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Abstract 
 
The purpose of this paper is to perform evaluation of two different neural network architectures used 

for solving temporal problems, i.e. time series prediction. The data sets in this project include Mackey-Glass, 
Sunspots, and Standard  & Poor's 500, the stock market index. The study also presents a comparison study on 
the two networks and their performance. 
Keywords: time series, neural networks 

 
Introduction 

A time-series is a collection of observations made sequentially through time. Examples include: 
temperature at a particular location at noon on successive one hour periods, iterated mathematical equations, 
financial time series, or even daily numbers of people watching television. 

For most time series, it is possible to create a predictive model which can be used to forecast future 
values, or solving temporal problems. The aim of this project is to design and implement such models, and 
evaluate them. There is a great range of methods to be used for solving this problem.  In this paper, a time series 
are considered to be chaotic, meaning they are part deterministic and part random. 

Temporal problems can be solved by observing past values of time series to forecast the future. This 
approach is called technical analysis and is used by a vast majority of stock analysts. Research has shown that 
artificial neural networks (ANN) can rival with the existing methods of time series prediction. They can be used 
to find a mapping between past and future values.  

This paper is divided into several chapters. Chapters 1 describe the data sets which will be used for 
prediction, current methods in forecasting time series, and the potential of neural networks in this field. Chapters 
2, 3 describe the two network architectures which will be used throughout the project: Finite Impulse Response 
(FIR), and Recurrent Neural Networks. In Chapter 4, comparison analysis of both networks is performed. 
Finally, chapter 5 is concentrated on financial forecasting, and applications of chaos theory in financial 
forecasting. 

1. Data Sets 

Three different time series will be used for prediction: 

 Mackay-Glass 

 Sunspots 

 S&P 500 

Mackey-Glass has been the starting benchmark for time series prediction in a lot of papers. It is not as 
chaotic as the other two data sets. S & P is a stock market index, and it is the starting benchmark for financial 
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forecasting. Data for these time series has been extracted from Yahoo! Finance. Other examples of (chaotic) 
time series include Lorenz, Hennon maps; Vowel, Speech and Sonar data. 

1.1 Mackay-Glass 

Mackey-Glass is a delay differential equation which was proposed as a model for white blood cell 
reproduction. Delay differential equations (DDE) are an important class of dynamical systems. They often arise 
in either natural or technological control problems. This system has a controller which makes adjustments to the 
state of the system based on its observations.  The Mackey-Glass equation is given by the following equation: 
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where x is the density of the circulating white blood cells, B is the random white blood cell destruction rate, and 
F is the current flux of new cells into the blood in response to the demand created at a time   in past. 

1.2 Sunspots 

Sunspots are dark areas of irregular shape on the surface of the Sun, and they can be used to estimate 
solar activity of Sun. The numbers are computed by adding 10 times the number of groups to the total count of 
individual spots.  These dark blotches can last for several months but most disappear in 10 days or less. 
Sunspots normally occur in groups, individual spots can measure thousands of miles across. 

No one knows the mechanics behind sunspots, nor why they appear or disappear. Recently, research 
has shown that a decrease or increase in sunspots affects Earth's climate. ANN models used in this paper could 
theoretically be used in making weather prognoses, if the theory behind sunspots and earth climate is true. 

1.3 S&P 500 

The Standard & Poor's 500 Index is usually considered the benchmark for U.S. equity performance, 
and represents 70% of all U.S. publicly traded companies. The index is associated with the largest mutual fund 
in the world, the Vanguard 500 Index Fund, and Spiders, the first exchange traded fund (ETF).  

The index is comprised primarily of U.S.-based companies. The S&P 500 has significant liquidity 
requirements for its components, so some large, thinly traded companies are ineligible for inclusion. Because 
the index gives more weight to larger companies, it tends to reflect the price movement of a fairly small number 
of stocks. [15]. 

2. Architectures used 

Neural network must contain memory in order to process temporal information. There are two basic 
ways to build memory into neural networks. The first is to introduce time delays in the network and to adjust 
their parameters during the learning phase. The second way is to introduce positive feedback, that is making the 
network recurrent. This paper will concentrate on two architectures: finite impulse response (FIR) and recurrent 
neural networks. 

FIR neural network uses the unfold-in-time static approach, and is a functional equivalent of the time 
delay neural network (TDNN). They do not have feedback connections between units. TDNN provide simple 
forms of dynamics by buffering lagged input variables at the input layer and/or lagged hidden unit outputs at the 
hidden layer. FIR network is a feedforward network whose static connection weights between units are replaced 
by an FIR linear filter that can be modeled with tapped delay lines. After applying the unfold-in-time technique 
to a FIR, all delays will be removed by expanding the network into a large equivalent static structure. Standard 
backpropagation algorithm is then applied for training. Formally, time delays are identical to time windows and 
can thus be viewed as autoregressive models. 

Recurrent neural networks (RNN) have feedback connections. They address the temporal relationship 
of inputs by maintaining internal states that have memory. Real time recurrent back-propagation and 
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backpropagation through time are two popular algorithms for training RNNs, which can be difficult due to the 
feedback connections. 

3. Finite Impulse Response (FIR) Neural Network 

This chapter introduces the first network architecture that will be used for forecasting future values of 
nonlinear dynamic systems described in chapter 1. Section 3.1 describes the linear systems (filters) which are 
used as a substitution to normal feedforward network's weights. Section 3.2 and 3.3 describe the training 
algorithm used by this network, called temporal backpropagation. 

3.1 Linear Systems 

It is possible that P, the process whose output is trying to get predicted is governed by linear dynamics. 
The study of linear systems is the domain of Digital Signal Processing (DSP). 

DSP is concerned with linear, translation-invariant (LTI) operations on data systems. Those operations 
are implemented by filters. The analysis and design of filters effectively forms the core of this field. 

Filters operate on an input sequence u[t], producing an output sequence x[t]. They are typically described in 
terms of their frequency response, i.e. low pass, high-pass, band-stop. 

There are two basic filter architectures, known as the Finite Impulse Response (FIR) filter and the Infinite 
Impulse Response (IIR) filter. FIR filters are characterized by q+1 coefficients: 

     (2) 

These filters implement the convolution of the input signal with a given coefficient vector . The input 
in these filters  is the impulse function, and the output  is long as  which must be finite. 

IIR filters are characterized by p coefficients. 

         (3) 

The input  contributes directly to at time t, but, crucially, is otherwise a weighted sum of its own past 
samples. Because both the input signal and vector are finite in duration, the response asymptotically decays 
to zero. Once is non-zero, it will make non-zero contributions to future values of infinite number of times. 

 3.2 FIR Filters in ANNs 

 

Figure 1. Finite Impulse Response Filter 

In Finite impulse response (FIR) Neural networks, each neuron is extended to be able to process temporal 
features by replacing synapse weights by finite impulse response filters. A general structure of this filter is 
shown in figure 1. A multilayer feedforward network is then built using these neurons as shown in figure 2. 
Network input layer consists of FIR filters feeding the data into neurons in hidden layer. Output of a layer may 
only connect to the first tap of a node in next layer. Network may have one or several hidden layers. Output 
layer consists of neurons which receive their inputs from previous hidden layer. 
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Figure 2 Multilayer Feedforward Neural Network 

At each time increment, one new value is fed to input filters, and output neuron produces one scalar value. In 
effect this structure has the same functional properties as the Time Delayed Neural Networks (TDNN). 
However, the FIR neural network is interpreted as a vectoral and temporal extension of MLP. This interpretation 
leads to the temporal backpropagation algorithm. 

3.2 Temporal backpropagation 

The basic backpropagation algorithm assumes that the neural network is a combinational circuit, 
providing an output for a given input. However, many applications suitable for adaptive learning have inherently 
temporal structures. 

Every time-delay neural network can be represented as a standard static network simply by duplicating 
nodes and removing delays. The resultant net is much larger, contains a large number of weight duplications (or 
triplications), and is not fully interconnected. The process of creating the static equivalent can be thought of as 
'unfolding' the network. Once the network is unfolded, the backpropagation algorithm can be applied directly to 
solve the static network. 

The output layer of the static network contains the same number of nodes as the output layer of the 
temporal network. Because this layer has no delay taps, the next layer has no non-physical nodes, and the 
number of virtual nodes of the static equivalent is equal to the number of filters in that layer times the number of 
placeholders in each filter. For each layer back to the input, the number of total virtual nodes is a cumulative 
sum of the number of virtual nodes in that layer plus the number of virtual nodes calculated for the previous 
layer minus one (because the first placeholder in each filter accepts and  propagates its input without delay to the 
next layer). Mathematically, the notation for total virtual nodes at a layer is: 
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where lT  is the physical number of taps per filter. 

The next stage is to actually unfold the network. The first step is to copy down the output nodes, then to copy 
down all the placeholders of the next layer back, and make each one into a node by prepending a processing 
element to it. The result is a partial network shown in figure 3. So far, the training algorithm is simply a standard 
backpropagation without modifications, except that the hidden-layer nodes are referenced with three, instead of 
two variables. 
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Figure 3. Partial static neural network in the unfolding process 
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where l is used as a subscript to denote that there is only one tap s=1 associated with the output layer L. 
The network still has the exact physical layout of the temporal net, but without the delay units. The next step is 
to copy the first layer and second layer weights downward, overlapping placeholders when necessary, until the 
number of inputs in the first layer equals the number of accumulated inputs calculated. 

4. Recurrent Neural Networks 

A recurrent net is a neural network with feedback (closed loop connections). Examples include BAM, 
Hopfield, Boltzmann machine, and recurrent backpropagation nets. The architectures range from fully 
interconnected to partially connected nets, including multilayer feedfoward networks with distinct input and 
output layers. Fully connected networks do not have distinct input layers of nodes, and each node has input from 
all other nodes. Feedback to the node itself is impossible. 

Two fundamental ways can be used to add feedback into feedforward multilayer neural networks. 
Elman introduced feedback from the hidden layer to the context portion of the input layer. This approach pays 
more attention to the sequence of input variables. Jordan recurrent neural networks use feedback from the output 
layer to the context nodes of the input layer and give more emphasis to the sequence of output values. 

4.1 Learning in Recurrent Neural Networks 

Hebbian learning and gradient ascent learning are key concepts upon which neural network techniques 
have been based. While backpropagation is relatively simple to implement, several problem can occur in its use 
in practical applications, including the difficulty of avoiding entrapment in local minima. The added complexity 
of the dynamical processing in recurrent neural networks from the time delayed updating of the input data 
requires more complex algorithms for representing learning. 

Neural networks with recurrent connections and dynamical processing elements are finding increasing 
applications in diverse areas. While feedforward networks have been recognized to perform excellent pattern 
recognition even with complex nonlinear decision surfaces, they are limited to processing stationary patterns 
(invariant with time). 

There are two ways to include feedback connections in neural networks. These are activation feedback, 
and output feedback. These schemes are related to state space representation of neural networks. The output of a 
neuron in a network using activation feedback is: 
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The transfer function of a neuron in a network using output feedback scheme can be expressed as: 
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4.2 Recurrent Finite Impulse Response Neural Networks (RFIRNN) 

Although variety of ANNs are used for time series prediction, there was no consensus on the best 
architecture to use. Horne and Giles [2] concluded that “recurrent networks usually did better than TDNNs 
except on the finite memory machine problem”. On the other hand Hallas and Dorffner [3] stated that “recurrent 
networks do not seem to be able to do prediction under the given conditions” and a “simple feedforward 
network significantly performs best for most nonlinear time series”. However, many agree that the best 
architecture is problem dependent and that efficiency of the learning algorithm is more important than the 
network model used. 

 

 

 

 

 

 

 

Figure 4. Example of a three layer Recurrent FIR neural network 

Not a lot of research has been done in time series modelling using RFIRNN. In RFIR, each feedback link 
has a non-zero delay, and the link between any two nodes has an explicit memory modelled by a multi-tap FIR 
filter for storing history information. (Figure 4) The advantage of this architecture is that it can store more 
historical information than both RNN and FIR. The concept of RFIR can be generalized easily to existing 
recurrent ANN, and nonlinear autoregressive networks. These networks use violation-guided backpropagation 
algorithm. 

5. Performance Analysis 

The coefficient of determination (C.D.) from Drossu and Obradovic [5] is used to compare the 
network’s forecasting performance: 

 

The number of data points forecasted is n, xi is the actual value, x’i is the forecast value, and x’’ is the 
mean of the actual data. coefficient of determination close to one is preferable. 

5.1 Mackey-Glass 
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Below is a list of experiments which were performed on the two networks. Numbers 0-10 indicate level 
of difficulty, with 0 being shortest term prediction, and 10 longest. Numbers in form (A:B), are the number of 
training points (A) used for prediction, and the length of the horizon. 

Table 1. FIRNN results for 2-layer network with 8 neurons in each layer, and 7:3 taps. 

 
 

FIR training is an iterative process where each cycle consists of one or more forward propagations 
through the network, and one back propagation to obtain derivatives of the cost function with respect to the 
network weights. FIR networks used in this project have 2 hidden layers. Table 1 shows the results where the 
number of taps in first layer is 7, and 3 in second. The learning rate was set to 0.005 (same case for RNN 
performance in Table 2).  

Table 2. RNN Results for 3-layer network with 10 neurons in each layer 

 
 

 

 

 

 

 

 

RNN are capable of representing and encoding deeply hidden states, in which previous output depends 
on an arbitrary number of previous inputs. Recurrent network in this project have a compact structure, with 3 
hidden layers. From the results, it can be seen that RNN outperforms FIR network on long term prediction of the 
Mackey-Glass (experiments RNN outperformed FIR in experiments 7,8,9,10, which had the highest value for 
the horizon). For short-term prediction, FIR network only slightly outperforms the RNN. Because Mackey- 
Glass numbers are easy to generate, more experiments are performed, this time with more neurons, or taps. 
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Table 3. RNN Results for 3-layer network with 20 neurons in each layer 

 

 
 
Common practice is to divide the time series into three distinct sets, training, testing, and validation 

sets. The training set is the largest set and is used by the network to learn the patterns present in the data. The 
testing set, ranging from 10% to 30% of the training set is used to evaluate the generalization ability of a 
supposedly trained network. The testing sets used in these examples are observations (series) which come after 
the training set, and had a size of 15% of training points. The size of the validation set must strike a balance 
between obtaining a sufficient sample size to evaluate a trained network and having enough remaining 
observations for both training and testing. The validation set thus consists of the most recent observations (last 
points of the training set). The validation set used in the experiments represented 10% of the training points. 

The network is further trained until there is no improvement in the error function based on a reasonable 
number of randomly selected starting weights. Epochs columns in tables 1-4 show how many of them were 
needed for the network to converge. 

By increasing the number of neurons in hidden layers, or tapped delays, more feautures are extracted 
from the data (and hence the predictions are made more accurate). However, this may lead to over-fitting, and 
the predictions might go out of range. Overfitting occurs when a forecasting model has too few degrees of 
freedom. In other words it has relatively few observations in relation to its parameters and therefore is able to 
memorize individual points rather than learn general patterns. To avoid this, either less epochs are used for 
training, or a very small learning rate is applied. Alternatively, one could linearly decrease the learning rate over 
time (decrease every 5-10 epochs), and use less epochs for training. Tables 3 and 4 show some improvement in 
the predictions, after the structure of the network has been expanded. In these experiments, the learning rate was 
reduced to 0.0025, and the number of epochs used for training has changed slightly in each experiment. 

Despite the importance of the number of hidden layers in the network, there is no magic formula for 
selecting the optimum number of hidden neurons. Baily and Thompson [4] suggest that the number of hidden 
neurons in a three layer network should be 75% of the number of input neurons. Katz [10] indicates that an 
optimal number of hidden neurons will generally be found between one half to three times the number of input 
neurons. Ersoy [13] proposes doubling the number of hidden neurons until the network’s performance on the 
testing set deteriroates. Klimasauskas [12] suggests that there should be at least five times as many training facts 
as weights which sets an upper limit on the number of input and hidden neurons. 
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Sunspots 

The sunspot time series have a higher degree of difficulty in time series prediction than Mackey-Glass, 
which is why more neurons need to be included in the network to do forecasting. When number of neurons per 
layer is less than 10, networks will perform poorly. 

Two experiments were run on Sunspots, to forecast future 20, and 40 values (yearly values) using past 
200 values. Research has shown that when predicting these dark blotches it is best to use yearly data rather than 
daily data (generally high frequency data is much harder to predict). 

Before forecasting these series, preprocessing needs to be done. This is because the values of Sunspots 
are big for a neural network, and when forecasting, it is best to keep the values in range of [0,1]. Data 
normalization will fit the sunspots in the range of [0.1, 0.9]. Another preprocessing method which needs to be 
done is de-seasonalising, which will remove the trends found in sunspot numbers. [6] 

FIR network used for these experiments has 15 neurons in each layer, and 10:4 taps. RNN network has 
25 neurons in each layer. Learning parameter was set to 0.03, and the number of training epochs was 2000. 0.03 
was chosen as the parameter after careful testing. The RNN network outperformed FIR network in both 
experiment, significantly. The coefficient of determination in the first experiment was 0.44 for RNN, and 0.1 for 
FIR network. In the second experiment C.D. for the FIR network was nearly 0. 

 
 

Figure 5. Comparison of RNN and FIRNN performance on sunspots prediction (left: FIRNN (C.D = 0.1), right RNN (C.D = 0.44)) (dotted 
lines denote predictions) 

As mentioned before, the results showed that the RNN network outperformed the FIR network in the 
sunspot prediction. This might be due to the nature of sunspots. As mentioned earlier, sunspots usually rise and 
fal every 11.1 years, which acts as a threshold. Another predictive model, called Threshold Autoregressive 
(TAR) model, proposed by Tong and Lim [14] performs really well in this prediction task by employing a 
threshold to switch between two autoregressive models. The FIR model corresponds to the ARIMA 
(Autoregressive Integrated Moving Average) model, which when applied to sunspot prediction will converge to 
a local minimum due to the autoregressive feature (and the nature of sunspots). Momentum rate can be used to 
get pass the local minimum. After applying a momentum rate of 0.005, the following results were obtained for 
FIRNN:  

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Experiment 2. FIR performance improvement using momentum rate of 0.005 (left: FIRNN (C.D = 0.0014), right FIRNN with 
m.rate=0.005 (C.D = 0.47)) (dotted lines denote predictions) 
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The reason why RNN did not suffer as much as the FIR network is because it 

does not have the autoregressive functionality as the FIRNN. Still, both networks performed below average 
(0.5), and TAR has shown to be a better predictive model for Sunspot prediction. One possible reason for the 
low performance of neural networks over TAR could be lack of training data. 

5.2 S&P 500 

The objective is to forecast future values of S & P 500 time series with the horizon set to 30 days. 
Whereas the objective may be to predict the level of the S&P 500, it is important to simplify the job of the 
network by asking for a change in the level rather than for the absolute level of the index. 

The two architectures used in this project, FIR and RNN are both powerful forecasting tools. As 
mentioned earlier, in section 6, in order to capture more patterns, the architecture has to have a large number of 
neurons, or tapped delay connections. The networks which will be used for this experiment have 30 neurons in 
each hidden layer, with the FIR network having 10 taps in first layer, and 5 in second. 

Training a neural network to learn patterns in the data involves iteratively presenting it with examples 
of the correct known answers. The objective of training is to find a set of weights between the neurons that 
determine the global minimum  of the error function. Unless the model is overfitted, this set of weights should 
provide good generalization. 

The objective is to forecast future 30 values of the S&P time series. The size of the training set is 
highly dependent on the value of this horizon. A big training set will contain points from which a large number 
of patterns will be extracted. The danger of this is the networks will learn too many patterns, and not be able to 
find correct future patterns due to a large number of choices. 

A training set was selected for the experiment, containing 600 points (or days). The learning rate used 
in this experiment was 0.03, and the networks was trained for 10000 Epochs. 

Coefficient of determination is 0.8 for the FIR network, whereas the RNN network performed slightly worse 
with a C.D. of 0.67. This is to be expected, as FIR networks perform better on short term prediction. This does 
not mean that the FIR network performs better in this task, because both networks have not been tested on a 
large dataset (long-term prediction). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. FIR Performance on financial time series prediction 
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6. Conclusion 

Three different non-linear systems have been explored, and experimented upon. These include 
phenomena happening within the human body (Mackey-Glass), nature (Sunspots), and economics. Neural 
networks have shown to be a powerful forecasting tool. In order to do forecasting, networks must contain 
memory to learn the patterns which can be found in the data. There are two ways of doing this, either using FIR, 
or Recurrent neural networks. FIR neural networks outperform recurrent in short term prediction, whereas 
recurrent networks outperform fir networks on long term prediction.  

Since FIR networks outperform RNN networks in short-term, and RNN outperform FIR in long term 
prediction, it seems reasonable to use a hybrid network, Recurrent FIR Neural Network for time series 
prediction. Such a network would have both the advantage of feedback connections of RNN networks, and FIR 
filters, which would in turn enable the network to learn more patterns than FIR and RNN combined together. 
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Appendix A 

Graphical visualization of Mackey-Glass experiments (best and worst case scenarios) 
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