC sub-layer are actually to be

accepted
• Providing means for recovery management and overload notifications

LLC and MAC are closely related to one another, as the MAC handles messages
that were sent from the LLC. Furthermore the MAC approves of messages that are
going to be transmitted to the LLC layer. In this regard, the LLC is engaged in
"Message filtering, Overload Notification and Recovery management" [2].

3.5 Signal databases

In order to correctly identify and interpret the information inside the data field of
a CAN frame, database files for the distinct signals exist. These databases can be
distributed in a variety of file extensions, such as .xml or .dbc (which is a special
database file used by Vector and is the focus in this thesis).

Each signal that is transmitted on the CAN bus is well defined and has specific
conversion methods which are described inside the database. The information which
is included in the database, is the following:

• Channel name
• Starting point and size of each channel inside the data field.
• Byte order
• Data type (e.g. signed or unsigned)
• Scaling and unit strings
• Data ranges
• Default value
• Comments

16

3. Controller Area Networks

Based on this information, it is possible to convert bytes into interpretable and
recognizable values. Figure 3.8 demonstrates an example conversion of raw bytes
into human interpretable values. In this example, the temp_value of 1115, inside the
data field of a CAN frame, is converted into the temperature value of 75.1 degrees.

Figure 3.8: A conversion example using the signal database

These databases are usually restricted to specific CAN subnetworks and are
vendor-specific. With the help of a CAN database it is possible to describe and
reconstruct the entire communication and gain sensitive information about the inner
functionality of the vehicle.

17

3. Controller Area Networks

18

4
Attacking Controller Area

Networks

The following section is concerned with the examination of the security mechanisms
a CAN bus has to offer. As mentioned in the introduction, we assume a person with
malicious intent has read and write access to the CAN bus and can try out different
techniques to fully take over the network. In order to highlight the attack surface
and domains an attacker can compromise, we adapt to the well-known CIA-triad, i.e.
Confidentiality, Integrity and Availability. If an attacker manages to breach
only one of these security properties, the system is said to be compromised and it
can have unexpected and severe consequences for the involved user and technical
components.

4.1 CAN security considerations

While looking at the original CAN specification published by BOSCH, it is surpris-
ing that there are no considerations on how to secure the network at all [2] . In
order to give a basic overview of the problems that arise due to the lack of security
mechanisms, we enumerate some of the potential attack vectors against the CAN
bus with the aid of the aforementioned CIA triad.

Confidentiality in CAN is not achieved since all nodes broadcast their mes-
sages on the bus, where the receiver node picks the message up based on the message
IDs it is configured to receive. This enables attacks such as message sniffing. Figure
4.1 shows how the sniffing could occur on the CAN bus.

Figure 4.1: Sniffing CAN frames

19

4. Attacking Controller Area Networks

Authenticity and non-repudiation are contravened due to lack of informa-
tion about the sender in the message e.g signatures. This allows an attacker to send
arbitrary CAN frames to any node in the network. One type of frame injection
attack is masquerade attacks, where the attacker sends normal correct messages in
order to trigger certain actions. Figure 4.2 exhibits the injection of arbitrary packets
on the CAN bus from a compromised node.

Figure 4.2: Injecting arbitrary packets on the CAN bus

If an attacker manages to take over a gateway that forwards messages from
one domain to another, the attacker can add, remove or change any type of data
that the relayed message carries. Even though CAN message has CRC checksums
for error detection purposes, it does not prevent a malicious node or an attacker
to tamper with transferred messages then adding valid checksums. Knowing this
fact, we can say that there is a violation of integrity in CAN messages. Figure 4.3
demonstrates how an adversary can tamper the CAN frames in order to compromise
the security of the communication.

Figure 4.3: Tampering of legitimate CAN frames

Since an attacker can send any kind of data on the bus, sending high-priority
messages or messages with error flags can cause nodes to stop responding causing
a Denial of Service (DoS), thus affecting the availability of the system. Another
scenario is where the attacker has control over a gateway node, this gives the ability
to drop all or certain transferred messages between multiple sub-networks. Figure
4.4 highlights how a compromised node can drop packets from the on-going com-
munication, where node A sends a message to node B, but it gets dropped by the
compromised gateway before being relayed.

20

4. Attacking Controller Area Networks

Figure 4.4: Dropping of CAN frames

4.2 Known security measures for in-vehicle net-
works

4.2.1 Message encryption and signing

The lack of confidentiality of transferred messages can be solved by applying "end-
to-end" encryption. This solution, however, needs to be carefully designed. The
nodes have limited processing power and cryptographic solutions need to be as
lightweight as possible in order to prevent an extensive latency, which could impair
the communication on the bus.

Adding cryptographic signatures to the transferred messages is one solution to
ensure integrity while appending a layer of encryption ensures the confidentiality of
the messages.

4.2.2 Node authentication

Ensuring the authenticity of a node can be achieved by using a public key encryption
scheme, using a certificate [10], however, the authenticity check is not limited to this
solution. Authenticity can also be ensured by observing a potential change in the
message frequency of the transmitter ECU.

Node authentication, encryption and signing is a measure that can lower the
risk of a possible attack on the bus. Preliminary research has been done and ex-
plained in [4], which states, that if a security measure has been taken and im-
plemented in an ECU and the attacker is capable to compromise that ECU. The
attacker then has access to the data stored in the memory, including all the data
that is related to these security measures, such as encryption keys. Moreover, the
attacker has the ability to disable such measures by flashing the firmware as demon-
strated in [15].

21

4. Attacking Controller Area Networks

4.2.3 Firewalls and policy enforcement

Monitoring the frames and filtering them before broadcasting ensures the correctness
of messages with respect to the message content, ID and timing. This can be
done either by installing hardware components such as firewalls or packet filters, or
by embedding these functionalites programmatically by enforcing a policy; which
defines what types of messages are allowed to be received and sent from the node,
as well as when it is allowed to transmit [13].

4.2.4 Honeypots

Honeypots is an approach that has been used widely in traditional computer systems.
The main concept is to have a fake service which emulates the behaviour of the real
system. The information and resources from the honeypot system are separated
from the actual system which provides a safe environment to study the behaviour
of attackers. The concept of using honeypots in in-vehicle networks has also been a
topic of recent research that is presented in [28].

22

5
Intrusion Detection Systems (IDS)

An intrusion detection system (IDS) is a system that monitors network traffic to
detect abnormal behaviour and content. In case of a successful detection, an alarm
is raised or a procedure to prevent the attack is taken. A system that takes appro-
priate actions upon a detection is also known as Intrusion Prevention System (IPS).
The outcome with respect to the correctness of the decision made by the intrusion
detection system, can be classified into four categories described in table 6.1.

Table 5.1: Intrusion detection system output categories

Output Description
True Positive (TP) Identifies an activity as an intrusion and the

activity is actually an intrusion
True Negative (TN) Identifies system behavior as normal and the

activity is actually normal
False Positive (FP) Identifies an activity as an intrusion but the ac-

tivity is normal
False Negative (FN) Identifies an activity as normal when the activ-

ity is an intrusion

False negative cases are considered to be the problematic, because of their
given nature of not detecting an actual intrusion on the network, which can lead to
a variety of unforeseen problems. When designing an IDS, it is desired to diminish
the false positive rate to a minimum, in order to not flood the logs with erroneous
results. Therefore, when evaluating an intrusion detection system it is recommended
to aim for the true-positive and true-negative rate to be as high as possible, as well
as the false positive and false negative to be as low as possible.

5.1 Intrusion detection system types and classifi-
cation

This chapter gives a classification on the different types of IDS and how they perform.
Figure 5.1 exhibits the major classification of IDS.

23

5. Intrusion Detection Systems (IDS)

Figure 5.1: Intrusion detection systems classification

The first step of designing an IDS, is to think about the placement of the IDS
and which data needed to be collected. The IDS can be host-based, which would
collect information about the file system and the behavioural patterns of the user of
the system. The second approach features a network-based approach, in which the
main goal is to monitor the traffic that is entering and leaving the network.

A signature-based approach is simply looking for signatures of known attack
vectors and tries to find them in the in collected traffic. The anomaly-based ap-
proach relies on a "baseline" condition of the system and reports everything that is
striving away from this baseline. The specification-based approach is a relatively
new attempt to somehow connect the aforementioned approaches. The main idea
is to define a "legal behaviour" of the communication which is following a certain
protocol.

5.1.1 Data collection techniques

Intrusion detection systems can be classified according to the type of data they col-
lect. There are two main categories for these types of IDSs: Network-based Intrusion
Detection System (NIDS) and Host-based Intrusion Detection System (HIDS). The
network-based IDS, monitors the network traffic and it is usually placed on the
traffic routing component, such as a network gateway, which is connecting multiple
networks together. This enables the NIDS to intercept and analyze the traffic before
it is entering a sub-network, e.g the local area network (LAN).

A host-based IDS, contrary to network-based, is placed on the host computer
itself where it monitors the host’s system behaviour, e.g. which processes are ac-
cessing which resources. In addition to these main classifications of IDS, other
sub-categories exist [6], such as:

• Stack-based: monitors the exchange of data between different layers of the
protocol’s stack.

• Protocol based: Monitors the protocols that are used by the host system

• Graph-based: monitors connections between several nodes or hosts

24

5. Intrusion Detection Systems (IDS)

5.1.2 Data analysis techniques

As mentioned in the introduction to this chapter, there are three main types of
intrusion detection approaches: Anomaly-based detection, signature-based detection
and specification-based detection. In this section, these different paradigms are
explained in greater detail.

5.1.2.1 Signature-based detection

Signature-based detection observes the messages and tries to find pre-defined pat-
terns or sequences. These patterns are also known as signatures.

The Signatures can mainly define two kinds of lists, a white-list or a black
list. In the white list, we only define the kind of messages that are allowed in the
system and in the blacklist we define the types of patterns and messages that are
not allowed to access the system.

Both have their advantages and disadvantages. When using white-listing ,
we need to to have a prior knowledge of the exchanged messages. This might have
huge constraints on open systems , for example computers that use application layer
protocols that have very diverse contents. On the other hand, this would be the
best choice closed systems and for the lower level protocols that have very limited
capabilities and fewer types of messages with predictable content. Correspondingly,
blacklisting is suitable for more complex systems. However, the challenge with
blacklisting is the need to define the patterns and messages that are not allowed in
the system.

5.1.2.2 Anomaly-based detection

In anomaly detection, we observe the behaviour of the system. For this, we need
to define an abnormal attitude that will be considered as suspicious. This is similar
to the blacklisting approach in the signature based, however, in anomaly based we
define a behaviour that can have a much broader scope and result in detecting
behaviour that has never been seen before.

In order to model the behaviour of the host system or the network traffic ob-
served, there is a need to construct a view which has a certain level of abstraction,
that leads to extraction of features. These features are then used together with ma-
chine learning techniques that can construct a hypothesis that models the behaviour
of the system e.g Neural networks, support vector machines, time series , standard
deviation and more. Upon the IDS run-time, features similar to the one used to
train the model, have to be extracted again before passing them to the hypothesis
that will perform the classification.

25

5. Intrusion Detection Systems (IDS)

5.1.2.3 Specification-based detection

In specification based intrusion detection system, a set of properties, that are ex-
tracted from the protocol design are defined for the monitoring purpose i.e. we
know the correct system behaviour and can specify it in rules. The classification
and detection is then performed by observing a deviation of the execution from the
defined properties.

5.1.3 Stateful vs Stateless Intrusion detection systems

Another general sub-classification for intrusion detection systems are: stateless and
stateful. A stateless intrusion detection system is a system that does not keep track
of previous data it has already seen. While stateful intrusion detection systems,
keep temporary information about previously seen data in order to use it for possible
further detections.

5.2 Intrusion detection system architecture

The following section focuses on the basic system architecture of a network-based
intrusion detection system. This will aid in gaining a deeper understanding of how
to plan and build the prototype IDS [21].

When implementing an Intrusion detection system, it is not possible to com-
pletely resort to a common standard due to varying requirements when utilizing the
gathering of the data and its analysis. Nevertheless, almost all of them have some
basic components/modules that they all share [21]. These components are:

• Data gathering: used for monitoring the source environment. The data
gathering is performed using different sensors that observe a specific applica-
tion or protocol.
A pre-processing module can also be included [3] that performs basic classifi-
cation of the data type received from the source.

• Detector (Detection engine): is a module that performs the comparison
between the gathered data and the defined rules set and raises alarms in case
a deviation is found.

• Database(Knowledgebase): is a storage module that contains the rule-sets
or the IDs which the detector uses when comparing the received data.

• Output (Response): When an alarm is raised a proper action is taken. This
could be an active response where the IDS performs a predefined action such
as drop the packet, or an inactive response such as logging for later inspection
by a human factor to determine the appropriate response.

26

5. Intrusion Detection Systems (IDS)

Figure 5.2: Intrusion detection system architecture

We use Snort, an IDS/IPS [3] to explain how a generic IDS works. Figure
5.3 shows the architecture of Snort. We can see that the packet arrives from the
network where it is collected by the sniffer module. The packet is then sent to
the pre-processor that inspects the type of the packet the detection engine will deal
with. This information together with the packet are then forwarded to the detection
engine that compares the internal component of this packet with the predefined rule
set stored. Based on the decision of the detection engine an alert is raised and logged
in the log database.

Figure 5.3: Snort IDS architecture

27

5. Intrusion Detection Systems (IDS)

28

6
In-vehicle intrusion detection

systems

6.1 Related work

The literature review revealed a variety of different approaches for IDS in in-vehicle
networks. Previous research has shown to be heavily dominated by an anomaly-
based approaches.

When an ECU broadcasts messages over the CAN bus, these messages are
identified by message IDs. Furthermore, these messages have a predefined frequency,
where the messages are regularly transmitted with an interval separating them.
Researchers [23, 15] have shown that when an attacker injects legitimate messages,
to perform a spoofing attack or a Denial of Service (DoS) attack, these frequencies
will increase. This observation has been considered for many suggested IDS for
CAN such as [23] where alarms are raised when the interval of the messages passes
a certain threshold.

Since in-vehicle network messages have a very strict and predefined behaviour,
[16] suggested that a normal state of the network can be modeled and the randomness
entropy of all the messages can be calculated. A low entropy of the network can act
as an indicator for a compromised network, because an attacker could send a huge
number of high priority messages, that lower the overall entropy. Whereas, high or
normal entropy can be used as an indicator for a normal network.

Muter et al. [17] suggested an approach based on different sensors, which verify
the structure and the content of transmitted messages, to gain information about
any misuse of the “normal” structure and behaviour. The sensors are listed in Table
6.1.

29

6. In-vehicle intrusion detection systems

Table 6.1: In-vehicle IDS sensors [17]

Sensors Description
Formality Checks the size of different fields of the data frame.
Location Checks whether a frame is allowed in a certain sub-

network.
Range Checks the range of the data in the frame.
Frequency Checks whether the frequency of a frame in compliance

with the frequency stated in the signal database.
Correlation Checks whether the frames from distinct bus systems

correlate in compliance to the specification.
Protocol Checks whether the communication on the bus following

the protocol.
Plausibility Checks whether the transmitted information plausible.

E.g the speed not going from 10km/h to 100km/h in 0.5
sec.

Consistency Checks if the data is consistent when they are sent from
the same source.

Deep learning and neural networks are also a common approach for developing
anomaly-based IDS which is adopted by [12] and deployed for in-vehicle networks.

In [13], the authors discuss specification-based detection, where the policies are
enforced directly on the nodes and rules are extracted from the protocol specification
and compared with the transmitted messages. This is very similar to the formality,
location, range sensors discussed by [17] and listed in table 6.1.

Masquerading attacks, where the message carries legitimate and legal values
are attacks that are not easily detectable in in-vehicle networks, due to the lack
of authenticity and signatures in the sent messages. The Clock-based Intrusion
Detection System (CIDS) [4] uses an approach which monitors every ECU’s clock
offset and clock skew in order to fingerprint the transmitting ECU. The fingerprints
are then used to model the standard behaviour that is used later for detection.

6.2 Challenges and constraints

Design and implementation of an intrusion detection systems for in-vehicle networks
coheres to a variety of challenges and constraints. During the initial literature
review, it became apparent that very few papers mention the challenges that are
involved in the development and deploying process. This section serves as a basic
overview over these constraints.

30

6. In-vehicle intrusion detection systems

6.2.1 Hardware constraints

Traditional computer systems and relatively expensive hardware do not have any
problem using a lot of processing power and memory to run programs [24]. Most
of the traditional computer systems can handle and run dozens of applications and
services at the same time.

Unfortunately, this is not the case in the vehicle hardware or any embedded
system in general. A small embedded system usually takes care of a small computing
task that does not require a lot of processing power or memory which makes the
cost of production low. The tasks performed by such embedded systems have to be
executed within a certain time frame with no buffering.

For this reason, when designing a software for an embedded system in general,
the software has to be made in a way that can adapt to the previously mentioned
constraints.

6.2.2 Detection method and data selection

The CAN bus has a strict well defined protocol specifications, which makes it a
complex task to extract and select the correct information to be used in the IDS.
Furthermore, the high message exchange rate adds another layer of complexity to
the detection. Both anomaly based and specification based approaches have been
suggested. According to the literature, a combination of these both approaches is
the most effective and can detect a wide range of attack vectors [6].

A signature based approach for an IDS in the CAN bus, has scarcely been
mentioned in the literature. One of the main reasons why researchers have not
focused on the signature based approach is, because there are a few, if not none,
attack signatures to be used in an IDS for the CAN bus.

6.2.3 Detection accuracy and performance

An important aspect of the intrusion detection system development’s life cycle is
the evaluation of the detection accuracy. A known problem when designing an IDS
system is the false-positive and false-negative rates. This is a difficult problem to
overcome especially for anomaly based solutions and for the zero-day attacks.

Network based intrusion detection systems have to cope with an excessive
amount of data processing when installed on networks with high bandwidth, espe-
cially those which connects multiple networks. This stretches the processing and
hardware limits of the ECU on which the IDS is implemented on. Therefore it is
crucial to think about these constraints in the early phases of the development cycle,
to ensure good performances.

31

6. In-vehicle intrusion detection systems

6.2.4 Placement

The placement of the in-vehicle intrusion detection system is a very important aspect
to think about when designing the system. Previous work such as [13, 18] studied
the impact of different attacks performed by ECUs that were placed in distinct
sub-networks.

The impact of a compromised gateway ECU is larger than a normal compro-
mised ECU [13], owing to the fact that a gateway ECU has control and access to
more packets, because the packets have to traverse through the gateway ECU in
order to reach remote domains.

Additionally, it is important to think about the domain in which the ECU
is placed and the functionalities that can be controlled through the ECU. Nilsson
et.al [18], study the effect of ECU failures concerning passenger safety. For example,
the risk of an attacker being able to send frames to the telematics train can cause
distraction of the driver, thus endangering his or her life. Whereas the same attack
on the vehicle safety train may trigger a safety functionality, such as the air bags
while driving. The most dangerous domain, according to Nilson et.al, is the power
train, where messages can possibly control engine functionalities and breaks.

6.2.5 Response to an attack

Autonomous decision about how to act upon an intrusion or the way to notify the
driver comes with a big safety risk [25] as improper reactions can endanger the life
of passengers. Even if a potential comprise is not endangering the passenger, how
should the system react? Should it react at all? Is it necessary to drive the car to
a repair shop? Even if a solution with a lower risk is found, there is a necessity to
think about potential false-positive results.

6.2.6 Log storage, post analysis and updates

When an IDS for an in-vehicle network detects an intrusion, there will be a need for
storing log files for further analysis. It’s necessary to think about storage solution for
these log files and ways to forward them to the manufacturer for further inspection.

A further complication that arises, especially in the case of a signature-based
IDS, is the process of keeping the given attack signatures up-to-date and adapt to
newly discovered ways of compromising the network. The average lifetime of a car
can exceed 10 or more years, which constitutes the problem of delivering the updated
signatures to the targeted car.

6.2.7 Cost

Implementing a security solution for the in-vehicle network will, in most cases, re-
quire adding extra hardware. For instance, imagine adding a small ECU that takes

32

6. In-vehicle intrusion detection systems

care of message verification and encryption. Let us say that this ECU production
cost is 1 dollar. In a modern car we have about 100 ECUs, that is 100 dollars
for each vehicle. Say the manufacturer produces 1 million cars, that is 100 million
dollars in revenue loss just for adding message verification and encryption nodes.

33

6. In-vehicle intrusion detection systems

34

7
Setup and Design

In this chapter, we give a description of our experimental setup that simulates a
simple CAN network in a vehicle and we also explain the setup required to interact
with a real vehicle. Both setups have been used to perform attacks on different
nodes in these networks. Furthermore, we show and motivate our design choice for
in-vehicle IDS system. We propose two approaches for detection: A specification
based approach with rules extracted from the signal database, and an anomaly
based approach driven by algorithms based on the analysis of the normal system
behaviour.

7.1 Experimental setup

This section presents both the software and the hardware used to build our simula-
tion setup and the real vehicle setup.

7.1.1 CANoe

CANoe is a software, made by Vector [27], that is used for designing, simulating
and analyzing ECU networks with support for a wide variety of communication
technologies used in commercial vehicles, including CAN.

Figure 7.1: Snapshot of the CANoe software GUI

In addition to the software, we use a hardware component made by Vector

35

7. Setup and Design

with the model number VN8912. This hardware component acts as an interface for
a PC and provides a real time parallel access to different buses like CAN, FlexRay
and LIN, which can be used in a real in-vehicle network when connected to the OBD
port.

7.1.2 Signal database

The Distributed System Backbone Communication (DBC) for the CAN bus [26] is
a database, which describes the entire CAN network communication. It can be used
to translate bits and bytes to meaningful messages, e.g. diagnosis request messages.

CANoe provides an editor for such files that is called the CANdb++ Editor
[26], where the developer can easily view, construct and edit these kinds of files.

Figure 7.2: The signal database in CANoe

Figure 7.2 shows an example of such database. It defines a number of messages
that have unique IDs mapped to human interpretable names. Further, it defines
which node is the sender of a specific message, together with additional information
that defines a CAN data frame, e.g the cycle time. A signal is a specific data value
that can represent sensor data or operation information. As explained in Chapter
3, each CAN data frame has 8 bytes (64 bits). A CAN data frame is capable of
carrying more than one signal at a time. The message can carry one signal with 1
bit to 64 bits or as many as 64 binary signals.

Figure 7.3 shows a list of signals carried by the message Gateway_2 from
Figure 7.2. Each signal has a set of properties defined in the signal database, that
includes the start bit, the length and other useful information. Figure 7.4 highlights
the signal mapping in a more clear manner.

36

7. Setup and Design

Figure 7.3: Example Gateway_2 message signals

Figure 7.4: CAN frame data to signal mapping (Signals)

7.1.3 Simulation setup

To comprehend and test the behaviour of an in-vehicle network in a secure environ-
ment, we decided to use a simulated setup for the early experimental stages of this
work.

The setup is closely related to the default environment in CANoe for simulating
a CAN network. The network consists of two CAN buses emulating the power train
and the comfort train connected through a gateway. The gateway forwards all the
messages going from one bus to another. The power train has one ECU that listens
to messages that are carrying information about the state of the engine. Doors,
dashboard and the console are controlled by the ECUs located in the comfort train.
The dashboard ECU collects and sends information regarding engine performance,
engine temperature, petrol level, car speed and gear shifts to display it to the driver.
Messages regarding mirrors and light are managed by the console ECU.

Figure 7.5: The project’s simulation setup

37

7. Setup and Design

All ECUs in the setup are flexible and their code and behaviour can be modi-
fied. New additions to the network are possible by adding extra ECUs which extend
the network with further functionalties.

7.1.4 Real vehicle setup

While our simulation setup consists of two domains and less than ten ECUs, real
in-vehicle networks consist of more than 100 ECUs.

We had the privilege to access the box car lab at Volvo Cars and test the
different approaches for our experiments. The setup uses the same CANoe hardware
to act as an interface for a PC, but this time we had to connect it to the On-Board
Diagnostics (OBD) port on a car and configure the channel for the domain we want
to access. At this point, we are able to listen and trace the messages after adding the
corresponding signal database for the domain. However, in order to send messages
we had to add a virtual node using the CANoe software. A virtual node can act
exactly as a normal node: it can send, receive and process CAN frames. Figure 7.6
illustrates our setup.

Figure 7.6: Real vehicle experimental setup

Both the simulated and the real car setup consist of the same basic functional-
ities, regarding the implementation of our prototype IDS. The only difference is the
signal database we have used and the different IDs and properties of the messages.

The placement of the attacker and the IDS node depend on which type of
attack or detection we want to perform. In the real car setup it is not possible to
neither overwrite the existing functionality nor add a new (physical) ECUs and we
had to rely on adding virtual nodes. Meanwhile, in the simulated setup we have the
ability to add, remove and edit every functionality on any ECU, regardless of it’s
type (normal node or a gateway node).

While the structure and design of the simulated network was rather straight-
forward and manageable, the propagation of our setup to a real network was not
as easy. The real network consists of several network standards interconnected with
each other. Figure 7.7 gives an abstract overview of the real-architecture of the
in-vehicle network we had to deal with. In order to access parts of the network,
we had to rely on a single access-point through the OBD port. This access point
allowed us to connect to special CAN domains, that were the Propulsion CAN and

38

7. Setup and Design

the Chassis CAN. Access to other sub-networks was either restricted by the OBD
port or was out-of-scope.

Figure 7.7: Real experimental vehicle network architecture

7.2 System design and structure

In a previous chapter, we explained the architecture of computer based IDS. In a
similar way and with the resources available, we propose the use of software-based
IDS embedded in a single ECU.

An IDS node is a dedicated ECU that listens to messages and monitors one
domain or more. Recall that the gateway is capable of receiving all messages from
the domains it is connected to. On the other hand, a regular node can only receive
the messages sent in its own domain. The capability of the IDS node to listen
to several domains relies on the choice of whether to deploy the IDS system on a
gateway or on a regular node.

An IDS node is expected to have a list of generic functionalities regardless of
the approach it follows to perform the detection. We only consider logging of an
actual attack and we leave the research on how to prevent or how to warn the user
for future work. The generic functionalities for an IDS node are:

1. Sniffing: Receive all the messages that were sent on the bus.
2. Filtering.
3. Decision making: Process each message based on its ID.
4. Logging.

39

7. Setup and Design

Figure 7.8 highlights, when a data CAN frame (message) is sent by an ECU on
the bus, any other ECU in the same domain can receive and inspect its content, due
to the broadcasting nature of CAN communication. After the message is received by
the IDS node, it needs to be categorized according to its ID. With the message ID
we can identify the properties and the behaviour of the message. The message then
goes through several checks, a normal message should follow the signal database
specification and pass the anomaly-based algorithms without being flagged. Upon
a successful detection of a malicious message, the information can be logged with
more relevant information e.g. timestamp of the detection.

Figure 7.8: The proposed architecture of the in-vehicle IDS

Comparing our proposed architecture with a computer-based IDS architecture,
it is noticeable how similar both architectures are. Nevertheless, the set of rules in a
computer-based IDS uses a separate component to define generic rules or according
to each packet’s protocol. While in the case of our proposed IDS, each set of rules
or algorithm has properties which only work for messages with a specific ID.

Implementation wise, CANoe offers the on Message event-based function,
which allows to listen and filter messages according to the ID of the message or
its predefined name in the signal database. Using this function, for each message
that is sent in the domain where the IDS node is placed, we are able to match
and detect any abnormal message in that domain. Thus, each block (on Message
function) can represent a sensor for a unique message and an IDS node can have
a number of blocks that are equivalent to the number of messages expected in the
domain. Listing 1 presents a template for this sensor block.

1 on Message SOME_MESSAGE {
2 // Specification-based checks
3

4 // Anomaly-based checks
5 }

Listing 1: A sensor block

40

8
Implementation of an IDS system

This section explains the process of creating both the specification-based detection
rules and anomaly-based detection algorithms. While these rules can be all gathered
in one sensor block for one message ID, we show the rules and algorithms in separate
blocks for clarity.

8.1 Specification-based detection

Specification based rules are extracted from the design specification of the messages.
The properties of each unique message is defined in the signal database in each
domain. This makes the task of extracting such rules straightforward but challenging
at the same time, due to the huge number of messages that are usually transmitted
in an in-vehicle network. A major challenge is to be able to cover all the messages
and signals defined in the signal database. For this we examined the signal database
from CANoe with the dbc format and we found that the file can be simply opened
in a text editor and we can see the content. Still we had to parse the file to extract
the information in a structured order, which can be done with any programming or
scripting language. With this we were able to extract the information needed and
define rules accordingly.

We categorized the specification-based detection methods into two types ac-
cording to their objectives. The first one, inspects the message properties and com-
pares it to the signal database specification, while the second one detects any unau-
thorized messages in the monitored domain.

8.1.1 Message parameter misuse

An attacker is able to inject malformed frames onto the CAN bus by sending a
message that another ECU is expecting to receive. Furthermore the attacker is able
to change the message properties that are defined in the signal database, such as
data length or changing the bit length of the signal values. This can force the CAN
bus to behave in unexpected ways.

Since we know the properties of each CAN message, we define a rule set that
inspects the structure of messages and their properties that the ECU should accept
or reject before processing the message.

41

8. Implementation of an IDS system

The steps to write such rules depends on the message ID we monitor. We first
need to identify the domains (sub-networks) in which this message originates and is
sent to. Knowing in which domain the message is going to be transmitted, we can
define where to place the IDS node which listens for this message ID, i.e the sensor
blocks for this message ID.

For example, assume we want to write a rule set for the message with the ID
0x110. We know that this message is present on the comfort train domain. We now
know where to place the sensor block. However, since our intention is to inspect any
deviation for all messages received within any domain, we can think about placing
the IDS on the gateway as illustrated in Figure 8.1. Moreover, if we inspect the
signal database for information about this message we learn that it carries three
signals. The first signal (x), has the maximum of 8 bits, subsequently the second
signal (y) has 8 bits and the third signal (z) has 5 bits. With this information we
can extract a list of specification-based rules presented in Table 8.1.

Figure 8.1: Placement of an IDS node with malformed frame detection rules

Table 8.1: An example of specification and rule pairs for message parameter misuse
detection

Specification Rule
The message carries three signals
each signal is 8 bits or less

DLC = 3

Signal x is 8 bits maximum 0 6 x.value 6 255
Signal y is 8 bits maximum 0 6 y.value 6 255
Signal z is 5 bits maximum 0 6 z.value 6 31

In a similar way, we can extract other rules for the rest of the properties that
are defined in the signal database for a specific message. The code implementation is
straight forward and can be done using direct if-else conditions. The implementation
for the previous example with the message 0x110 is presented in Listing 2.

42

8. Implementation of an IDS system

1 /*MALFORMED FRAME DETECTION ID=0x110 */
2 on message 0x110{
3 if (this.DLC != 3 || this.x>255 || this.y>255 || this.z>31){
4 write("MALFORMED FRAME with ID %x",this.id);
5 }
6 }

Listing 2: A simple code example for message parameter misuse detection

8.1.2 Unauthorized message detection

In the signal database, each message has defined sender and receiver nodes. The
gateway has the additional task of forwarding the messages from one domain to
another. Nevertheless, an attacker can still send:

• Messages that may not be received by any node in the domain.
• Messages from one domain to another through the gateway.
• Messages to cause denial of service, for example high-priority messages with

ID 0x00.
To detect this, a specification-based white-list is required for each domain

where this white-list contains all the authorized messages in that domain
Let us consider a small network in which a local ECU receives the messages

with IDs 0x20,0x101,0x221 . The messages 0x101,0x221 originate from the same
domain while the message 0x20 comes from another domain, forwarded by a gateway.
The IDS node uses the white-list to flag unauthorized messages. Figure 8.2 illustrates
the placement of the IDS node with an unauthorized message detection rule for the
aforementioned example.

Figure 8.2: Placement of an IDS node with unauthorized message detection rule

The code in Listing 3 shows how this while-listing approach for the previous
example can be implemented in CAPL. However, due to the limitation of the CAPL

43

8. Implementation of an IDS system

programming language as it does not provide any search algorithm, an implemen-
tation of such algorithm is required to reduce the code complexity cost.

1 variables{
2 /*An array containing a white list of the messages exchanged in the domain*/
3 int messages_allowed[]={0x20,0x101,0x221}
4 }
5

6 on message * {
7

8 int i;
9 int count=0;

10

11 /* Search */
12 for(i=0;i<length(messages_allowed);i++){
13 if(this.id==messages_allowed[i])
14 count++;
15 }
16

17 /* Raise an alarm (log) */
18 if(count!=1){
19 write("Unauthorized message with ID=\%d",this.id);
20 }
21 }

Listing 3: Unauthorized message detection example

8.2 Anomaly-based detection

In order to build an anomaly-based algorithm, careful analysis of the normal sys-
tem behaviour is required. In this section, we present two types of anomaly-based
detection algorithms. The first type monitors the the plausibility of the speed value
sent from an ECU to the dashboard, in order to detect abnormal speed shifts due
to injected traffic by an attacker. The second type monitors frequency changes of
messages with a specific ID, this approach has been widely discussed by previous
research [23, 4, 16] due its simplicity and effectiveness.

8.2.1 Speedometer plausibility detection

For this type of detection, we consider the speed values sent to the dashboard. The
main criteria for plausibility detection, is to detect an abnormal shift in the speed.
For example, it is not expected to see a frame that contains the speed signal value
that is equivalent to 30 km/h followed by another frame containing the value 200
km/h. Reviewing more recent literature, we notice that only a few, such as [17]
discuss attacks and defence techniques that relate to the plausibility of CAN signal
values.

In our setup, the raw speed values received by the ECU should be multiplied

44

8. Implementation of an IDS system

by a factor of 0.5 mph. This conversion is displayed in Figure 8.3 and is archived
by using Equation 8.1 with (x) being the raw speed data.

The main idea behind anomaly-based detection is the detection of abnormal
behaviour by extracting the normal behaviour of the system and then using this
for monitoring purposes. Therefor, a simple analysis to derive a threshold on speed
shifts is required. The key idea behind this analysis is to be able to extract an
upper limit for the maximum value the speed value is allowed to shift between two
consecutive messages.

real_speed = x ∗ 0.5(mile/h)⇒ km_speed = real_speed ∗ 1.60934(km/h) (8.1)

Figure 8.3: Speed signal value conversion in signal database

In order to perform the analysis, we use the simulation setup. The simulation
setup allows us to perform a scenario where the car accelerates and stops repeatedly.
Each round of acceleration and breaking runs for about 20 seconds. In each round,
the car accelerates to reach the fifth gear then starts breaking gradually. The speed
signal in the simulation setup is carried by a message named Gateway_2. This
messages is originated by the engine ECU. This message passes through the gateway
in the network and is received by the dashboard ECU. While testing, we notice that
in each acceleration round, around 3700 to 3900 messages are sent to the dashboard
ECU. Finally, to perform the analysis:

• We run the simulation and gather 4000 samples.
• Each sample represent the difference between the speed value of two consecu-

tive messages.
According to the results presented in Table 8.2, the majority of the speed

messages have small shifts in values more precisely 99.55% of the consecutive samples
have a value shift of 1, 2 or 3 raw speed. The maximum value shift we encountered
during the simulation was 19 raw speed. With this, we defined our threshold to be
20 raw speed. Recall that the real value need to be multiplied by 0.5*1.6 to get the
corresponding value in km per hour. That means that the threshold 20 raw speed,
is equivalent to about 16 km/h. This value is very unrealistic because of the time
difference between two consecutive messages is too short, i.e. it is almost impossible
to have such a big increase in speed in such a short time. However our intention is
only to show how extraction a threshold could be done.

Last but not least, we use the threshold in a light-weight algorithm which
we present in Listing 4. The code is very simple and includes the threshold and a
variable that holds the shift value between two consecutive messages. Both values

45

8. Implementation of an IDS system

are then used in a direct comparison to make a decision weather the received signal
value is allowed or not.

Table 8.2: Speed value shift analysis

Speed value difference (raw speed) Samples (message) Total percentage
1 3114 77.85%
2 638 15.95%
3 230 5.75%
4 6 0.15%

5,6,7,8,9 0 0.0%
10 1 0.025%
11 1 0.025%

12,13 0 0.0%
14 1 0.025%
15 1 0.025%
16 1 0.025%
17 3 0.075%
18 3 0.075%
19 1 0.025%

1 Variable{
2 int carspeed_monitor; /*This is the value we calculate and monitor*/
3 int speed_diff_threshold;
4 }
5

6 on start{
7 carspeed_monitor=0;
8 speed_diff_threshold=20; /*The derived threshold*/
9 }

10

11 on message Gateway_2 {
12 /*SPEED PLAUSIBILITY DETECTION*/
13 carspeed_monitor=this.CarSpeed - previous_speed;
14 previous_speed=this.CarSpeed;
15

16 if (abs(carspeed_monitor)>=speed_diff_threshold){
17 write("FALSE READINGS");
18 }
19 }

Listing 4: Speedometer plausibility detection

8.2.2 Frequency change detection

A more generic way to detect message injection is to observe the message frequency
behaviour in the system. Previous works have mostly focused on the change in
message frequency when an attacker tries to inject periodic messages. Similarly,

46

8. Implementation of an IDS system

we show the effectiveness of such detection mechanism and the analysis required to
derive an IDS rule.

The main idea behind this approach is that, while the compromised node in-
jects messages on the bus, the original node keep sending the same message with the
same ID with the original frequency, a noticeable change in the message frequency
will appear.

Our first thought was to use a specification-based-like rule, since we know
that the cycle time for each message is specified in the signal database. However,
since messages on a CAN bus are transmitted asynchronously, a deviation from the
defined cycle time may appear but is rare.

To show this, we gathered 4000 messages from the simulation setup without
any attack simulations. The gathered messages all have the same ID Gateway_2,
and are defined in the signal database with a cycle time of 2 milliseconds. We
analyzed the message arrival time difference between each two consecutive messages.

The plot in Figure 8.4 shows the result of this experiment. It can be seen that
the majority of these messages follow the defined cycle time and have a 2 milliseconds
distance from the previous message, while others have a higher difference which is
expected due to collision avoidance and priority message handling.

Figure 8.4: A plot showing the cycle times between consecutive messages

According to Figure 8.5 that holds the lower values of the plot in Figure 8.4,
two of these 4000 messages have a cycle time lower than 2 milliseconds. The reason
can be clock skew of the sending ECU. This example shows that it is very important
to think about all possible deviations when writing the rules to avoid false positive
alarms.

The simplest solution we can think of is to write a double check rule that
eliminates such false positives. In order to do that, a temporary counter is used
that holds the number of consecutive messages that exceed the threshold. The final
decision is then made by checking whether this value counts more than one message
or assigning a zero value otherwise. The final code is presented in Listing 5.

47

8. Implementation of an IDS system

Figure 8.5: The lower bound of the cycle time difference analysis experiment

1 variables{
2 int posibleTimeRateAttack;
3 int consecutive;
4 message Gateway_2 prevMessgTimeRate;
5 //cycle time for message Getawy_2 in the database is equal to 2
6 int cycle_time_threshold=2;
7 }
8

9 on start{
10 consecutive=0;
11 }
12

13 on message Gateway_2 {
14 /*TIME RATE CHANGE DETECTION*/
15 posibleTimeRate=0;
16 if (timeDiff(prevMessgTimeRate,this)<cycle_time_threshold){
17 posibleTimeRateAttack=1;
18 consecutive++;
19 if (consecutive>1){
20 write("ATTACK_TIME RATE CHANGE!!");
21 }
22 }
23 /*False alarm , reset the counter*/
24 if(posibleTimeRateAttack==0 && consecutive>0){
25 consecutive=0;
26 }
27 prevMessgTimeRate=this;
28 }

Listing 5: Time rate change detection example

48

9
Results

In this chapter, we present an overview of the performance of the developed intrusion
detection system. The process we followed for this evaluation is closely related to
the approaches the authors of the related work have taken. We perform a set of
attacks and observe the behaviour of the system, while having an active intrusion
detection system node.

The test were performed on both the simulated setup and a the realistic setup
which is a box car1. The evaluation covers detection of unauthorized messages
(specification-based), plausibility detection (anomaly-based) and frequency change
detection (anomaly-based).

We want to highlight that there are almost no differences between the attack
or detection results while performing the tests on the different setups. The only
difference is that we had to adjust the message IDs that we inject and detect based on
the target environment. Note that we describe the attacks in a theoretical manner,
whereas a more practical description of the attacks can be found in the Appendix
of this report.

9.1 Specification-based attacks

9.1.1 Unauthorized message detection

The specification-based rules extracted from signal database are used to detect ma-
licious messages that deviate from the original specification. These rules are also
capable of detecting unauthorized messages in the domain, based on ID look ups in
a white-list that contains the authorized messages in the monitored domain.

We perform two tests in which we simulate an attack by injecting messages in
a specific domain. The injected messages are combinations of normal messages that
follow the signal database specification and malformed messages that have one or
more parameters changed. The type of changed parameters can be seen in the first
four rows in Table 9.1.

1A box car includes all the car electronic components and it’s relative body parts except for
the engine. It is used for testing the functionality of the different in-vehicle network as well as the
functionality of the in-vehicle network and its electronic components.

49

9. Results

As for the unauthorized message detection, we inject a combination of mes-
sages: messages that belong to other domains and messages that are not defined at
all in the signal database.

In order to perform these tests on the box car, in each test we add a virtual
attacker node and a virtual IDS node. Finally, the domains we chose to test on are
the propulsion CAN and the chassis CAN trains.

As presented in Table 9.1, the result of this evaluation show a 100 present
detection rate in both setups (simulated network and box-car). Such high detection
rate is due to the nature of these rules, as they perform a direct comparison between
the message properties and the rules extracted from the signal database. This
approach leaves no possibility for any false positive occurrence.

Table 9.1: Evaluation results for message parameter misuse and location change
detection

Parameter changed Detection rate
Data length (DLC) 100% detection rate
Signal bit length 100% detection rate
Constant signal byte value 100% detection rate
Unauthorized messages 100% detection rate

9.2 Anomaly-based attacks

9.2.1 Plausibility detection

In this section, we perform two tests in which we launch identical attacks on the
speedometer that differ in the data values. The attacks are then used to evaluate
the efficiency of our speedometer plausibility detection approach and showing the
behaviour of the system when such attacks happen.

The target ECU is the dashboard ECU which processes the speed signal mes-
sages. We place an IDS node in the domain where this ECU is placed, Comfort
CAN, in order to be able to monitor all of the transmitted messages to this ECU.

This is the only test that we were not able to perform on the box car. This
was due to the design of the system where the speed information was transferred
over FlexRay instead of CAN, which was outside the scope of this work.

9.2.1.1 Constant speed injection

In the first test, we inject 1,000 messages that hold a constant high speed value.
The chosen number of messages to inject were chosen only due to the fact that
1,000 messages were enough to see the change when observing the speedometer by
eye. Since the system observes abnormal shifts in speed values, the detector is only
able to detect the start of the attack, where the value shifts from the normal speed

50

9. Results

to the injected speed, and the end of the attack, where the value shifts from the
injected speed value to the normal value sent from the original ECU.

For example, if the car is driving at speed of 30 km/h and we inject messages
that contain signals with constant speed of 200 km/h, the speed shift from the first
message of the attack and the real speed will be (200-30=170 km/h).

Since speed is a constant 200 km/h during the attack, the expected speed shift
values will always hold the value of zero while the attack is performed (200-200=0
km/h). In the end of the attack, assuming the real speed is still at 30 km/h, the
shift will also be (200-30=170 km/h).

Figure 9.1 shows a sample of 4,000 messages with two attacks performed (1,000
messages each), we can see the speed shifts change to a constant value during the
attack. We can also identify the exact start time of the attack (marked with the red
circles) and the end of the attack (marked with the green circles).

Figure 9.1: Constant speed message injection detection

9.2.1.2 Stealthy changing speed injection

In this test we again inject 1,000 messages that hold speed signal values. However,
this time we gradually increase or decrease the values to the upper and lower speed
boundary. Recall that the maximum and minimum values of a specific signal is
defined in the signal database. In a similar way to the previous test, we can detect
the start and the end of the attack. However, since the injected messages contain
changing speed values with an increase or decrease of one, the shift will instead have
a value of one as a constant shift during the attack. For example, when the injected
speed value is 150 km/h, the next injected message will have the value 151 km/h,
thus the shift is one. The previously described behaviour can be seen in Figure 9.2.

Note that injecting speed signals with start values that have shifts lower than
the defined threshold in the IDS node will not be detected by this rule, instead it
will be detected due to the frequency change of the messages that hold the speed
signals.

51

9. Results

Figure 9.2: Changing speed message injection detection

9.2.2 Frequency change detection

We presented earlier how we performed message frequency analysis in order to ex-
tract the threshold for a specific message. This was then used to detect the frequency
change between two consecutive messages while a message injection attack is being
performed. The extracted rule had a safe check i.e. detecting at least two messages
with deviated frequency, in order to eliminate any possible false positives.

In this section, we evaluate this approach using three different attacks. The
attacks performed have different message count and frequencies. We also show the
system’s behaviour change while an aggressive message injection is being performed.

Also, note that any cyclic message can be used for test regardless of the mes-
sage’s functionality, cycle time or data. The detection works as long as the message
is received by the same domain we place the IDS node in, and as long as the IDS
node has a defined rule which monitors this message.

These tests were performed on the box car, more specifically, on the chassis
CAN domain. The necessary changes to the setup were to add two virtual nodes
where one performs the attacks and the other monitors the domain.

9.2.2.1 Injecting limited number of messages

In this test, we inject a limited number of messages. The injected messages have no
predefined time distance in between and are transmitted on the bus as fast as they
are allowed.

In Table 9.2, we can see the results of this test. The results show that with
this rule, it is possible to detect n-2 of n injected malicious messages. This is due to
the safe check of the two consecutive message rule that eliminates the false positive
detection in attacks with longer periods.

52

9. Results

Table 9.2: Evaluation results for injecting limited number of messages

Message count Detection rate
1 No attack detected
2 No attack detected
3 1 malicious message detected (33.33%)
4 2 malicious messages detected (50%)
n n-2 malicious messages detected

(n− 2) ∗ 100
n

%

9.2.2.2 Injection with identical cycle time

So far we have shown the number of messages that the rules were able to detect.
In this test, we aim to study the relationship between the threshold and the system
detection rate. The goal is to be able to find the threshold using the highest cycle
time possible with the best detection rate.

To perform the attack we use the original cycle time as a threshold and peri-
odically inject messages with different frequencies, starting from the defined cycle
time that the original messages have.

Table 9.3: Evaluation results for message injection with identical cycle time

Original cycle time Injection cycle time Detection rate
15 (ms) 15 (ms) Average detection (14.32%)
5 (ms) 5 (ms) Average detection (96.67%)
2 (ms) t ≤ 2 (ms) Average detection (99.98%)

Table 9.3 shows the results of this experiment. We can see that injection
attacks with a message having 15 ms as cycle time have a very poor detection rate.
The 15 ms cycle time should not be considered a frequency change attack because
the original ECU is still sending the messages with a frequency of 15 ms or higher,
results in some messages having a frequency difference lower than the threshold.
Figure 9.3 illustrates the disadvantage of this rule when used with messages with
high cycle time. However, when message with lower cycle time were tested, this
problem did not persist due to the smaller time gaps between each two consecutive
messages which cause the injected messages to overlap with the original messages.

53

9. Results

Figure 9.3: Same cycle time injection detection behaviour

The next part of this test was to gradually lower the cycle time of the injected
messages and observe the detection rates. The results of this test are presented in
Table 9.4. The injection of n messages with a cycle time which is lower than the
original message cycle time was detected successfully, with 2 messages being a safe
check to eliminate false positives as previously described. This shows how this type
of behavior can be used by an attacker as a way of arbitrary message injection that
will take effect for a short period. For a continuous effect, the attacker is required
to inject messages with a higher frequency (lower cycle time) than the original in
order for the malicious messages to be effective [15, 23].

Table 9.4: Evaluation results for message injection with less than identical cycle
time

Original cycle time Injection cycle time Detection rate
15 (ms) t ≤ 14 (ms)

n-2 of n injected messages5 (ms) t ≤ 4 (ms)
2 (ms) t ≤ 2 (ms)

9.2.2.3 Aggressive message injection

This test is very similar to the first test in this category. The main difference is to
study the ability of the system in handling high number of messages. We test the
ability to detect them by only filtering them according to their IDs and observing
the frequency, regardless of their content.

Message injection with high priority messages can cause denial of service when
injected aggressively (as fast as possible). To test this, we used messages with 0x00
ID in order to cause a denial of service attack in the chassis CAN domain on the
box car.

Table 9.5, shows the conducted test. The results remained unchanged, if we
compared the outcome to the test where we injected only a limited amount of mes-
sages in Section 9.2.2.1. However, due to the collision avoidance protocol we encoun-
tered message dropping on the box car when sending messages with lower priority.
However, this case did not appear when transmitting messages with high priority.

54

9. Results

Table 9.5: Evaluation results for aggressive message injection

Injected messages Detection rate
1000 998 (99.8%)
10000 9998 (99.98%)
100000 99998 (99.998%)

n n-2
(n− 2) ∗ 100

n
%

To visualize the effect of such attack for a deeper understanding, we performed
one more test. In this test, we log 4,000 messages while performing two attacks with
1,000 messages each. The injected messages had 1 millisecond cycle time while being
injected. The original message that was logged had a predefined cycle time of 15
milliseconds.

Figure 9.4, visualizes the behaviour of the system while running this test. We
can clearly see the attack phases and mark the start and end of such attack. We
can also see that the frequency between two consecutive messages being dropped to
1 millisecond. This also shows the lack of randomness or entropy as demonstrated
by [16].

Figure 9.4: Flooding attack detection

55

9. Results

56

10
Discussion

In this chapter we discuss the results of our work. For each point, we describe our
findings and interpret them accordingly. The main questions to answer are, how
are we able to overcome the challenges we have faced, and how our solutions and
findings can contribute to future research.

Technical constraints and limitations

Previous work highlighted the fact that ECUs have limited capabilities when it
comes to processing power and memory handling. The use of Vector software and
hardware gave the experimental setup enough processing power which we usually
don’t not get in a real car. For example, when it comes to logging, we have not faced
any issues simply because there was no storage issue in our setup. Sufficient storage
for logging events is a serious limitation, even on gateway ECUs that have more
resources in comparison to normal ones. Similarly, we did not face any processing
power or memory limitations due to the configuration of our setup.

Software-wise, the implementation of the unauthorized message detection rule,
which performs a search query in the white-list every time a message is received,
turned out to be rather problematic for us since our setup was lacking a flexible
programming language. While CAPL is a good language for implementing proof
of concepts, the lack of search algorithms and return-oriented functions, raised the
question whether there is an efficient search algorithm that can perform look-ups
within lists that contain a very big amount of messages.

Contrary to our expectations, some of our attempts to simulate attacks failed
due to the diversity of the communication technologies used in-vehicle network. For
example, the speed value injection failed and messages got dropped when trying
the attack on the box car, since it was designed to be transmitted over FlexRay.
Therefore, we want to highlight the fact that investigating communication standards
other than CAN is very important for a wider coverage to monitor the network.

Detection method

In the first stages of the work, we had the goal of extracting signatures from log files
in order to use them as rules as a way to implement a signature-based IDS. During

57

10. Discussion

the literature review phase we found no reference in previous work, to the best of
our knowledge, that suggested a signature-based IDS. So we stopped following this
approach. Instead, in our proposed solution we combine specification-based rules
and anomaly-based algorithms in order to efficiently detect attacks on the CAN bus.
Specification-based rules enable us to monitor every deviation of the CAN frame
properties from the original specifications. It also helps us to monitor messages
and determine whether a message is allowed in a sub-network . Furthermore, our
anomaly-based detection algorithms try to detect shifts from the normal behaviour
of the system, including changes in message frequency and plausibility.

We believe that considering only one approach for detection will not be efficient
enough to cover different kind of attacks. For instance, the detection method for
plausibility attacks can only detect the start and end of the attack and not the
messages in between. However, the cycle time of the messages changes, because it
is necessary for an attacker to inject messages with a lower cycle time in order to
take a continuous effect and block the original messages [15]. Thus, the messages
during the attack are detected by a frequency change algorithm instead.

Rule data selection

The frequency change detection was the most efficient approach to detect periodi-
cally injected cyclic messages. The implementation of this rule for a specific message
only requires the knowledge of the cycle time for this message. While other detec-
tion mechanisms either require a full knowledge of the message specification or value
shift analysis to extract appropriate rules.

We were able to extract a threshold for the speed plausibility detection by ana-
lyzing the speed value shifts between every two consecutive messages in a simulation
setup. This threshold is based on a an artificial driver behaviour in our experiment.
It is highly recommended to reassess the tests with a real driver and a real vehicle.
Furthermore, another approach is to use the maximum acceleration capability of the
car.

Detection accuracy and performance

Our results displayed a 100% detection rate for the specification-based rules. This
was due to the nature of these rules, as they solely depend on a direct compari-
son. Even though our anomaly-based algorithms resulted in no false positives, the
dynamic nature of these algorithms establish the possibility to miss certain frames.

In general, the combination of approaches we take for performing the detection,
improves the overall detection rate. For instance, if an attacker injects a small
number of malformed messages, they can not be detected by our basic frequency
change algorithm, instead, they are detected by the specification-based rules.

While injecting a higher number of legitimate messages, the attack can not be

58

10. Discussion

detected by the specification-based rules and because the attacker has to inject the
messages with a cycle time that is less than the original cycle time [15]; they will be
detected by the frequency change detection algorithm.

Placement and cost

In order to protect all CAN domains in a vehicle from an impending attack, we
advise to have at least one IDS node in each domain, where more than one can be
considered for redundancy in safety-critical domains. However, domains that have
shared gateways have the possibility of monitoring these domains using gateways,
thus, reducing the number of IDS nodes. This leads to a computational trade off
as this can cause performance issues on the gateways due to the large number of
messages processed, in addition to the regular routing task they have to perform.

On the other hand, the cost of implementing an extra IDS node in every sub-
network for every newly produced vehicle can get very expensive.

Log Storage, post analysis and update

Modern car manufacturers are able to manage firmware updates and after market
support remotely. With these technologies already implemented, we believe pushing
rule updates or even major design updates for the IDS will not be an issue. Moreover,
reports and logs can be periodically sent to the backbone, in similar way to sending
diagnostic reports, for post analysis purposes. Despite the fact that we did not face
any log storage challenges due to the configuration of our setup, we believe that the
existence of the aforementioned technologies can help to overcome the log storage
problem.

Future Work

The central idea of our work was to study, design and implement a prototype for
an intrusion detection system for in-vehicle networks. As the developed prototype
works only as a proof-of-concept, several questions remain unanswered at present.
There is an abundant room for further progress in determining the following research
questions:

• How can the driver be safely alerted of an intrusion on the network?
• To what degree can an attack be prevented?
• How to advance the research on other in-vehicle network bus standards, e.g.

FlexRay or MOST?
• How to identify the most important signal IDs that could have a severe impact

on the vehicle when misused?

59

10. Discussion

• Can event based messages be detected and is it possible to detect all event-
based signals? For example, activating the lights or honking the horn?

60

11
Conclusion

In this thesis, we design and implement a lightweight in-vehicle Intrusion Detection
System (IDS) with a combination of specification-based rules and anomaly-based
algorithms. We conclude that it is of highest importance to implement a defense
mechanism, due to the attack vector that modern cars are prone to.

Using our IDS, different types of attacks can be detected, including message
with properties deviating from the signal database and arbitrary message injection.
The proposed solution successfully detected attacks on the CAN bus, that were con-
ducted on a real in-vehicle network environment. The solution has some limitations,
as it is still in the prototype phase, e.g. it is not able to detect attacks on networks
that do not use the CAN standard. Additionally, for a broader coverage of the
network and for a more efficient performance, our work suggests having a dedicated
ECU that performs the monitoring in each domain, which on the other hand results
in a very high production cost for the manufacturer. Therefore, the cost constrain
remains an open issue that needs to be addressed in future works.

Despite the mentioned limitations and challenges, the prototype can be used
as a starting point for further research. Meanwhile, manufacturers have to make
the decisions and evaluate whether to invest money and adopt such solutions or
postpone this for a few more years.

61

11. Conclusion

62

Bibliography

[1] G. Baribaud, H. J. Burckhart, W. Heubers, P. Van de Vyvre, D. Brahy,
L. Jirdén, F. Perriolat, D. Swoboda, R. Barillère, A. Bland, et al. Recom-
mendations for the use of fieldbuses at cern in the lhc era. 1996.

[2] R. Bosch et al. Can specification version 2.0, 1991.

[3] B. Caswell and J. Beale. Snort 2.1 intrusion detection. Syngress, 2004.

[4] K. Cho and K. G. Shin. Fingerprinting electronic control units for vehicle
intrusion detection. In 25th USENIX Security Symposium, USENIX Security
16, Austin, TX, USA, August 10-12, 2016., pages 911–927, 2016.

[5] S. Corrigan. Texas Instuments, 2002.

[6] A. Deepa and V. Kavitha. A comprehensive survey on approaches to intrusion
detection system. Procedia Engineering, 38:2063–2069, 2012.

[7] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal. Understanding and using the
controller area network communication protocol: theory and practice. Springer
Science & Business Media, 2012.

[8] I. et al. Can-bus: Ausarbeitung zum can bus. 2009.

[9] I. Foster and K. Koscher. Exploring controller area networks. USENIX Usenix
Magazine, 40(6), 2015.

[10] T. Hoppe and J. Dittman. Sniffing/replay attacks on can buses: A simulated
attack on the electric window lift classified using an adapted cert taxonomy. In
Proceedings of the 2nd workshop on embedded systems security (WESS), pages
1–6, 2007.

[11] D. Hristu-Varsakelis and W. S. Levine, editors. Handbook of Networked and
Embedded Control Systems. Birkhäuser, 2005.

[12] M. J. Kang and J. Kang. A novel intrusion detection method using deep neural
network for in-vehicle network security. In IEEE 83rd Vehicular Technology
Conference, VTC Spring 2016, Nanjing, China, May 15-18, 2016, pages 1–5,
2016.

[13] U. E. Larson, D. K. Nilsson, and E. Jonsson. An approach to specification-based
attack detection for in-vehicle networks. In Intelligent Vehicles Symposium,
2008 IEEE, pages 220–225. IEEE, 2008.

63

Bibliography

[14] U. Lee and M. Gerla. A survey of urban vehicular sensing platforms. Computer
Networks, 54(4):527–544, 2010.

[15] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015, 2015.

[16] M. Müter and N. Asaj. Entropy-based anomaly detection for in-vehicle net-
works. In IEEE Intelligent Vehicles Symposium (IV), 2011, Baden-Baden,
Germany, June 5-9, 2011, pages 1110–1115, 2011.

[17] M. Müter, A. Groll, and F. C. Freiling. A structured approach to anomaly
detection for in-vehicle networks. In Sixth International Conference on Infor-
mation Assurance and Security, IAS 2010, Atlanta, GA, USA, August 23-25,
2010, pages 92–98, 2010.

[18] D. K. Nilsson, P. H. Phung, and U. E. Larson. Vehicle ecu classification based
on safety-security characteristics. In Road Transport Information and Control-
RTIC 2008 and ITS United Kingdom Members’ Conference, IET, pages 1–7.
IET, 2008.

[19] K. Pazul. Controller area network (can) basics. Microchip Technology Inc,
page 1, 1999.

[20] P. Richards. A can physical layer discussion. Microchip Technology Inc, 2002.
[21] F. Sabahi and A. Movaghar. Intrusion detection: A survey. In Systems and

Networks Communications, 2008. ICSNC’08. 3rd International Conference on,
pages 23–26. IEEE, 2008.

[22] M. Shavit, A. Gryc, and R. Miucic. Firmware update over the air (fota) for
automotive industry. Technical report, SAE Technical Paper, 2007.

[23] H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system based
on the analysis of time intervals of CAN messages for in-vehicle network. In
2016 International Conference on Information Networking, ICOIN 2016, Kota
Kinabalu, Malaysia, January 13-15, 2016, pages 63–68, 2016.

[24] T. Stapko. Practical embedded security: building secure resource-constrained
systems. Newnes, 2011.

[25] I. Studnia, V. Nicomette, E. Alata, Y. Deswarte, M. Kaâniche, and
Y. Laarouchi. Survey on security threats and protection mechanisms in em-
bedded automotive networks. In 43rd Annual IEEE/IFIP Conference on De-
pendable Systems and Networks Workshop, DSN Workshops 2013, Budapest,
Hungary, June 24-27, 2013, pages 1–12, 2013.

[26] VECTOR. Dbc communication database for can. https://vector.com/vi_
candb_en.html, 2017. [Online; accessed 02-may-2017].

[27] VECTOR. Ecu development & test with canoe. https://vector.com/vi_
canoe_en.html, 2017. [Online; accessed 12-may-2017].

[28] V. Verendel, D. K. Nilsson, U. E. Larson, and E. Jonsson. An approach to
using honeypots in in-vehicle networks. In Vehicular Technology Conference,
2008. VTC 2008-Fall. IEEE 68th, pages 1–5. IEEE, 2008.

64

https://vector.com/vi_candb_en.html
https://vector.com/vi_candb_en.html
https://vector.com/vi_canoe_en.html
https://vector.com/vi_canoe_en.html

Bibliography

[29] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk. A survey of inter-vehicle
communication protocols and their applications. IEEE Communications Sur-
veys and Tutorials, 11(2):3–20, 2009.

65

Bibliography

66

A
Appendix 1

A.1 Attack simulation

This section demonstrates a practical way to implement attacks on the CAN bus
which were feasible with our setup and permissions. The research of the different
attack vectors was important to evaluate our detection rules of our prototype IDS.

We assume that the attacker has direct access to the nodes and is able to modify
the code and behaviour of any node of his choice. This assumption is necessary
because our focus is on the in-vehicle network itself and not how an attacker may
gain access to it. Previous research [15, 9] has already explained that in a clear
manner.

The main method of data communication on a CAN bus is performed by
exchanging CAN data frames (messages). We begin by demonstrate how message
sniffing can be done. This is possible due to the lack of any confidentiality measures
in the CAN protocol. The second type of attack is injecting arbitrary messages.
Message injection attacks can be performed in different ways on the CAN bus. This
is due to the different properties that CAN data frames consists of. For example,
an attacker can change the sending rate of messages, to force the receiver node to
listen to the injected message instead of the original nodes messages. Finally, we
show an addtional form of message injection which has the intention of causing a
Denial of Service (DoS), thus affecting the availability of the system.

A.1.1 Message sniffing

Sniffing frames on the CAN bus does not require any modification of existing ECUs,
due how the CAN protocol is specified. The communication on the CAN bus works
through broadcasting the message on the bus and any ECU can listen to any mes-
sage. However, it is important to note that this feature of CAN can let the attacker
get a good overview of the system. The attacker could be able to reconstruct some
parts the signal database [15] which is considered confidential for a great variety of
car manufacturers.

In order to perform the message sniffing from any node within CANoe, it is
enough to use the event based function "on Message" while specifying all types of
messages. Listing 6 demonstrates a practical example.

I

A. Appendix 1

1 on Message * {
2 // do something with the messages or just log them
3 }

Listing 6: Sniffing messages with CANoe

A.1.2 Message injection

There are several details to consider about how the messages are sent on the bus
according to the CAN specification:

• The CAN message are identified by a unique ID.

• The receiver node listens to the CAN bus and picks up the ID that is specified
in its code.

• The message specifications, like data length and signal fields length are defined
in the signal database.

• A collision avoidance protocol can put nodes which are sending messages with
higher IDs on hold until there is no other node sending messages with lower
IDs at the same time.

A.1.2.1 Injection of a single message

In this attack, the compromised ECU sends one message. The data in this message is
in accordance with the specification in the signal database. However, it will contain
arbitrary values, for example, sending a speed value of 300km/h when the actual
value is 20km/h. While performing this attack, we observed that it does not make a
difference when exactly this message was received, as it is received periodically by a
node, which is listening for e.g. speed information. This is due to the fast recovery
time when receiving the next message, this time will be at most the specified cycle
time for this message in the signal database.

1 singleMessageInjection(message * msg){
2 output(msg);
3 }

Listing 7: Injecting a single message

Nevertheless, for other types of nodes it is enough to send one non-cyclic
(event-based) message to keep the changes persistent. For example, when sending
one message with text information to the radio, this text will be displayed until the
passenger interacts with the radio.

II

A. Appendix 1

1 changeRadioDisplay(char[] malicious_text. char[] malicious_text2){
2 SysSetVariableString(sysvar::ComfortBus::SetRadioChannelDisplay,malicious_text);
3 SysSetVariableString(sysvar::ComfortBus::RadioInfoDisplay,malicious_text2);
4 }

Listing 8: Injecting a single message to the radio

Figure A.1: Radio information text change by injecting a none-cyclic message

A.1.2.2 Injection of messages with identical cycle time

For this attack, instead of sending a single message, we simulate the behaviour of a
node by periodically sending the massages with a identical cycle time.

The cycle time is a time value that a node should preserve between two con-
secutive messages when transmitting on the CAN bus. Listing 9, highlights that
the cycle time for the chosen messages Gateway_2 is 2 ms, which is defined in the
signal database.

1 Variable{
2 msTimer injection_timer;
3 }
4

5 on start{
6 setTimer(injection_timer,2);
7 }
8

9 on timer injection_timer{
10 message Gateway_2 msg;
11 msg.CarSpeed=200;
12 output(msg);
13 setTimer(injection_timer,2);
14 }

Listing 9: Injection of messages with identical cycle time

III

A. Appendix 1

This attack will have two possible outcomes:

1. The node will listen to the node of the compromised node.
2. The message sent by the compromised node will create a noticeable effect on

the target node.
The first outcome will happen only if the messages of the attacking node are able to
be received and processed by the target node before the messages sent by the original
node. While the second outcome is more probable, especially with messages with
a small cycle time. Note that achieving synchronization is a complex task because
the cycle time is being sent in a millisecond rate.

A.1.2.3 Aggressive message injection

To make a node listen to our messages we have to send the CAN frames in a rate
that is higher than its original rate i.e. use a lower cycle time [15, 23] , this is the
fundamental idea of many papers we presented in the related work. When there is
a fractional gap between the transferred messages, it will lead to a congestion on
the CAN bus, causing the other nodes to not be able to submit any messages. This
will be discussed in more detail in a subsequent section.

For this attack we consider a regular “for-loop” over a timer, to make the gaps
between the messages as small as possible. We repeat that with a high value of
of messages (10,000 in our case) to make the attack have a longer impact on the
targeted receiver. The corresponding code is presented in Listing 10.

1 sendAggressive(message * msg){
2 int i;
3 for(i=0;i<10000;i++){
4 output(msg);
5 }
6 }

Listing 10: Aggressive message injection

A.1.3 Denial of service attacks

Denial of Service (DoS) attacks are another form of injection attacks.Due to its
devastating effect on the network we chose to put it in a category of its own.

A.1.3.1 Malformed message injection

We consider a message as malformed, if the layout of the message does not follow
the signal database specifications. Malformed messages rarely appear on the CAN
bus, especially in real vehicles, due to the significant effort in code reviewing and
testing. However, we want to show that it is possible and easy to send such messages
and demonstrate the effect on the communication.

IV

A. Appendix 1

Lets take the message with the ID 0x110 from our simulation setup. This
message has the data length field value of 3. In Listing 11, we try to send a message
with the same ID but with one extra byte. Even though it had no side effect on the
system, this example shows that its still possible.

1 malformedGateway1(){
2 message 0x110 malformed_msg;
3 malformed_msg.dlc=4;
4 malformed_msg.byte(0)= 0x1;
5 malformed_msg.byte(1)= 0x3;
6 malformed_msg.byte(2)= 0x3;
7 malformed_msg.byte(3)= 0x7;
8 output(malformed_msg);
9 }

Listing 11: Message injection with bigger frame data length (DLC)

The other example is trying to overflow the reading mechanism of a signal in
a message. Each signal has a defined bit length in the signal database. This value
is used by the receiver node when trying to interpret the signals inside the message.
In Listing 12, we define a value that has a significantly larger bit length than the
defined 4 bit value in the signal database. The result was a crash of the simulation
in CANoe, without any error messages.

1 malformedGateway1(){
2 message 0x110 malformed_msg;
3 malformed_msg.byte(0)= 0xFF; // When changed to 0xFF the system crashes
4 output(malformed_msg);
5 }

Listing 12: Message with oversized signal bit length

A.1.3.2 Flood attack

The reason why this attack works so flawlessly, is because of the specification of the
collision avoidance mechanism of the CAN bus. It is stated that the message with
the lowest ID has always the highest priority. The main idea of the attack is to not
let any other message take part in the communication. We tested this by flooding
the network with high priority messages, both in the comfort train and power train.
Our approach was to inject 1000 messages into the communication, with an ID of
0x00.

Listing 13 shows a code-snippet on how to implement this attack in CANoe,
where line 2 declares a message of the highest priority and this message will be send
in a high frequency on the bus.

V

A. Appendix 1

1 floodAttack(){
2 message 0x00 flood_message; // highest priority message
3 sendAgressive(flood_message);
4 }

Listing 13: Aggressive flood attack with the lowest ID message

VI

	List of Figures
	List of Tables
	Introduction
	Scope
	Objectives
	Limitations
	Methodology
	Structure of the report

	Background
	Vehicular communication technologies
	External communications
	Internal communications
	Accessing the network

	Controller Area Networks
	Background
	CAN Architecture OSI
	Physical layer
	Bit representation
	Bit stuffing
	Dominant and recessive logical bus states

	Data link layer
	Medium access control
	CAN frames
	Carrier sense multiple access with collision avoidance
	Arbitration
	Error handling and signaling
	Fault confinement

	Logical link control

	Signal databases

	Attacking Controller Area Networks
	CAN security considerations
	Known security measures for in-vehicle networks
	Message encryption and signing
	Node authentication
	Firewalls and policy enforcement
	Honeypots

	Intrusion Detection Systems (IDS)
	Intrusion detection system types and classification
	Data collection techniques
	Data analysis techniques
	Signature-based detection
	Anomaly-based detection
	Specification-based detection

	Stateful vs Stateless Intrusion detection systems

	Intrusion detection system architecture

	In-vehicle intrusion detection systems
	Related work
	Challenges and constraints
	Hardware constraints
	Detection method and data selection
	Detection accuracy and performance
	Placement
	Response to an attack
	Log storage, post analysis and updates
	Cost

	Setup and Design
	Experimental setup
	CANoe
	Signal database
	Simulation setup
	Real vehicle setup

	System design and structure

	Implementation of an IDS system
	Specification-based detection
	Message parameter misuse
	Unauthorized message detection

	Anomaly-based detection
	Speedometer plausibility detection
	Frequency change detection

	Results
	Specification-based attacks
	Unauthorized message detection

	Anomaly-based attacks
	Plausibility detection
	Constant speed injection
	Stealthy changing speed injection

	Frequency change detection
	Injecting limited number of messages
	Injection with identical cycle time
	Aggressive message injection

	Discussion
	Conclusion
	Bibliography
	Appendix 1
	Attack simulation
	Message sniffing
	Message injection
	Injection of a single message
	Injection of messages with identical cycle time
	Aggressive message injection

	Denial of service attacks
	Malformed message injection
	Flood attack

