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When establishing lysogeny, temperate phages integrate their

genome as a prophage into the bacterial chromosome.

Prophages thus constitute in many bacteria a substantial part

of laterally acquired DNA. Some prophages contribute

lysogenic conversion genes that are of selective advantage to

the bacterial host. Occasionally, phages are also involved

in the lateral transfer of other mobile DNA elements or

bacterial DNA. Recent advances in the field of genomics

have revealed a major impact by phages on bacterial

chromosome evolution.
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Nestlé Research Centre, CH-1000 Lausanne 26, Vers-chez-les-Blanc,

Switzerland
�e-mail: harald.bruessow@rdls.nestle.com

Current Opinion in Microbiology 2003, 6:417–424

This review comes from a themed issue on

Host–microbe interactions: viruses

Edited by Esteban Domingo

1369-5274/$ – see front matter

� 2003 Elsevier Science Ltd. All rights reserved.

DOI 10.1016/S1369-5274(03)00086-9

Abbreviation
LCG lysogenic conversion gene

Introduction
The study of viruses from bacteria (bacteriophages or

short phages) was historically a major driving force in the

development of molecular biology. Many general con-

cepts of contemporary biology were derived from work

with phages, including the first completely sequenced

genomes. Phage research has since become the victim of

its own success, the technical advances in biology now

allows scientists to work with much more complicated

organisms. The phage research community has con-

tracted with only few exceptions, such as in dairy where

phages are still a cause of important economical losses.

Three recent trends have renewed the interest in phage

research: phages influence the cycling of organic matter in

the oceans, they are potential tools for the treatment of

antibiotic-resistant bacterial pathogens and they have a

major impact on bacterial genome evolution. More spe-

cifically, phages are important vectors for the lateral

transfer of DNA between bacterial strains. In this review,

we focus on important advances in this field over the past

two years.

Lateral gene transfer
With about 100 sequenced genomes of bacteria in the

public database and many more to come, genomics has

changed our understanding of microbiology. In fact, the

genomes of bacteria are remarkably fluid. A substantial

part of the bacterial DNA is not transferred from the

parental cell to its descendent (‘vertical’ transfer), but is

acquired horizontally by transformation, conjugation or

transduction (‘lateral’ transfer) [1��]. The replacement of

a tree-like by a web-like representation of the phyloge-

netic relationship between bacteria is a visual expression

of this change in perception of microbial evolution. An

important element of mobile DNA is bacteriophages.

Infection of a bacterial cell with a temperate phage

(Figure 1a,b) can have two outcomes: multiplication of

the phage with concomitant lysis of the bacterial host

(Figure 1c) or lysogenization, (i.e. integration of the phage

DNA into the bacterial chromosome as a prophage,

Figure 1d). Bacterial genomics revealed that lysogeny

is more the rule than the exception; many bacteria even

contain multiple prophages (Figure 2a). Some temperate

phages carry in their genomes extra genes that change the

phenotype of the bacterial host (‘lysogenic conversion

genes’, LCG) (Figure 2b). There is increasing evidence

from bacterial pathogens that lysogeny is a motor of short-

term bacterial evolution.

Phages as gene-transfer particles
Tailed phages are the most efficient gene-transfer par-

ticles developed in evolution. They represent densely

compacted phage DNA [2] encased in a protective

protein shell (the phage head) [3]. To this remarkable

DNA storage device is added an equally efficient DNA

transfer device, the phage tail and its associated fibres

(Figure 1a). This structure assures both the specific

recognition of the appropriate host cell and the guided

injection of the phage DNA into the bacterial cell ([4,5],

Figure 1b).

Some bacteria have learned to use phages for their own

purposes. In Pseudomonas aeruginosa, two phage-tail gene-

clusters have developed into bacteriocins [6]. The defec-

tive Bacillus subtilis prophage PBSX has maintained the

capacity to build a size-reduced phage head into which

13 kb fragments of random bacterial DNA are packaged.

A prophage remnant of Rhodobacter capsulatus acts as a

gene-transfer agent for random 4.5 kb fragments of bac-

terial DNA in bacteria-controlled DNA exchange

between cells in the stationary phase [7]. Prophage-like

elements from Mycobacterium tuberculosis encode active

integration/excision systems [8].

417

www.current-opinion.com Current Opinion in Microbiology 2003, 6:417–424



A particularly interesting case is the 15 kb-long patho-

genicity island SaPI1 from Staphylococcus aureus encoding

the toxin Tst involved in toxic shock. In cells infected

with S. aureus phage 80a, SaPI1 is excised from the

chromosome, it replicates autonomously and interferes

with phage growth by directing the encapsidation of its

own DNA into specially tailored small phage 80a heads

commensurate with its size. Upon phage-mediated trans-

fer to a recipient organism, SaPI1 integrates by means of

its own integrase [9��].

Specialised transduction
Resolvase-type integrases from phages of Gram-positive

bacteria have no requirements for cofactors facilitating

their integration into heterologous hosts [10]. If a pro-

phage is imprecisely excised from the heterologous host,

small segments of flanking bacterial DNA can be co-

packaged with the phage DNA and transferred to the

original host (‘specialized transduction’). In accordance

with this model, prophages from low GC content Gram-

positive bacteria frequently contain extra genes in the

vicinity of attR, the right attachment site (Figure 2b).

Sometimes these genes differ in GC-content from the

surrounding DNA and suggest a phage-mediated gene

transfer from a rare heterologous host differing in GC

content ([11], Figure 3a). In the case of pathogenic

bacteria, these extra genes frequently encoded impor-

tant virulence factors like bacterial toxins [12�,13��,14��]
(Figure 2b). These extra genes were also observed in

commensals and free-living bacteria and belonged to the

few prophage genes expressed in the lysogenic state

([15], Figure 3b); only in a few cases did database

matches suggest a physiological role for these extra

genes (Figure 3c).

LCG were also identified in prophages from Gram-nega-

tive bacteria (Figure 4a). Some of them were located at

the prophage genome ends (e.g. O serotype-converting

enzymes were found near attL, the left attachment site, in

several prophages [16,17�]). However, the majority of the

extra genes or ‘morons’ (for more DNA) were detected in

the centre of the prophage genomes. Preferred insertion

sites for LCG were located downstream of the Q anti-

terminator, the lysis and the N antiterminator genes [18].

They tend to represent transcription units with their own

promoters and terminators that are regulated indepen-

dently from the rest of the prophage [19,20]. Some of the

LCG were shown to respond to environmental cues

[21,22]. In fact, when bacteria were grown under condi-

tions that mimicked pathological conditions [23], or when

they were grown in infected animals [24], prophage genes

belonged to the most prominent genes of the entire

bacterial chromosome that changed the expression level.

Generalised transduction
Phages such as Salmonella phage P22 or coliphage Mu

occasionally commit the error to package even a headfull

of bacterial DNA instead of phage DNA. Upon infection

of the next host, this bacterial DNA can be incorporated

into the bacterial chromosome (‘generalised transduction’).

Despite the interest in gene flux in the environment,

sparked by the discussion of the risks associated with the

release of genetically modified microorganisms, only a

few recent reports have investigated generalised trans-

ducing phages in terrestrial habitats (in Streptomyces and

Listeria) [25,26]. One technical report addressed the pro-

blem of PCR-detection of phage-encapsidated bacterial

DNA when working with uncultivatable bacteria and

their phages [27].

By contrast, phage ecology and phage-mediated DNA

transfer became a focus in marine microbiology [28].

Researchers realised that viruses (most of them probably

Figure 1
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Streptococcus thermophilus phage Sfi21: lytic phage infection versus

lysogeny. (a) Phage Sfi21, a typical tailed phage of the Siphoviridae

family, after negative staining in the electron microscope (EM). Phage

head, a non-contractile tail and a single tail fibre are clearly visible. (b) An

EM thin section shows how phage Sfi21 adsorbs to its bacterial host. (c)
Infection results in the multiplication of the phage and the lysis of the cell.

The heads of progeny phages can be seen inside a cell with disrupted

cell wall which has lost most of its cytoplasm. (d) Alternatively, phage

Sfi21 integrates its DNA into a tRNA gene of the bacterial chromosome

resulting in a lysogenic cell with normal morphology and growth

properties. The entire phage genome is transcribed in a programmed

way during lytic infection [53] whereas only small segments of the

prophage genome near both prophage attachment sites were

transcribed in the lysogenic cell [15] (see Figure 3b below). The Sie

prophage protein protects the lysogenic cell against superinfection with

virulent phages.
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phages) outnumber bacteria in the open ocean by a

factor of ten [29]. In view of the large volume of the

world’s oceans and the high titre of phage particles of

107/ml of seawater, phages particles are the most abun-

dant biological entities on earth [30]. If one anticipates a

transduction frequency of 10�8 per plaque forming unit

for marine phages [31], it was calculated that phage-

mediated gene transfer takes place at the incredible rate

of about 20 million billion times per second in the

oceans [1��]. However, the genomics of the predominant

marine bacteria and their phages is still in its infancy.

Only a handful of marine phages have been sequenced

[32] from the 400–7000 viral types estimated in 100 litre

water samples [33].

New insights from prophage genomics
The impact of phage-mediated lateral gene transfer can

easily be read from the published bacterial genome

Figure 2

Current Opinion in Microbiology

mf2speC

speH

mf3

speA

mf2speC

endo speL speM

mf3

ssa

mf4

slaspeK

sdn

speA3

speI

sdn

M
1

M
18

M
3,

U
S

A

Streptococcus
pyogenes

M1

M3 Japan

M3 USA

M18

(a) (b)

Prophages from Streptococcus pyogenes encode many potential virulence factors. (a) Prophages are visualised as red boxes on the circular genome

maps of four sequenced S. pyogenes strains representing three different M types. (b) Partial gene maps of the indicated S. pyogenes prophages
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streptococcal superantigen.
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sequences [34�]: two-thirds of the sequenced low GC

Gram-positive bacteria and g-Proteobacteria (Gram-nega-

tive bacteria) contained identifiable prophages. Many

bacteria were polylysogenic (contained multiple pro-

phages, Figure 2a). Prophage DNA represented up to

16% of the chromosomal DNA (Escherichia coli O157

strain Sakai with 18 prophages) [35�]. Theoretical reason-

ing on the basis of Darwinian evolution predicted aspects

of an arms race and of mutualism in the genetic interac-

tion of phage and bacterial genomes [36�,37�]. Coopera-

tion (mutualism) was demonstrated by the observation of

many virulence factors encoded by prophages from patho-

gens [18], including prominent examples such as the

cholera toxin from Vibrio cholerae or the shiga-like toxin

from enterohaemorrhagic E. coli (see also Update). The

arms race aspect of prophage genomics was also docu-

mented: most prophages from sequenced bacterial gen-

omes showed inactivating point mutations, inactivating

DNA insertion (often transposases) or progressive DNA

deletion leading to defective prophages, prophage rem-

nants and isolated prophage genes in bacterial genomes.

A recurring observation was isolated phage integrase

genes in bacterial genomes suggesting that these phage

recombination genes involved in lateral gene transfer are

of selective value to the bacterial host. Notably, several

pathogenicity islands were flanked by direct repeats, the

presence of phage integrase and integration into tRNA

genes [38]. It is tempting to speculate that some patho-

genicity islands have recruited the integration system

from decaying prophages to achieve mobility.

Figure 3

Current Opinion in Microbiology

(a)

0.525

Replication Head–tail
joining

Tail fibre Host
lysis

Lysogeny
module

Regulation Head
morphogenesis

Tail genes Lysogenic
conversion

Lysogenic
conversion

Lysogenic
conversion

GC
content

att

cI

Sfi21
ori

si
e Lysogenic

conversion?

Lysogeny module Replication
Transcriptional

regulation Packaging

Head
morpho-
genesis

Head–
tail

joining
Tail

morphogenesis Tail fibre
Host
lysis

(b)

(c)

315.5

Bh1

40%

SpeA

Methylase

Restriction–modification
system

O1205 O1205 O1205 O1205

R

370.1

mRNAmRNA

mRNA

Genome maps of prophages from pathogenic and dairy streptococci and Bacillus halodurans. (a) Gene map of the Streptococcus pyogenes prophage

370.1, a member of the proposed genus of Sfi11-like pac-site Siphoviridae. Note the distinct drop in GC content of the lysogenic conversion genes

near the attR site encoding virulence factors. The vertical bar gives 100% GC content (top) and 0% GC content (bottom); the horizontal line marks

52.5% GC. The modular structure of the phage genome is indicated by colour coded arrows and explained in the brackets under the map; for

example, the lysogenic conversion genes are indicated by the black arrows. Grey arrows represent genes without database matches. (b) Gene map of
the Streptococcus thermophilus prophage Sfi21, the type strain of the proposed Sfi21-like genus of cos-site Siphoviridae. Note the comparable

modular structure with 370.1 and the restriction of transcription (arrows under the prophage map) to both prophage ends (cI, immunity repressor, sie,

superinfection exclusion). The genes to the right of the host lysis cassette lack database matches. (c) Alignment of the Bacillus halodurans prophage

Bh1 with S. pyogenes prophage 315.5. Genes sharing amino acid sequence relatedness are connected by pink shading. The amino acid identity was

40% (range: 25–69%) At the map position where 315.5 encodes a candidate virulence factor (SpeA3, marked in black), Bh1 encodes HaeIII-like

restriction/modification genes. The brackets above the 315.5 map annotated with O1205 identify regions of protein sequence sharing with

Streptococcus thermophilus phage O1205.
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Selected examples: Streptococcus,
Salmonella and Xylella
Streptococcus pyogenes strains belonging to different M

serotypes and associated with different pathologies

(M1, wound infection; M3, toxic shock; M18, rheumatic

fever) were closely related at the DNA sequence level

[11,13��,14��]. The alignment of the genomes showed

only a few gaps and, remarkably, prophages accounted for

the majority of the variation in gene content between the

strains. The two M3 strains differed from each other only

by genome translocations and inversions. Some of them

were flanked by prophages. The S. pyogenes prophages

belonged to Sfi21-, Sfi11- and r1t-like Siphoviridae that

represent the majority of prophages currently described

in low GC-content Gram-positive bacteria [37�]. It was

proposed that the recent emergence of highly virulent

strains was the result of the sequential acquisition of three

prophages with their specific LCG (superantigens, toxins

and secreted enzymes) over the past decades. Microarray

hybridization showed that prophage DNA represented a

major part of the S. pyogenes strain-specific DNA.

Salmonella enterica serovars Typhimurium and Typhi

share a closely related genome, although they differ

substantially with respect to their prophages (Figure 4).

Most of the larger gaps in the alignment of the two

chromosomes were explained by prophage insertion.

Microarray analysis [39] and further genome sequences

Figure 4
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The chimeric nature of some prophage genomes suggests that they are the likely product of lateral gene transfer. (a) The gene maps of Salmonella

enterica serovar Typhimurium prophages Gifsy-1 and Gifsy-2 were aligned with E. coli phage lambda. Sequence-related genes were linked by pink

shading. The GC scan of phage lambda suggests distinct origins for the left and the right arm of its chromosome. Genes are colour-coded with the

convention established in Figure 3. Grey arrows represent genes that do not fit into the scheme for the temperate phages from low GC content Gram-

positive bacteria. (b) Alignment of the Salmonella enterica serovar Typhimurium prophage CT18-02 with phage Mu and P2. Genes sharing sequence

relatedness were linked by pink shading. CT18-02 combines genes from two different genera of Myoviridae (Mu and P2) and tail-fibre genes from

phage lambda.
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[40�] demonstrated that prophages are also a major con-

tributor to the genetic differences between Salmonella
strains belonging to the same serovar. The Typhimurium

prophages belonged to the P2-like genus of Myoviridae
and the lambda-like genus of Siphoviridae (Figure 4a).

The Typhi prophages were distant lambda relatives and

also a hybrid Mu/P2 prophage was observed (Figure 4b).

Animal experiments with Salmonella deletion mutants

demonstrated that prophages are not ephemeral selfish

DNA that litters the bacterial chromosome, but contri-

butors of numerous virulence factors (Figure 4a). In fact,

the variable assortment of prophages was interpreted as a

transferable repertoire of pathogenicity determinants in

Salmonella [41].

The alignment of the genomes from two different patho-

vars of the plant pathogen Xylella fastidiosa revealed three

chromosomal regions that were translocated and inver-

ted, but otherwise they shared 98 per cent of the genes

[42��]. The Temecula strain contained six prophages

none of which shared sequence relatedness with the five

prophages from the 9a5c strain. One prophage in each

strain resembled filamentous phages. Prophage genes

were again the major contributor to the strain-specific

genes. The three chromosomal rearrangements were all

flanked at one border by a phage integrase gene (see

also Update).

Lateral gene transfer between phages
Virulence genes were apparently transferred between

phages belonging to different phage groups [43] or infect-

ing different bacterial species [37�] thereby increasing the

lateral spread of these genes in bacteria. Sequencing data

from coliphages and dairy phages also demonstrated that

large phage gene clusters were transferred between dis-

tinct groups of phages [44] confirming tenets of the

classical modular theory of phage evolution. The strik-

ingly different GC-content of the left and right arm of

phage lambda suggests the heterologous origin of this

reference phage (Figure 4a). The mosaic character of

phages was greater in Gram-negative than in Gram-posi-

tive bacteria [45]. In some lambdoid coliphages short

conserved sequences were identified at the boundaries

of functional modules. This suggested homologous

recombination as the driving force for lateral gene transfer

between phages [46]. However, the comparison of other

lambdoid coliphage genomes suggested that non-homo-

logous recombination occurs everywhere and the

observed order in phage genome organisation is the

consequence of selection forces eliminating all non-viable

recombinants [47]. Recent sequencing data identified

hybrids between phage genera (Figure 4b), phage

families [17,48] and even temperate and virulent phages

[34�]. This abundant lateral gene transfer between pre-

viously well-defined phage groups now poses a major

dilemma for phage taxonomy and ideas on phage evolu-

tion [49].

Conclusions and outlook
Prophages contribute a substantial share of the mobile

DNA of their bacterial hosts and seem to influence the

short-term evolution of pathogenic bacteria. Automated

methods for systematic investigation of prophages and

other mobile DNA elements in the available 100 bacterial

genome sequences will be necessary to understand their

role in bacterial genome evolution. In the past, phages

were mainly investigated as the simplest model systems

in molecular biology. Now it is increasingly realised that

phage research will be instrumental in the understanding

of bacterial abundance in the environment. One can

predict that phage research will impact diverse areas such

as geochemistry and medicine. Success will largely

depend on integrative multidisciplinary approaches in a

field that has, until recently, been dominated by reduc-

tionist thinking.

Update
Recent work has demonstrated that a prophage from a

Lactobacillus oral-cavity commensal contains candidate

lysogenic conversion genes near both prophage genome

ends which are sequence-related to mf2 and mf4 from

S. pyogenes prophages (see Figure 3b) [50]. In addition,

microarray analysis demonstrated that 50% of the strain-

specific DNA from Lactobacillus gut commensal is repre-

sented by prophage DNA [51].

In E. coli O157, induction of the prophage is required for

toxin synthesis and release. Toxin synthesis is secondarily

amplified by phage infection of non-toxigenic intestinal

E. coli commensals, representing a new strategy of bac-

terial pathogenesis [52].
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