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Jean Leray was first and foremost an analyst. His
involvement with algebraic topology was initially
incidental and became later, at first for nonmath-
ematical reasons, a topic of major interest for him
for about ten years. His papers are written with his
own notation and conventions, which, for the most
part, have not been adopted and are consequently
little read today. But it is there that sheaves and
spectral sequences originated and were first used,
so this work has exerted an immense influence on
the further course of algebraic topology and of the
emerging homological algebra. It divides naturally
into three parts.

Leray-Schauder
Leray’s first contacts with topology came through
his collaboration with Juliusz Schauder [LS34], fol-
lowing the pattern of earlier work by Schauder: he
had considered continuous transformations of a
Banach space B of the form

(1) Φ(x) = x− F (x)

where F is a completely continuous operator, de-
fined on B or only on some bounded set, and he
had deduced results on elliptic or hyperbolic equa-

tions from an extension to that situation of the in-
variance of domain and of Brouwer’s fixed point
theorem.

The paper [LS34] introduces, again in analogy
with Brouwer, a topological degree d(Φ,ω,b), where
ω is a bounded open set in B and b ∈ B does not
belong to the boundary of ω. The degree has in
particular the property that it can be 6= 0 only if
b ∈ Φ(ω) . The paper also defines an index i(Φ, a)
at a point a that is isolated in its fiber Φ−1

(
Φ(a)

)
.

It is an integer, which under some technical as-
sumptions is equal to ±1. If Φ−1(b) consists of fi-
nitely many points, then d(Φ,ω,b) is the sum of
the i(Φ, a) for a ∈ Φ−1(b). These notions are ap-
plied to a family of transformations

(2) Φ(x, k) = x− F (x, k)

depending on a parameter k varying on a closed
interval K of the real line. For each k ∈ K , the
transformation F (x, k) is as above, defined on ω(k) ,
and the union of the ω(k)× k is bounded in B ×K .
The goal is to investigate the fixed points of F (x, k),
i.e., the zeroes of Φ(x, k) . This is done via a study
of d

(
Φ(x, k),ω(k),0

)
. It is assumed that for some

fixed value k0 of k the transformation F (x, k0) has
finitely many zeroes. The goal is then to prove,
under some conditions, the existence of fixed
points for other values of k, some of which depend
continuously on k . The results are applied to a va-
riety of functional or differential equations.

Editor’s Note: Jean Leray, called the “first modern analyst” in an article in Nature, died November 10, 1998, in La Baule, France.
He is best known for his stunning work in partial differential equations, including the first mathematical description of turbulence in
fluid flow and an early application of the idea of a function space to solving differential equations. But the work that he did in alge-
braic topology and several complex variables has also had a huge impact. He was the one who introduced sheaves and spectral se-
quences into topology, and he was a pioneer in establishing a general theory of residues in several complex variables.

Leray was born November 7, 1906, in Nantes, France; went to the École Normale Supérieure; and became a professor first in Nancy,
then in Paris, and ultimately, starting in 1947, at the Collège de France. He was a member of the Académie des Sciences de Paris, the
National Academy of Sciences of the USA, the Royal Society of London, and at least half a dozen other national academies. He re-
ceived the Malaxa Prize (Romania, 1938) with J. Schauder, the Grand Prix in mathematical sciences (Académie des Sciences de Paris,
1940), the Feltrinelli Prize (Lincei, 1971), and the Wolf Prize (Israel, 1979) with A. Weil.

His Selected Papers [L97], edited by Paul Malliavin, are in three volumes: on algebraic topology, partial differential equations, and
several complex variables respectively. Each has a detailed introduction that includes thorough references; the respective introduc-
tions are by Armand Borel, Peter Lax, and Gennadi Henkin. These authors have kindly prepared from their introductions the abridged
versions below, which are intended for a broad Notices audience.
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Leray’s first paper in algebraic topology [L35]
is a sequel to [LS34]. Leray gives a formula for the
degree of the composition of two transformations
of the type (1) and deduces from it:
a. invariance of the domain under assumptions

somewhat more general than those of
Schauder,

b. a theorem about the invariance of the number
of bounded components in the complement of
a closed bounded set C : it is the same for C
and C′ if there exists a homeomorphism f of
C onto C′ such that the differences f (x)− x for
x ∈ C form a bounded set.

Alexandroff and Hopf would have liked to in-
clude (b) for finite-dimensional spaces in their
book (Topologie, Springer, 1935), but it was too late
when they heard about it. They did acknowledge
it in a footnote on page 312, though.

The War Years
Apart from [L35], topology in the work of Schauder
and Leray-Schauder is definitely a servant, a tool
to prove theorems in analysis. It might well have
remained so for Leray had it not been for the Sec-
ond World War. Leray campaigned as an officer, was
captured in 1940, and sent to an officers’ camp in
Austria, where he stayed until the end of the war.
There he and some colleagues created a university,
of which he became the director (“recteur”). He
feared that if his competence in fluid dynamics and
mechanics were known to the Germans, he might
be required to work for them, so he turned his
minor interest in topology into the major one and
presented himself as a topologist. Indeed, during
those five years he carried out research only in
topology.

His first goal was to set up a theory of trans-
formations and equations which would include
Leray-Schauder and would be directly applicable
to more general spaces without a reduction to fi-
nite-dimensional spaces, in contrast with
Schauder’s work and [LS34]. He also wanted to
avoid simplicial approximations, triangulations,
subdivisions of complexes, and quasilinearity of
the ambient space. So he had to create a new ho-
mology theory.

Until about 1935 the main tools in algebraic
topology were the simplicial homology groups,
with some new ideas of Čech and Vietoris to de-
fine homology for more general spaces. Around
1935 a new type of homology group was introduced
independently by several people and soon chris-
tened cohomology groups by H. Whitney. They
were dual to homology groups but had the great
advantage of having a product, adding the de-
grees, soon called the cup-product. For differen-
tiable manifolds an example was well known: the
complex of exterior differential forms with its
product and exterior differential, the cohomology
of which was related to homology by the de Rham

theorems. In fact, one of the proponents of a co-
homology theory, J. W. Alexander, had indeed been
inspired by the exterior differential calculus (An-
nals of Math. (2) 37 (1936), 698–708). Leray viewed
it in this way and remarked in [L50a], section 5, that
Alexander was the “first to apply this formalism
to the topology of abstract spaces.” Following
Alexander, he wanted to develop directly a theory
akin to cohomology and warned the reader later
in many papers that he would call his groups ho-
mology groups, since he had little use for the tra-
ditional homology groups (I shall use cohomology).
While developing his ideas, he was pretty much cut
off from current research,1 so that he started es-
sentially from scratch in his own framework.

The outcome was a three-part “Course in alge-
braic topology taught in captivity”, published in
1945 [L45], previously announced in part in some
Comptes Rendus notes. In the context of Leray’s
oeuvre, it has to be viewed as a first step. The con-
cepts appearing there for the first time have either
been strongly modified or not survived, so that
there is little point in supplying many details here.
I shall mainly try to give some basic definitions,
in particular that of “form on a space”, which Leray
viewed as the analogue of differential forms in
his theory. In the introduction to the second part
of [L45], he states that his forms on the space
obey most of the rules of the calculus of Pfaffian
forms and that the main interest of the paper
seems to him to be its treatment of a problem in
topology, alien to any assumptions of differentia-
bility, by computations of that nature.

The starting points are the notions of a complex
on a space and of a “couverture”. Fix a ground ring
L (usually Z,Z/mZ, or Q). An abstract complex is
a free finitely generated graded (by degrees in N)
L-module, endowed with a differential d, of square
zero, which increases the degree by one. A com-
plexK on a space E is an abstract complex, to each
element C of which is assigned a subset of E, its
support |C|, with some natural properties. An im-
portant example is the cochain complex of the
nerve of a finite cover of E, the support of a sim-
plex being the intersection of the subsets labeled
by the vertices. Given a closed subspace F of E, let
F.K be the quotient of K by the submodule of 
elements not meeting F , the support of F.C being
F ∩ |C|. The complex K is a couverture if xK is
acyclic for all x , plus a coherent condition for the
generator of H0(xK;L). This is a condition similar
to the validity of the Poincaré lemma. The forms
on E are the elements of a couverture. Since those
are finitely generated by definition, infinitely many

1His main information came from some reprints Heinz
Hopf had managed to procure for him, mainly by 
him and some people around him, in particular his paper
on the homology of grouplike manifolds (Annals of Math.
42 (1941), 28–52) and Gysin’s Thesis (Comm. Math. Helv.
14 (1942), 61–122).
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will be needed to define the cohomology of a space
in general. Besides, there is not yet a product.
Leray defines the latter geometrically, via the no-
tion of intersection K ◦K′ of two complexes K
and K′ . It is the quotient of K ⊗K′ by the inter-
section of the kernels of the natural maps
K ⊗K′ → xK ⊗ xK′ (x ∈ E) . The union of the cou-
vertures (over L) is a differential graded algebra.
By definition, its cohomology is the cohomology
ring H∗(E;L) of E with coefficients in L.

To compute it, it is not necessary to use all cou-
vertures: a family stable under intersection, which
contains couvertures with arbitrary small sup-
ports, suffices. This allows one to see that for a fi-
nite polyhedron we get back the usual cohomol-
ogy or that for a compact space it is equivalent to
Čech cohomology. The cohomology is mostly used
for locally compact spaces. As was noticed later,
it is in that case equivalent to the Alexander-Spanier
cohomology with compact supports. The paper
gives many properties of these cohomology groups,
for which I refer to §§6 to 9 in [B]. Let me just men-
tion: a long exact sequence in cohomology (with
compact supports) for a space and a closed sub-
space; generalizations of Hopf’s theorem to com-
pact groups, of the Lefschetz fixed point theorem,
and of the Leray-Schauder theory; for manifolds:
Poincaré and Alexander duality, the Jordan-Brouwer
theorem. Among the new results: on a compact
space a cohomology class of strictly positive de-
gree is nilpotent. If E has a closed finite cover
such that all nonempty intersections are acyclic,
the cohomology of E is isomorphic to that of the
nerve of the cover.

The Topology of a Continuous Map
Leray had developed a very special theory, but—
granted that his cohomology was essentially Čech
cohomology, say for compact spaces—the con-
crete results did not seem to go drastically be-
yond those of mainstream algebraic topology (even
though a closer examination would have revealed
a novel approach and more general assumptions
for a number of familiar results), so [L45] did not
create such a big impression. However, Leray had
other goals. For him, algebraic topology should not
only study the topology of a space, i.e., algebraic
objects attached to a space, invariant under home-
omorphisms, but also the topology of a represen-
tation (continuous map), i.e., topological invari-
ants of a similar nature for continuous maps.

Of course, if one is given a continuous map
f : E → E∗, there is always an induced homomor-
phism in homology or cohomology, but Leray had
something much deeper in mind, and the imple-
mentation of that idea led him to break entirely new
ground. That he had conceived of that development
while still in captivity is clear from the footnote in
the first page of the third part of [L45]. Also, in a
conversation with A. Weil in summer 1945 (see

A. Weil, Collected Papers, II, p. 526), he had spo-
ken of a homology “with variable coefficients” and
it is likely that, as an example, the cohomology
groups of the fibers of a continuous map were
very much on his mind.

The first publications by Leray in that new di-
rection are [L46a] and [L46b], which introduce first
versions of sheaves, cohomology with respect to
sheaves, and the spectral sequence of a continu-
ous map.

In [L46a] a sheaf B on the space E associates to
each closed subset F of E a module (or algebra) over
the given ground ring L and to each inclusion
F ⊃ F ′ a homomorphism B(F ) → B(F ′) with a nat-
ural transitivity property. The sheaf B is normal
if B(F ) is the inductive limit of the B(F ′) for F ′ ⊃ F.
A basic example is the q-th cohomology sheaf BqE
of E, which assigns Hq(F ;L) to F. (It is normal, since
the cohomology has compact supports.) Normal-
ity is always assumed. As a further example, the
sheaf B of germs of continuous functions is ob-
tained in this setup by letting B(F ) be the set of
equivalence classes of continuous functions de-
fined in open neighborhoods of F , two such func-
tions being equivalent if they coincide on some
neighborhood of F .

A form on E with coefficients in the sheaf B is
a finite linear combination 

∑
bi Xi , where the Xi

belong to the basis of a couverture and
bi ∈ B(|Xi|) . It is asserted that the constructions
and results of [L45] extend to that case, whence the
definition of the cohomology group (or ring if B
is a sheaf of rings) H∗(E;B) of E with respect to
B . Now let π : E → E∗ be a continuous map. By de-
finition, the transform π (B) of a sheaf on B by π
is the sheaf F∗ 7→ B(π−1(F∗)

)
, the direct image

in this setup. The q-th cohomology sheaf of π
is, by definition, π (BqE) ,  which assigns
Hq
(
π−1(F∗);L

)
to F∗ (the q -th right-derived 

functor of the direct image functor, in today’s par-
lance).

The (p, q) -cohomology group of π is

Hp
(
E;π (BqE)

)
.  The cohomology ring of π ,

which I shall denote H∗(π ), is the direct sum of
the (p, q)-cohomology groups, with the product
inherited from those on the cohomology of E∗
and of the closed subsets of E.

The next Comptes Rendus note [L46b] is de-
voted to the structure of H∗(π ). By this is meant
a procedure allowing one to relate it to the coho-
mology of E. I shall not try to describe it (see §11
of [B] for some details). One recognizes in it a
number of constructions soon to be codified in the
notion of a spectral sequence. There is a filtration
of H∗(E;L), and the successive quotients are ar-
rived at by a sequence of approximations, starting
from subquotients of H∗(π ) and using the action
of differentials on representative forms. Applica-
tions to fibre bundles are given in this and the two
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following Comptes Rendus notes (C. R. Acad. Sci.
Paris 223 (1946), 395–397, 412–415). The last one
in particular describes the real cohomology ring of
the quotient G/T of a compact simple group G by
a maximal torus T when G is classical.

In 1947 various improvements were contributed
by H. Cartan, J.-L. Koszul, and Leray himself. The
analysis of [L46b] led Koszul to what we now call
the spectral sequence of a filtered differential
graded ring, a notion soon adopted by Leray (under
some more general assumptions) and called later
by him “spectral ring”. Cartan suggested allowing
complexes to be differential graded algebras, not
necessarily free, finitely generated. Cartan and
Leray independently introduced the notion of a fine
complex (Leray’s terminology), i.e., stable under
partitions of unity associated to finite covers. Then
H∗(E;L) could be defined as the cohomology of
just one fine couverture, a considerable conceptual
simplification. In [L50a] Leray gives his final ex-
position of the theory (always cohomology with
compact supports of locally compact spaces). He
also introduces the cohomology of E with respect
to a differential graded sheaf (now called hyper-
cohomology) and shows it to be the abutment of
a spectral sequence in which an early term (E2
nowadays) is the cohomology of E with respect to
the derived sheaf HB of B , the “fundamental the-
orem of sheaf theory”.

During that period Leray had pursued his work
on fibre bundles, in particular, homogeneous
spaces of compact connected Lie groups. In his last
paper on this topic [L50c], among other results
Leray determines the real cohomology ring of G/T,
where G is now any compact semisimple group and
T a maximal torus, and establishes the Hirsch for-
mula giving the Poincaré polynomial of G/H when
H has the same rank as G .

After 1950, as before the war, algebraic topol-
ogy played only a subservient role in Leray’s work
and appeared mainly in his theory of residues and
in one paper on fixed point theorems [L59c].

Leray’s framework is sheaf cohomology and
spectral sequences for cohomology with compact
supports of locally compact spaces, and his the-
ory has proved to be a very powerful instrument
for those spaces. But Leray’s ideas penetrated
other parts of topology and of mathematics as
well. For this, various generalizations of his the-
ory were needed, and we list them briefly.

H. Cartan produced three versions of sheaf the-
ory between 1947 and 1950, of increasing gener-
ality. The last one [C] is valid over any regular
space. The definition of sheaf is modified in a
point of capital importance: a sheaf on the space
X now assigns to each open subset a module, or
ring (in Leray, and in the first two versions of Car-
tan, closed subsets were used). Injective resolutions
are introduced; the fundamental theorem of sheaf
theory is proved in full generality (and became a

fundamental tool in the construction of de-
rived categories). In 1950 a spectral se-
quence in singular homology or cohomol-
ogy, also for general spaces, was
introduced by J.-P. Serre, was applied to a
very broad (and new) type of fibration,
and was used in particular to study ho-
motopy groups of spheres.

The passage to open subsets in the de-
finition of sheaves opened the way to the
introduction of sheaves in several com-
plex variables (Cartan, Serre), in algebraic
geometry over C (Kodaira, Spencer, Serre),
and over any algebraically closed ground-
field (Serre). These generalizations and ap-
plications go far beyond Leray’s own con-
tributions. Still, the sources of those
groundbreaking ideas are the notes [L46a],
[L46b], and they are so original that no
earlier work by someone else can be viewed
as a precursor.

Peter D. Lax

Jean Leray was one of the leading math-
ematicians of the twentieth century. A
large part of his interests center on par-
tial differential equations, especially those
arising in mathematical physics. His in-
vestigations, some of them going back
more than sixty years, still set the agenda
of research in the fields in which he
worked. The methods he introduced have
found their uses in far-flung areas of math-
ematics.

Leray’s papers are well organized; each
distinct result has a chapter of its own, and
the chapters are divided into short sections
devoted to particular technical aspects of
the argument. Since a priori estimates lie
at the heart of most of his arguments,
many of Leray’s papers contain sym-
phonies of inequalities; sometimes the or-
chestration is heavy, but the melody is al-
ways clearly audible.

Within the subject of partial differential
equations, Leray studied both stationary
problems, mostly governed by elliptic equa-
tions, and time-dependent problems, gov-
erned by parabolic and hyperbolic equa-
tions. His 1933 dissertation [L33], in the
Journal de Mathématiques Pures et Ap-
pliqués, deals with stationary problems,
using an abstract and extended version of
Erhardt Schmidt’s method of deformation
and bifurcation. A wealth of applications
is presented, including the existence of

Peter D. Lax is professor emeritus of mathemat-
ics at the Courant Institute of Mathematical Sci-
ences, New York University. His e-mail address
is lax@cims.nyu.edu.

Photographs of Jean
Leray courtesy of the
Académie des
Sciences Archives
and Jean Leray
relatives.
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steady rotating fluids in three dimensions that
satisfy the Navier-Stokes equation.

In 1934 Leray and Schauder [LS34] devised the
epoch-making method bearing their name, using
deformations to prove the existence of solutions
for various classes of equations. This method ex-
tends Brouwer’s notion of the degree to mappings
of infinite-dimensional spaces of form I plus com-
pact map. Like its finite-dimensional counterpart,
the degree remains invariant under continuous
deformations at every point that is not the image
of a boundary point. To apply this principle in a
concrete situation, two sets of a priori estimates
have to be made: one showing the compactness of
the one-parameter family of mappings employed,
the other showing that all points on a sphere of
radius R are mapped into points outside of a
sphere. In addition, one has to verify for a partic-
ular value of the parameter that the degree of the
mapping is nonzero. Leray and Schauder gave a
number of applications of their method to solve
the Dirichlet problem for various classes of qua-
silinear second-order elliptic equations; the norm
they employ is the Hölder norm.

Ever since its appearance the Leray-Schauder de-
gree has been one of the most powerful methods
for dealing with nonlinear problems. A quick search
of Mathematical Reviews disclosed 591 references
to papers that make use of it.

Leray returned to elliptic problems again and
again. In a 1935 paper in Commentarii Matematici
Helvetici Leray used degree theory to construct
steady ideal fluid flow in the plane around an ob-
stacle and its wake. In a technically formidable
paper in 1939 he showed how to use degree the-
ory to construct solutions of boundary value prob-
lems for second-order fully nonlinear elliptic equa-
tions in two variables, including the Monge-Ampère
equation. In the 1960s, in collaboration with J.-L.
Lions, he examined results of Vishik and of Minty
and Browder from the point of view of degree the-
ory in finite-dimensional space. In the 1970s he and
Y. Choquet-Bruhat used a fixed point theorem to
solve the Dirichlet problem for second-order elliptic
equations in divergence form.

We turn now to Leray’s studies of time-depen-
dent problems. In a paper [L34] that appeared in
Acta Mathematica in 1934 Leray investigates the
existence, uniqueness, and smoothness of solutions
of the initial value problem for the Navier-Stokes
equation in three-dimensional space. Physicists
sometimes deride such existential pursuits by
mathematicians, saying that they stop just when
things are getting interesting, but what Leray found
about existence, smoothness, and uniqueness of
solutions was far more interesting for the physics
of fluids than anything thought of before. He
showed that in three space dimensions smooth ini-
tial data give rise to solutions that are smooth for
a finite time; these solutions may be continued

beyond this time only as generalized (weak) solu-
tions of the Navier-Stokes equations. Leray calls
these turbulent solutions. He shows that if two
solutions, one regular and the other turbulent,
have the same initial values, then they are equal;
but it is still not known if turbulent solutions are
uniquely determined by their initial data. Leray’s
results suggest a scenario for the occurrence of tur-
bulence in fluid flow as the breakdown of smooth
solutions as well as the possibility of the branch-
ing of weak solutions into different time histo-
ries.

Leray shows that in order for a solution to be-
come turbulent at time T the maximum velocity
V (t) must blow up like const/

√
T − t as t ap-

proaches T. No such solutions have been found so
far. Leray suggested that there may be singular sim-
ilarity solutions of the form

ui(x, t) = (T − t)−1/2Ui((T − t)−1/2x),

ui denoting the components of velocity. Clearly a
solution of this form becomes singular as t ap-
proaches T. However, recently Necas, Ruzicka, and
Sverak (1996) have shown that the equations that
must be satisfied by the functions Ui have no so-
lution of class L3 in the whole three-dimensional
space. Even more recently, Tai-peng Tsai [Tsa] has
shown that no similarity solution, unless identically
zero, has locally finite energy and locally finite
rate of energy dissipation.

In the course of constructing his possibly tur-
bulent solutions Leray used a host of concepts
and methods of functional analysis that have since
become an indispensable part of the arsenal of an-
alysts: the weak compactness of bounded se-
quences in L2, and a weakly convergent sequence
is strongly convergent if and only if the limit of the
norms is the norm of the limit. Leray defined the
weak derivative of an L2 function in the modern
sense, as well as the concept of an L2 vector field
that is divergence free in the weak sense. He used
mollifiers to show that a weak derivative is a strong
derivative.

Despite much effort, remarkably little has been
learned in the last sixty years about the smooth-
ness of the weak solutions constructed by Leray.
Scheffer (1976) was the first to study the size of
the singular set in space-time; subsequently Caf-
farelli, Kohn, and Nirenberg (1982) have shown
that the one-dimensional Hausdorff measure of the
singular set is zero. In particular, the singularities
cannot lie along a smooth curve. More recently, sim-
plified derivations of the CKN result have been
given by Fang-Hua Lin and Chun Liu (1996), as
well as by Gang Tian and Zhouping Xin [TiX].

There has been some advance in existence the-
ory. In 1951 Eberhardt Hopf showed that the
Navier-Stokes equations have weak solutions with
prescribed initial values in smoothly bounded do-
mains in three-dimensional space, with zero
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velocity at the boundary. Hopf’s proof makes use
of the same functional analytic machinery as
Leray’s, but it is simpler in some details; in par-
ticular, instead of mollification he uses a Galerkin
procedure to construct approximate solutions. A
different approach to existence theory was taken
by Fujita and Kato (1964); they used fractional
powers of operators and the theory of semigroups.

Our knowledge of smooth solutions has ad-
vanced. Leray had shown that if the initial data are
sufficiently smooth and tend to zero sufficiently
fast near infinity, then a unique smooth solution
exists in a time interval [0,T]; the size of this in-
terval may depend on the viscosity γ. Ebin and
Marsden (1970), Swann (1971), and Kato (1972)
have shown that in domains without boundaries
T may be chosen to be independent of the size of
viscosity and that as γ tends to zero these solu-
tions with fixed initial data tend to the solution of
the inviscid incompressible Euler equations. No
comparable result is known for flows in a domain
with boundaries.

Leray showed that in the absence of a driving
force in the interior or on the boundary, solutions
of the Navier-Stokes equation tend to zero as t
tends to ∞ and that they regain regularity after a
finite time. Much work has been done since on the
behavior of driven viscous flows as t →∞, such as
the finiteness of the Hausdorff dimension of the
so-called attractor set; see, e.g., Babin and Vishik
[BV], Constantin and Foias [CF], Témam [Té], La-
dyzhenskaya [Lad], and the literature quoted there.

Major effort has been devoted to devising and
implementing effective computational schemes
for calculating Navier-Stokes flows, steady and
time dependent. Curiously, although for many
classes of partial differential equations computa-
tions have, in von Neumann’s prophetic words,
“provided us with those heuristic hints which are
needed in all parts of mathematics for genuine
progress,” computations have so far failed to shed
much light on whether there are regular solutions
that become turbulent.

After World War II Leray turned his attention to
time-dependent hyperbolic partial differential
equations. As pointed out long ago by Friedrichs
and Lewy, the key to the initial value problem is
furnished by energy inequalities. Leray [L53] de-
rived these by multiplying the nth order equation
a(x,D)u = 0 by mu ,  where m(x,D) is an
(n− 1)st -order hyperbolic differential operator
whose characteristics separate those of a; a nat-
ural choice is m = aτ , τ = ∂/∂t . The product
(mu)au is integrated over a domain in (x, t) space
bounded by initial and final surfaces. Integration
by parts produces integrals over the bounding
spacelike surfaces whose integrands are quadratic
forms in the (n− 1)st derivatives of u. A criterion
of Gårding shows that these energy integrals are
positive definite.

In 1958 Calderon showed how energy estimates
can be derived by employing singular integral
(pseudodifferential) operators as symmetrizers of
hyperbolic operators.

In the 1960s Leray became interested in hyper-
bolic equations with multiple characteristics. A
typical example is

utt + ux = 0 ;

this equation has solutions of the form
u = e−inx+

√
int , which shows that solutions do not

depend boundedly in the CN norm on their initial
data at t = 0, no matter how large N is. It follows
that the initial value problem cannot be solved for
all CN initial data. The same conclusion holds for
all hyperbolic operators a(x,D) with multiple char-
acteristics unless restrictions, called the Levi-Lax
condition and given in [Lax], are placed on the al-
lowable lower-order terms; see Mizohata [Mi]. In the
1960s Ohya had discovered that if the coefficients
of a(x,D) and the prescribed initial data are not
only C∞ but in an appropriate Gevrey class, then
the initial value problem has a solution that belongs
to a Gevrey class.

The importance of Gevrey classes in this con-
text is that they are not quasianalytic, i.e., that
they contain functions with arbitrarily prescribed
compact support. Therefore it is possible to define
domains of dependence and domains of influence
for Gevrey class solutions. Leray [LO67], in col-
laboration with Ohya, generalized Ohya’s result
considerably, including even quasilinear equations
and systems of nth-order equations.

Leray’s formulation of analytical problems in
geometric terms is very much in the spirit of Poin-
caré, although for Poincaré function spaces were
a promised land he saw but did not enter. Like Poin-
caré, Leray chose to work mostly on problems that
came from physics. In marked contrast, the found-
ing members of the Bourbaki movement, most of
them Leray’s contemporaries, sought inspiration
not in nature but in mathematics itself. That Leray
remained faithful to nature had a profound effect
on postwar French mathematics. For it was his
achievements, prestige, and influence that assured
a rightful place for his outlook; he was the intel-
lectual guide of the present distinguished French
school of applied mathematics. More than that, he
provided that balance between the concrete and the
abstract that is so essential for the health of math-
ematics.

Gennadi M. Henkin

The works of Jean Leray in the 1950s and 1960s
twice radically changed the direction of the de-
velopment of contemporary complex analysis.

Gennadi M. Henkin is professor of mathematics at l’Uni-
versité Pierre et Marie Curie (Paris VI). His e-mail address
is henkin@math.jussieu.fr.
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Indeed, before the 1950s the theory of functions
of several complex variables was based, in general,
on traditional constructive methods.

One can mention here a series of works of 
K. Oka and H. Cartan, who in the period 1936–50,
using the Cauchy-Weil formula (1935), solved the
“fundamental problems” (the problems of 
P. Cousin, K. Weierstrass, H. Poincaré, E. Levi, and
A. Weil). At the same time in the 1940s Leray, in
connection with the study of the topology of con-
tinuous mappings and fiber spaces, developed so-
called “sheaf theory” (1946, 1950).

Developing the ideas of Leray and Oka, H. Car-
tan (1950) introduced coherent analytic sheaves.
After this it was found (by H. Cartan and J.-P. Serre
and later H. Grauert and R. Remmert) that the
methods of sheaf theory allowed one not only to
reduce constructive methods (integral formulas
of the Cauchy-Weil type) to a minimum in the 
Oka-Cartan theory but also to give a far-reaching
generalization of this theory.

Thus, in the 1950s the constructive analytical
methods of integral representations were practi-
cally driven out of multidimensional complex analy-
sis and were replaced by algebraic methods of
sheaf theory. The weakness of sheaf theory is that
it does not provide quantitative estimates for so-
lutions of the “fundamental problems”.

At the same time in the 1950s Leray systemat-
ically brought to the Cauchy problem sharply ad-
vanced, necessary analytical methods, in particu-
lar residue theory on complex manifolds. In
connection with this theory he introduced into
consideration the highly general Cauchy-Leray in-
tegral formula. This formula led to progress not
only for the Cauchy problem but also for a series
of other important problems of complex analysis
and differential equations that apparently could not
be solved if one had to rely on the nonconstruc-
tive methods of sheaf theory.

Thus, thanks to Leray, the constructive meth-
ods of residue theory and of integral representa-
tions occupied again a first-rank place in complex
analysis of several variables.

Holomorphic Cauchy Problem
The connection between multidimensional complex
analysis and the Cauchy problem has been more
apparent in formulas for elementary solutions of
elliptic and hyperbolic equations with constant
coefficients found in increasing generality in works
of G. Herglotz (1926, 1928), L. Fantappie (1943), 
I. Petrowski (1945), and Leray (1953). Namely, 
these formulas express elementary solutions u(x)

of a homogeneous hyperbolic operator P
(
−i ddx

)
of an arbitrary order in terms of abelian integrals
on the surface

{ξ ∈ CPn : P (ξ) = 0, x · ξ = 0}.
Starting from the Herglotz-Petrowski-Leray for-

mula (1953), Leray began in [L56] the study of the
Cauchy problem for equations with variable coef-
ficients. He stated his program of investigations
in the following way in the introduction to [L57]:2

Nous proposons d’étudier globalement
le problème linéaire de Cauchy dans le
cas complexe, puis dans le cas réel et
hyperbolique, en supposant les don-
nées analytiques. Notre principal but est
la proposition suivante: les singularities
de la solution appartiennent aux car-
actéristiques issues des singularités des
données ou tangentes à la variété qui
porte les données de Cauchy. C’est l’ex-
tension aux équations aux dérivées par-
tielles de la propriété fondamentale des
solutions des équations différentielles
ordinaires, linéaires et analytiques: leurs
singularités sont des singularités des
données.

However, the global Cauchy problem (both in the
complex and the real domain) turned out to be a
theme so large, difficult, and interesting that in
spite of the efforts of Leray himself and his suc-
cessors (Y. Hamada, C. Wagschal, J. Vaillant, 
D. Schiltz, D. Agnolo, P. Schapira, E. Leichtnam, 
B. Sternin, V. Shatalov, …) the formulated problem
is not yet solved completely. One of the most bril-
liant and unfinished ideas of Leray is contained in
the work [L56].

Several deep steps in the realization of this pro-
gram were done in the fundamental series of
Leray’s papers entitled “Problème de Cauchy I, II,

2“We propose to study globally the linear Cauchy prob-
lem in the complex case, then in the real hyperbolic case,
assuming the given data to be analytic. Our main goal is
the following proposition: the singularities of the solution
belong to the characteristics stemming from singularities
of the data or tangents to the variety carrying the Cauchy
data. This is the extension to partial differential equations
of the fundamental property of solutions of ordinary dif-
ferential equations that are linear and analytic: their sin-
gularities are singularities of the data.”

Doctoral Students of Jean Leray
René Deheuvels (1953)
István Fáry (ca. 1953)
Philippe-A. Dionne (1962)
Jean Vaillant (1964)
Pham The Lai (1966)
Solange Delache (1968)
Claude Wagschal (1973)
Dominique Schiltz (1987)

The Notices is grateful to Claude Wagschal and
Daniel Barsky for preparing this list.
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III, IV, VI”. The Leray paper entitled “Problème de
Cauchy V” has not been published, but in [L56] and
in Leray papers in 1962, 1963, and 1964 there are
some indications of the ideas of this work.

In the introduction to the article “Problème de
Cauchy I” [L57] Leray describes his idea of uni-
formization of the solution of the Cauchy problem
in the following brief and expressive way:3

Ce premier article étudie la solution
u(x) du problème de Cauchy près de la
variété S qui porte les données de
Cauchy. Si S n’est caractéristique en
aucun de ses points, alors, u(x) est holo-
morphe près de S , vu le théorème de
Cauchy-Kowalewski, et nos théorèmes
n’énoncent rien de neuf. Mais nous ad-
mettons que S soit caractéristique en
certains de ses points: il s’agit d’un cas
sans analogue en théorie des équations
différentielles ordinaires, en théorie
des équations aux dérivées partielles ce
cas joue un rôle fondamental, parce
qu’il est celui où u(x) présente les sin-
gularités les plus simples: u(x) peut
être uniformisé et, sauf des cas excep-
tionnels, est algébroide.

In the work of Gårding-Kotake-Leray (1964) de-
veloping [L57], the authors obtained an asymp-
totic expansion of the solution of the Cauchy prob-
lem in the neighborhood of characteristic points.
The Leray uniformization method was applied
with success to nonlinear systems in work of Y.
Choquet-Bruhat (1966).

A fundamental concept in the Leray program
(1957, 1963) is the so-called unitary solution of the
Cauchy problem. Denote by ξ∗ the hyperplane in
Cn or the point in (CPn)∗ defined by the equation

ξ∗ : ξ · x = ξ0 + ξ1 · x1 + · · · + ξn · xn = 0.

Let a(x, ξ) be a polynomial of degree m with respect
to ξ , independent of ξ0, with coefficients that are
holomorphic with respect to x ∈ Ω. Let g(x, ξ) be
the principal part of a(x, ξ), i.e., the term homo-
geneous in ξ of degree m such that a(x, ξ)− g(x, ξ)
is a polynomial in ξ of degree < m . A unitary 

solution for the operator a
(
x, ∂∂x

)
is, by definition,

a solution U (ξ, y) of the Cauchy problem

a
(
y,

∂
∂y

)
U (ξ, y) = 1,

where the function U (ξ, y) has a zero of order m
on the surface ξ · y = 0. Due to zero homogeneity
with respect to ξ , the function U (ξ, y) is a 

function of y ∈ Ω and ξ∗ ∈ (CPn)∗. Let a∗
(
x, ∂∂x

)
be the adjoint operator for a

(
x, ∂∂x

)
, and let

U∗(ξ, y) be a unitary solution corresponding to

a∗
(
x, ∂∂x

)
.

The Leray uniformization result [L57] can be ap-
plied to describing, in general, the singularities of
the multivalued function U (ξ, y) in the neighbor-
hood of characteristic points (y, ξ), those with
ξ · y = 0 and g(y, ξ) = 0. The uniformization of
unitary solutions of the Cauchy problem is used
in an essential way in the fundamental work of
Leray [L62] for defining the singular part of the “el-
ementary solution” for a hyperbolic operator. For

such an operator a
(
x, ∂∂x

)
, of degree m, a theorem 

of J. Hadamard (1923) and I. Petrowski (1937)
states the global existence and uniqueness of the
elementary solution E(x, y) of the equation

a
(
x, ∂∂x

)
E(x, y) = δ(x− y) with condition

suppE ⊂ E(y) , where E(y) is the union of all 
timelike paths originating from y. The formulated
existence and uniqueness result gives no precise
information about the singularities of E(x, y). Such
information can be obtained from the following for-
mula for E(x, y) given in [L62]:

E(x, y) = L(U∗(ξ, y)),

where U∗(ξ, y) is a unitary solution of the opera-
tor a∗ adjoint to a and L denotes a generalized
Laplace transform defined in [L62]. The Leray for-
mula, applied to a homogeneous operator with
constant coefficients a(∂/∂x) , turns into the Her-
glotz-Petrowski-Leray formula. For this case,

U∗(ξ, y) =
1
m!

(ξ · y)m/a(ξ).

From the Leray formula it follows that E(x, y)
as a function of x is holomorphic outside of the
characteristic conoid K(y) , the union of all bichar-
acteristics originating at y . In addition, the prin-
cipal part of the singularity of E(x, y) can be com-
puted on the conoid K(y) .

The work of Leray [L62] was generalized for
the case of nonstrictly hyperbolic equations in
works of Atiyah-Bott-Gårding (1970, 1973) and
was used by them for the development of the
Petrowski lacunas theory (1945) for hyperbolic
differential operators. For further results on the
holomorphic Cauchy problem and applications,

3“This first article studies the solution u(x) of the Cauchy
problem close to the variety S carrying the Cauchy data.
If S is characteristic at none of its points, then u(x) is holo-
morphic near S , by the Cauchy-Kovalevsky theorem, and
our theorems say nothing new. But we allow that S is char-
acteristic at certain of its points. This is a case without an
analog in the theory of ordinary differential equations;
in the theory of partial differential equations this case plays
a fundamental role because this is the one for which u(x)
presents the simplest singularities: u(x) can be uniformized
and, save for some exceptional cases, is algebroidal.” (An
algebroidal function in a domain D is a function on D
that satisfies a monic polynomial equation with coefficients
that are holomorphic on D.)
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see [L97], [DS], [Lei], [Shap], [StSh], [V], and refer-
ences therein.

Theory of Residues on Complex Manifolds
The results of Leray on the Cauchy problem turned
out to be closely connected to multidimensional
residue theory. Multidimensional residue theory
started actually with H. Poincaré’s (1887) work, in
which Poincaré introduced the 1-form-residue of
any rational 2-form in C2.

Leray [L59a] developed a general residue theory
on complex manifolds and applied it to the in-
vestigation of concrete integrals depending on pa-
rameters arising from solving the Cauchy problem.
F. Pham (1967) developed Leray’s investigation in
a more general context: namely, one can consider
the integral I(t) =

∫
x∈γ ω(x, t) of a rational (alge-

braic) differential p-form ω(x, t) depending alge-
braically on a parameter t ∈ T, with respect to a
p-cycle γ on an algebraic manifold X, where γ
does not intersect the singularity S(t) of the p-form
ω(x, t) .

It was proved that the integral I(t) is a (multi-
valued) analytic function of the parameter t out-
side of an analytic manifold L ⊂ T, called the “Lan-
dau manifold”. For the case considered by Leray,
the singularities of ω(z, t) have the form of poles
on the hypersurface S(t) depending linearly on t .
To the Landau manifold corresponds a manifold
L of such values t when S(t) has a singular (dou-
ble quadratic) point. For this case Leray (1959), ap-
plying the Picard-Lefchetz formula and a residue
formula, proved the following:

Let p = n = dimCX. Then going around the man-
ifold L along a simple loop, beginning and ending
in the point t0 ∈ T \ L , the integral I(t0) turns into

I(t0) + (−1)
(n−1)(n−2)

2 (2πi)N
∫
e

Resω(x, t),

where e is the so-called (n− 1)-dimensional “van-
ishing cycle” on S(t0) and N is a linking index of
e with γ. Hence, Leray [L59a] obtained explicit for-
mulas for the singular part I(t) in the neighborhood
of L. The only singularities of this integral that can
appear are poles, algebraic singularities of the sec-
ond order, and logarithmic singularities.

Further, Leray (1967), generalizing the work of
N. Nilsson (1964), applied the residue theory to the
investigation of singularities of integrals of the
large class of multivalued analytic forms whose sin-
gularities form algebraic submanifolds.

Leray (1956, 1959), developing on the one hand
the Herglotz-Petrowski-Leray (1953) formula and
on the other hand the theory of the analytic Fan-
tappie functionals (1943), found a formula called
by him the Cauchy-Fantappie formula, which led
to fundamental progress in analysis.

We formulate here only two direct applications
of the Leray formulas to the theory of analytic
functionals.

Let D be a linearly concave domain in CPn
in the sense that for every z ∈ D there 
exists a projective hyperplane CPn−1

ξ(z) =
{w ∈ CPn : ξ(z) ·w = 0} depending continuously
on z , passing through the point z , and contained
in D. Suppose {w0 = 0} is contained in D. The set
of projective hyperplanes contained in D forms in
the dual space (CPn)∗ the open set D∗ . Let

M = {z ∈ CPn : P̃1(z) = · · · = P̃r (z) = 0}
be an algebraic subset of CPn of dimension k ,
where the homogeneous polynomials P̃1, P̃2, . . . , P̃r
are such that rank [grad P̃1, . . . ,grad P̃r ] = n− k al-
most everywhere on M . Let H∗(K) denote the
space of linear functionals on the space H (K) of
holomorphic functions on K = CPn \D . For the
functional µ ∈H∗(K) we define the Cauchy-Fan-
tappie indicatrix as the function

f (ξ) = F µ(ξ) =
〈
µ,

z0

ξ · z
À
, ξ ∈ D∗.

We have f ∈H (D∗,O (−1)) , where O(l) denotes
the line bundle over (CPn)∗ whose sections are ho-
mogeneous functions of (ξ0, ξ1, . . . , ξn) of degree
l. The main result of the theory of analytic func-
tionals of L. Fantappie (1943), A. Martineau (1962,
1967), and L. Aizenberg (1966) can be formulated
as follows:

The mapping µ 7→ F µ realizes an iso-
morphism of the space H∗(K) and the
space H (D∗,O (−1)) .

The main application of analytic functionals ac-
cording to L. Fantappie (1943, 1956) consists of dif-
ferent methods of integration of partial differen-
tial equations with constant coefficients, including
an explicit solution of the Cauchy problem. This
application can be deduced from the following:

The functional µ ∈ H∗(K) has support
on K ∩M if and only if its Cauchy-Fan-
tappie indicatrix f = F µ satisfies the
system of differential equations

P̃j
( d
dξ

)
f (ξ) = 0, j = 1,2, . . . , r .

This last statement (Henkin (1995)) can be inter-
preted as a variant of the Ehrenpreis (1960, 1970)
and Palamodov (1961, 1967) “fundamental prin-
ciple” for systems with constant coefficients. For
further results on residue theory on complex man-
ifolds and applications, see [L97], [A], [BGVY], [BP],
[D], [H], [Tsi], and the references therein.
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