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Abstract. This paper presents a framework called Cresceptron for view-based learning, recognition and segmen-
tation. Specifically, it recognizes and segments image patterns that are similar to those learned, using a stochastic
distortion model and view-based interpolation, allowing other view points that are moderately different from those
used in learning. The learning phase is interactive. The user trains the system using a collection of training images.
For each training image, the user manually draws a polygon outlining the region of interest and types in the label
of its class. Then, from the directional edges of each of the segmented regions, the Cresceptron uses a hierarchical
self-organization scheme to grow a sparsely connected network automatically, adaptively and incrementally during
the learning phase. At each level, the system detects new image structures that need to be learned and assigns a new
neural plane for each new feature. The network grows by creating new nodes and connections which memorize the
new image structures and their context as they are detected. Thus, the structure of the network is a function of the
training exemplars. The Cresceptron incorporates both individual learning and class learning; with the former, each
training example is treated as a different individual while with the latter, each example is a sample of a class. In
the performance phase, segmentation and recognition are tightly coupled. No foreground extraction is necessary,
which is achieved by backtracking the response of the network down the hierarchy to the image parts contributing to
recognition. Several stochastic shape distortion models are analyzed to show why multilevel matching such as that
in the Cresceptron can deal with more general stochastic distortions that a single-level matching scheme cannot.
The system is demonstrated using images from broadcast television and other video segments to learn faces and
other objects, and then later to locate and to recognize similar, but possibly distorted, views of the same objects.

Keywords: visual learning, face recognition, face detection, object recognition, object segmentation, feature
selection, feature extraction, shape representation, self-organization, associative memory

1. Introduction

The image appearance of a real-world scene depends on
a series of factors: illumination, object shape, surface
reflectance, viewing geometry, and sensor type. In real-
world situations, all these factors change frequently and
most of them are unknown and uncontrollable, making
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computer vision difficult (Pavlidis, 1992), especially in
general real-world settings.

1.1. Approaches to Vision

Currently prevailing approaches to computer vision
rely on human designers to hand-craft a set of rules
for a specific task and then to explicitly code these
rules into a program. The task of recognizing 3-D
objects from 2-D electro-optical images has been found
very difficult in a general setting. The approaches,
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using either 2-D or 3-D data, include model-based ge-
ometric reasoning (e.g., Brooks, 1981), model-based
specific-feature grouping (e.g., Lowe, 1985; Chen
and Kak, 1989; Sato and Binford, 1992) or align-
ment (e.g., Faugeras and Hebert, 1986; Huttenlocher
and Ullman, 1987), constrained search (e.g., Grimson
and Lozano-Perez, 1984), feature based hashing (e.g.,
Lamdan and Wolfson, 1988; Stein and Medioni, 1992),
weights based evidence accumulation (e.g., Jain and
Hoffman, 1988), invariants based techniques (e.g.,
Forsyth et al., 1991; Gool et al., 1991), combination
of different techniques (e.g., Bichsel, 1991). Some
work has been done in automatic generation of model-
based search trees (e.g., Ikeuchi and Kanade, 1988;
Hansen and Henderson, 1989; Arman and Aggarwal,
1991).

In the development of such an approach, the human
designer is responsible for designing detailed search-
ing strategies and matching criteria. Restricted by the
tractability of manual algorithm design, various con-
ditions must be imposed, including type of features to
be used, type of surface or shape to be seen, lighting
condition and viewing geometry. Although the result-
ing algorithms can be efficient under the required con-
ditions, it appears very difficult to apply this type of
approach to complex real world scenes with virtually
unlimited object types and background. Among oth-
ers, it is difficult toautomaticallyverify whether the
required conditions have been satisfied.

In contrast, human vision capability is so versatile.
For example, as long as the visual image of an object
bears a large degree of resemblance to what one has
seen, one can recognize the object. It is also known
that learning plays a central role in the development
of such a capability in humans and it takes place over
a long period. Human vision appears to be more a
process of learning and recalling rather than one re-
lying on understanding the physical processes of im-
age formation and object-modeling. If what has been
learned by seeing is very different visually from what
is currently being presented, the human recognition
becomes very difficult. For example, “Thatcher’s il-
lusion” (Thompson, 1980) indicates that facial expres-
sion is very difficult to recognize from an upside-down
face, although it would be quickly revealed by a simple
“mental” rotation if the brain actually performed such
a rotation. The evidence for appearance learning in vi-
sion includes even low-level vision. For instance, it has
been demonstrated that a common visual experience,
overhead light source, is learned and used to perceive

shape from shading (Ramachandran, 1990), although
the solution to the problem is not unique from the image
formation point of view.

The work presented in this paper is motivated by
the need to recognize objects from real world images.
It seems intractable to hand-craft a set of rules that
are sufficient to deal with general vision problems in
our complex real world. Thus, we emphasize learning
ability in general settings—learning visual appearance
of objects from examples. Humans as designers need
only to provide a good structure for learning, but they
are relieved of most design details. With a good system
structure for learning, we can use the abundance of vi-
sual information available in the real world to develop
a vision system through training, instead of attempt-
ing developing a system based on human designer’s
capability to convert his knowledge about visual infor-
mation processing into vision rules.

The idea of learning for vision is not new. It is the
message that comes through most clearly from the work
in psychology, cognitive science and neurophysiology
(e.g., Hubel, 1988; Anderson, 1990; Ramachandran,
1990; Martinez and Kessner, 1991). The question is
how to do computational learning. This paper presents
a new framework which has several desirable charac-
teristics for machine learning from general real world
images. We first briefly overview some past works on
learning.

1.2. Learning Techniques

Most traditional learning techniques are devoted to data
classification in that an instance of object to be clas-
sified is already represented by a feature vector. The
problem of learning there is to determine how to as-
sign a label to a vector, based on training data in which
each vector has a given label. The major techniques
include parameter estimation based on Bayes decision
theory (e.g., Keehn, 1965), non-parametrick-nearest-
neighbor rule (e.g., Loftsgaarden and Quesenberry,
1965; Cover and Hart, 1967), linear discriminant func-
tions (e.g., Highleyman, 1962), clustering techniques
(e.g., Cover, 1969; Jain and Dubes, 1988), and syntac-
tic methods (e.g., Fu, 1968; Pavlidis, 1977). Although
symbolic learning in the machine learning community
aims at constructing a description of rules from train
ing samples, feature vectors are also predefined by hu-
man experts (ID3, (Quinlan, 1986), CART (Breiman
et al., 1984), AQ15 (Michalski et al., 1986)).
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However, extraction of objects from images of a clut-
tered scene is a major task. If a human is available to
segment the objects of interest from images, then why
not let her or him do the entire recognition! Segmenting
an object from the background is not necessarily easier
than recognizing it, and the two are not independent. If
feature vectors are provided for the entire image with-
out identifying which features belong to a single object,
no traditional learning technique will work. A recog-
nition method that also deals with segmentation must
work directly from the retinotopic data (i.e., each item
represents a sensory position in the retina).

The Neocognitron system developed by Fukushima
and his colleagues since the early 70’s (Fukushima,
1975; Fukushima et al., 1983) was designed for recog-
nizing a small number of segmented patterns such as
numerals and alphabets, directly from binary images.
Their idea of grouping low-level features to form high-
level features in a multi-level structure of retinotopic
planes of neurons is very useful for visual learning. In
the field of computer vision, a few published works
performed learning directly from images, although the
task of segmentation has not been directly addressed.
Pomerleau’s work on ALVINN (Autonomous Land Ve-
hicle in a Neural Network) (Pomerleau, 1989) used a
neural network to learn, directly from intensity images
and range images, the mapping from the sensory in-
put to the heading direction. The performance of this
neural-network-controlled CMU NAVLAB in road fol-
lowing is at least comparable to that achieved by the
best traditional vision-based autonomous navigation
algorithm at CMU. Turk and Pentland (1991) applied
the method of principal component analysis directly to
normalized intensity images for face recognition. The
work reported here, started in 1990, aims at learning
to recognize and segment of wide variety of objects
directly from cluttered natural images. Some partial
preliminary results of the work reported here were pre-
sented during 1992–1993 at a few conferences (Weng
et al., 1992, 1993; Weng, 1993).

In dealing with learning and segmenting directly
from images, the predictability and efficiency are two
central issues. Recently, there has been a surge in in-
terest in learning using models of artificial neural net-
works (or connectionist models of computation). How-
ever, the performance of a neural network trained by
existing methods (e.g., the back-propagation method
Rumelhart, 1986) are not predicatable, due to the prob-
lem with local minima. Poggio and Edelman (1990)
used a generalized Gaussian radial basis function to

approximate the mapping from a 2-D view of a set of
points to a standard view, assuming that the points are
from a single object. Such a flat network improves the
predictability of the system at trained points. However,
the existing neural network methods lack a capability
of dealing with complex and large-size problems, since
sharing of knowledge among different objects is lim-
ited by the fixed network structure.

1.3. The Challenges

Although the use of neural networks has shown encour-
aging results in some pattern recognition and vision
problems, it is not clear whether this approach can han-
dle complex real-world recognition-and-segmentation
problems for which a retinotopic network is needed.
There is a lack of systematic treatment of the retino-
topic network structure, and the theory for such neural
networks is missing. A neural network is often treated
as an opaque box (instead of local to global analysis)
and its learning is often formulated as an optimiza-
tion problem with a huge number of parameters, which
leads to unpredictable system performance. For exam-
ple, if a pattern is learned at one position on the retina,
it is not guaranteed that the exact same pattern can be
recognized in all the other positions. It is not clear
how to systematically deal with generalization from
training exemplars. In order to handle the complexity
of vision problems, we have identified the following
requirements:

• The system must be able to learn many detailed low-
level rules that humans (practically) cannot manu-
ally specify. Learning should not be limited to the
parameters of hand-crafted rules, because a fixed set
of rules is not scalable to complex problems.
• Feature representation must be automatic. It is in-

tractable to manually define the feature represented
by every neuron. Significant image structures, or
features, must be automatically identified, and their
breakdown and mapping to the framework must be
automatic.
• Learning result must be reliable. The unpredicat-

able performance as with back-propagation must be
avoided.
• Learning must be predictable. The size of a net-

work for a non-trivial vision task has got to be
large. Repeated modification of all weights such
as done in a typical back-propagation algorithm is
impractical.
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• Learning must be incremental. An addition of a new
object to be learned should not require the entire
network to be re-trained. This is a key towards a
self-improving complex vision system.
• The method must work for unsegmented input. It is

often impractical to require presegmented data.
• The dimension of feature space should not be fixed.

Due to the complexity of the problems we are deal-
ing with, a fixed number of features will lead to a
failure of recognition when the number of objects
becomes very large. The system should be able to
memorize and utilize different features for different
objects.

In this work, we are not addressing higher-level
visual learning issues, such as learning to infer 3D
shapes from 2-D images, learning from mistakes, learn-
ing to identify discriminant object parts and ignore
irrelevant parts, etc. Our goal here is to recognize
and segment image parts based on similarity of visual
appearance.

1.4. The Cresceptron

Our framework is calledCresceptron, coined from
Latin cresco(grow) andperceptio(perception). Like
the Neocognitron, this framework uses a multi-level
retinotopic layers of neurons. However, it is funda-
mentally different from the Neocognitron in that the
actual network configuration of the Cresceptron isau-
tomaticallydetermined during learning, among other
structural differences. The following are some salient
features of the Cresceptron which contribute to the sat-
isfaction of the above mentioned requirements.

1. The Cresceptron performs retinotopic learning
through hierarchical imageanalysisbased on hier-
archical structural features derived therefrom (see
Fig. 1). The learning phase requires human to pro-
vide segmented images and to provide a class label
for each. Unlike conventional learning, learning
in the Cresceptron is incremental. New features
are detected and the network structure appropri-
ately created to relate new features with previously
learned features. Feature-grouping sharing occurs
automatically at every level of the network which
keeps the network size limited.

2. Tolerance to deviation is made hierarchical, smaller
at a lower level and larger at a higher level. This
makes it possible to handle many perceptually sim-

Figure 1. A schematic illustration of hierarchical feature grouping
in the Cresceptron. In the figure, not all the connections are shown.

ilar objects based on a relatively small set of training
exemplars.

3. Learning in the Cresceptron is based on hierarchi-
cal (i.e., local-to-global)analysisinstead of back-
propagation. The structure of the object is analized
in a hierarchical, bottom-up fashion before a de-
cision is made. Therefore, the network is not an
opaque box1. This local-to-global analysis scheme
might have some positive implication to dealing
with local minima, but its proof has not yet been
established.

4. Segmentation and recognition are tightly coupled.
No foreground extraction is necessary, which is
achieved by backtracking the response of the net-
work through the hierarchy to the image parts con-
tributing to the recognition.

5. The network is locally and sparsely connected. This
is a crucial restriction one must impose for compu-
tational tractability with a large network as well as
hardware implementation of large networks.

6. The system is able to detect, memorize, and utilize
different features for different objects, and thus is
quite different from conventional pattern recogni-
tion schemes in which the classification decision is
based on a single and fixed feature parameter space.
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7. Several structures for the network have been devel-
oped and evaluated with respect to desired network
properties.

The remainder of this paper is organized as follows.
Section 2 presents a system overview. Section 3 intro-
duces the stochastic hierarchical distortion model that
the Cresceptron is based upon. Section 4 introduces
components of the network and presents their proper-
ties. These components serve as building blocks of an
automatically generated network. Section 5 explains
the Cresceptron structure and its working. Section 6
presents some results of experiments. Section 7 gives
some concluding remarks.

2. System Overview

The Cresceptron is designed to have two phases: learn-
ing and recognition. During the learning phase, a series
of images is presented to the Cresceptron which learns
the objects specified by a human operator. In the recog-
nition phase, a new image is presented to the Crescep-
tron which finds recognizable objects in the image and
reports the names and then, segments every recognized
object from the input image.

2.1. Attention Pyramid

Human eye movements occur in examining a scene so
that the object of interest falls on the retina (Iarbus,
1967; Lévy-Schoen, 1981; Treisman, 1983). In the
current version of the Cresceptron, a simple version
of attention scan is used to examine the input image
effectively.

Each attention fixation defines a square attention
window. Its objective is to scale the part of image cov-
ered by the square attention window down to the size of
theattention image(i.e., with a fixed number of pixels)
as input to the neural network. In our experiment, the
attention image is a square of 64× 64 pixels.

In order to deal with object of different sizes, the
attention window has different sizes. A series of atten-
tion window sizes are defined:W1,W2, . . . ,Wk, where
Wj+1 = αWj . The value ofα is determined by the fact
that a rate of 1−√α size difference is well within the
system tolerance, which is closely related to the system
vigilancev to be explained in Section 4.1. (In the exper-
iment, we used an empirical relationα = b5∗ vc/5.) If
severalv values have been used in the learning phase,

the largest correspondingα value is used in the recog-
nition phase.

With the Cresceptron, there are two attention modes,
manual and automatic. In the manual attention mode,
which is mainly designed for the learning phase, the
user interactively selects a location and a legal size of
the attention window so that the object to be recog-
nized can be directly mapped to the attention image.
In the automatic attention mode, which is designed
for the reco gnition phase, the system automatically
scans the entire image. The scan window sizeW starts
from the maximum legal attention window size, and
passes through all the legal window sizes. For each
window sizeW, the attention window scans the en-
tire image from left to right, from top to bottom, by a
step sizep. (In our experimentp = W/5.) After an
attention image is obtained, learning or recognition is
applied to the attention image.

2.2. Position, Scale, Orientation
and Other Variations

In the Cresceptron, attention image recognition—
applying the network to the attention image—can tol-
erate a moderate amount of shape distortion based
on the stochastic distortion models to be presented in
Section 3. Large variations in object’s scale and po-
sition are dealt with by visual attention mechanism
described above. In other words, attention image
recognition can tolerate size and positional differences
between two consecutive legal attention window sizes
and between two consecutive attention scan positions.
It also tolerates other types of variation, such as ob-
ject orientation. Large orientational variations should
be learned individually, as indicated by Fig. 2, which

Figure 2. Recognize different orientations by learning several ex-
emplars. Different top views of a human body are drawn in the figure
to indicate corresponding learned camera views.



      P1: VTL/RKB P2: VTL/TKL P3: PMR

International Journal of Computer Vision KL495-02-Weng September 15, 1997 15:2

114 Weng, Ahuja and Huang

shows how the system estimates an object’s orienta-
tion of an unknown view based on the orientations of
several learned views.

Some studies have demonstrated that the human vi-
sion system does not have a perfect invariance in either
translation (Nazir, 1990), scale (Kolers et al., 1985), or
orientation (Thompson, 1980). These studies seem to
suggest that at least human vision does not solely rely
on invariant features, even if it extracts them. It appears
that a human’s ability in recognizing objects with dis-
tortion due to size, relative orientation between the ob-
ject and the viewer, lighting conditions, etc., could be
explained by learning under various variations. This
not only makes it possible to recognize object while
identifying orientation, but also makes the system more
efficient by allocating less memory for cases that rarely
occur (e.g., up-side-down human faces).

In the Cresceptron, we do not use predefined invari-
ants (see, (Weiss, 1993) for a survey) because existing
invariants require that the objects be pre-segmented,
have well extracted object contour, belong to a special
class, and that feature-model correspondence has been
established. These requirements are not suitable for
general real-world settings and the methods tend to be
ad hocin nature.

2.3. Image Primitives

The system is designed in such a way that any image
primitive can be easily used for learning and recogni-
tion. In order to reduce the system sensitivity to ab-
solute image intensity values, the current version of
the Cresceptron uses directional edges as image prim-
itives. From each attention image, the system com-
putes edge images at two scales (Gaussian blurring
with templates of 5 Pixels and 9 Pixels, respectively),
each of which records the zero-crossings of the sec-
ond directional derivative of the Gaussian-smoothed
image along one of the 8 discretized directions. We
add this larger scale Gaussian smoothing because we
want to emphasize global edges. Therefore, there are
a total of 16 edge images as input to the network, 8
for each scale. In the edge image, a pixel is equal
to 1 if a directional edge is present and 0 otherwise.
Since the contrast of every attention image is auto-
matically adjusted to the full range of the 8-bit inten-
sity representation, the edge threshold does not need
to be adaptive. On the other hand, the method does
not require connected edge contours. The pixels in
the input edge images receive real numbers in [0, 255]

once the edge images are blurred by the tail probability
profile.

The use of directional edges, instead of letting the
system discover them, was motivated by efficiency con-
siderations. On the other hand, studies show that edge
detection occurs very earlier in biological visual pass-
way, e.g., in ganglion cells on the retina, and thus is
likely “hard wired” at birth or shortly after birth (Dreher
and Sanderson, 1973; Wilson and Giese, 1977; Wilson
and Bergen, 1979).

2.4. What to Learn

With the Cresceptron, the human operator, as a teacher,
indicates to the system what area in the image should
be learned. How does segmentation occur in human’s
visual learning? In the course of children’s early vi-
sual learning (Carey, 1985; Martinez and Kessner,
1991), touching, handling and movements of objects
allow the objects to be visually segmented from the
background so that each object is mentally linked
with its segmented visual appearances from various
views. As reported by neurologist Oliver Sacks (1993),
in order to learn to see (i.e., to understand what an
image means), the necessity of touching, manipula-
tion and segmentation of object (via, e.g., segmen-
tation of face from background through a face mo-
tion) is strikingly evident in a case where an adult
who has been blind since childhood suddenly has his
vision restored. In the case of Cresceptron, a human
teacher provides segmented image areas directly, and
due to this, learning with Cresceptron is not fully auto-
matic and of course, very different from human visual
learning.

In order for the system to learn many objects, a user-
friendly user interface is essential. We have developed
a window-based interactive interface shown in Fig. 3.
During the learning phase, the user selects the object
to learn by interactively drawing a polygon in the at-
tention image to outline the object, as shown in Fig. 4.
Then a click on the button “mask” tells the system to
remove the background. A click on the button “learn”
triggers the learning process which incrementally
grow the network according to a framework outlined
below.

2.5. The Network Framework

The network consists of several levels{i ; i = 0, 1, 2,
. . . , N} (N = 6 in the current experiment). The number
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Figure 3. Interface console of the cresceptron.

Figure 4. Specifying the object to learn. (a) User draws a polygon
in the attention image to outline the object to learn. (b) A click on
the button “mask” removes the background.

of levels N is to guarantee that the receptive field of
each top-level node covers the entire attention image.
The receptive field of a node at a layerl is defined as the
spatial extent of the layer-0 input pixels it connects to
either directly, or indirectly through other intermediate
levels.

Each level has 2 or 3 layers. Thus, totally, the net-
work has several layers that are numbered collectively
by l , l = 0, 1, 2, . . . , L. The output of a lower layer

Figure 5. A schematic illustration of the selected framework for a
multi-level network. A thick vertical line represents an edge-on view
of a neural plane and thus, each neural plane is indicated by a line
segment. In the illustration, a plane being connected to two lower-
layer planes means that every plane in this layer can be connected
to several planes during learning. Otherwise, it accepts input from
only one lower-layer plane.

l is the input for the next higher layerl + 1. Figure 5
shows a framework that has been implemented. In the
figure, only one set of input connection is shown. Such
connections are also used to indicate the type of neu-
ral plane to be explained in Section 4. At each layerl ,
there are many neural planes of the same type. Each
neural plane consists of a square ofk(l )× k(l ) nodes.
That is, all the neural planes in a layer have the same
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number of nodes. Each neural plane represents a par-
ticular feature and the response at a certain location of
the neural plane indicates the presence of the feature.
Therefore, all the nodes in a neural plane use the same
mapping function that maps from its input nodes to its
output. This structure allows us to keep only one set
of neurons and connections for the entire neural plane.
The nodes at layerl = 0 correspond to pixels in the
input attention image.

2.6. Growth, Recognition and Segmentation

Initially, the network does not exist: no neural plane
or neurons exists at any layer. Given each input im-
age to learn, the learning process invoked by a click
on the button “learn” automatically grows the network
recursively from the lowest layer to the top layer. The
way in which the network grows will be explained in
Subsection 5.4. There are two types of learning with
the Cresceptron, individual and class. With the former,
each input is dis tinguishable from other inputs. With
the latter, each input is an example of a class and it
is not to be distinguished from other examples of the
same class. An individual learning will always add, at
the top level, a new neural plane which is assigned with
a new label (e.g., name of the object, with attributes if
applicable) supplied by the user. A class learning will
cause some incremental growth at some levels of the
network; but no new neural plane will be added at the
top level, since the top-level neural plane of an existing
class is used instead. Learning of a new class always
starts with individual learning using the first example
in the class in order to add a new label.

In the recognition phase, an unknown image is sup-
plied as input. The system automatically applies the
aforementioned simple attention mechanism to extract
attention images which are then fed into the learned net-
work. If a neural plane at the top level of the network
has a high response (i.e., confidence value is higher than
0.5), a report is generated to the user. If the user wants
to locate the region in the input that corresponds to
the recognized object, he or she clicks the button “seg-
ment” which invokes a segmentation process which
back-track the network response to the input image.

3. Stochastic Distortion Models and Feature
Matching Schemes

Generalization is a key issue in learning. A system for
recognition must be able to recognize objects that look

like, but not necessarily the same as, a learned exem-
plar. From the view point of computational tractability,
the number of images that the Cresceptron can prac-
tically learn is much less than those available on a
child’s retina during his/her early development. Thus,
while human visual learning can afford to continu-
ously learn and generalize from an astronomical num-
ber of image instances, our system must generalize
from a relatively small number of images. The ques-
tion is how. This section addresses the issues related
to generalization based on stochastic pattern distor-
tion models. We will see the limit of a few match-
ing schemes in the type of stochastic pattern distortion
they can incorporate. Particularly, it is shown that a
single-level template matching is functionally inferior
to multi-level matching. The properties derived in this
section are utilized in the design of the Cresceptron
framework.

3.1. Feature, Its Shift and Expected
Distance Distortion

In recognizing an image, a discrepancy between the
location of a feature in the image and that of the
corresponding learned image can be considered as
distortion. Absence of a feature is treated as a loca-
tion distortion beyond the allowed range, as far as the
distortion-based feature matching is concerned.

First, consider the 1-D case. A 1-D image is a
function f (x): <+ 7→ <, where<+ = [0,∞) and
< = (−∞,∞). A randomly distorted imagẽf from
image f is a new image defined by

f̃ (x) = f (x + α(x)) = f (u(x)) (1)

whereα(x) is a realization of a random processA =
{α(x); x ∈ <}, and

u(x) = x + α(x) (2)

x is any point in the image. In particular,x is the po-
sition of a feature.u(x) is the distorted position of the
point atx, andα(x) is the amount of random distortion
from x. Now, consider the distribution ofα (note that
for notational simplicity, we drop the parameterx in
α(x) here).

Definition 1. Thetail probabilityof a random variable
α is defined as
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Figure 6. Tail probability of Gaussian distribution and its triangular approximation. The scaled probability density isp(x) = e−x2/(2σ2). The
approximatedP(x) is a triangular functiont (x) so thatt (x) andP(x) have the same slope atx = 0.

P(s) = P(|α| ≥ |s|) = 1−
∫ |s|
−|s|

p(x) dx,

wherep(x) is the probability density function ofα.

The tail probabilityP(s) indicates the probability for
the deformationα to have a magnitude not less than that
of s. For example, supposingα has a Gaussian distri-
bution N(0, σ 2), the tail probabilityP(s) is shown in
Fig. 6. As we can see, the tail probability can be reason-
ably approximated by a triangular profile, especially in
the central part. Thus, for implementational simplic-
ity, one may use a triangular tail probability profile
t (s):

t (s) = P(|α| ≥ |s|) =
{

1
T (T − |s|) if |s| ≤ T
0 otherwise

(3)

A simple way to determine the cut-off positionT is
such thatP(s) and t (s) have the same left and right
derivatives, respectively, at the centerx = 0, which
yields

T =
√
π

2
σ. (4)

As shown in Fig. 6, a side effect of this approximation
is a lowered probability measure for large distortions.
It is easy to show that the underlying distribution ofα

that corresponds to the above triangular tail probability
functiont (s) is a uniform distribution in [−T, T ], if the
density is symmetrical.

Now, we consider the distance between two features.

Definition 2. Assume that two feature points atx and
x′, respectively, are distorted to appear atu(x) and
u(x′), respectively. The distance distortion between
these two features

r (x, x′) = (u(x′)− u(x))− (x′ − x) = α(x′)− α(x)
(5)

is calleddistance distortionbetweenx andx′. Its root
variance

v(x, x′) =
√

var[r (x, x′)]

is called theirexpected distance deviation(EDD).

We will use EDD to characterize the amount of pat-
tern deformation when we consider pattern matching
schemes.

3.2. The White Distortion Model and Single-Level
Template Matching

The extent of a feature is the size of the pixel region,
in the input image, that defines the feature. In the
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Cresceptron, the higher the level, the larger the extent
of the feature it detects. The extent of a feature detected
by a node cannot be larger than the receptive field of
the node, but they are typically close. A visual feature
arises from a physical object surface and its appearance
changes with the surface. Therefore, we can consider
a deformation of a visual features as a result of that of
the surface.

Consider inter-feature distance between two neigh-
boring features atx andx′ respectively. The extent of
features to be detected increases with the level number
of the network. The higher the level, the larger the ex-
tent becomes. Therefore, inter-feature distance|x−x′|
varies with the extent of the feature extent or the level
number. The higher the level, the larger inter-feature
distance|x − x′| we are interested in. Therefore, we
need to investigate how the variation of inter-feature
distance|x− x′| changes with the value|x− x′| itself.

Definition 3. If α(x) in (2) is such thatα(x) andα(x′)
are mutually uncorrelated for anyx, x′ ∈ <+, then the
distortion model is called awhitedistortion model.

If, in a white distortion model,α(x) andα(x′) have
the same distribution for anyx, x′ ∈ <+, then the dis-
tortion model is calledhomogeneous. For example,
Let A be a white homogeneous process andα(x) has a
Gaussian distributionN(0, σ 2), independent ofx (ho-
mogeneity). Then, the tail probabilityP(x, s) of α(x)
indicates the probability for the distortion atx to have a
magnitude larger thans. With a homogeneous model,
P(x, s) = P(x′, s) for any x, x′ ∈ R+, and thus, we
can dropx in P(x, s) to write P(s) instead. Similarly,
the EDD of a homogeneous model,v(x, x′), is a func-
tion of x′ − x only and we writev(d) with d = x′ − x.

With a homogeneous white distortion model, let the
variance ofα(x) is σ 2, independent ofx. Then, from
(5), we have

v2(d) = var[α(x′)] + var[α(x)] = 2σ 2 (6)

and thus,v(d) = √2σ . Thus, we have the following
property:

Property 1. In a white homogeneous distortion
model, the EDD is constant, independent of the dis-
tance d.

This is not a desirable property for generalization. If
two features are far apart in the input, it is more likely
that the distance variation between them is also larger

(e.g., consider the distance deviation due to a slight
change in the viewing orientation).

Now, consider a single-level template correlation-
based matching methods. Such a pixel-to-pixel cor-
relation method does not explicitly take into account
the positional deviation and thus, a one-pixel shift of a
pixel-wide pulse results in a bad value in the pixel-to-
pixel correlation. If either the matching template or the
input is blurred by a blurring functionh(x), the amount
of deformation is characterized by the variance ofh(x).
However, the Property 1 indicates that the EDD is still
a constant, which does not change with the extent of
the feature. This is counter-intuitive: a larger template
should be allowed to deform more in matching. There-
fore, a single-level template correlation-based match-
ing method is not very effective for general distortion-
based matching problems.

3.3. Markovian Distortion Model and Single-Level
Deformable Matching

The following investigation of Markov distortion mod-
els provides insight into why we need a hierarchical
network.

Still using the distortion definition in (1), a Markov
random processA is such that for anyx, s ≥ 0 and
z ∈ <

P{α(x + s) < z | α(x′), x′ ≤ x}
= P{α(x + s) < z | α(x)}. (7)

In other words, the amount of futureα(x+ s), is inde-
pendent of the past{α(x′); x′ < x} if the presentα(x)
is given. A Markov distortion model is defined as in
(1) whereA = {α(x); x ∈ <} is a Markov random
processA. If

P{α(x+s) < z | α(x)} = P{α(s) < z | α(0)} (8)

holds for allz, x ≥ 0 ands > 0, the processA is said
to be ahomogeneousMarkov process.

Next, we consider a homogeneous Markov process,
since in the absence ofa priori information about the
distortion variation at different locations, it is natural to
assume that the statistic nature of distortion distribution
does not change from one image location to another.

Let us consider the EDD of a homogeneous Markov
distortion model. For anyx, x′ ∈ <+,

v2(x, x′) = E[(r (x, x′)− E[r (x, x′)])2]
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Without loss of generality, assumex ≤ x′. Using a
well-known equation for conditional expectation

E[E[y | x1, . . . , xn]] = E[y] (9)

we have

v2(x, x′) = E[E[(r (x, x′)− E[r (x, x′)])2 | α(x)]]
Due to the homogeneity, it follows that

E[(r (x, x′)− E[r (x, x′)])2 | α(x)]
= E[(r (0, x′ − x)− E[r (0, x′ − x)])2 | α(0)]

Thus,

v2(x, x′) = E[E[(r (x′ − x)− E[r (x′ − x)])2 | α(0)]]
= v2(0, x′ − x)

Therefore,v(x, x′) is shift-invariant for homogeneous
process and we can writev(d), whered = x′ − x.

Theorem 1. The EDD v(d) of a homogeneous
Markov random distortion model is proportional to the
square root of the distance

√
d:

v(d) =
√

dv(1). (10)

The proof is presented in Appendix A.
The above result can be extended to anykth central

moment

w(x, x′) = E[(α(x′)− α(x)− E[α(x′)− α(x)])k]

wherek> 0 is any positive integer, of a homogeneous
Markov random distortion model. Note,v(x, x′) =√
w(x, x′) whenk = 2. Since we havew(x, x′) =

(−1)kw(x′, x), without loss of generality, suppose
x′ ≥ x. Due to homogeneity, we havew(x, x′) =
w(0, x′ − x) = w(0, d), whered = x′ − x.

Corollary 1. Let w(x, x′) = E[(α(x′) − α(x) −
E[α(x′) − α(x)])k] be the kth central moments of a
homogeneous Markov random distortion model,where
k > 0 is any positive integer. Ifw(0, d) is continuous
in d, then

w(x, x′) = (x′ − x)w(0, 1). (11)

if x ≤ x′, and

w(x, x′) = (x − x′)w(1, 0). (12)

if x > x′.

The proof is relegated to Appendix B.
Next, consider the 2-D case. A 2-D image (i.e., pat-

tern) is defined by a two dimensional functionf (x, y):
<2 7→ <. The image can be considered as a local
feature map (e.g., edge map) of an intensity image. A
randomly distorted imagẽf from f is a random field
defined by

f̃ (x, y) = f (x + α(x, y), y+ β(x, y))

where (α(x, y), β(x, y)) is a realization of a 2-
dimensional random fieldA = {(α(x, y), β(x, y));
(x, y) ∈ <2. We may also define a Markov random
distortion field in the same way as we define causal,
semicausal and noncausal Markov random fields (Jain,
1989). In a conventional random field, the value at
(x, y) is random, while in our random distortion model,
the distortion is random and two-dimensional.

Let us consider an example of 2-D distorted im-
age. Figure 7(a) shows a binary edge imagef (x, y),
computed from an intensity image. Suppose that the
distribution of the distortion componentsα(x, y) and
β(x, y) is determined by

α(x, y) =
∫ x

0
a(s) ds+

∫ y

0
b(s) ds

β(x, y) =
∫ x

0
c(s) ds+

∫ y

0
d(s) ds (13)

where a(s), b(s), c(s) and d(s) are distinct realiza-
tions of white Gaussian random processes of the form
W = {w(t); t ∈ <}. In other words,W is such that
for any x ands > 0,

∫ x+s
x w(t) dt is a random vari-

able of Gaussian distributionN(0, sσ 2). For integer
x andy, we can express the random distortion in two
sums of identically and independently distributed ran-
dom variables. Figure 7 shows several examples of
such distorted images.

The above results about 1-D Markov distortion mod-
els can be applied to each of the two directionsx, y in
a 2-D model. However, the result may not be directly
applicable to any other directions. The distanced be-
tween two points(x1, y1) and(x2, y2) may not neces-
sarily be directly extended to Euclidian distance either.
For example, in the above 2-D example, the expected
square Euclidian distanceE[(x1 − x2)

2 + (y1 − y2)
2]

between any two points(x1, y1) and (x2, y2) is pro-
portional to the square root of the city-block distance
|x1− x2| + |y1− y2| between the two points.

Recalling Section 3.2, the EDD in a white homoge-
neous distortion model is constant, independent of the
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Figure 7. Examples of 2-D homogeneous Markov distortions. (a): Original image with distortion. (b): A distorted image. (c): Same distortion
as in (b) except that the magnitude of distortion is doubled. (d): Superimposition of (a) and (b) to show the distortion of (b) from (a). (e) and
(f): Two differently distorted images.12 = 12σ 2.
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distance between the two feature points. This white dis-
tortion model corresponds to a single-level correlation-
type of template matching coupled with some blurring.
This type of template matching method has a very lim-
ited generalization power because the allowed distor-
tion is constant.

Markov distortion model cannot be implemented by
matching with a fixed template, because, as indicated
by Theorem 1, the amount of distortion in a Markov
distortion model is not constant, but instead, it depends
on the distance between two features that are under
consideration.

In fact, a deformable template can be used to match
a Markov distortion model. We consider the 1-D case.
Suppose that a 1-D template consists ofn + 1 fea-
tures: f (xi ) at locationxi , i = 0, 1, . . . ,n, where
x0 < x1 < · · · < xn. Suppose that in the input
we have observedn+ 1 features, f (xi ) at distorted
location x̃i = xi +αi , i = 0, 1, 2, . . . ,n. If the in-
put feature locations are distorted with a homogeneous
Markov random distortion model, then the inter-feature
distortionδi = αi − αi−1, givenαi−1, is mutually in-
dependent.

The Markov model based deformable template
matching can be conducted as follows. Identify the
first feature f (x0). Suppose that the(i − 1)th feature
f (xi−1) has been identified. Thus, the observed distor-
tion at this feature is observed as

αi−1 = x̃i−1− xi−1

Then, given the observed distortionαi−1, “stretch” and
“compress” (i.e., deform) the template between two
feature pointsxi−1 and xi to identify the next fea-
ture f (xi ) and its locationx̃i in the input, according
to the conditionally independent distribution ofδi , at
location

x̃i = xi + αi = xi + αi−1+ δi

Suppose the feature is observed at positionx̃i = si , the
confidence related to this position is indicated by the
conditional tail probability ofδi = x̃i − xi − αi−1:

P(abs(δi ) > abs(si − xi − αi−1) | αi−1)

= P(abs(αi − αi−1) > abs(si − xi − αi−1) | αi−1)

(14)

where abs(x) is the absolute value ofx. Note that in a
homogeneous Markov system, the probability in (14) is

conditionally independent ofj , for all j < i −1. Once
we have the first feature at̃x0, recursively using the
Markovianity, the overall matching confidence can be
determined by the overall tail probability for observing
x̃i = si , i = 1, 2, . . . ,n, as follows

n∏
i=1

P(abs(αi − αi−1) > abs(si − xi − αi−1) | αi−1)

As we proved in Theorem 1, the expected amount of
templateshiftat xi is proportional to square root of the
distance betweenx0 andxi :

√
xi − x0. As can be seen,

a single-level matching using a fixed template cannot
even deal with this type of Markov random distortion,
because the amount of shift allowed is constant with a
fixed template.

3.4. Non-Markovian Distortion Model
and Multi-Level Matching

Single-level deformable template matching relies on
the Markovianity. Once a feature is located, the
location of the next feature is independent of all pre-
vious feature locations. Thus, the distance deforma-
tion between the current feature and the next feature
can be checked by a certain statistic measure, such as
variance.

However, if the distortion process is not Markovian,
a single-level neighboring feature distance checking is
not sufficient, because the probability depends on near
and far-away nodes (i.e., at different scales). In a multi-
level distortion checking, each level can be responsible
to a certain scale. The scale here implies both extent
of features and inter-feature distance, because distance
between two larger features is also larger.

In order to deal with distortions that are not
necessarily proportional to interfeature distance, the
Cresceptron has adopted a multi-level, multi-scale
matching scheme, as follows. There areL levels of
template matching,l = 1, 2, . . . , L. The receptive
field of level-l node is a square of(2l + 1)× (2l + 1)
pixels. An odd size is used so that the receptive field
is centered at a pixel. The response of themth neural
plane at a layerl at position(x, y) is called confidence
value n(l ,m, x, y), which ranges between 0 and 1.
n(l ,m, x, y) ≈ 1 implies that the feature represented
by neural planem is centered at(x, y)with a high con-
fidence. n(l ,m, x, y) ≈ 0 means either there is no
feature at(x, y) or the feature at(x, y) is very different
from the feature that themth neural plan represents.
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Since the receptive field of level-l node is a square
of (2l + 1) × (2l + 1), features at a higher level
have a larger receptive field. Thus, to determine the
inter-feature distance between two features of a size
(2l + 1)× (2l + 1), we jointly examine positions that
are roughly(2l + 1) apart, i.e., a subsampled grid of
nodes{(x0+ir , y0+ jr ); r = 2l , i, j are any integers}.
r is the subsample spacing (one sample everyr nodes).
In the learning phase, the examination results in a mem-
ory of the response at these grid points. In the recog-
nition phase, the task is to detect the presence of the
recorded pattern on the subsampled grid while allowing
distortion.

Two neighboring features on the grid at levell are
2l -pixels apart. If the EDD of these two pixels is pro-
portional to

√
2l , it coincides with the property of the

Markov model, as stated in Theorem 1. Otherwise, it
implies the model is Non-Markovian. The larger the
EDD, the more distortion is allowed at this level. Since
our framework allows arbitrary specification of EDD at
every level, and thus, is not restricted by Markovianity.
We will get back to this issue in Section 4.

The result we derived so far is summarized in Table 1.
In summary, this section has analyzed why Cres-

ceptron uses a multi-level stochastic distortion model

Table 1. Stochastic distortion models and the corresponding
matching schemes.

Distortion
model EED Matching schemes

White Constant Single-level template

Markovian Proportional to Single-level
distance deformable template

Non-Markovian Any Multi-level
multi-scale

Figure 8. Regular pattern-detection layer. (a) A schematic illustration in which only the connections to one node are drawn and only one input
plane is shown. The arc across the connections represents an AND-like condition. (b) The symbol of the regular pattern-detection layer used in
Fig. 5. The number of connections in the symbol indicates the size value 2h + 1. But, the case of 2 connections is reserved for the sybol for
the subsampled pattern-detection layer.

instead of a single-level one used by, e.g., a single-level
template correlation method. The multi-level stochas-
tic distortion model used by the Cresceptron can handle
more general distortions than those that a single-level
scheme can deal with.

4. Network Components

The network components to be presented here are used
to implement, in a digital form, a Non-Markovian
stochastic distortion model as discussed in Section 3.
They are three types of neural layer: pattern-detection
layer, node-reduction layer, and blurring layer. A mod-
ule is a combination of layers. The modules are used
to construct a complete framework. For simplicity, we
will first consider 1-D networks which is then extended
to 2-D networks in a straightforward way.

4.1. Pattern-Detection Layer

As explained in Section 3, pattern matching with de-
formation consists of two subtasks, detection of feature
and checking the interfeature distance. The purpose of
the pattern-detection layer is to accomplish the former.
Two types of pattern-detection layer are useful: reg-
ular pattern-detection layer and subsampled pattern-
detection layer.

The regular pattern-detection layer is illustrated in
Fig. 8. For a regular pattern-detection layer at layer
l , there are a number of input neural planes at layer
l − 1. Let n(l ,m, i, j ) denote the value of response
at position(i, j ) in themth neural plane at layerl . A
feature at position(i0, j0) is a 2-D pattern{n(l ,m, i0+
i, j0+ j );−h ≤ i, j ≤ h}, where 2h+ 1 is defined as
the size of the pattern.
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In the learning phase, once a new feature is detected
at (i0, j0) at layerl , a new neural planek is created at
layerl + 1, devoted to this feature. The new feature is
memorized by a new node whose synapses are assigned
with the observed values

w(l , k,m, i, j ) = n(l ,m, i0+ i, j0+ j ),

−h ≤ i, j ≤ h. Let P denote the set of all the indices
of input planes where the new feature is detected. In the
recognition phase, the response in thekth new neural
plane at(i0, j0) of layerl + 1 is

n(l + 1, k, i0, j0)

= f [s(l + 1, k)z(l , k, i0, j0)− T(l + 1, k)]

where

z(l , k, i0, j0)

=
∑
m∈P

∑
−h≤i, j≤h

w(l , k,m, i, j )n(l ,m, i0+ i, j0+ j )

and f (x) is a (monotonic) sigmoidal function (or a soft
limiter) (Lippmann, 1987) that mapsx to a normalized
range [0, 1], and the valuess(l + 1, k) andT(l + 1, k)
are automatically determined in the learning phase so
that

f [v s(l+1, k)z(l , k, i0, j0)−T(l+1, k)]≈ 1 (15)

and

f

[
v

2
s(l + 1, k)z(l , k, i0, j0)− T(l + 1, k)

]
≈ 0

(16)

wherev is the only user-specified parameter, calledsys-
tem vigilanceparameter, which indicates the desired
discrimination power of the system. Intuitively speak-
ing, the output is over-saturated if the exact pattern is
presented and is under-saturated if about a half of the
response is presented, depending, of course, on the sys-
tem vigilance. Therefore, the pattern detection layer
can be viewed as a cross-correlation with the learned
pattern followed by a sigmoidal nonlinear mapping on
to a normalized range. Such a simple computation can
be implemented by the simple processing elements in
a digital or analogue neurocomputer.

Another type, the subsampled pattern-detection
layer, is similar to the regular one except that the input
nodes are not consecutive. Instead, the input nodes are
from the subsampled grid as discussed in Section 3.4.

Figure 9. Subsampled pattern-detection layer. (a) A schematic
illustration in which only the connections to one node are drawn
and only one input plane is shown. The arc across the connections
represents an AND-like condition. (b) The symbol of the subsampled
pattern-detection layer. In this paper, if the number of connections in
the symbol is more than 2, the symbol represents a regular pattern-
detection layer.

We will use a type of subsampled pattern-detection
layer in which each node accepts four subsamples from
the lower-layer neural plane and the subsample spacing
r is such that the receptive fields of these four subsam-
ples correspond to the four quadrants of a large square,
respectively. Thus, the subsampled pattern-detection
layer can be used to increase the receptive field with a
minimal overlap in the receptive filed.

4.2. Node-Reduction Layer

If the number of nodes in each neural plane is reduced
from layerl to l + 1, then we say thatl + 1 is anode-
reduction layer, as shown in Fig. 10. Node-Reduction
layer is primarily for reducing the spatial resolution of
the neural plane, and thus reducing the computational
complexity.

Figure 10. Node reduction layer. (a) A schematic illustration in
which only the connections to one node are shown. Every neural
plane at the node reduction layer has only one input plane. No
arc across the connections is present, which represents an OR-like
condition. Notice that the number of nodes is reduced at the upper
layer. (b) The symbol of the node reduction layer. (c) A large
connectivity (or receptive field) is achieved by the node reduction
layer in which each node connects to just local nodes.
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Node-reduction implies that one node at layerl + 1
corresponds to more than one node at layerl . We use a
node-reduction rate of two, i.e., one node at layerl +1
corresponds to, at layerl , two nodes in the 1-D case
and 2× 2 nodes in the 2-D case.

Node-reduction may cause difficulties in multi-level
pattern matching. We first define recallability with re-
spect to translation:

Definition 4. If a network learns, in the learning
phase, a pattern that is presented at a certain location in
the input, and it can also recognize, in the later recog-
nition phase, the same pattern but translated arbitrarily
in the input image, then, this network isrecallable un-
der translation. A subnetwork, whose output is to be
used as input to another subnetwork, is recallable under
translation if the learned response is still present in the
output neural plane (but translated) no matter how the
input is translated in the input. Here the term “present”
means that the corresponding node has a response not
lower than what is learned.

At a node reduction layer, the response of a node is
a function of the corresponding output from the lower-
layer nodes, say, two nodesn1 andn2. Then, the re-
sponse isf (n1, n2). A desirable function for recalla-
bility under translation is function max:f (n1, n2) =
max(n1, n2). This means that the output is active (i.e.,
response is high) if the pattern is presented at either
n1 or n2. In fact, the function max corresponds to a
logic OR function in multivalue logic. In the 2-D case,
a node-reduction neural planek that accepts the input
from neural planem at layerl is determined by:

n(l + 1, k, i, j )

= max{n(l ,m, 2i + p, 2 j +q); p,q= 0, 1}. (17)

However, an OR-based node reduction alone does
not guarantee recallability under translation. Consider
the example shown in Fig. 11. In the learning phase,

Figure 11. Node reduction causes a reduction of active nodes at the
upper layer. (a) During learning, two nodes are active at the upper
layer. (b) During recognition, a shift of the pattern causes only one
node being active at the upper layer.

Figure 12. Node reduction causes a distortion of response pattern
at the upper layer. (a) During learning, two active nodes are separate
at the upper layer. (b) During recognition, a shift in the input causes
two active nodes to change their distance at the upper layer.

two neighboring nodes contribute to different upper-
layer nodes and thus both upper-layer nodes are active.
But a shift in the same pattern in the recognition phase
causes two nodes to contribute to a single upper-layer
node. Thus, at the higher layer, no successful matching
will be reported because only one node is active instead
of the expected two.

Such an inconsistent shift at the upper layer can
also result in a distorted output pattern, as illustrated
in Fig. 12. Due to a shift at the lower layer, some
nodes at the upper layer shift but some do not, causing
a distortion of the response pattern at the upper layer.
Such a distortion can be too large to ignore because
a one-node distortion at a high layer corresponds to a
very large distortion in the input image. Therefore, we
need the following combinations of different layers to
eliminate undesirable effects.

4.3. Node-Reduction Structures Recallable
under Translation

We consider a combination of a pattern-detection layer
and a node-reduction layer, the latter being on top of
the former. For the node-reduction layer, the key to
recallability under translation is to perform different
computations for the learning phase and the recognition
phase. We introduce two types of structure: (a) feature-
centered feature detection; (b) grid-centered feature de-
tection.

The term “feature-centered” means that, in the learn-
ing phase, detection of a new feature is performed
for all the positions(i, j ). Once a new feature is re-
ported at(i0, j0), we keep a flag of offset(oi , oj ) =
(i0 mod 2, j0 mod 2) in the new neural plane that is
created for this new feature. Then, during the learn-
ing phase, we update the response at this new neu-
ral plane by computing only the response at(i, j ) =
(oi +2k, oj +2m) for all integersk andm so that(i, j )
is in the new neural plane. Every uncomputed position
(i, j ) is assigned a zero value. In other words, we only
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compute a response at those positions that are offset
from (i0, j0) by an even number of coordinates. Note
that the new neural plane at layerl + 1 may be con-
nected to input from several neural planes at layerl ,
and thus the offset(oi , oj ) is shared by all these input
neural planes.

The term “grid-centered” means that the offset
(oi , oj ) is predetermined for the layer, whereoi = oj

can be either 0 or 1. Therefore, we only detect new
features at(i, j ) = (oi + 2k, oj + 2m) for integers
k andm so that(i, j ) is in the neural plane, and also
only compute the resp onse at these positions in the
learning phase. Because a new feature has a signifi-
cant extent in the lower pattern-detection layer (e.g.,
5× 5), the grid-centered feature detection does not al-
ter the feature very much compared to feature-centered
counterpart.

In the recognition phase, the response must be com-
puted for all positions, regardless of whether it is
feature-centered or grid-centered.

Definition 5. A feature-centered node-reduction
module(FCNR module) consists of two layers: the
lower layer is a regular pattern-detection layer and the
upper layer is a node-reduction layer. Agrid-centered
node reduction module(GCNR module) is the same as
the FCNR module except that the lower layer performs
the grid-centered feature detection.

Property 2. The FCNR module is recallable under
translation.

Proof: We consider a 1-D network case. The 2-D
case is analogous. Lettingl be the lower layer and then
the upper layer isl + 1. There are only two cases (a)
oi = 0, (b) oi = 1. Suppose (a) is true. Then, in the
learning phase, only the even positions in the output
of layer l can be active. Thus, if a node at the node-
reduction layerl + 1 is active, it must have gotten a
response from an even position at layerl . In the recog-
nition phase, a shift of the input at layerl − 1 to the
right by 2k or 2k+ 1 (k is an integer) nodes will cause
the learned pattern at layerl just to shift in the same
direction byk nodes. See Fig. 13. Then according to
(17), a shift of 2k or 2k+ 1 nodes in layerl − 1 makes
the learned response at layerl +1 just shift in the same
direction byk nodes. The similar case is true for a shift
to the left. Obviously, a simple shift at layerl+1 means
that the response value does not change except for the
position change. Case (b) can be proved in the same

Figure 13. Feature-centered node-reduction (FCNR) module is re-
callable under translation. Letoi = 0 and the indexi start from 1.
(a) In the learning phase. Only the first feature is assigned to this
upper-layer neural plane because the feature is centered at an even
i = 4. The other feature ati = 7 is assigned to another neural plane.
(b) In the recognition phase: the input (at the bottom layer in the
figure) does not shift. (c) In the recognition phase: the input shifts
by 2. (d) In the recognition phase: the input shifts by 1.

way. Therefore the FCNR module is recallable under
translation. 2

From Fig. 13 we can see that the learning phase
distinguishes the two features in terms of their offset,
and each neural plane only learns the features with one
type of offset.

Property 3. The GCNR module is recallable under
translation.

The proof is analogous to the proof of Property 2 and
is omitted.

As shown in Fig. 12, the output layer of the entire
module has more active nodes than that in the learn-
ing phase, and the output still varies according to the
position of the input. This is a side effect caused by a
limited resolution, although recallability is guaranteed.
This type of module is only used at a low level where re-
duction of neural plane size is needed and a pixel level
shift of pattern are taken care of by multi-level blur-
ring at high levels implemented by the blurring layers
explained in the next subsection.

4.4. The Blurring Layer

The blurring layer is to generate the tail probability
profile as shown in Fig. 6. From image processing
operation point of view, it blurs the response from the
input, but it does not reduce the number of nodes.

Suppose layerl + 1 is a blurring layer. Let
n(l , i0, j0) denote the response at position(i0, j0) in
a neural plane at input layerl . Then the output of layer
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Figure 14. Blurring layer. (a) A schematic illustration in which
only the connections to one node are shown. Every neural plane at the
blurring layer has only one input plane. No arc across the connections
is present, which represents an OR-like condition. (b) The symbol
of the blurring layer. The black triangle represents the contribution
from a single input node.

l + 1 at position(i0, j0) is defined by

n(l + 1, i0, j0)

= max
r≤R

{
R− r

R
n(l , i0+ i, j0+ j )

∣∣∣∣ r 2 = i 2+ j 2

}
(18)

as illustrated in Fig. 14, whereR is the radius of blur-
ring, equal to that of the receptive field. As can be
seen from Eq. (18), the response at position(i0, j0) is
the maximum among the input nodes around(i0, j0)
weighted by a triangular profile. Therefore, an active
input will contribute a triangle-type of profile to the
neighboring receiving nodes, with the peak of the tri-
angle centered at the position(i0, j0).

The mechanism of detecting patterns and tolerating
deformation of the patterns in the blurring layer is illus-
trated in Fig. 15. Suppose a feature point is represented
by a delta function centered at positionx0, δ(x0), where
δ(x) is the Dirac delta function,δ(x) = 0 for x 6= 0

Figure 15. The mechanism of detection and measurement of geo-
metric configuration of features from input layers. In an input layer,
the position of a feature is represented by a peak. The blurring of the
peak, interpreted mathematically by the tail probability, enables the
output layer to measure the positional accuracy. (a) If the positions
are exactly correct, two peaks are sensed and thus, the response is
high at the output layer. (b) If the positions are displaced, the slope
of the tail probability profile are sensed and thus, the output response
is relatively low.

and limε→0
∫ ε
−ε δ(x) dx = 1. With positional distor-

tion, its position becomesu(x0) = x0 + α(x0), where
α(x0) has a probability densityp(s) and a tail proba-
bility P(s), independent ofx0 (homogeneity). Then,
u(x0) has a probability densityp(x− x0) and the value
of the shifted tail probability functionP(x − x0) indi-
cates the probability foru(x0) to appear at least|x−x0|
distance away fromx0. This explains the approximated
probability profiles in Fig. 15, where each input trian-
gular profile for a feature atx = x0 is a shifted tail
probability functionP(x− x0). The extent of blurring
depends on the level number.

Definition 6. A node-conserved blurring module
(NCB module) consists of two layers: the lower layer
is a subsampled pattern-detection layer and the upper
layer is a blurring layer.

The blurring does not reduce the number of nodes in
the neural plane. Thus, if a pattern is shifted, the re-
sponse of the blurring layer is just shifted accordingly.
Therefore, we have the following property:

Property 4. The NCB module is recallable under
translation.

5. The Hierarchical Network Framework

The component layers discussed in the preceding sub-
sections can be used to design the framework of a hi-
erarchical network, although the actual configuration
and connections will not be determined until the learn-
ing phase is actually performed. This design is not
concerned with detailed rules about vision, but rather a
structure based on which the network learns and grows.

5.1. Realization

We have now described three types of modules, FCNR,
GCNR and NCB. The major advantage of the FCNR
and GCNR modules is the space efficiency due to
their node reduction. The maximization operation in
the node reduction allows a subpattern that is matched
in the lower pattern-detection layer to shift by one node
without affecting the recognition outcome. The direc-
tion of this allowed shift depends on whether the fea-
ture is detected at an odd or even position (row and
column numbers). Although this is highly random for
any feature before learning, this oddness is fixed once
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Figure 16. A 1-D illustration of a hierarchical network which con-
sists of the NCB modules. Note how the subsample spacingr and
the amount of blurring change from a low layer to high layers.

the feature is learned. This fixed direction of allowed
shift does not cause much harm at a low layer. How-
ever, it is not desirable at high layers where a shift by
one node corresponds to a large distance in the input
image. It will overly tolerate large deviations in feature
position if the multi-level network consists exclusively
of the FCNR and GCNR modules. Therefore, except
for the applications where a large tolerance is appropri-
ate such as recognition of simple patterns with a small
number of classes, we should use the FCNR and GCNR
modules only at low layers.

The NCB module does not reduce the number of
nodes, and the amount of blurring can be controlled
easily. It is also possible to learn the profile of tail
probability by accumulating the population distribu-
tion of the learned features. The amount of blurring
should be related to the receptive field of the node, as
shown by the example in Fig. 16. The principle of
blurring based on tail probability is also applied to 16
edge maps (withT = 2) that are used as input to the
network.

Based on the above observations, we designed a
framework for Cresceptron, as illustrated in Fig. 5. The
first level consists of three layers. The first layer is
a regular pattern-detection layer followed by a GCNR
module which has two layers. Next, the structure above
layer 3 is similar to what is shown in Fig. 16: 6 levels
of the NCB modules. As we noted, the number of
levels should be such that the receptive field of the
top-level node covers the entire attention image. Since
26 = 64, 6 levels are enough to satisfy this requirement.
An additional top level is used for high-level operation
such as incorporating samples in “class” learning and
future development of inter-class excitation and inhi-
bition in high-level learning (e.g., learning from mis-

takes). In total, the framework has 3+ 2× 6 = 15
layers.

How is the distortion model related to such a frame-
work? Level 1 acts as a feature detector with some
tolerance in feature detection. The following levels
are all NCB modules whose blurring level generates a
tail probability measure within the corresponding level.
The sigmoidal function at each layer acts as an inter-
mediate decision maker which maps the measurements
related to the tail probability to a normalized range. The
under-saturation and over-saturation points of each sig-
moidal function re-normalizes the confidence measure
so that a very low confidence is not further transmitted
and a very high confidence is considered as an actu-
ally occurred event. Due to such an intermediate de-
cision making using sigmoidal functions, the top-level
response from the Cresceptron is not exactly a tail prob-
ability. However, it can be considered as a confidence
measure.

5.2. Non-Markovianity of the Cresceptron

Property 5. The variance of the multi-level blurring
function in the Cresceptron implies a statistical distor-
tion model that is not limited by a homogeneous Markov
distortion model.

Proof: Recall that the tail probability was defined as
P(x, s) = P(|α(x)| > |s|), and the one used in the
Cresceptron is in (3). Suppose that the Cresceptron
is limited by (i.e., satisfies) a homogeneous Markov
distortion model. Thus, the EDD between two features
atu(x) = x+ α(x) andu(x′) = x′ + α(x′) of d apart,
d = x′ − x, is

v2(d) = var[α(x′)− α(x)]
= E[var[α(x′)− α(x) |α(x)]] (19)

We know that with the triangular tail probability, the
distribution ofα(x′) − α(x), givenα(x), is uniform
in [−T, T ]. whose variance is(2T)2/12 = T2/3.
Thus,

var[α(x′)− α(x) |α(x)] = T2/3

Thus, (19) becomes

v2(d) = E[var[α(x′)− α(x) |α(x)]]
= E[T2/3] = T2/3
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In Fig. 16 we can see that the distance between two
feature points isd = 2T . SubstitutingT = d/2
into the above equation yieldsv2(d) = d2/12 or
v(d) = d/

√
12, which is in conflict with Theorem 1

which concludes thatv(d) is proportional to
√

d. This
completes the proof.

If we consider the triangular tail probability as an
approximation for that of Gaussian density. Then,
v2(d) = σ 2. From (4),σ 2 = 2T2/π = d2/(2π),
or v(d) = d/

√
2π , also contrary to Theorem 1. 2

As we can see, the key point used in the proof is that
the EDD between two feature points can be arbitrarily
chosen in the Cresceptron over all the levels and scales.
This capability is made possible by a hierarchical net-
work.

A couple of points are in order here. The first point is
on homogeneity. We used homogeneity in Theorem 1
primarily because of the actual application in the Cres-
ceptron and the mathematical simplicity. If the Markov
distortion model is not homogeneous,v2(d) is an in-
tegration of infinitely many infinitesimal conditional
deviations inα(x) along thex-axis, a consequence of
Markovianity.

The second point is about the selection ofT in the
Cresceptron. IfT is selected as proportional to the
square root ofd, the distance between the grid points
at each level, then, this special case will result in a
v(d) that is proportional to the square root ofd. But,
even in this special case, the Cresceptron still does not
necessarily follow a Markov distortion model, because
the receptive field of a node at levels other than the
first cover more than immediate neighbors. At a high-
level, a node at positionx depends on a large area of
receptive field centered atx in the input plane. That
is why a hierarchical network with many levels can
deal with statistical distortions that are more complex
than Markov ones. We can also see that in a network
with a small number of levels, a node atx may only
be connected to a small number of neighbors around
x. Thus, the corresponding distortion model is re-
stricted by a higher order Markov random field. A hier-
archical network in which the receptive field of nodes
varies in a full range—from a few pixels at the low-
est level to the entire attention image at the highest
level—enables the measurement of statistic distortion
based on not only a small neighborhood of input, but
also a large context information in the input. Thus,
its distortion-based generalization is not limited by
Markovianity.

5.3. Learning: Detection of New Concepts

The detection of new features is performed at layer 1,
the pattern detection layer, and the subsampled pattern-
detection layers in all the NCB modules, i.e., layers
4, 6, 8, 10, 12, 14 (see Fig. 5). The only pattern-
detection layer that does not need explicit new-feature
detection is layer 2 where the objective is to perform an
interlayer 5× 5 pattern-detection before the following
node-reduction layer. Without layer 2, the following
node-reduction via maximization will cause excessive
tolerance due to the node-reduction layers. In other
words, addition of layer 2 allows only a matched 5×5
pattern to shift a node, but does not allow each single
node response in layer 1 to shift a node individually
relative to its neighboring active node, because the lat-
ter will cause, e.g., a diagonal line being recognized as
a horizontal line.

An active pattern is significant if the values of the
pattern is high. Suppose that the response at position
(i, j ) in the neural planem of layer l is denoted by
n(l ,m, i, j ). The feature (i.e., pattern) at(i0, j0) in the
input edge image is significant if∑

−h≤i≤h

∑
−h≤ j≤h

|n(l ,m, i0+ i, j0+ j )| (20)

is higher than a predetermined values = 3, such that
3 out of 9 pixels are active so that any line segment
through the 3× 3 window can be detected. Note that
we usedh = 1 at layer 0 to form a 3× 3 window.

A new feature at(i0, j0) consists of all the significant
patterns centered at location(i0, j0) in all the neural
planes of the layer. In the subsampled pattern-detection
layer, Eq. (20) should be modified accordingly to reflect
the fact that each neural plane has four subsample nodes
instead of a window of 3× 3 consecutive nodes.

When a significant feature appears at a position
(i0, j0) in the neural planes of layerl − 1, there ex-
ist three cases according to the response of the neu-
rons at(i0, j0) in the neural planes of the next layerl :
(1) None of the neurons at(i0, j0) is active. Thus, the
feature is new. (2) One or more neurons at(i0, j0) of
layer l are active. But none of them is connected to
all the significant patterns at(i0, j0) of layer l − 1. In
other words, although a node or more have responded
to the current pattern, but each only covers (or repre-
sents) a subset of the active pattern currently present at
layerl − 1. This implies that the input feature is more
complex than the features represented by the existing
active neurons, and therefore, it is also a new feature.
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(3) Otherwise, the feature is not new. The above con-
ditions are determined by a procedure that examines
the response at levell . Once a new feature is detected,
the growth of the network occurs as explained in the
following.

5.4. Learning: Growth

If the structure of a system (not just the value of parame-
ters) adaptively changes according to the input training
data, such a system is called self-organizing system
(Kohonen, 1988; Fukushima, 1980). In this sense, the
Cresceptron is a self-organizing system.

Growth of the network during learning starts at layer
1. Once a significant new feature is detected at a po-
sition (i0, j0) in some neural planes at layer 0, a new
neuron with synaptic connections is created together
with a new neural plane at level 1 and its following
planes at layers 2 and 3, as illustrated in Fig. 17, all
are devoted to this new feature (see also Fig. 5). The
synaptic connections from layer 0 to layer 1 take the
values from the corresponding neural planes that have
a significantly response at the location(i0, j0) as de-
fined in (20). This selective connection results in a
sparsely connected network. There is also an upper
bound (25 in our experimentation) on the number of
preceding planes a new neural plane can connect to,
with priority assigned to newer input planes. Our
experiments showed that this upper bound is rarely
reached, because not many different features can ap-
pear in the same image location. Thus, although the
number of neural planes may grow large after learning
many objects, the entire network is always sparsely
connected, which is a very important point for effi-
ciency. After creation of each neural plane, the re-

Figure 17. A 1-D illustration of growth at layers 1, 2, and 3—the
first level. (a) Existing network. (b) The network after a growth.

sponse of this new plane is updated by computing its
response.

Such a growth at layers 1, 2, 3 continues until no
new feature can be detected at layer 0. Then, simi-
lar growth is performed for layer pairs 4–5, 6–7, 8–9,
10–11, 12–13, 14–15. The difference is that the first
layer in each pair is now a subsampled pattern-detection
layer and thus, only four subsample points at the cor-
responding positions of the preceding neural plane are
considered. Each new neural plane created at the sub-
sampled pattern-detection layer is followed by a new
neural plane at the following node-conserved blurring
layer which accepts its output.

Finally, at the top layer, if the exemplar is not rec-
ognized, a new plane is created at the top layer with a
default label. The user assigns a meaningful name of
the object to the label. Later in the recognition phase
if this new neural plane is active at position(i, j ), then
the label tells the name of the object being recognized
at this position.

Over the entire network, knowledge sharing occurs
naturally among different positions and among differ-
ent objects, since the same fea ture may appear re-
peatedly in various cases. The network grows only to
memorize the innovation that it needs to learn.

For class learning, the user identifies the top neural
plane that represents this class and then clicks button
“class” instead of “learn”. Thus, the system will not
create a new plane at the top layer. But rather, it uses
a maximization operation at the top layer to feed the
response of this new exemplar to the corresponding top
neural plane that represents the entire class.

5.5. Recognition and Decision Making

Once the network has been trained, it can be presented
with unknown inputs for recognition. Figure 25 shows
the response of a few neural planes. At the top layer,
the network reports all the response values (confidence
values) higher than 0.5. The result can be one of the
following: (1) No report: nothing recognized with con-
fidence. (2) Only one object is reported: unique object
is recognized with confidence. (3) Two or more ob-
jects are reported. If they belong to different types
of object at the same position, the one with the high-
est confidence is the one recognized. Others are not
as confident. If two or more belong to the same type
of object, which may occur when, for example, the
input contains a face that is taken at an orientation be-
tween those that have been learned, then all the related
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information can be used. For example, if the recog-
nized objects indicate several different orientations of
a face, a confidence weighted orientation sum can be
used to approximately estimate the actual viewing an-
gle of the current face, as shown in Fig. 2.

5.6. Segmentation

Once an object is recognized, the network can iden-
tify the location of the recognized object in the image.
This is done by back tracking the response paths of the
network from the top layer down to the lowest layer.

With the Cresceptron graphic interface, the user can
easily examine the network response by “walking”
through the network using buttons like “up” (to the
upper layer), “down” (to the lower layer), “left” (to the
left-neighbor neural plane) and “right” (to the right-
neighbor neural plane). At any neural plane of the
network, the response of the neural plane is shown in
a subwindow at the bottom right corner of the con-
sole and its label is reported in a subwindow at the top
right corner, as shown in Fig. 3. To segment a recog-
nized object, the user clicks the button “segment” from
a specified node and then, the system backtracks the
response from this node by marking along the way.

Suppose a nodeA is marked at position(i0, j0) at a
layer l . Whether or not the input nodes at layerl − 1
that are linked to this nodeA are also marked depends
on the type of the layer:

1. Layerl is a node-conserved blurring layer. In the
input neural plane, check every neighboring node
around(i0, j0) from which the blurring profile can
reachA: the input node is marked if the input is
active.

2. Layerl is a pattern-detection layer. The input node
is marked if the connection has a high value and the
input is active.

3. Layerl is a node-reduction layer. For each of the
four input nodes ofA, the input node is marked if it
is active.

The above rules are derived from the underlying AND
or OR function that each layer is to perform. Blurring
of response at every level is essential for the success
of segmentation, since it enables the system to mark
features that moderately deviate from what is learned.
As shown in Fig. 16, the extent of blurring at each
level approximately equals the receptive field of the
feature at that level. Thus, the blurring does not cause

“bleeding” in segmentation bec ause the same feature
cannot appear in the same receptive field twice.

After the marking reaches input layer 0, all the ma-
jor edges that have contributed to the recognition are
marked in the input attention image. This information
is sufficient to account for segmentation. For display
purpose, we compute a convex hull of all the marked
pixels in the attention image. Then, this convex hull
is mapped back to the original input image and all the
pixels that fall out of this back-mapped convex hull are
rep laced by a white pixel. Therefore, the remaining
pixels that retain original image intensities are those
that fall into the back-mapped convex hull and indicate
the region of the recognized object. Note that since the
object is not necessarily convex, the convex hull may
include pixels that do not belong to the recognized ob-
ject. But, as we know, the convex hull is just a way to
show the segmented edges.

6. Experiments

For the theoretical and algorithmic development, the
Cresceptron system has been simulated on a SUN
SPARC workstation with an interactive user interface
to allow effortless training and examination of the net-
work, as shown in Fig. 3. The program has been writ-
ten in C and its source code has about 5100 lines. The
system digitizes video signals into (640× 480)-pixel
images or directly accepts digital images of various res-
olutions up to 640× 512. As we discussed, the first ver-
sion of the system uses directional edges in the image.

Used for training and testing are a few hundreds of
sample images digitized from regular cable TV pro-
grams and a video tape about a university campus. Here
we show the example of a network which has learned
20 classes of objects: faces of 10 different persons and
10 other classes of objects, as indicated in Fig. 18. This
network was automatically generated through learning
of these objects. Before giving a summary of the per-
formance, which is given in Table 2 at the end of this
section, we explain several examples in the training set
and test set to illustrate how the variation in expres-
sion, size, viewing angle, etc. are tested while all the
20 learned classes were active.

6.1. Variation in Facial Expression

We used various human face expressions to evaluate
the system tolerance. In the large pool of images, there
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Table 2. Summary of performance.

Type Classes Training set Test set Unique report Top 1 correct

Faces 10 classes 14 images 52 images 100% 100%
Nonfaces 10 classes 11 images 16 images 87% 100%
All 20 classes 25 images 68 images 97% 100%

Figure 18. Representative views of 20 classes learned by the Cresceptron network, shown as images from which the object views are extracted.

is a sequence of 35 images that were randomly digi-
tized from a regular TV interview program “ET host-
ess”, as displayed in Fig. 19. In order to show ex-
pressions clearly, only the face part of 32 images of
the 35 is shown in Fig. 19. Interestingly, these images
display how a person’s expression can change drasti-
cally from one time instance to the next while talking,
a very challenging phenomenon for face recognition.
By learning only the first three faces from the “ET
Hostess”, the Cresceptron successfully recognized and
reported the label “ET Hostess” at the correct location
in all these images, and there was no false alarm as any
of the other faces or objects that have been learned,

some of which are shown in Fig. 24. In other words,
all the recognitions for the faces in Fig 19 are unique
(unique with confidence larger than 0.5). Note that
0.5 is considered a high response as we defined be-
fore. We can regard the response value of the node at
the top layer as a confidence value, although a value 1
does not mean a complete confidence. As can be seen
from the response values in Fig. 19, a large change
in the position of some features does not necessarily
cause a much smaller response value. For example,
comparing the second face in the third row and the
fourth face in the last row, although the hostess made
a long face in the former case, the response is still
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Figure 19. Face expression variation in the training and test images of “ET Hostess”. The first three images are used to train the network.
All the faces are successfully recognized at the correct image location from the entire image. Only the face part is shown here for recognized
images so that the expression is clearly visible. The number under each image is the response value (or confidence value) of the recognition,
i.e., the response value at the corresponding node at the top layer.
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Figure 20. An example of segmentation for “ET Hostess”. (a) An
input image of “ET Hostess” whose face part is shown in the last
subimage of the first row of Fig. 19. (b) The segmentation result
as a convex hull of the contributed edge segments filled with the
corresponding pixel intensity.

higher than that in the latter case. This is a very desir-
able property of a multi-level network: the recognition
is a combination of low-layer features which have a
small space extent and high layer features which have
a large space extent. A feature with a large space extent
should be allowed to deviate more than the one with
a small space extent. In the Cresceptron, this prop-
erty is embedded into the network structure. Figure 20
shows the segmentation result from an image of the
“ET Hostess.”

Figure 21. An example of learning different viewing angles and learning from a similar but different angle. (a) to (c) are three views that are
learned. (d) is a test view recognized with a confidence value 1.00. (e) shows the segmentation result as a convex hull of the contributed edge
segments filled with the corresponding pixel intensity.

Figure 22. An example of dealing with different sizes. (a) is the single learned image for Young Actress. (b) is a test view recognized with
a confidence value 0.64. (c) shows the segmentation result from (b). (d) is a test view recognized at confidence value 0.85. (e) is a test view
recognized at confidence value 0.78.

6.2. Variation in Viewing Direction

In the training set, there are three views of “Student
Peter”, each was taken from a different orientation.
An intermediate viewing angle of “Student Peter” was
tested, recognized and segmented. An examination
of the network indicated that the node that reported
recognition was the one created when “Student Peter
view 1” was learned. Figure 21 shows the three images
learned, one image tested and the result of testing.

6.3. Variation in Size

In the images we digitized, the views of “Young Ac-
tress” were from different segments of a TV show and
thus the size of her face appeared in the image changes
considerably from one image to another (about 50%
maximum). We put a view into the training set and
put remaining views into the test set. This is to test
whether the consecutive size difference in the hierar-
chy of attention window can capture the size variation
while keeping discrimination power against other 19
classes of faces and objects. Figure 22 shows the cor-
responding training image and three test images with
different face sizes.
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Figure 23. Report of visual attention scan from the Cresceptron.
The attention windows in which the object was recognized are high-
lighted by white squares. According to the text report from the
system, there are four equal-size highlighted windows in this image
(the inner small square and outer large square are a result of overlap
by four equal-size windows at four different positions).

6.4. Variation in Position

To see how the attention window can find the object of
interest at the right location. Figure 23 shows all the at-
tention windows that reported a successful recognition
(confidence is at least 0.5), after a complete attention
scan using visual attention windows of different sizes
and positions, as described in Section 2.1. Only four
windows were reported as shown in the figure. This
means that (1) a larger or smaller legal size of the at-
tention window will cause a size difference that is not
tolerated by the attention image recognition; (2) once a
visual attention window of an appropriate size had cov-
ered the object, the recognition was successful; (3) the
system did not falsely recognize any learned object in
the cluttered background. Some recent studies con-
centrate on the detection of human faces (Yang and
Huang, 1994; Sung and Poggio, 1994; Rowley et al.,
1995; Swets et al., 1995).

6.5. How Other Face Models Respond?

The test set includes faces of 10 individuals, all were
digitized from regular TV programs except the “Stu-
dent Peter” which was from a video tape. For the cases
of “ET Hostess” and “Student Peter”, three images
have been learned in the training of each as shown
before. For other faces, only one view was learned for

each case, and recognition was tested on other different
views. The system successfully recognized these faces
without false recognition, although some faces are not
very different, such as “Young actress” and “NYSE re-
porter”. Figure 24 shows a few examples of them. It is
worth noting that the size difference between the faces
is not used as a clue for discriminating different per-
sons because the learned faces on the attention image
all have a similar size. It is interesting to notice that the
system tolerated the expression difference in “ET host-
ess” but did not tolerate the difference between, say,
“Young actress” and “NYSE reporter”. This behavior
is brought about by the multi-level feature matching
and multi-level positional tolerance.

Given any image for testing, all the 20 learned object
models were active in the network. Although for every
tested face image, only unique model got a confidence
value higher than the threshold value 0.5 for report-
ing, many other models got some confidence values,
as shown in the first row in Fig. 25. The figure shows
an example of neural plan response at various levels
when the full network learned with the 20 classes was
appled to an image of “Sports reporter”. The first row
in the figure indicates the output level of classes. The
correct class has a high response at the correct position
while other classes have low responses at various posi-
tions (lower than 0.5 as observed). The increased blur-
ring effect from low to high levels indicates the change
of amount of distortion allowed by our stochastic
model.

6.6. Nonface Objects

In addition to faces of 10 individuals, 10 nonface ob-
jects were learned and tested using with the same net-
work. Each of these nonface objects was learned from
one view, except for “walking dog”, for which two
views were learned, as shown in Fig. 26. Because we
expect that these non-face objects will vary much more,
a relatively lower system vigilance was used when each
object was learned. In fact, only three system vigilance
values were used for all the learning reported here:
0.8, 0.9, 0.99. Human faces used 0.9 or 0.99 and other
objects used 0.9 or 0.8.

Figure 27 shows a few examples of learned and tested
images of nonface objects and the associated segmen-
tation result that indicates the detected location of the
object in the corresponding input test image.
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Figure 24. Examples of other trained and tested human face images with segmentation results. An image with class label only is a training
image. An image with a given confidence value is a test image. An image with a word “segmented” is the result of segmentation from the
previous test image.
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Figure 25. Response of the Cresceptron and inputs. The bottom two rows show the input edge images. The bottom row shows 8 directional
edge images at the small scale and the row above it shows those with the large scale. The rows 1 to 5 from top show the first 8 neural planes in
the output layers of the levels 6, 4, 3, 2, 1, respectively.
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Figure 26. The “Dog” case. The first row: the learned views. The second row, test views and a segmentation result. This case involves
significant changes in the shape of the object. In the learned image, the dog’s tail was in sight. However, in the image to be recognized, the
dog’s tail was not clearly in sight (folded to its body). A low system vigilance 0.8 allows such a change, as long as other major features are still
present, such as a dog’s head, trunk, and legs.

6.7. Summary of the Experimental Result

In summary, 20 classes of objects shown in Fig. 18
were learned by the single automatically generated net-
work. A total of 68 images, different from any of the
training images, were used for testing. The examples
from Fig. 19 to Fig. 27 indicate various examples in
the training and test sets. With all the 20 classes ac-
tive, the system reports all the classes with a matching
confidence higher than 0.5. For nonface test images
whose learning phase used a lower system vigilance,
97% got a unique recognition report. Only two nonface
test images resulted in multiple reports, but the highest
response (top 1) still corresponds to the correct class.
One of them is the “stop sign” shown in Fig. 28. In both
cases the correct class received the highest confidence
value in the report.

The performance of the experiment is summarized in
Table 2. The column “Unique report” in the table lists
the number of cases in which one and only one class
reached a confidence higher than the threshold for re-
port (0.5). As indicated by the table, all the 20 cases
were recognized correctly as top 1 confidence. How-
ever, as we know, the performance depends very much
on the amount of variation between the training and
test samples. The performance is expected to degrade
when the number of classes increases or the difference
between the learning and test samples increases. The
example in Fig. 28 indicates such a degradation.

The edge segments marked by the segmentation are
shown in Fig. 29 for some objects recognized. Note
that all the instances here are for test views, which are
different from those that are learned. These marked
edge segments are the major ones that contributed to the
recognition. Other minor edge segments may also have
contributed to the recognition to a lesser degree. But,
as displayed in Fig. 29, background edges, although
they may be strong, were not marked in the attention
images. It is worth noting that the edge segments shown
in the figure are not completely connected and some are
missing, a situation consistent with input edge images.
Fortunately, the system does not rely on a close outline
of the object, which is very difficult to extract, but rather
uses grouping of the edge segments in an automatic and
hierarchical manner. In addition to object outlines, the
Cresceptron also implicitly utilized surface markings,
self-occluding edges, texture, etc. An integration of
visual cues seems natural in this fashion.

Figure 30 plots the growth of the number of neural
planes at a few layers: 3, 5, 7, and 9, versus the the
number of views learned. At layers 1 and 2, each neural
plane has 64× 64 nodes, and at higher layers, each
neural plane has 32× 32 nodes. After learning these
20 classes of objects, the network has a total of 4133
neural planes in these layers. Note that each neural
plane needs to store only a single 3× 3 template in the
database. The size of the database of these 20 classes
of objects is around 0.68 Mbytes.
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Figure 27. Some examples of trained and tested nonface images with segmentation results. The left column gives the training images; the
middle column lists the corresponding test images and the right column show the corresponding segmentation result for the image in the middle
column.
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Figure 28. One of the two test images where two models were reported given the input image. The correct “stop sign” is reported with a
confidence value 0.97. The second report was “dog” with a confidence value 0.66. The segmented result indicated that an “illusionary” dog was
“found” at the upper half of the stop-sign board, where the vertical strokes of the word “STOP” were regarded as the dog’s legs and the upper
edges of the octagonal board as its back.

Figure 29. Edge segments marked by the segmentation process for some of the examples. These are the major edge segments contributing to
the recognition.

Figure 30. Network growth versus the number of images learned.

7. Discussion and Conclusions

7.1. Biological Considerations

Fukushima discussed the link between such multilayer
network structures and the concept of visual cortex hi-
erarchy: LGB (lateral geniculate body), simple cells,
complex cells, lower order hyper complex cells, higher
order hyper complex cells (Fukushima, 1980). If we
consider all the input layers that connect to a pattern
detection layer as a stack of neural planes. The region
in this stack that links to a single node in the pattern
detection layer constitutes a column of “cells”, which
contains various feature extraction cells but all are sit-
uated at the same retinotopic position. This column
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closely resembles the concept of “hypercolumns” pro-
posed by Hubel and Wiesel (1977).

In the Cresceptron, learning involves two types
of network plasticity: modification of the synaptic
weights (synaptic plasticity) and changes in connec-
tivity of synapses (anatomical plasticity). Hebb (1949)
proposed that selective activation of synapses in syn-
chrony with the postsynaptic neuron could lead to long-
lasting changes in the effectiveness of specific synap-
tic connections. Recent work by Desmond and Levy
(1988) suggests that such changes in synaptic efficacy
does occur with associated forms of learning in some
neural systems. Anatomical plasticity, on the other
hand, is not only a major characteristic in brain’s fe-
tal development (see, e.g., Shatz, 1992; Rakic, 1988),
but also correlates learning in maturity (Kandel and
Schwartz, 1982; Carew, 1989) and recovery to various
degrees following an injury (Guth, 1975; Carbonetto
and Muller, 1982).

7.2. Efficiency Issues

Efficiency is important to dealing with a large num-
ber of objects. With the Cresceptron, it is clear from
Fig. 30 that the growth of layer 3 (also layers 1 and 2)
saturated very soon. This is because that at these low
layers, the number of possible features is very limited
in a 3× 3-pixel neighborhood. The system learned all
the possiblesignificantcases very soon. At layer 5,
the number of possible features must be much larger,
because it has a larger receptive field. The growth at
layer 5 will slow down when the number of interested
significantfeatures are nearly exhausted, as far as the
network is concerned. It is not clear where this will
take place. It depends very much on the size and varia-
tion of the class of objects that a particular application
wants to learn. When learning a small class of object
with a limited variation, this exhaustion of interested
significant features should occur earlier. Otherwise,
it takes place later. The saturation at layer 7 will oc-
cur much later. Conceivably, the number of nodes at
higher layers will be almost proportional to the number
of objects that have been learned.

It is obvious that a system cannot keep learning for-
ever without forgetting anything, due to a limited mem-
ory size. The current implementation of the Crescep-
tron also allows the nodes to be deleted. That is, the
network “forgets” less frequently used or very “old”
knowledge by deleting the corresponding nodes and
thus keeps its size limited. This “forgetting” mecha-

nism might be useful for correcting errors due to early
(immature) learning. With the Cresceptron, a flag is
kept in each node to record its usage, so that only those
less oftenly used nodes are deleted when system ca-
pacity reaches the system limit.

7.3. Conclusions

The objective and approach of the Cresceptron are very
different from other works in that it is not restricted to
a particular class of objects and it works directly with
natural intensity images. Due to its generality, it is ap-
plicable to human face images as well as other living
and nonliving objects, including difficult things such as
dogs. The segmentation scheme is based on matched
edge grouping between the learned network and the in
put, with hierarchical toleration for edge positions. Our
analytical result has shown that a hierarchical stochas-
tic deformation model can model stochastic behaviors
that a single-level model can not.

Using a conventional method that uses hand-crafted
vision rules, one typically needs to impose conditions
on the object and scene environment so that the vision-
rules are applicable. However, it is very difficult to
provide an automatic system that is capable of ver-
ifying these conditions, given any image. The result
shown in this paper seems to indicate that it is possible
to approach vision with an open-ended learning sys-
tem, which imposes little constraint on what it can see
and can improve itself through incremental learning.
One major difficulty that the Cresceptron faces is the
efficiency. A later system SHOSLIF (Weng, 1996) ad-
dresses this and other issues.

Appendices

Appendix A

Proof of Theorem 1: The set of all real numbers
consists of rational and irrational numbers. We first
prove (10) for any rational numberd ∈ <+. Then, we
will prove the same equation for any irrational number
d ∈ <+.

For any non-negative integern, we defineαi =
α(id/n) and then divide [0, d] into n segments as fol-
lows:

α(d)− α(0) =
n∑

i=1

(αi − αi−1) =
n∑

i=1

δi (d)
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whereδi = αi − αi−1. Using the Markovianity,δi

being mutually independent between differenti ’s given
α0, . . . , αn−1, it follows that

v2(d) = var[α(d)− α(0)]

= E

[
E

[
n∑

i=1

(δi − E[δi ])
2 | α0, . . . , αn−1

]]

= E

[
n∑

i=1

E[(δi − E[δi ])
2 | α0, . . . , αn−1]

]

=
n∑

i=1

E[E[(δi − E[δi ])
2 | α0, . . . , αn−1]]

(21)

It follows from (9) that

E[E[(δi − E[δi ])
2 | α0, . . . , αn−1]]

= E[E[(δi − E[δi ])
2 | α0, . . . , αi−1]]

Using the Markovianity and the homogeneity, the right-
hand side is equal to

E[E[(δi − E[δi ])
2 | αi−1]]

= E[E[(δ1− E[δ1])2 | α0]]

= E[var[δ1 | α0]]

= E[var[(α(d/n)− α(0)) | α0]]

= var[α(d/n)− α(0)] (22)

Replacing the above expression for the terms under
summation in (21) gives

v2(d) =
n∑

i=1

var[α(d/n)− α(0)]

=
n∑

i=1

v2(d/n)

= nv2(d/n) (23)

Rewriting (23), we get

v2(d/n) = 1

n
v2(d) (24)

Given any integerm≥ 0, replacingn in (23) bym and
lettingd = m gives

v2(m) = mv2(1)

Letting d = m in (24) and using the above equation
yields

v2

(
m

n

)
= 1

n
v2(m) = m

n
v2(1)

Because any nonnegative rational numberx can be
written asx = m/n, for some non-negative integer
numbersm andn, the above equation means that (10)
holds true for all rational numbers in<+.

As we know, the set of all rational numbers is dense in
< (Royden, 1988). This implies that for any irrational
numberx in <+, there exist two rational series{x−n }
and {x+n } (i.e., all the numbers in{x−n } and {x+n } are
rational numbers), with

x−n < x < x+n

for all integern > 0, such thatx−n → x andx+n → x
asn→∞.

Next, we want to prove thatv2(x) is monotonically
nondecreasing. That is,

v2(x−n ) ≤ v2(x) ≤ v2(x+n ) (25)

for all integern > 0. We just need to prove thatv(x) ≤
v(x′) for anyx < x′. In fact, using the same technique
we used while proving (23) but changing the breaking
points fromxi = id/n to x0 = 0, x1 = x, x2 = x′,
similar to (23) we have

v2(x′) = var[α(x′ − x)− α(0)] + var[α(x)− α(0)]
≥ var[α(x)− α(0)]
= v2(x) (26)

which proves (25). Using the proved resultv2(x) =
x · v2(1) for rational numberx, (25) gives

x−n v
2(1) ≤ v2(x) ≤ x+n v

2(1)

By taking the limit forn → ∞ on every side of the
above inequality, we get

x · v2(1) = lim
n→∞ x−n v

2(1) ≤ v2(x) ≤ lim
n→∞ x+n v

2(1)

= x · v2(1)

Thereforev2(x) = x · v2(1) holds true for any irra-
tional numberx in < as well. Sincev(x′) andv(x)
are nonnegative andx ∈ <, v2(x) = x · v2(1) implies
v(x) = √xv(1). 2
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Appendix B

Proof of Corollary 1: We supposex ≤ x′. The proof
for x > x′ is analogous. Ifd = x′ − x is a rational
number, the proof is analogous to that for Theorem 1,
and thus, is omitted. Ifd = x′ − x is an irrational
number, there is a rational series{xn} → x′ − x as
n→∞. Becausew(0, d) is continuous ind, we have

(x′ − x)w(0, 1) = lim
n→∞ xnw(0, 1)

= lim
n→∞w(0, xn)

= w(0, x′ − x) = w(x, x′) 2
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Note

1. Take language understanding as an example. If we just remember
the meaning of every sentence, we treat each sentence as a black
box. But, if we know how each word is formed from letters
and how each sentence is constructed from words, and different
sentences may share the same words and phrases, we are not
treating a sentence as an opaque box.
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Lévy-Schoen, A. 1981. Flexible and/or rigid control of oculomo-
tor scanning behavior. In J.W. Senders (Ed.),Eye Movements:
Cognition and Visual Perception, Lawrence Erlbaum Associates,
Hillsdale, NJ, pp. 299–314.

Lippmann, R.P. 1987. An introduction to computing with neural nets.
IEEE ASSP Magazine, 4(2):4–22.

Loftsgaarden, D.O. and Quesenberry, C.P. 1965. A nonparamet-
ric estimate of a multivariate density function.Ann. Math. Stat.,
36:1049–1051.

Lowe, D.G. 1985.Perceptual Organization and Visual Recognition.
Kluwer Academic: Hingham, MA.

Martinez, J.L., Jr. and Kessner, R.P. (Eds.) 1991.Learning and Mem-
ory: A Biological View. 2nd edition, Academic Press: San Diego.

Michalski, R., Mozetic, I., Hong, J., and Lavrac, N. 1986. The multi-
purpose incremental learning system AQ15 and its testing appli-
cation to three medical domains. InProc. Fifth Annual National
Conf. Artificial Intelligence, Philadelphia, PA, pp. 1041–1045.

Nazir, T.A. and O’Regan, J.K. 1990. Some results on translation
invariance in the human visual system.Spatial Vision, 5(2):81–
100.

Pavlidis, T. 1992. Why progress in machine vision is so slow.Pattern
Recognition Letters, 13:221–225.

Poggio, T. and Edelman, S. 1990. A network that learns to recognize
three-dimensional objects.Nature, 343:263–266.

Pomerleau, D.A. 1989. ALVINN: An autonomous Land Vehicle in
a Neural Network.Advances in Neural Information Processing,
in D. Touretzky (Ed.), Vol. 1, pp. 305–313, Morgran-Kaufmann
Publishers: San Mateo, CA.

Quinlan, J. 1986. Introduction of Decision Trees.Machine Learning,
1:81–106.

Pavlidis, T. 1977.Structural Pattern Recognition. Springer-Verlag:
New York.

Rakic, P. 1988. Specification of cerebral cortical areas.Science,
241:170–176, 1988.

Ramachandran, V.S. 1990. Perceiving shape from shading.The Per-
ceptual World, in I. Rock (Ed.), Freeman: San Francisco, CA,
pp. 127–138.

Rowley, H.A., Baluja, S., and Kanade, T. 1995. Human face detection
in visual scenes. Report CMU-CS-95-158, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA.

Royden, H.L.Real Analysis. Macmillan: New York.
Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986. Learning

internal representations by error propagation.Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Vol.
1: Foundations, in D.E. Rumelhart and J.L. McClelland (Eds.),
MIT Press, MA.

Sacks, O. 1993. To see and not see.The New Yorker, pp. 59–73.
Sato H. and Binford, T.O. 1992. On finding the ends of straight

homogeneous generalized cylinders. InProc. IEEE Conf. Com-
puter Vision and Pattern Recognition, Urbana, IL, pp. 695–
698.

Shatz, C.J. 1992. The developing brain.Scientific American, pp. 61–
67.

Stein, F. and Medioni, G. 1992. Structural indexing: Efficient 3-D
object recognition.IEEE Trans. Pattern Anal. and Machine Intell.,
14(2):125–144.

Sung, K. and Poggio, T. 1994. Example-based learning for view-
based human face detection. A.I. Memo 1521, CBCL paper 112,
MIT.

Swets, D., Punch, B., and Weng, J. 1995. Genetic algorithm for
object recognition in a complex scene. InProc. Int’l Conf. on
Image Processing, Washington, D.C., pp. 22–25.

Thompson, P. 1980. Margaret Thatcher: a new illusion.Perception,
9:483–484.

Treisman, A.M. 1983. The role of attention in object perception.
Physical and Biological Processing of Images, in O.J. Braddick
and A.C. Sleigh (Eds.), Springer-Verlag: Berlin.

Turk, M. and Pentland, A. 1991. Eigenfaces for recognition.Journal
of Cognitive Neuroscience, 3(1):71–86.

Weiss, I. 1993. Geometric invariants and object recognition.Int’l
Journal of Computer Vision, 10(3):207–231.

Weng, J. 1993. On the structure of retinotopic hierarchical networks.
In Proc. World Congress on Neural Networks, Portland, Oregon,
Vol. IV, pp. 149–153.

Weng, J. 1996. Cresceptron and SHOSLIF: Toward comprehensive
visual learning. In S.K. Nayar and T. Poggio (Eds.),Early Visual
Learning, Oxford University Press: New York.

Weng, J., Ahuja, N., and Huang, T.S. 1992. Cresceptron: A self-
organizing neural network which grows adaptively. InProc. Inter-
national Joint Conference on Neural Networks, Baltimore, Mary-
land, Vol. I, pp. 576–581.

Weng, J., Ahuja, N., and Huang, T.S. 1993. Learning recognition
and segmentation of 3-D objects from 2-D images. InProc. 4th
International Conf. Computer Vision, Berlin, Germany, pp. 121–
128.

Wilson, H.R. and Giese, S.C. 1977. Threshold visibility of frequency
gradient patterns.Vision Research, 17:1177–1190.

Wilson, H.R. and Bergen, J.R. 1979. A four mechanism model for
spatial vision.Vision Research, 19:19–32.

Yang, G. and Huang, T. S. 1994. Human face detection in a complex
background.Pattern Recognition, 27(1):53–63.


