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All games of perfect information have an optimal value function, v*(s), 
which determines the outcome of the game, from every board position 
or state s, under perfect play by all players. These games may be solved 
by recursively computing the optimal value function in a search tree 
containing approximately bd possible sequences of moves, where b is 
the game’s breadth (number of legal moves per position) and d is its 
depth (game length). In large games, such as chess (b ≈ 35, d ≈ 80)1 and 
especially Go (b ≈ 250, d ≈ 150)1, exhaustive search is infeasible2,3, but 
the effective search space can be reduced by two general principles. 
First, the depth of the search may be reduced by position evaluation: 
truncating the search tree at state s and replacing the subtree below s 
by an approximate value function v(s) ≈ v*(s) that predicts the outcome 
from state s. This approach has led to superhuman performance in 
chess4, checkers5 and othello6, but it was believed to be intractable in Go 
due to the complexity of the game7. Second, the breadth of the search 
may be reduced by sampling actions from a policy p(a|s) that is a prob-
ability distribution over possible moves a in position s. For example, 
Monte Carlo rollouts8 search to maximum depth without branching 
at all, by sampling long sequences of actions for both players from a 
policy p. Averaging over such rollouts can provide an effective position 
evaluation, achieving superhuman performance in backgammon8 and 
Scrabble9, and weak amateur level play in Go10.

Monte Carlo tree search (MCTS)11,12 uses Monte Carlo rollouts 
to estimate the value of each state in a search tree. As more simu-
lations are executed, the search tree grows larger and the relevant 
values become more accurate. The policy used to select actions during 
search is also improved over time, by selecting children with higher 
values. Asymptotically, this policy converges to optimal play, and the 
evaluations converge to the optimal value function12. The strongest 
current Go programs are based on MCTS, enhanced by policies that 
are trained to predict human expert moves13. These policies are used 
to narrow the search to a beam of high-probability actions, and to 
sample actions during rollouts. This approach has achieved strong 
amateur play13–15. However, prior work has been limited to shallow 

policies13–15 or value functions16 based on a linear combination of 
input features.

Recently, deep convolutional neural networks have achieved unprec-
edented performance in visual domains: for example, image classifica-
tion17, face recognition18, and playing Atari games19. They use many 
layers of neurons, each arranged in overlapping tiles, to construct 
increasingly abstract, localized representations of an image20. We 
employ a similar architecture for the game of Go. We pass in the board 
position as a 19 × 19 image and use convolutional layers to construct a 
representation of the position. We use these neural networks to reduce 
the effective depth and breadth of the search tree: evaluating positions 
using a value network, and sampling actions using a policy network.

We train the neural networks using a pipeline consisting of several 
stages of machine learning (Fig. 1). We begin by training a supervised 
learning (SL) policy network pσ directly from expert human moves. 
This provides fast, efficient learning updates with immediate feedback 
and high-quality gradients. Similar to prior work13,15, we also train a 
fast policy pπ that can rapidly sample actions during rollouts. Next, we 
train a reinforcement learning (RL) policy network pρ that improves 
the SL policy network by optimizing the final outcome of games of self-
play. This adjusts the policy towards the correct goal of winning games, 
rather than maximizing predictive accuracy. Finally, we train a value 
network vθ that predicts the winner of games played by the RL policy 
network against itself. Our program AlphaGo efficiently combines the 
policy and value networks with MCTS.

Supervised learning of policy networks
For the first stage of the training pipeline, we build on prior work 
on predicting expert moves in the game of Go using supervised  
learning13,21–24. The SL policy network pσ(a |  s) alternates between con-
volutional layers with weights σ, and rectifier nonlinearities. A final soft-
max layer outputs a probability distribution over all legal moves a. The 
input s to the policy network is a simple representation of the board state 
(see Extended Data Table 2). The policy network is trained on randomly  
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s
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We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 μs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ~ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ~…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z
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The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

( )∝
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+ ( )

u s a
P s a

N s a
,

,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge
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where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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better in AlphaGo than a value function ( )≈ ( )θ σv s v sp  derived from the 
SL policy network.

Evaluating policy and value networks requires several orders of 
magnitude more computation than traditional search heuristics. To 
efficiently combine MCTS with deep neural networks, AlphaGo uses 
an asynchronous multi-threaded search that executes simulations on 
CPUs, and computes policy and value networks in parallel on GPUs. 
The final version of AlphaGo used 40 search threads, 48 CPUs, and 
8 GPUs. We also implemented a distributed version of AlphaGo that 

exploited multiple machines, 40 search threads, 1,202 CPUs and  
176 GPUs. The Methods section provides full details of asynchronous 
and distributed MCTS.

Evaluating the playing strength of AlphaGo
To evaluate AlphaGo, we ran an internal tournament among variants 
of AlphaGo and several other Go programs, including the strongest 
commercial programs Crazy Stone13 and Zen, and the strongest open 
source programs Pachi14 and Fuego15. All of these programs are based 

Figure 4 | Tournament evaluation of AlphaGo. a, Results of a  
tournament between different Go programs (see Extended Data Tables 
6–11). Each program used approximately 5 s computation time per move.  
To provide a greater challenge to AlphaGo, some programs (pale upper 
bars) were given four handicap stones (that is, free moves at the start of 
every game) against all opponents. Programs were evaluated on an  
Elo scale37: a 230 point gap corresponds to a 79% probability of winning,  
which roughly corresponds to one amateur dan rank advantage on  
KGS38; an approximate correspondence to human ranks is also shown, 

horizontal lines show KGS ranks achieved online by that program. Games 
against the human European champion Fan Hui were also included;  
these games used longer time controls. 95% confidence intervals are 
shown. b, Performance of AlphaGo, on a single machine, for different 
combinations of components. The version solely using the policy network 
does not perform any search. c, Scalability study of MCTS in AlphaGo 
with search threads and GPUs, using asynchronous search (light blue) or 
distributed search (dark blue), for 2 s per move.
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Figure 5 | How AlphaGo (black, to play) selected its move in an 
informal game against Fan Hui. For each of the following statistics,  
the location of the maximum value is indicated by an orange circle.  
a, Evaluation of all successors s′ of the root position s, using the value 
network vθ(s′); estimated winning percentages are shown for the top 
evaluations. b, Action values Q(s, a) for each edge (s, a) in the tree from 
root position s; averaged over value network evaluations only (λ = 0).  
c, Action values Q(s, a), averaged over rollout evaluations only (λ = 1).  

d, Move probabilities directly from the SL policy network, ( | )σp a s ; 
reported as a percentage (if above 0.1%). e, Percentage frequency with 
which actions were selected from the root during simulations. f, The 
principal variation (path with maximum visit count) from AlphaGo’s 
search tree. The moves are presented in a numbered sequence. AlphaGo 
selected the move indicated by the red circle; Fan Hui responded with the 
move indicated by the white square; in his post-game commentary he 
preferred the move (labelled 1) predicted by AlphaGo.
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on high-performance MCTS algorithms. In addition, we included the 
open source program GnuGo, a Go program using state-of-the-art 
search methods that preceded MCTS. All programs were allowed 5 s 
of computation time per move.

The results of the tournament (see Fig. 4a) suggest that single- 
machine AlphaGo is many dan ranks stronger than any previous  
Go program, winning 494 out of 495 games (99.8%) against other 
Go programs. To provide a greater challenge to AlphaGo, we also 
played games with four handicap stones (that is, free moves for the 
opponent); AlphaGo won 77%, 86%, and 99% of handicap games 
against Crazy Stone, Zen and Pachi, respectively. The distributed ver-
sion of AlphaGo was significantly stronger, winning 77% of games 
against single-machine AlphaGo and 100% of its games against other 
programs.

We also assessed variants of AlphaGo that evaluated positions 
using just the value network (λ = 0) or just rollouts (λ = 1) (see  
Fig. 4b). Even without rollouts AlphaGo exceeded the performance 
of all other Go programs, demonstrating that value networks provide 
a viable alternative to Monte Carlo evaluation in Go. However, the 
mixed evaluation (λ = 0.5) performed best, winning ≥95% of games 
against other variants. This suggests that the two position-evaluation 

mechanisms are complementary: the value network approximates the 
outcome of games played by the strong but impractically slow pρ, while 
the rollouts can precisely score and evaluate the outcome of games 
played by the weaker but faster rollout policy pπ. Figure 5 visualizes 
the evaluation of a real game position by AlphaGo.

Finally, we evaluated the distributed version of AlphaGo against Fan 
Hui, a professional 2 dan, and the winner of the 2013, 2014 and 2015 
European Go championships. Over 5–9 October 2015 AlphaGo and 
Fan Hui competed in a formal five-game match. AlphaGo won the 
match 5 games to 0 (Fig. 6 and Extended Data Table 1). This is the 
first time that a computer Go program has defeated a human profes-
sional player, without handicap, in the full game of Go—a feat that was  
previously believed to be at least a decade away3,7,31.

Discussion
In this work we have developed a Go program, based on a combina-
tion of deep neural networks and tree search, that plays at the level of 
the strongest human players, thereby achieving one of artificial intel-
ligence’s “grand challenges”31–33. We have developed, for the first time, 
effective move selection and position evaluation functions for Go, 
based on deep neural networks that are trained by a novel combination  

Figure 6 | Games from the match between AlphaGo and the European 
champion, Fan Hui. Moves are shown in a numbered sequence 
corresponding to the order in which they were played. Repeated moves  
on the same intersection are shown in pairs below the board. The first 

move number in each pair indicates when the repeat move was played, at 
an intersection identified by the second move number (see Supplementary 
Information).
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Game 1
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by 2.5 points

Game 2
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 3
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation

Game 4
AlphaGo (Black), Fan Hui (White)
AlphaGo wins by resignation

Game 5
Fan Hui (Black), AlphaGo (White)
AlphaGo wins by resignation
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of supervised and reinforcement learning. We have introduced a new 
search algorithm that successfully combines neural network evalu-
ations with Monte Carlo rollouts. Our program AlphaGo integrates 
these components together, at scale, in a high-performance tree search 
engine.

During the match against Fan Hui, AlphaGo evaluated thousands 
of times fewer positions than Deep Blue did in its chess match against 
Kasparov4; compensating by selecting those positions more intelli-
gently, using the policy network, and evaluating them more precisely, 
using the value network—an approach that is perhaps closer to how 
humans play. Furthermore, while Deep Blue relied on a handcrafted 
evaluation function, the neural networks of AlphaGo are trained 
directly from gameplay purely through general-purpose supervised 
and reinforcement learning methods.

Go is exemplary in many ways of the difficulties faced by artificial 
intelligence33,34: a challenging decision-making task, an intractable 
search space, and an optimal solution so complex it appears infeasible 
to directly approximate using a policy or value function. The previous 
major breakthrough in computer Go, the introduction of MCTS, led to 
corresponding advances in many other domains; for example, general 
game-playing, classical planning, partially observed planning, sched-
uling, and constraint satisfaction35,36. By combining tree search with 
policy and value networks, AlphaGo has finally reached a professional 
level in Go, providing hope that human-level performance can now be 
achieved in other seemingly intractable artificial intelligence domains.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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METHODS
Problem setting. Many games of perfect information, such as chess, checkers, 
othello, backgammon and Go, may be defined as alternating Markov games39. In 
these games, there is a state space S  (where state includes an indication of the 
current player to play); an action space ( )A s  defining the legal actions in any given 
state s ∈ S ; a state transition function f(s, a, ξ) defining the successor state after 
selecting action a in state s and random input ξ (for example, dice); and finally a 
reward function ri(s) describing the reward received by player i in state s. We 
restrict our attention to two-player zero-sum games, r1(s) = −r2(s) = r(s), with 
deterministic state transitions, f(s, a, ξ) = f(s, a), and zero rewards except at a ter-
minal time step T. The outcome of the game zt = ±r(sT) is the terminal reward at 
the end of the game from the perspective of the current player at time step t.  
A policy p(a|s) is a probability distribution over legal actions a ∈ ( )A s .  
A value function is the expected outcome if all actions for both players are selected 
according to policy p, that is, E( ) = | = ~...v s z s s a p[ , ]p

t t t T   . Zero-sum games have 
a unique optimal value function v*(s) that determines the outcome from state s 
following perfect play by both players,

⁎ ⁎( ) =







=
− ( ( ))v s

z s s
v f s a

if ,
max , otherwise

T T

a

Prior work. The optimal value function can be computed recursively by minimax 
(or equivalently negamax) search40. Most games are too large for exhaustive min-
imax tree search; instead, the game is truncated by using an approximate value 
function v(s) ≈ v*(s) in place of terminal rewards. Depth-first minimax search with 
alpha–beta pruning40 has achieved superhuman performance in chess4, checkers5 
and othello6, but it has not been effective in Go7.

Reinforcement learning can learn to approximate the optimal value function 
directly from games of self-play39. The majority of prior work has focused on a 
linear combination vθ(s) = ϕ(s) · θ of features ϕ(s) with weights θ. Weights were 
trained using temporal-difference learning41 in chess42,43, checkers44,45 and Go30; 
or using linear regression in othello6 and Scrabble9. Temporal-difference learning 
has also been used to train a neural network to approximate the optimal value 
function, achieving superhuman performance in backgammon46; and achiev-
ing weak kyu-level performance in small-board Go28,29,47 using convolutional 
networks.

An alternative approach to minimax search is Monte Carlo tree search 
(MCTS)11,12, which estimates the optimal value of interior nodes by a double 
approximation, ⁎( ) ≈ ( )≈ ( )V s v s v sn Pn . The first approximation, ( ) ≈ ( )V s v sn Pn , 
uses n Monte Carlo simulations to estimate the value function of a simulation 
policy Pn. The second approximation, ⁎( ) ≈ ( )v s v sPn , uses a simulation policy Pn 
in place of minimax optimal actions. The simulation policy selects actions accord-
ing to a search control function ( ( ) + ( ))Q s a u s aargmax , ,a

n , such as UCT12, that  
selects children with higher action values, Qn(s, a) = −Vn(f(s, a)), plus a bonus  
u(s, a) that encourages exploration; or in the absence of a search tree at state s, it  
samples actions from a fast rollout policy ( | )πp a s  . As more simulations are executed  
and the search tree grows deeper, the simulation policy becomes informed by 
increasingly accurate statistics. In the limit, both approximations become exact 
and MCTS (for example, with UCT) converges12 to the optimal value function  

⁎( ) = ( )= ( )→∞ →∞V s v s v slim limn
n

n
Pn . The strongest current Go programs are  

based on MCTS13–15,36.
MCTS has previously been combined with a policy that is used to narrow the 

beam of the search tree to high-probability moves13; or to bias the bonus term 
towards high-probability moves48. MCTS has also been combined with a value 
function that is used to initialize action values in newly expanded nodes16, or to 
mix Monte Carlo evaluation with minimax evaluation49. By contrast, AlphaGo’s use 
of value functions is based on truncated Monte Carlo search algorithms8,9, which 
terminate rollouts before the end of the game and use a value function in place of 
the terminal reward. AlphaGo’s position evaluation mixes full rollouts with trun-
cated rollouts, resembling in some respects the well-known temporal-difference 
learning algorithm TD(λ). AlphaGo also differs from prior work by using slower 
but more powerful representations of the policy and value function; evaluating 
deep neural networks is several orders of magnitude slower than linear representa-
tions and must therefore occur asynchronously.

The performance of MCTS is to a large degree determined by the quality of the 
rollout policy. Prior work has focused on handcrafted patterns50 or learning rollout 
policies by supervised learning13, reinforcement learning16, simulation balanc-
ing51,52 or online adaptation30,53; however, it is known that rollout-based position 
evaluation is frequently inaccurate54. AlphaGo uses relatively simple rollouts, and 
instead addresses the challenging problem of position evaluation more directly 
using value networks.

Search algorithm. To efficiently integrate large neural networks into AlphaGo, we 
implemented an asynchronous policy and value MCTS algorithm (APV-MCTS). 
Each node s in the search tree contains edges (s, a) for all legal actions a ∈ ( )A s . 
Each edge stores a set of statistics,

( ) ( ) ( ) ( ) ( ) ( )P s a N s a N s a W s a W s a Q s a{ , , , , , , , , , , , }v r v r

where P(s, a) is the prior probability, Wv(s, a) and Wr(s, a) are Monte Carlo esti-
mates of total action value, accumulated over Nv(s, a) and Nr(s, a) leaf evaluations 
and rollout rewards, respectively, and Q(s, a) is the combined mean action value for 
that edge. Multiple simulations are executed in parallel on separate search threads. 
The APV-MCTS algorithm proceeds in the four stages outlined in Fig. 3.
Selection (Fig. 3a). The first in-tree phase of each simulation begins at the root of 
the search tree and finishes when the simulation reaches a leaf node at time step 
L. At each of these time steps, t < L, an action is selected according to the statistics 
in the search tree, = ( ( )+ ( ))a Q s a u s aargmax , ,t a t t  using a variant of the PUCT  

algorithm48, ( ) = ( )
∑ ( )

+ ( )
u s a c P s a, ,

N s b

N s apuct
,

1 ,
b r

r
  , where cpuct is a constant determining  

the level of exploration; this search control strategy initially prefers actions with 
high prior probability and low visit count, but asymptotically prefers actions with 
high action value.
Evaluation (Fig. 3c). The leaf position sL is added to a queue for evaluation vθ(sL) 
by the value network, unless it has previously been evaluated. The second rollout 
phase of each simulation begins at leaf node sL and continues until the end of the 
game. At each of these time-steps, t ≥ L, actions are selected by both players accord-
ing to the rollout policy, ~ (⋅| )πa p st t . When the game reaches a terminal state, the 
outcome =± ( )z r st T  is computed from the final score.
Backup (Fig. 3d). At each in-tree step t ≤ L of the simulation, the rollout statistics 
are updated as if it has lost nvl games, Nr(st, at) ← Nr(st, at) + nvl; Wr(st, at) ← Wr(st, 
at) −nvl; this virtual loss55 discourages other threads from simultaneously explor-
ing the identical variation. At the end of the simulation, t he rollout statistics are 
updated in a backward pass through each step t ≤ L, replacing the virtual losses by 
the outcome, Nr(st, at) ← Nr(st, at) −nvl + 1; Wr(st, at) ← Wr(st, at) + nvl + zt. 
Asynchronously, a separate backward pass is initiated when the evaluation  
of the leaf position sL completes. The output of the value network vθ(sL) is used to 
update value statistics in a second backward pass through each step t ≤ L,  
Nv(st, at) ← Nv(st, at) + 1, Wv(st, at) ← Wv(st, at) + vθ(sL). The overall evaluation of  
each state action is a weighted average of the Monte Carlo estimates,  

λ λ( ) = ( − ) +( )
( )

( )
( )

Q s a, 1 W s a
N s a

W s a
N s a

,
,

,
,

v

v

r

r
, that mixes together the value network and 

rollout evaluations with weighting parameter λ. All updates are performed  
lock-free56.
Expansion (Fig. 3b). When the visit count exceeds a threshold, Nr(s, a) > nthr  , the 
successor state s′ = f(s, a) is added to the search tree. The new node is initialized  
to {N(s′, a) = Nr(s′, a) = 0, W(s′, a) = Wr(s′, a) = 0, P(s′,a) = pσ(a|s′)}, using a tree 
policy pτ(a|s′) (similar to the rollout policy but with more features, see Extended 
Data Table 4) to provide placeholder prior probabilities for action selection. The 
position s′ is also inserted into a queue for asynchronous GPU evaluation by the 
policy network. Prior probabilities are computed by the SL policy network (⋅| ′)σ

βp s   
with a softmax temperature set to β; these replace the placeholder prior probabil-
ities, ( ′ )← ( | ′)σ

βP s a p a s, , using an atomic update. The threshold nthr is adjusted 
dynamically to ensure that the rate at which positions are added to the policy queue 
matches the rate at which the GPUs evaluate the policy network. Positions are 
evaluated by both the policy network and the value network using a mini-batch 
size of 1 to minimize end-to-end evaluation time.

We also implemented a distributed APV-MCTS algorithm. This architecture 
consists of a single master machine that executes the main search, many remote 
worker CPUs that execute asynchronous rollouts, and many remote worker GPUs 
that execute asynchronous policy and value network evaluations. The entire search 
tree is stored on the master, which only executes the in-tree phase of each simu-
lation. The leaf positions are communicated to the worker CPUs, which execute 
the rollout phase of simulation, and to the worker GPUs, which compute network 
features and evaluate the policy and value networks. The prior probabilities of the 
policy network are returned to the master, where they replace placeholder prior 
probabilities at the newly expanded node. The rewards from rollouts and the value 
network outputs are each returned to the master, and backed up the originating 
search path.

At the end of search AlphaGo selects the action with maximum visit count; this 
is less sensitive to outliers than maximizing action value15. The search tree is reused 
at subsequent time steps: the child node corresponding to the played action 
becomes the new root node; the subtree below this child is retained along with all 
its statistics, while the remainder of the tree is discarded. The match version of 
AlphaGo continues searching during the opponent’s move. It extends the search 

© 2016 Macmillan Publishers Limited. All rights reserved
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if the action maximizing visit count and the action maximizing action value disa-
gree. Time controls were otherwise shaped to use most time in the middle-game57. 
AlphaGo resigns when its overall evaluation drops below an estimated 10% prob-
ability of winning the game, that is, ( ) <− .Q s amax , 0 8a .

AlphaGo does not employ the all-moves-as-first10 or rapid action value estima-
tion58 heuristics used in the majority of Monte Carlo Go programs; when using 
policy networks as prior knowledge, these biased heuristics do not appear to give 
any additional benefit. In addition AlphaGo does not use progressive widening13, 
dynamic komi59 or an opening book60. The parameters used by AlphaGo in the 
Fan Hui match are listed in Extended Data Table 5.
Rollout policy. The rollout policy ( | )πp a s  is a linear softmax policy based on fast, 
incrementally computed, local pattern-based features consisting of both ‘response’ 
patterns around the previous move that led to state s, and ‘non-response’ patterns 
around the candidate move a in state s. Each non-response pattern is a binary 
feature matching a specific 3 × 3 pattern centred on a, defined by the colour (black, 
white, empty) and liberty count (1, 2, ≥3) for each adjacent intersection. Each 
response pattern is a binary feature matching the colour and liberty count in a 
12-point diamond-shaped pattern21 centred around the previous move. 
Additionally, a small number of handcrafted local features encode common-sense 
Go rules (see Extended Data Table 4). Similar to the policy network, the weights 
π of the rollout policy are trained from 8 million positions from human games on 
the Tygem server to maximize log likelihood by stochastic gradient descent. 
Rollouts execute at approximately 1,000 simulations per second per CPU thread 
on an empty board.

Our rollout policy pπ(a|s) contains less handcrafted knowledge than state- 
of-the-art Go programs13. Instead, we exploit the higher-quality action selection 
within MCTS, which is informed both by the search tree and the policy network. 
We introduce a new technique that caches all moves from the search tree and 
then plays similar moves during rollouts; a generalization of the ‘last good reply’ 
heuristic53. At every step of the tree traversal, the most probable action is inserted 
into a hash table, along with the 3 × 3 pattern context (colour, liberty and stone 
counts) around both the previous move and the current move. At each step of the 
rollout, the pattern context is matched against the hash table; if a match is found 
then the stored move is played with high probability.
Symmetries. In previous work, the symmetries of Go have been exploited by using 
rotationally and reflectionally invariant filters in the convolutional layers24,28,29. 
Although this may be effective in small neural networks, it actually hurts perfor-
mance in larger networks, as it prevents the intermediate filters from identifying 
specific asymmetric patterns23. Instead, we exploit symmetries at run-time by 
dynamically transforming each position s using the dihedral group of eight reflec-
tions and rotations, d1(s), …, d8(s). In an explicit symmetry ensemble, a mini-batch 
of all 8 positions is passed into the policy network or value network and computed 
in parallel. For the value network, the output values are simply averaged,  
( ) = ∑ ( ( ))θ θ=v s v d sj j

1
8 1

8  . For the policy network, the planes of output probabilities  
are rotated/reflected back into the original orientation, and averaged together to  
provide an ensemble prediction, (⋅| ) = ∑ ( (⋅| ( )))σ σ=

−p s d p d sj j j
1
8 1

8 1 ; this approach  
was used in our raw network evaluation (see Extended Data Table 3). Instead, 
APV-MCTS makes use of an implicit symmetry ensemble that randomly selects a 
single rotation/reflection j ∈ [1, 8] for each evaluation. We compute exactly one 
evaluation for that orientation only; in each simulation we compute the value  
of leaf node sL by vθ(dj(sL)), and allow the search procedure to average over  
these evaluations. Similarly, we compute the policy network for a single,  
randomly selected rotation/reflection, ( (⋅| ( )))σ

−d p d sj j
1 .

Policy network: classification. We trained the policy network pσ to classify posi-
tions according to expert moves played in the KGS data set. This data set contains 
29.4 million positions from 160,000 games played by KGS 6 to 9 dan human play-
ers; 35.4% of the games are handicap games. The data set was split into a test set 
(the first million positions) and a training set (the remaining 28.4 million posi-
tions). Pass moves were excluded from the data set. Each position consisted of a 
raw board description s and the move a selected by the human. We augmented the 
data set to include all eight reflections and rotations of each position. Symmetry 
augmentation and input features were pre-computed for each position. For each 
training step, we sampled a randomly selected mini-batch of m samples from  
the augmented KGS data set, =s a{ , }k k

k
m

1 and applied an asynchronous stochastic 
gradient descent update to maximize the log likelihood of the action,  
∆σ= ∑α

σ=
∂ ( | )

∂
σ

m k
m p a s

1
log k k

. The step size α was initialized to 0.003 and was halved  
every 80 million training steps, without momentum terms, and a mini-batch size 
of m = 16. Updates were applied asynchronously on 50 GPUs using DistBelief 61; 
gradients older than 100 steps were discarded. Training took around 3 weeks for 
340 million training steps.

Policy network: reinforcement learning. We further trained the policy network 
by policy gradient reinforcement learning25,26. Each iteration consisted of a mini-
batch of n games played in parallel, between the current policy network pρ that is 
being trained, and an opponent ρ−p  that uses parameters ρ− from a previous iter-
ation, randomly sampled from a pool of opponents, so as to increase the stability 
of training. Weights were initialized to ρ = ρ− = σ. Every 500 iterations, we added 
the current parameters ρ to the opponent pool. Each game i in the mini-batch was 
played out until termination at step Ti, and then scored to determine the outcome 
=± ( )z r st

i
T i  from each player’s perspective. The games were then replayed to  

determine the policy gradient update, ∆ρ= ∑ ∑ ( − ( ))α
ρ= =

∂ ( | )

∂
ρ z v s

n i
n

t
T p a s

t
i

t
i

1 1
logi t

i
t
i

  ,  
using the REINFORCE algorithm25 with baseline ( )v st

i  for variance reduction. On 
the first pass through the training pipeline, the baseline was set to zero; on the 
second pass we used the value network vθ(s) as a baseline; this provided a small 
performance boost. The policy network was trained in this way for 10,000 mini-
batches of 128 games, using 50 GPUs, for one day.
Value network: regression. We trained a value network ( ) ≈ ( )θ ρv s v sp  to approx-
imate the value function of the RL policy network pρ. To avoid overfitting to the 
strongly correlated positions within games, we constructed a new data set of uncor-
related self-play positions. This data set consisted of over 30 million positions, each 
drawn from a unique game of self-play. Each game was generated in three phases 
by randomly sampling a time step U ~ unif{1, 450}, and sampling the first t = 1,… 
U − 1 moves from the SL policy network, at ~ pσ(·|st); then sampling one move 
uniformly at random from available moves, aU ~ unif{1, 361} (repeatedly until  
aU is legal); then sampling the remaining sequence of moves until the game termi-
nates, t = U + 1, … T, from the RL policy network, at ~ pρ(·|st). Finally, the game 
is scored to determine the outcome zt = ±r(sT). Only a single training example 
(sU+1, zU+1) is added to the data set from each game. This data provides unbiased 
samples of the value function E( ) = | ~ ρ+ + + + ...ρv s z s a p[ , ]p

U U U U T1 1 1 1, . During 
the first two phases of generation we sample from noisier distributions so as  
to increase the diversity of the data set. The training method was identical  
to SL policy network training, except that the parameter update was based on  
mean squared error between the predicted values and the observed rewards, 
∆θ= ∑ ( − ( ))α

θ θ=
∂ ( )
∂
θz v s

m k
m k k v s

1
k

  . The value network was trained for 50 million 
mini-batches of 32 positions, using 50 GPUs, for one week.
Features for policy/value network. Each position s was pre-processed into a set 
of 19 × 19 feature planes. The features that we use come directly from the raw 
representation of the game rules, indicating the status of each intersection of the 
Go board: stone colour, liberties (adjacent empty points of stone’s chain), captures, 
legality, turns since stone was played, and (for the value network only) the current 
colour to play. In addition, we use one simple tactical feature that computes the 
outcome of a ladder search7. All features were computed relative to the current 
colour to play; for example, the stone colour at each intersection was represented 
as either player or opponent rather than black or white. Each integer feature value 
is split into multiple 19 × 19 planes of binary values (one-hot encoding). For exam-
ple, separate binary feature planes are used to represent whether an intersection 
has 1 liberty, 2 liberties,…, ≥8 liberties. The full set of feature planes are listed in 
Extended Data Table 2.
Neural network architecture. The input to the policy network is a 19 × 19 × 48 
image stack consisting of 48 feature planes. The first hidden layer zero pads the 
input into a 23 × 23 image, then convolves k filters of kernel size 5 × 5 with stride 
1 with the input image and applies a rectifier nonlinearity. Each of the subsequent 
hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21 × 21 
image, then convolves k filters of kernel size 3 × 3 with stride 1, again followed 
by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1 × 1 
with stride 1, with a different bias for each position, and applies a softmax func-
tion. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended 
Data Table 3 additionally show the results of training with k = 128, 256 and  
384 filters.

The input to the value network is also a 19 × 19 × 48 image stack, with an addi-
tional binary feature plane describing the current colour to play. Hidden layers 2 to 
11 are identical to the policy network, hidden layer 12 is an additional convolution 
layer, hidden layer 13 convolves 1 filter of kernel size 1 × 1 with stride 1, and hidden 
layer 14 is a fully connected linear layer with 256 rectifier units. The output layer 
is a fully connected linear layer with a single tanh unit.
Evaluation. We evaluated the relative strength of computer Go programs by run-
ning an internal tournament and measuring the Elo rating of each program. We 
estimate the probability that program a will beat program b by a logistic function  
( ) =

+ ( ( ( ) − ( ))
p a bbeats

c e b e a
1

1 exp elo
, and estimate the ratings e(·) by Bayesian  

logistic regression, computed by the BayesElo program37 using the standard  
constant celo = 1/400. The scale was anchored to the BayesElo rating of professional 
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Go player Fan Hui (2,908 at date of submission)62. All programs received a maxi-
mum of 5 s computation time per move; games were scored using Chinese rules 
with a komi of 7.5 points (extra points to compensate white for playing second). 
We also played handicap games where AlphaGo played white against existing Go 
programs; for these games we used a non-standard handicap system in which komi 
was retained but black was given additional stones on the usual handicap points. 
Using these rules, a handicap of K stones is equivalent to giving K − 1 free moves 
to black, rather than K − 1/2 free moves using standard no-komi handicap rules. 
We used these handicap rules because AlphaGo’s value network was trained spe-
cifically to use a komi of 7.5.

With the exception of distributed AlphaGo, each computer Go program was 
executed on its own single machine, with identical specifications, using the latest 
available version and the best hardware configuration supported by that program 
(see Extended Data Table 6). In Fig. 4, approximate ranks of computer programs 
are based on the highest KGS rank achieved by that program; however, the KGS 
version may differ from the publicly available version.

The match against Fan Hui was arbitrated by an impartial referee. Five  
formal games and five informal games were played with 7.5 komi, no handi-
cap, and Chinese rules. AlphaGo won these games 5–0 and 3–2 respectively  
(Fig. 6 and Extended Data Table 1). Time controls for formal games were 1 h main 
time plus three periods of 30 s byoyomi. Time controls for informal games were 
three periods of 30 s byoyomi. Time controls and playing conditions were chosen 
by Fan Hui in advance of the match; it was also agreed that the overall match 
outcome would be determined solely by the formal games. To approximately 
assess the relative rating of Fan Hui to computer Go programs, we appended the 
results of all ten games to our internal tournament results, ignoring differences 
in time controls.
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Extended Data Table 1 | Details of match between AlphaGo and Fan Hui

Date Black White Category Result
5/10/15 Fan Hui AlphaGo Formal AlphaGo wins by 2.5 points
5/10/15 Fan Hui AlphaGo Informal Fan Hui wins by resignation
6/10/15 AlphaGo Fan Hui Formal AlphaGo wins by resignation
6/10/15 AlphaGo Fan Hui Informal AlphaGo wins by resignation
7/10/15 Fan Hui AlphaGo Formal AlphaGo wins by resignation
7/10/15 Fan Hui AlphaGo Informal AlphaGo wins by resignation
8/10/15 AlphaGo Fan Hui Formal AlphaGo wins by resignation
8/10/15 AlphaGo Fan Hui Informal AlphaGo wins by resignation
9/10/15 Fan Hui AlphaGo Formal AlphaGo wins by resignation
9/10/15 AlphaGo Fan Hui Informal Fan Hui wins by resignation

The match consisted of five formal games with longer time controls, and five informal games with shorter time controls. 
Time controls and playing conditions were chosen by Fan Hui in advance of the match.
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Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move is played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape 1 Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros 1 A constant plane filled with 0

Player color 1 Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).
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Extended Data Table 3 | Supervised learning results for the policy network

Architecture Evaluation

Filters Symmetries Features Test accu-
racy %

Train accu-
racy %

Raw net
wins %

AlphaGo
wins %

Forward
time (ms)

128 1 48 54.6 57.0 36 53 2.8
192 1 48 55.4 58.0 50 50 4.8
256 1 48 55.9 59.1 67 55 7.1

256 2 48 56.5 59.8 67 38 13.9
256 4 48 56.9 60.2 69 14 27.6
256 8 48 57.0 60.4 69 5 55.3

192 1 4 47.6 51.4 25 15 4.8
192 1 12 54.7 57.1 30 34 4.8
192 1 20 54.7 57.2 38 40 4.8

192 8 4 49.2 53.2 24 2 36.8
192 8 12 55.7 58.3 32 3 36.8
192 8 20 55.8 58.4 42 3 36.8

The policy network architecture consists of 128, 192 or 256 filters in convolutional layers; an explicit symmetry ensemble over 2, 4 or 8 symmetries; using only the first 4, 12 or 
20 input feature planes listed in Extended Data Table 1. The results consist of the test and train accuracy on the KGS data set; and the percentage of games won by given policy 
network against AlphaGo’s policy network (highlighted row 2): using the policy networks to select moves directly (raw wins); or using AlphaGo’s search to select moves (AlphaGo 
wins); and finally the computation time for a single evaluation of the policy network.
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Extended Data Table 4 | Input features for rollout and tree policy

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties (1, 2, ≥3)  
at each intersection of the pattern.
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Extended Data Table 5 | Parameters used by AlphaGo

Symbol Parameter Value

β Softmax temperature 0.67
λ Mixing parameter 0.5
nvl Virtual loss 3
nthr Expansion threshold 40
cpuct Exploration constant 5
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Extended Data Table 6  | Results of a tournament between different Go programs

Short name Computer Player Version Time settings CPUs GPUs KGS Rank Elo

αd
rvp Distributed AlphaGo See Methods 5 seconds 1202 176 – 3140

αrvp AlphaGo See Methods 5 seconds 48 8 – 2890

CS CrazyStone 2015 5 seconds 32 – 6d 1929
ZN Zen 5 5 seconds 8 – 6d 1888
PC Pachi 10.99 400,000 sims 16 – 2d 1298
FG Fuego svn1989 100,000 sims 16 – – 1148
GG GnuGo 3.8 level 10 1 – 5k 431

CS4 CrazyStone 4 handicap stones 5 seconds 32 – – 2526
ZN4 Zen 4 handicap stones 5 seconds 8 – – 2413
PC4 Pachi 4 handicap stones 400,000 sims 16 – – 1756

Each program played with a maximum of 5 s thinking time per move; the games against Fan Hui were conducted using longer time controls, as described in Methods. CN4, ZN4 
and PC4 were given 4 handicap stones;  komi was 7.5 in all games. Elo ratings were computed by BayesElo.
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Extended Data Table 7 | Results of a tournament between different variants of AlphaGo

Short Policy Value Rollouts Mixing Policy Value Elo
name network network constant GPUs GPUs rating

αrvp pσ vθ pπ λ = 0.5 2 6 2890
αvp pσ vθ – λ = 0 2 6 2177
αrp pσ – pπ λ = 1 8 0 2416
αrv [pτ ] vθ pπ λ = 0.5 0 8 2077
αv [pτ ] vθ – λ = 0 0 8 1655
αr [pτ ] – pπ λ = 1 0 0 1457
αp pσ – – – 0 0 1517

Evaluating positions using rollouts only (αrp, αr), value nets only (αvp, αv), or mixing both (αrvp, αrv); either using the policy network pσ(αrvp, αvp, αrp), or no policy 
network (αrvp, αvp, αrp), that is, instead using the placeholder probabilities from the tree policy pτ throughout. Each program used 5 s per move on a single machine 
with 48 CPUs and 8 GPUs. Elo ratings were computed by BayesElo.

© 2016 Macmillan Publishers Limited. All rights reserved



ARTICLERESEARCH

Extended Data Table 8 | Results of a tournament between AlphaGo and distributed AlphaGo, testing scalability 
with hardware

AlphaGo Search threads CPUs GPUs Elo

Asynchronous 1 48 8 2203
Asynchronous 2 48 8 2393
Asynchronous 4 48 8 2564
Asynchronous 8 48 8 2665
Asynchronous 16 48 8 2778
Asynchronous 32 48 8 2867
Asynchronous 40 48 8 2890
Asynchronous 40 48 1 2181
Asynchronous 40 48 2 2738
Asynchronous 40 48 4 2850

Distributed 12 428 64 2937
Distributed 24 764 112 3079
Distributed 40 1202 176 3140
Distributed 64 1920 280 3168

Each program played with a maximum of 2 s thinking time per move. Elo ratings were computed by BayesElo.
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Extended Data Table 9 | Cross-table of win rates in per cent between programs

αrvp αvp αrp αrv αr αv αp

αrvp - 1 [0; 5] 5 [4; 7] 0 [0; 4] 0 [0; 8] 0 [0; 19] 0 [0; 19]

αvp 99 [95; 100] - 61 [52; 69] 35 [25; 48] 6 [1; 27] 0 [0; 22] 1 [0; 6]

αrp 95 [93; 96] 39 [31; 48] - 13 [7; 23] 0 [0; 9] 0 [0; 22] 4 [1; 21]

αrv 100 [96; 100] 65 [52; 75] 87 [77; 93] - 0 [0; 18] 29 [8; 64] 48 [33; 65]

αr 100 [92; 100] 94 [73; 99] 100 [91; 100] 100 [82; 100] - 78 [45; 94] 78 [71; 84]

αv 100 [81; 100] 100 [78; 100] 100 [78; 100] 71 [36; 92] 22 [6; 55] - 30 [16; 48]

αp 100 [81; 100] 99 [94; 100] 96 [79; 99] 52 [35; 67] 22 [16; 29] 70 [52; 84] -

CS 100 [97; 100] 74 [66; 81] 98 [94; 99] 80 [70; 87] 5 [3; 7] 36 [16; 61] 8 [5; 14]

ZN 99 [93; 100] 84 [67; 93] 98 [93; 99] 92 [67; 99] 6 [2; 19] 40 [12; 77] 100 [65; 100]

PC 100 [98; 100] 99 [95; 100] 100 [98; 100] 98 [89; 100] 78 [73; 81] 87 [68; 95] 55 [47; 62]

FG 100 [97; 100] 99 [93; 100] 100 [96; 100] 100 [91; 100] 78 [73; 83] 100 [65; 100] 65 [55; 73]

GG 100 [44; 100] 100 [34; 100] 100 [68; 100] 100 [57; 100] 99 [97; 100] 67 [21; 94] 99 [95; 100]

CS4 77 [69; 84] 12 [8; 18] 53 [44; 61] 15 [8; 24] 0 [0; 3] 0 [0; 30] 0 [0; 8]

ZN4 86 [77; 92] 25 [16; 38] 67 [56; 76] 14 [7; 27] 0 [0; 12] 0 [0; 43] -

PC4 99 [97; 100] 82 [75; 88] 98 [95; 99] 89 [79; 95] 32 [26; 39] 13 [3; 36] 35 [25; 46]

95% Agresti–Coull confidence intervals in grey. Each program played with a maximum of 5 s thinking time per move. CN4, ZN4 and PC4 were given 4 handicap stones;  
komi was 7.5 in all games. Distributed AlphaGo scored 77% [70; 82] against αrvp and 100% against all other programs (no handicap games were played).
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Extended Data Table 10 | Cross-table of win rates in per cent between programs in the single-machine scalability study

Threads 1 2 4 8 16 32 40 40 40 40

GPU 8 8 8 8 8 8 8 4 2 1

1 8 - 70 [61;78] 90 [84;94] 94 [83;98] 86 [72;94] 98 [91;100] 98 [92;99] 100 [76;100] 96 [91;98] 38 [25;52]

2 8 30 [22;39] - 72 [61;81] 81 [71;88] 86 [76;93] 92 [83;97] 93 [86;96] 83 [69;91] 84 [75;90] 26 [17;38]

4 8 10 [6;16] 28 [19;39] - 62 [53;70] 71 [61;80] 82 [71;89] 84 [74;90] 81 [69;89] 78 [63;88] 18 [10;28]

8 8 6 [2;17] 19 [12;29] 38 [30;47] - 61 [51;71] 65 [51;76] 73 [62;82] 74 [59;85] 64 [55;73] 12 [3;34]

16 8 14 [6;28] 14 [7;24] 29 [20;39] 39 [29;49] - 52 [41;63] 61 [50;71] 52 [41;64] 41 [32;51] 5 [1;25]

32 8 2 [0;9] 8 [3;17] 18 [11;29] 35 [24;49] 48 [37;59] - 52 [42;63] 44 [32;57] 26 [17;36] 0 [0;30]

40 8 2 [1;8] 8 [4;14] 16 [10;26] 27 [18;38] 39 [29;50] 48 [37;58] - 43 [30;56] 41 [26;58] 4 [1;18]

40 4 0 [0;24] 17 [9;31] 19 [11;31] 26 [15;41] 48 [36;59] 56 [43;68] 57 [44;70] - 29 [18;41] 2 [0;11]

40 2 4 [2;9] 16 [10;25] 22 [12;37] 36 [27;45] 59 [49;68] 74 [64;83] 59 [42;74] 71 [59;82] - 5 [1;17]

40 1 62 [48;75] 74 [62;83] 82 [72;90] 88 [66;97] 95 [75;99] 100 [70;100] 96 [82;99] 98 [89;100] 95 [83;99] -

95% Agresti–Coull confidence intervals in grey. Each program played with 2 s per move; komi was 7.5 in all games.
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Extended Data Table 11 | Cross-table of win rates in per cent between programs 
in the distributed scalability study

Threads 40 12 24 40 64

GPU 8 64 112 176 280

CPU 48 428 764 1202 1920

40 8 48 - 52 [43; 61] 68 [59; 76] 77 [70; 82] 81 [65; 91]

12 64 428 48 [39; 57] - 64 [54; 73] 62 [41; 79] 83 [55; 95]

24 112 764 32 [24; 41] 36 [27; 46] - 36 [20; 57] 60 [51; 69]

40 176 1202 23 [18; 30] 38 [21; 59] 64 [43; 80] - 53 [39; 67]

64 280 1920 19 [9; 35] 17 [5; 45] 40 [31; 49] 47 [33; 61] -

95% Agresti–Coull confidence intervals in grey. Each program played with 2 s per move; komi was 7.5 in all games.
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