
A magazine of ACCU ISSN: 1354-3172

In an Atomic World
Lucian Radu Teodorescu reminds us what 

atomics are, and how and when to use them.

User-defined Formatting in std::format 
– Part 3
Spencer Collyer finishes his series by showing us 
how to apply specific formatting to existing classes.

Trip Report: C++ on Sea 2024 
Sandor Dargo shares an overview of his favourite 
talks and some emergent ideas.

Afterwood
Chris Oldwood is testing simplicity.



Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May, 
July, September and November

Overload in February, April, June, 
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website



OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications 

and activities, visit the ACCU website: 
www.accu.org

August 2024 | Overload | 1

ACCU
ACCU is an organisation of 
programmers who care about 
professionalism in programming. We 
care about writing good code, and  
about writing it in a good way. We are 
dedicated to raising the standard of 
programming.

Many of the articles in this magazine 
have been written by ACCU members – 
by programmers, for programmers – and 
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks 
or claimed as such. The use of such terms is not intended to support nor disparage any 
trade mark claim. On request, we will withdraw all references to a specific trade mark 
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property 
of the author. By submitting material to ACCU for publication, an author is, by default, 
assumed to have granted ACCU the right to publish and republish that material in any 
medium as they see fit. An author of an article or column (not a letter or a review of 
software or a book) may explicitly offer single (first serial) publication rights and thereby 
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal 
distribution 2) members to copy source code for use on their own computers, no material 
can be copied from Overload without written permission from the copyright holder.

August 2024
ISSN 1354-3172

Editor
Frances Buontempo 
overload@accu.org

Advisors
Paul Bennett 
t21@angellane.org

Matthew Dodkins 
matthew.dodkins@gmail.com

Paul Floyd 
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness 
coder@hussar.me.uk

Mikael Kilpeläinen 
mikael.kilpelainen@kolumbus.fi

Steve Love 
steve@arventech.com

Christian Meyenburg 
contact@meyenburg.dev

Barry Nichols 
barrydavidnichols@gmail.com

Chris Oldwood 
gort@cix.co.uk

Roger Orr 
rogero@howzatt.co.uk

Balog Pal 
pasa@lib.hu

Jonathan Wakely 
accu@kayari.org

Anthony Williams 
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe 
pete@goodliffe.net

Cover photo by Alison Peck.  One 
of the large decorative iron balls 
at the entrance to the grounds 
of Culzean Castle, Ayrshire, 
Scotland.

Copy deadlines
All articles intended for publication in Overload 183 should be submitted by 
1st September 2024 and those for Overload 184 by 1st November 2024.

	 4	 User-Defined	Formatting	in	std::format	–	Part	3
Spencer Collyer finishes his series by showing 
us how to apply specific formatting to existing 
classes.

	 6	 In	an	Atomic	World
Lucian Radu Teodorescu reminds us what
atomics are, and how and when to use them.

	13	 Trip	report:	C++	On	Sea	2024
Sandor Dargo shares an overview of his favourite 
talks and some emergent ideas.

	16	 Afterwood
Chris Oldwood is testing simplicity.



FrAnCeS	BUOnTemPOeDITOrIAl

2 | Overload | August 2024

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and 
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning 
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the 
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

I have been busy writing conference and workshop 
proposals recently, so haven’t got around to writing 
an editorial. Each conference has a slightly different 
form to fill in, so even if I want to reuse a talk I need 
to format the idea with different word counts and 
different sections. I usually then spot different angles 

to emphasise and end up tweaking my slides too. It takes ages. As so often 
happens, a quick task ends up taking a very long time.

Reusing a talk and tweaking the angle is a relatively new experience for 
me, and even when people do reuse a talk, they need one to begin with. 
How do you find an initial idea? Most people who have never volunteered 
a talk think they don’t have anything to say. That is not true. Everyone 
has managed to solve a problem, or wonders how things work, or learnt 
something in the first place. Consider suggesting a talk if you’ve never 
done this before and are in a place to take part in a conference. If you can’t 
find the funds or spend the time travelling, there are hybrid and online 
only options. Of course, not everyone wants to spend hours listening to 
people speak about coding or to take part in a workshop. Some people 
have a life outside IT (if you don’t, you might need to broaden your 
horizons). Nonetheless, speak up at work. You might be able to give a 
short talk to your teammates one day. Or suggest a different approach to a 
problem. If you’re a team lead, find ways to encourage your team. Some 
people are too shy to speak up in meetings, so give them another way 
to share, for example let everyone write ideas on Post-its when you’re 
discussing things.

If you are serious about giving a talk somewhere, watch the recent 
recording from MeetingCpp about giving talks [MeetingCpp]. The 
content is much broader than C++, and applies equally well to almost any 
technical talk. Various people gave short pieces of advice, from pacing 
the talk to live demo Pro Tips, and dealing with nerves. Tina Ulbrich’s 
advice was called ‘But I have nothing to talk about!’ She pointed out 
we all have something to say really, and suggested listing what you do 
every day as a starting point. Your list proves you do know stuff. What 
sort of problems have you solved? Someone else might want to know. 
Alternatively, what do you want to learn more about? Giving a talk gives 
you a chance to learn and writing a talk will help you learn. Tina also 
pointed out that it is OK to talk about the basics. Talks don’t all need to 
be new, shiny things. Leave that to the rock stars. Finally, talk about your 
ideas, otherwise you might talk yourself out of it. Of course, they might 
talk you into it. 

If speaking isn’t for you, writing is another option. 
Perhaps you could write an article for us. I wrote 

some guidance a while ago [Buontempo23]. 
I gave some ideas on how to decide what 
to write about. You could summarise a 

discussion, maybe from accu-general or somewhere on social media if 
you don’t have a new groundbreaking innovation. If you only have the 
vaguest of ideas, feel free to email me and tell me your humble proposal. 
Maybe you don’t want to write either, but may have ideas about articles 
you would like to see. Well, let us know. Again, accu-general might be 
the best place for this, or just tag ACCU somewhere on the socials. There 
are links on the bottom of the accu pages (https://accu.org/) if you want 
to connect. 

I have told you about preparing proposals, creating conference talks 
and writing blogs. And yet, no editorial? Again? So, why did I decide 
to become Overload’s editor? A very good question. Russel Winder 
asked me that once, and I owned up. He was amused, but understood, 
so perhaps I’ll tell you as well. I had noticed I wasn’t managing to read 
all the articles in Overload because other things crowded in. Ric Parkin 
was editor previously; he asked if anyone was interested in taking over 
back in 2012. Glad I updated the Wikipedia page so I knew a quick way 
to look this up [Wikipedia-1]. Unfortunately, since the ACCU website 
reorg, some links on Wikipedia were no longer correct so I updated them, 
giving me even less time to write an editorial. Going back to my main 
point, I volunteered, and Ric paired up with me for a couple of issues 
while I started to get the hang of (almost) everything. I now do read all the 
articles. As often happens, stepping up and volunteering to do something 
opens up more than you might expect. On a few occasions I have had 
emails from people I consider to be C++ ‘Rock stars’ which makes me 
feel like a complete fraud, but also delighted they have written for us or 
shared blogs to reach a wider audience. Being editor has forced me to stay 
up to date with various aspects of C++ and learn much more besides. If 
you would like a chance, we are open to guest editors, both for Overload 
and the members’ magazine CVu. Get in touch. You could even write an 
actual editorial, putting the world right, for one edition only! Of course, 
you can do more than one if you want. 

Any small idea can lead to unexpected consequences. I frequently find 
when writing an article or blog post, or preparing a talk, that I have some 
gaps in my knowledge or can’t fully explain something. To my mind, 
the latter is often a sign you don’t really understand a topic properly. 
Likewise, if you code alone, and never get input from anyone else, you 
might be missing out on better ways of doing things, or be relying on 
something which changes when you upgrade compilers or similar. 
You don’t need a person to review your code, but it can be valuable. 
Paying attention to warnings, or using a static analysis tool can reveal 
potential issues. These may not help with the code structure though. Some 
complexity measures can help, for example cyclomatic complexity et al 
[Wikipedia-2]. A pre-emptive approach might be avoiding if statements 
altogether. If you have never tried this, give it a go. I am on a mission to 
avoid using bools at the moment, and Spencer’s ‘Replacing bool Values’ 

A	Humble	Proposal
Are you out of ideas or find it hard to speak up? 
Frances Buontempo suggests small ways to get started.

https://accu.org/


FrAnCeS	BUOnTemPO eDITOrIAl

August 2024 | Overload | 3

article for Overload has many alternatives and reasons why this is a good 
idea [Collyer21]. It is interesting to watch how one small change can have 
a big impact. 

Not all small changes end up eating all your time or changing the world. 
You may have noticed a recent C++ proposal for println by Alan 
Talbot [P3142]. It means we will be able to say println() rather 
than println(""). The motivation section asks, “Why bother, it’s only 
two more characters.” It’s a small proposal, but Alan points out why 
it matters. The number of people who have mentioned the proposal is 
surprising. The comments usually start with “Why bother?” It is, after 
all, a very small thing. However, trying to keep things tidy as you go, 
like putting dirty bowls in hot soapy water to soak while you cook, is 
always a good thing. If you don’t try to keep things clean and tidy, you 
end up creating more work for yourself in the long run. Furthermore, 
the proposal has a great recipe at the end, so read it. If you do have a 
niggle about something small, do something about it. Whether that means 
submitting a C++ proposal, reporting what appears to be a compiler bug, 
or something smaller like reporting a bug in an app you use, you have the 
chance to make the world a better place. 

We rebooted the ACCU Study Groups, using my Learn C++ by Example 
book [Buontempo24] recently. We haven’t had a study group for a while, 
which was a shame. The idea is for ACCU members to read through a 
book together and help each other learn. Sometimes the author has joined 
in, including Scott Meyers and Bjarne Stroustrup. Previously, we only 
used emails to discuss a book, but it felt like a good way to get to know 
other people and ask ‘dumb’ questions less publicly. This time we have 
set up a short video call once a week. Only a small handful of us make 
these, but it’s a great way to put faces to names. We hope to run another 
one later this year, using a different book. I suggested the reboot because 
I noticed several new members asking why they weren’t happening. It has 
eaten up an amount of time, but I brought this on myself; however, it’s 
been great. Inevitably, people involved have found typos and mismatches 
between the code in the repo and a few listings in the book. Fortunately, 
nothing major. Books always have mistakes. Fact. It is awkward reporting 
problems, but thanks to everyone who spoke up. I can add these to the 
errata and fix incorrect listing numbers and typos in comments in the 
repo. This might help other readers. If you spot a mistake in a book or a 
blog or an Overload article, let the creator know. Obviously, find a kind 
way to point out the problem, rather than being brash. The chances are 
someone else was wondering too. Several comments on the println 
proposal were along the lines of “Yeah, that was annoying me too.” It’s 
almost never just you. 

The MeetingCpp session on ‘Talking about C++’ also mentioned 
questions in talks. These can seem frightening in theory if you aren’t used 
to public speaking, but it shows the audience are listening. It can also 
be difficult to ask if you’re in the audience. ‘What if this is obvious to 
everyone else, and I end up looking foolish?’ and related thoughts are 
common. Well, like the println proposal, you will probably find you 
are not alone. There’s no such thing as a dumb question. As a speaker, it 
is worth asking the audience questions too, because it helps you gauge 
if people are following. Maybe no one will answer, but don’t panic if 
that happens. Patrick Winston’s ‘How To Speak’ talk [Winston18] gives 
some advice about this, and other tips for speaking. He says to pause for 

several seconds to give people a chance. If no one is willing to speak 
up, I sometimes go for a show of hands – people are less self-conscious 
about this. 

Perhaps we don’t always step up because we get overwhelmed. Some 
people always barge in, either because they like the sound of their own 
voice and have missed the point, not realizing they don’t know much, 
or because most people are painfully aware they know little and prefer 
to keep quiet. Take a moment, and follow Tina’s advice to list what you 
do every day, maybe ignoring some of the distractions and rabbit holes 
you go down. You do know a lot. It might only be 20% of the language 
you use day to day, or how to fix a broken build, but you are an expert in 
a small section of your realm. We all know the Pareto principle: 80% of 
outcomes come from 20% of causes. (That’s about a fifth correct, but you 
get the idea.) You don’t have to know ALL the things, just some. If you 
don’t even have 20%, fear not. A European folk story tells of a group of 
travellers who arrive at a village with an empty cooking pot, which they 
fill with water and put over a fire. They put a single stone in the pot, and 
the villagers notice and ask what they are doing. “Making stone soup, but 
it could do with some extra flavour.” A villager adds carrots, and the next 
villager to come by asks a similar question. Eventually, you guessed it, 
the pot turns into a grand stew, so the stone is removed and everyone gets 
fed. Variants involve nails or an axe instead of a stone 
but they all make the same point [Wikipedia-3]. So, if 
you think you have nothing to offer, you are wrong. 
Speak up, question, or even volunteer to be guest 
editor. It’s about time Overload had an editorial.

references
[Buontempo23] Frances Buontempo ‘How to write an article’ 

in Overload 178, December 2023, https://accu.org/journals/
overload/31/178/overload178.pdf#page=16

[Buontempo24] Frances Buontempo (2024) Learn C++ by Example, 
available at https://www.manning.com/books/learn-c-plus-plus-by-
example or via O’Reilly’s subscription: https://www.oreilly.com/
library/view/learn-c-by/9781633438330/

[Collyer21] Spencer Collyer ‘Replacing ‘bool’ values’ in Overload 163, 
June 2021, https://accu.org/journals/overload/29/163/collyer/

[MeetingCpp] ‘Speaking about C++’ (https://meetingcpp.com/) On 
YouTube: https://www.youtube.com/watch?v=O-hR-u_jFlM

[P3142] Alan Talbot: ‘Printing Blank Lines with println’, available 
at https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/
p3142r0.pdf

[Wikipedia-1] Overload (magazine): https://en.wikipedia.org/wiki/
Overload_(magazine)

[Wikipedia-2] Cyclomatic complexity: https://en.wikipedia.org/wiki/
Cyclomatic_complexity

[Wikipedia-3] Stone Soup: https://en.wikipedia.org/wiki/Stone_Soup
[Winston18] Patrick Winston, ‘How to Speak’, transcript available 

at https://ocw.mit.edu/courses/res-tll-005-how-to-speak-january-
iap-2018/bc92763ffa0dad0ecafe44967e834e16_Unzc731iCUY.pdf

https://accu.org/journals/overload/31/178/overload178.pdf#page=16
https://accu.org/journals/overload/31/178/overload178.pdf#page=16
https://www.oreilly.com/library/view/learn-c-by/9781633438330/
https://www.oreilly.com/library/view/learn-c-by/9781633438330/
https://accu.org/journals/overload/29/163/collyer/
https://www.youtube.com/watch?v=O-hR-u_jFlM
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3142r0.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3142r0.pdf
https://en.wikipedia.org/wiki/Overload_(magazine)
https://en.wikipedia.org/wiki/Overload_(magazine)
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://en.wikipedia.org/wiki/Stone_Soup
https://ocw.mit.edu/courses/res-tll-005-how-to-speak-january-iap-2018/bc92763ffa0dad0ecafe44967e834e16_Unzc731iCUY.pdf
https://ocw.mit.edu/courses/res-tll-005-how-to-speak-january-iap-2018/bc92763ffa0dad0ecafe44967e834e16_Unzc731iCUY.pdf


SPenCer	COllyerFeATUre

4 | Overload | August 2024

User-Defined	Formatting	in 	
std::format	–	Part	3
We’ve seen formatting for simple classes and more 
complicated types. Spencer Collyer finishes his series by 
showing us how to apply specific formatting to existing classes.

In the previous articles in this series [Collyer24a], [Collyer24b] I 
showed how to write classes to format user-defined classes and 
container classes using the std::format library.

In this article I will show you how to create format wrappers, special 
purpose classes that allow you to apply specific formatting to objects of 
existing classes.

A note on the code listings: The code listings in this article have lines 
labelled with comments like // 1. Where these lines are referred to in 
the text of this article it will be as ‘line 1’ for instance, rather than ‘the 
line labelled // 1’.

Format	wrappers
I’d now like to introduce a type of class which I call ‘format wrappers’. 
A format wrapper is a very simple class which wraps a value of another 
type. They exist purely so that we can define a formatter for the format 
wrapper. The idea is that the formatter will then output the wrapped
value using a specific set of formatting rules.  Hopefully this will become 
clearer when we discuss the Quoted format wrapper later.

A format wrapper is a very simple class, which normally consists of just 
a constructor taking an object of the wrapped type, and a public member 
variable holding a copy or reference to that value. They are intended to be 
used in the argument list of one of std::format’s formatting functions, 
purely as a way to select the correct formatter.

Quoted value
In C++14, a new I/O manipulator called quoted was added [CppRef].
When used as an output manipulator, it outputs the passed string as a 
quoted value. The value output has delimiter characters (the default is 
") at the start and end, and any occurences of the delimiter or the escape
character (the default is \) have an extra escape character output before
them.

For example, the following shows input strings on the left and what they 
would be output as on the right:

abcdef → "abcdef"

abc"def → "abc\"def"

ab\cd"ef → "ab\\cd\"ef"

If we want the same ability using std::format, we can create a format
wrapper to do the work for us. An example of such a format wrapper and 
its associated formatter struct is Quoted, which is given in Listing 1,
with sample output in Listing 2.

Spencer Collyer Spencer has been programming for more years 
than he cares to remember, mostly in the financial sector, although 
in his younger years he worked on projects as diverse as monitoring 
water treatment works on the one hand, and television programme 
scheduling on the other.

#include <format>
#include <iostream>
#include <string>
#include <string_view>

using namespace std;
struct Quoted   // 1
{
  Quoted(string_view str) // 2
  : m_sv(str)
  {}
  string_view m_sv;  // 3
};
template<>
struct std::formatter<Quoted>
{
  constexpr auto parse(format_parse_context& 
    parse_ctx) 
  {
    auto iter = parse_ctx.begin();
    auto get_char = [&]() { return iter 
      != parse_ctx.end() ? *iter : 0; };
    char c = get_char();
    if (c == 0 || c == '}')
    {
      return iter;
    }
    m_quote = c;    // 4
    ++iter;
    if ((c = get_char()) != 0 && c != '}')  // 5
    {
      m_esc = c;
      ++iter;
    }
    if ((c = get_char()) != 0 && c != '}')  // 6
    {
      throw format_error(
        "Invalid Quoted format specification");
    }
    return iter;
  }
  auto format(const Quoted& p, 
    format_context& format_ctx) const
  {
    string_view::size_type pos = 0;
    string_view::size_type end = p.m_sv.length();
    auto out = format_ctx.out();    // 7

*out++ = m_quote;   // 8
    while (pos < end)   // 9

{
      auto c = p.m_sv[pos++];
      if (c == m_quote || c == m_esc) // 10
      {

  *out++ = m_esc;
}
*out++ = c; // 11

    }
*out++ = m_quote;   // 12

    return out; // 13
  }

listing	1



SPenCer	COllyer FeATUre

August 2024 | Overload | 5

The	Quoted	format	wrapper
Line 1 starts the format wrapper. Because it is all public, we define it as 
a struct rather than a class. Line 2 defines the constructor which just 
copies the given str to m_sv, defined in line 3.

The	parse	function
The format specification for Quoted has the following form:
  [ quote [ escape ] ]

The quote element is a single character that is the quote character to use 
as delimiters on the string. If not given it defaults to ".

The escape element is a single character that gives the escape character to 
use on the string. If not given it defaults to \. Note that you can only give 
an escape if you have already given a quote.

The first part of the parse function should be familiar from examples in 
my previous articles.

Line 4 picks up the first character and assigns it as the quote character.

Line 5 checks if we have reached the end of the format-spec, and if not it 
picks up the next character and assigns it as the escape character.

Line 6 is our normal check for reaching the end of the format-spec.

The	format	function
Before describing the format function in detail, please be aware that it 
is not optimised for speed, but has been kept simple as we are just using 
it as an example1.

Line 7 picks up the current value of the output iterator from format_ctx, 
and then line 8 writes the delimiter preceding the string to it.

Starting at line 9, we iterate over all the characters in the string. For each 
character, line 10 checks if it is a quote or escape character, and if so 
outputs an escape character. Then line 11 outputs the actual character.  As 
noted above, the speed of this loop could be improved although at the cost 
of making it more complicated.

Finally, line 12 outputs the delimiter after the string, and then line 13 
returns the output iterator as the value of the function, as required.

Why	use	format	wrappers?
After reading the description above you will hopefully understand the 
purpose of format wrappers. But you may ask the question, why would 

1 An optimised version would not process the string one character at a 
time.  It would split the string up into substrings delimited by occurrences 
of the quote and escape characters, and output those substrings using 
std::format_to. That would generally be faster than checking and 
outputting each character individually

you want to use them? After all, you could just create a function that takes 
an object of the wrapped value and returns a value which can then be 
written to the output, without having to create a format wrapper class and 
the associated formatter struct.

There are two main reasons for using a format wrapper rather than a 
function, as follows.

1. If you use a function to do the formatting of the value, you have to 
return a value which is then output. Using a format wrapper this 
interim object is not required – the format function for the format 
wrapper can write the value directly to the output.

2. If your format wrapper’s formatter allows for different formatting 
to be applied (as the one for Quoted does), that is simply done 
using a format-spec in the normal way. If you were to use a function 
to do the formatting instead, you could of course pass parameters to 
it indicating any changes required to the formatting, but there are a 
couple of disadvantages with doing that:

	� The formatting parameters for the value are separate from the 
format string, meaning anyone reading the code wouldn’t see 
all the formatting instructions at a glance. You may think this 
is just an aesthetic problem and you aren’t concerned about it, 
but to me it looks tidier to have all the formatting instructions 
in one place.

	� If or when you decide you need to internationalize your 
program, you may need to handle different formatting for the 
value, depending upon the expectations of various countries 
/ languages as indicated by the locale. If the formatting 
instructions are embedded in the format string as a format-spec 
it is easy for translators to update them as required. However, 
if you are passing them as parameters to a function, you would 
need to add code to select the correct values to pass in based on 
locale. �

references
[Collyer24a] Spencer Collyer, ‘User-Defined Formatting in std::format’, 

Overload 180, April 2024, available at https://accu.org/journals/
overload/32/180/collyer/

[Collyer24b] Spencer Collyer, ‘User-Defined Formatting in std::format 
– Part 2’, Overload 181, June 2024, available at https://accu.org/
journals/overload/32/181/collyer/

[CppRef] CPP Reference: std::quoted.  
Available at https://en.cppreference.com/w/cpp/io/manip/quoted

private:
  char m_quote = '"';
  char m_esc = '\\';
};
int main()
{
  cout << format("{}\n",
    Quoted(R"(With "double" quotes)"));
  cout << format("{:'}\n",
    Quoted("With 'single' quotes"));
  cout << format("{:'~}\n",
    Quoted("With 'single' quotes,
    different escape character'));
  cout << format("{:\"}\n",
    Quoted(R"(Mixed "double" and 'single'
    quotes)"));
  cout << format("{}\n", 
    Quoted(R"(Escaped escape character '\')"));
  cout << format("{:\"~}\n",
    Quoted("Escaped escape character '~'"));
}

listing	1	(cont’d)

"With \"double\" quotes"
'With \'single\' quotes'
'With ~'single~' quotes, different escape 
character’
"Mixed \"double\" and 'single' quotes"
"Escaped escape character '\\'"
"Escaped escape character '~~'"

listing	2

https://accu.org/journals/overload/32/180/collyer/
https://accu.org/journals/overload/32/180/collyer/
https://accu.org/journals/overload/32/181/collyer/
https://accu.org/journals/overload/32/181/collyer/
https://en.cppreference.com/w/cpp/io/manip/quoted


lUCIAn	rADU	TeODOreSCUFeATUre

6 | Overload | August 2024

In	an	Atomic	World
Atomics form a relatively low level, but fundamental part of sharing 
data across threads. Lucian Radu Teodorescu reminds us what 
atomics are and how and when to use them

We often discuss mutexes as the basic building blocks of 
concurrency. However, there are more fundamental concepts upon 
which concurrent programs and synchronization primitives are 

constructed. The C++ language defines a memory model, which describes 
how programs behave when multiple threads are involved. Additionally, 
C++ introduces atomic operations that serve as foundation for working 
with data across threads, ensuring both safety and performance. The goal 
of C++ atomics is to closely align with the hardware and eliminate the 
need for lower-level operations that must work across threads.

The topic of atomics is often overlooked, and the prevailing advice is 
to avoid them. While this advice is generally sound, there are occasions 
when we need to use atomics to fully leverage the language’s capabilities. 
This article aims to give atomics the attention they deserve, as they have 
yet to be featured in an Overload article.

The subject of atomics is extensive. For a comprehensive exploration, 
readers are encouraged to consult books by Anthony Williams 
[Williams19] and Mara Bos [Bos23]. While the Bos book primarily 
focuses on Rust, there is still much to be learned about atomics for C++ 
programmers. The reader can also consider cppreference.com for a quick 
reference to the atomics library [cppreference-1] In this article, we will 
examine various memory ordering models and illustrate their usage 
through simplified practical examples.

Introduction	to	atomics
Many C++ applications share data between threads. If multiple threads are 
accessing the same data at the same time, and one of them is modifying 
the data, we have a race condition. In C++, a race condition leads to 
undefined behaviour.

A common solution for avoiding race conditions is the use of mutexes; 
when properly used, these can prevent race conditions. However, 
sometimes they are too heavy for some shared objects. For example, if 
we have a boolean flag that indicates when we need to stop a process, 
creating a mutex for this would be overkill. Instead of using mutexes, 
one can directly use std::atomic<bool> or std::atomic_flag for 
this example. In general, if the data being shared is just a primitive type 
(boolean, chars, integers, pointers), using atomics makes more sense.

An atomic operation is an indivisible operation. This means that no 
thread can observe partial results of applying that operation. If one writes 
an integer into a memory location, each thread that reads the value will 
either find the initial value or the new value.

An atomic type is a type that guarantees that all the operations that can be 
performed on the values of the type are atomic operations.

The C++ standard defines a series of atomic types. First, there is 
atomic_bool which is essentially a lock-free wrapper for atomic 

operations on booleans. Then, we have the templated atomic<T>, which 
has default specialisations for integers, bool, char types, and pointers. 
In C++23, we also have dedicated specialisations for shared_ptr 
and weak_ptr. In its general form, atomic<T> can be instantiated 
when T is a trivially copyable type. For more information, please see 
[cppreference-2].

For most of the article, we will focus on types like atomic<int> and 
atomic<bool>.

Let’s look at an example. Listing 1 shows a program that has two threads 
that communicate through an atomic object. The first thread waits for the 
atomic object to have the value true, and then prints something to the 
console. The second thread, after sleeping, sets the atomic object to the 
value true. If notified had not been an atomic object, this would have 
caused a data race, and thus, undefined behaviour.

Table 1 (next page) lists the main members of the atomic<T> class, 
where T is an integer type. All the operations are atomic, including those 
that contain multiple actions in their description.

Depending on the type T given to an atomic<T> instantiation, and 
depending on the platform, the atomic may or may not be lock-free. To 
determine whether an atomic object is lock-free, users can call the is_
lock_free function on the object (there is also a static constexpr 
variant to indicate if an atomic type is always lock-free). The standard 
guarantees that atomic_flag is always lock-free; all other atomic types 
may not be lock-free. That is, the library may use mutexes to implement 
these atomic types.

Most common platforms have atomic types for integers and pointers that 
are lock-free. For this article, we will assume this is the case. 

Atomics can be used as primitives to build all the other synchronisation 
primitives. We will show some examples in this article.

Thread	views
Let’s consider a function in a single-threaded application. In a naive 
world, the compiler would emit instructions that map exactly to the 
written program. But that would be slow. To prevent that, the standard 
allows the compiler to transform the code so that it can ‘optimise’ the 

std::atomic<bool> notified{false};
std::thread t1{[&notified] () {
  while (!notified.load()) 
    std::this_thread::yield();
  std::print(
    "received signal from other thread");
}
std::thread t2{[&notified] () {
  std::this_thread::sleep(100ms);
  notified = true;
}

listing	1

Lucian Radu Teodorescu has a PhD in programming languages 
and is a Staff Engineer at Garmin. He likes challenges; and 
understanding the essence of things (if there is one) constitutes the 
biggest challenge of all. You can contact him at lucteo@lucteo.ro



lUCIAn	rADU	TeODOreSCU FeATUre

August 2024 | Overload | 7

code, as long as the transformed code has the same observable behaviour 
as the original code. This is called the as-if rule [cppreference-3].

For example, if a program writes multiple times to a variable without 
reading it, the compiler is allowed to generate code that will only write 
once to that variable, the final value. Similarly, if the program reads 
from memory more than it should, the compiler is allowed to remove 
some of the unnecessary reads. The compiler is also allowed to reorder 
instructions so that memory accesses have patterns that would lead to 
faster operations or reorder instructions to minimise the latency to some 
of the memory operations.

After the compiler generates the binary code, the program can be further 
transformed. The CPU can reorder instructions when executing them. 
Again, execution reordering also happens under the as-if rule. Another 
type of code transformation is the effect that processor caches have on the 
execution of the code: not all the memory operations will reach the main 
memory in the order they were written.

We discuss all this to point out that there is a big difference between how 
we write the code, what’s executed on a CPU core, and how the memory 
is actually accessed.

Things get a bit more complex when we look at multi-threaded 
applications, but the same as-if rule applies, with some caveats. One 
of these caveats is that there is no single ‘observable behaviour’ of the 
program. Each thread will have its own observable behaviour, its own 
view of the program execution. Then, we have a few rules that say how 
these views interact with each other. Besides the rules that apply when 
starting and ending a thread, C++ describes most of the interaction 
between views with the use of the synchronises-with relation.

We say that A synchronises-with B if operation A is a release store 
operation that produces results visible in operation B, which is an acquire 
load. We will cover the meaning of release store and acquire load below. 
When the two operations happen in different threads, the second thread 
has guarantees about the operations that happened before the store and 
the first thread has guarantees about the operations that happened after the 
load in the second thread. This synchronises-with relation is a fundamental 
relation that allows us to connect the views of different threads.

We will not describe the complex terminology that C++ standard has on 
this matter, but the goal is to be able to say that operation A happens 
before operation B (A happens-before B), when A and B are operations 
that may be executed on different threads. This allows us to have a partial 
ordering of the operations on different threads, even if we have multiple 
views.

Once again, the reader should bear in mind that one thread may see 
operation A happening before operation B, while another thread may see 
B happening before A.

Let’s look at this graphically. In Figure 1, we have two threads (represented 
by two grey boxes), each containing two operations: the first thread has 
two stores for variables x and y, while the second thread loads the values 
of these variables from memory. Let’s assume that both variables are 
initialised with 0 before the two threads run. The figure indicates with a 

member Description
is_lock_free check if the atomic object is 

lock-free

operator= stores a value in the atomic 
object

store stores a value in the atomic 
object

load obtains the value of the atomic 
object

operator T obtains the value of the atomic 
object

exchange replaces the value of the atomic 
object and returns the previous 
value

compare_exchange_weak
compare_exchange_strong

compare the value of the atomic 
object with a given value; if equal 
perform an exchange, otherwise 
a load

wait block the thread until notified 
and the object value changes 
(C++20)

notify_one notify at least one thread waiting 
on the atomic object (C++20)

notify_all notify all threads waiting on the 
atomic object (C++20)

fetch_add
fetch_sub
fetch_and
fetch_or
fetch_xor

perform addition/subtraction/bit 
operation between the atomic 
object and a given value, and 
then return previous value

operator++ (pre/postfix) 

operator--(pre/postfix)

increments/decrements the 
atomic object

Table	1

Figure	1

if	a	program	writes	multiple	times	to	a	
variable	without	reading	it,	the	compiler	
is	allowed	to	generate	code	that	will	only	

write	once	to	that	variable



lUCIAn	rADU	TeODOreSCUFeATUre

8 | Overload | August 2024

thick cross-thread arrow a synchronises-with relation between the store 
of the y variable and the load from the second thread; that is, for this 
particular execution, y.load() will obtain the value that was written 
by y.store(2). Using a sequentially-consistent ordering (more on 
this later), we make sure that the store to x happens before the store to 
y, and that the load from y happens before the load from x. All these 
ordering relations are seen by both threads and are represented by thick 
full arrows. Thus, in all the views, the load from x will see the value 1 as 
written from the first thread (assuming there is no other intermediate store 
to this variable by a different thread).

Figure 2 shows the same type of instructions, but with relaxed memory 
ordering (to be covered shortly). In this case, the relation between the 
operations on the same thread are enforced only in the local view of that 
thread; we denote this by using thinner, dotted arrows. For the first thread, 
the store to x happens before the store to y. But the second thread might 
see those writes out of order; it might see the store to y before the store 
to x. Thus, the second thread might load value 2 for y, but a value of 
x == 0.

This illustrates the idea that threads might have different views on the 
order of operations. One of the most frequent causes for this behaviour is 
the use of processor caches.

The difference between different thread views can be seen by running the 
code in Listing 2. From the perspective of the first thread, we have either 
x == y or x == y+1; thus x >= y. This inequality doesn’t translate 
well in the view of the second thread. Here, we load y before x. Thus, 
x should always be greater than y, either because that was the state of 
x and y when the second thread started reading, or because x got the 
chance to have a newer (greater) value between the two loads. However, 
when we look at the result, we see that occasionally we have xx < yy, 
thus we get the counter incremented, and the program prints a non-zero 
mismatch count. A non-zero value printed out proves that the two threads 
might have different views. On my machine (MacBook Pro, Apple M2 
Pro processor), for a given run, I’ve obtained 258 mismatches. (Note, a 
non-zero result is not guaranteed, but on many machines, it is a probable 
result).

memory	ordering
The way that the thread views are aligned for atomic operations depends 
on the memory ordering applied to the atomic operations. The C++ 
standard defines the following memory ordering values: relaxed, consume, 
acquire, release, acquire-release, and sequentially-consistent. We won’t 
discuss the consume memory ordering here; it is not well supported by the 
compilers, and the rules surrounding it are hard to reason about. 

Each atomic operation uses one of these memory ordering values. The 
most relaxed, as the name suggests, is the relaxed mode; this mode 
doesn’t add any ordering guarantees. On the other side, the sequentially-
consistent model, which is the default, will ensure that all the threads 
have the same views on the ordering.

To discuss memory ordering, we will refer to how different instructions 
are translated to machine code. For this, we will focus on just two 
architectures commonly found in practice: x86-64 and ARM64. The x86-
64 platform is a good example of a strongly-ordered architecture, while 
the ARM64 platform is a good example of a weakly-ordered architecture 
[Preshing12]. As we shall see below, strongly-ordered architectures 
have stronger guarantees than weakly-ordered architectures for regular 
operations.

relaxed	memory	ordering
Atomic operations that use relaxed memory ordering will typically 
generate code as if no atomics were used. Table 2 (on next page) shows 
the generated code for x86-64 and ARM64 for storing 0 in an integer in 
two different ways: using a plain int type and using atomic <int> 
with a relaxed store. On neither platform is there a difference between the 
two operations.

A similar thing happens for loads. Table 3 shows that there is no difference 
between the generated code for loading the value from an int* object or 
from an atomic<int> using relaxed memory order, on neither x86-64 
nor ARM64. From these, we can conclude that relaxed atomic load/store 
operations behave like regular loads/stores.

Figure	2

std::atomic<int> x = 0;
std::atomic<int> y = 0;
std::thread t1{[&] {
  for (int i = 0; i < 1000000; ++i) {
    x.store(i, std::memory_order_relaxed);
    y.store(i, std::memory_order_relaxed);
  }
}};
std::thread t2{[&] {
  int count_mismatch = 0;
  for (int i = 0; i < 1000000; ++i) {
    auto yy = y.load(std::memory_order_relaxed);
    auto xx = x.load(std::memory_order_relaxed);
    if (xx < yy) count_mismatch++;
  }
  printf("Mismatch count: %d\n", count_mismatch);
}};
t1.join();
t2.join();

listing	2

relaxed	atomics	allow	us	to	use	the	same	
variable	in	multiple	threads	without	race	
conditions



lUCIAn	rADU	TeODOreSCU FeATUre

August 2024 | Overload | 9

If there is no difference in the generated code between a relaxed atomic 
and the regular code, the reader might rightfully ask why we need relaxed 
atomics. The answer is twofold. First, relaxed atomics allow us to use the 
same variable in multiple threads without race conditions. Second, the 
usage of atomics will prevent the compiler from doing certain operations: 
it can’t omit memory loads and memory stores, and it cannot reshuffle the 
code to generate more instructions than needed. For example, for regular 
integers, an operation like x = 1 can be transformed by the compiler to 
look like x = 0; x++; – such a transformation is forbidden when using 
atomics.

In terms of performance, relaxed atomics don’t incur additional costs 
compared to regular instructions. They do prevent certain compiler 
transformations, so using relaxed atomics, depending on their use, might 
be slower than not using atomics at all. In general, we should limit the 
usage of atomics to just essential variables needed for synchronisation 
between threads.

As mentioned above, using relaxed atomics won’t make the operations 
viewed by a thread consistent with what other threads view. See Figure 2 
and Listing 2.

A typical usage for relaxed operations is in incrementing counters, 
since most of the time we only require atomicity; note, however, that 
decrementing counters typically require acquire-release synchronisation.

Acquire	and	release	memory	ordering
Acquire and release typically work together as they create synchronises-with 
relations. Acquire memory ordering only has meaning for load operations, 
while release memory ordering only applies to stores. For operations that 
perform both stores and loads (like compare_exchange_strong), 
one can use the std::memory_order_acq_rel memory order.

When one performs a store that has a release ordering, it forces all the 
previous operations to make their effect visible before the store is actually 
visible. The C++ standard states that no read or write operations before a 
release operation can be reordered to happen after the release store.

When one performs a load that has an acquire ordering, it forces all the 
subsequent memory loads to use data obtained after the acquire operation. 

The C++ standard states that no read or write operations after the acquire 
operation can be reordered to happen before the acquire load.

A pair of a release store and an acquire load can form a synchronises-
with relation. Figure 3 shows this relation, being similar to the examples 
shown in Figures 1 and 2. If we make the store to y use release memory 
ordering, and the load from y use acquire memory ordering, then the two 
threads can form a synchronises-with relation when the second thread 
reads the value that was published by the first thread. That means we can 
gain consistency between the views of the two threads. Even if the store to 
x is relaxed in the first thread, because the store to y has release memory 
ordering, the second thread will have to see its effect when acquiring the 
value of y; this means that the second thread will always see x stored 
before y. This means that the four operations in Figure 3 are perfectly 
ordered, and both threads see the same thing.

To prove this, we can slightly adapt the code in Listing 2. For the line 
containing y.store, we can use std::memory_order_release 
instead of relaxed ordering; also, we can use y.load(std::memory_
order_acquire) instead of relaxed memory order. Making these two 
changes will ensure that the code in Listing 2 guarantees that the printed 
number of mismatches is zero. The reasoning is exactly the same as the 
one we had for Figure 3.

Taking a lock has acquire semantics: no instructions after the point where 
the lock is taken can be seen by threads that use the lock prior to taking 

C++	code x86-64 Arm64
void s1(int* x) {
  x = 0;
}
void s2(atomic<int>& x) {
  x.store(0, memory_order_relaxed);
}

s1(int*):
  mov DWORD PTR [rdi], 0
  ret
s2(atomic<int>&):
  mov DWORD PTR [rdi], 0
  ret

s1(int*):
  str wzr, [x0]
  ret
s2(atomic<int>&):
  str wzr, [x0]
  ret

Table	2

C++	code x86-64 Arm64
int ld1(int* x) {
  return *x;
}
int ld2(atomic<int>&x) {
  return x.load(memory_order_relaxed);
}

ld1(int*):
  mov eax, DWORD PTR [rdi]
  ret
ld2(atomic<int>&):
  mov eax, DWORD PTR [rdi]
  ret

ld1(int*):
  ldr w0, [x0]
  ret
ld2(atomic<int>&):
  ldr w0, [x0]
  ret

Table	3

Figure	3

std::atomic<bool> locked_flag = false;
int counter1 = 0;
int counter2 = 0;
auto f = [&] {
  for (int i = 0; i < 1000000; ++i) {
    // Simulate acquiring the lock.
    while (locked_flag.exchange(true, 
std::memory_order_acquire))
      ;
    // Protected operations.
    counter1++;
    counter2 = counter1;
    // Simulate releasing the lock.
    locked_flag.store(false, 
      std::memory_order_release);
  }
};
std::thread t1{f};
std::thread t2{f};
std::thread t3{f};
t1.join();
t2.join();
t3.join();
assert(counter1 == 3000000);
assert(counter2 == 3000000);

listing	3



lUCIAn	rADU	TeODOreSCUFeATUre

10 | Overload | August 2024

the lock. Similarly, releasing a lock has release semantics: no instructions 
before the lock is released can be reordered to be seen by the threads 
using the lock after the release point. This is demonstrated by the code in 
Listing 3. This code will ensure that the modifications to the two counter 
variables are done in protected regions, without any race conditions.

Let’s now look at the translation of acquire loads and release stores on the 
two major platforms. Table 4 shows how the translations look. Comparing 
this with the translation from Table 3, we conclude that on x86-64 there 
is no difference between relaxed loads and acquire loads, and between 
relaxed stores and release stores; the same code is generated. However, 
on ARM64, the astute reader will spot the differences. A relaxed store is 
translated into str (store register), while a release store is translated into 
an stlr instruction (store-release register); similarly, a relaxed load is 
translated into ldr (load register), while an acquire load is translated into 
ldar (load acquire register).

On weakly-ordered platforms like ARM64, release/acquire operations 
are more expensive than relaxed atomic operations. On strongly-ordered 
platforms like x86-64, there is no difference between relaxed atomics and 
release/acquire atomics. One can say that release/acquire operations are 
as cheap as relaxed memory operations, but also that relaxed memory 
operations are as expensive as release/acquire operations.

Sequentially	consistent	memory	ordering
There is another ordering that provides more guarantees than acquire-
load memory ordering, but can also be more expensive. This is 
sequentially-consistent memory order. In C++, this is represented by 
the std::memory_order_seq_cst enum value, and it is the default 
memory ordering for atomic operations.

Table 5 shows the generated instructions for the two selected platforms. 
Here, it’s interesting to notice that on ARM64, the same instructions 
are generated as for acquire/release operations. However, there are 
differences on x86-64 platforms; while the load operation generates the 
same instruction, the store translates into different code. For this, the 
xchg (exchange register/memory with register) instruction is used; this 
is typically used for swaps and performs a store and a load operation. This 
indicates that a sequentially-consistent store on x86-64 is more expensive.

Sequentially-consistent memory ordering provides more guarantees 
compared to acquire/release semantics. In particular, it guarantees a 
single total modification ordering of all the operations that are tagged. 
By contrast, acquire/release semantics only add constraints between two 
threads, and they are not concerned with global ordering.

To spot the difference let’s look at the code from Listing 4 (assuming each 
function is called in parallel on a different thread). The read_x_then_y 
function waits until x becomes true, and then loads y; if y is true, then it 
increments z. The read_y_then_x function does the same things but 

swaps x and y. They are just reading the atomic values, so using acquire/
release semantics we can’t make those two functions agree on the order 
in which x and y become true. In the acquire/release world, there is no 
relation that synchronises their view of the variables. Thus, if this code 
were to use acquire/release semantics, after running all the functions in 
parallel, we might end with a zero value of z. That is, read_x_then_y 
would see x==true and y==false, while read_y_then_x would see 
y==true and x==true.

This cannot happen in sequentially-consistent memory ordering (the 
memory ordering used in the example); both read functions would see the 
same order in which x and y. To repeat, in the acquire/release model, we 
can only synchronise between the view of the thread that does the release 
and the view of the thread that does the acquire. In the sequentially-
consistent model, we synchronise between all thread views.

Some	techniques	and	real-life	examples
mutexes	and	busy	loops
We’ve seen in Listing 3 a sketch of building a mutex on top of atomic 
operations. If there is no contention on the lock, this implementation 
might be fast and appropriate. But, as soon as one thread needs to wait, 
we have a performance problem; the thread will spin in a tight loop and 
consume all its CPU quota.

Possible alternatives here include introducing loop instructions that will 
briefly pause the thread. Processor yields, thread scheduler yields, or even 
sleeps are good strategies for pausing the threads (each having different 
pausing times and characteristics).

Luckily for us, C++20 provides a portable way to do this waiting on spin-
loops. Listing 5 (next page) shows how the code needs to be modified 

C++	code x86-64 Arm64
void store3(atomic<int>& x) {
x.store(0, memory_order_release);
}
int ld3(atomic<int>&x) {
return x.load(memory_order_acquire);
}

store3(atomic<int>&):
  mov DWORD PTR [rdi], 0
  ret
ld3(atomic<int>&):
  mov eax, DWORD PTR [rdi]
  ret

store3(atomic<int>&):
  stlr wzr, [x0]
  ret
ld3(atomic<int>&):
  ldar w0, [x0]
  ret

Table	4

C++	code x86-64 Arm64
void store4(atomic<int>& x) {
  x.store(0, memory_order_seq_cst);
}
int ld4(atomic<int>&x) {
  return x.load(memory_order_seq_cst);
}

store4(std::atomic<int>&):
  xor eax, eax
  xchg eax, DWORD PTR [rdi]
  ret
ld4(std::atomic<int>&):
  mov eax, DWORD PTR [rdi]
  ret

store4(std::atomic<int>&):
  stlr wzr, [x0]
  ret
ld4(std::atomic<int>&):
  ldar w0, [x0]
  ret

Table	5

atomic<bool> x = {false};
atomic<bool> y = {false};
atomic<int> z = {0};
void write_x() {
  x.store(true);
}
void write_y() {
  y.store(true);
}
void read_x_then_y() {
  while (!x.load());
  if (y.load()) ++z;
}
void read_y_then_x() {
  while (!y.load());
  if (x.load()) ++z;
}

listing	4



lUCIAn	rADU	TeODOreSCU FeATUre

August 2024 | Overload | 11

to incorporate this into our spin-mutex implementation. In this code, 
the wait call waits until locked_flag is not true anymore; this will 
use the best strategy known for the detected processor/OS type (often a 
combination of the above). The notify_one call will ensure that the 
wait call wakes up on platforms where wait sleeps in kernel space. 
See [Doumler20] for a discussion on building spin-mutexes and [Giroux] 
for a possible implementation of wait. Also see [Pikus22] for a quick 
discussion on building spin mutexes.

reference	counting
Listing 6 shows how a reference counting mechanism can be implemented, 
similar to what we find in std::shared_ptr. As long as we have a valid 
reference to the object (at least one inc is called without dec), the object 
is kept alive; as soon as we drop all the references to this ref-counted 
object, the inner object will be destructed too. Here, the assumption is that 
the first time we call inc() to have a non-zero reference, we can have at 
most one thread; this typically happens in the constructor.

When calling inc, we don’t care about synchronising thread views. 
There are no loads and stores that depend on the ordering of this 
(assuming that dec is properly ordered after inc, which is ensured by 
other mechanisms). This means that a relaxed memory order is enough 
for what we need.

When calling dec, things are slightly different because we are also 
touching data_. In the thread that calls dec, all the memory access to 
data_ before the call to dec should not be moved after the call to dec; 
this implies release semantics. Also, the code that deletes data_ (when 
the counter is decremented to zero) which accesses its content should 
not be reordered before the fetch_sub call on the atomic; this implies 
acquire semantics.

In this example, we’ve shown the use of memory_order_acq_rel, 
that is commonly used with atomic operations that perform both reads 
and writes. Prime examples of such instructions are fetch_add and 
fetch_sub, also shown in this example. 

CAS	loops	and	a	simple	stack	example
The C++ standard provides a few examples of atomic operations that do 
both reads and writes. However, it can’t provide all the operations that a 
user might need. There needs to be a technique for users to implement 
atomic operations out of simpler operations.

Such a technique is Compare-and-swap (CAS) loop [Wikipedia]. In C++ 
this can be achieved with the use of compare_exchange_weak and 

compare_exchange_strong methods of atomic<T>; these methods 
change the atomic to a desired value if they have an expected value. To 
make this work, these instructions are typically put inside a loop.

The signature of these methods, in their most generic form, is bool 
compare_exchange_strong(T& expected, T desired, 
memory_order success, memory_order failure) noexcept; 
(same for the _weak version). This will compare the value in the atomic 
object to expected; if they have the same value, it will store desired 
in the atomic object and return true. If they have a different value, it 
would update expected to the current value in the atomic object and 
return false. Updating the expected value in case of a failure can 
be very useful in CAS loops, as most of the time we need to check the 
current value of the atomic object in case of a failure. The success 
memory order is the one that should be applied to the read-modify-write 
if the operation succeeds; the failure memory order is the one that 
should be applied to the load operation in the case of a failure.

Unlike the _strong version, the _weak version is allowed to fail 
spuriously; that is, it can return false even if the atomic object has 
a value equal to expected. On some architectures, the only way to 
implement the _strong version is to have inner loops; but, as we often 
put these constructs inside other loops, we can directly utilise the _weak 
version. Thus, the rule of thumb is that, if the compare-and-swap is put 
in a loop, one should use the _weak version, and if not, one should use 
the _strong version.

Listing 7 presents an example of implementing the operation of pushing 
into a stack. After creating the new node, we need to chain it to the head of 
our singly-linked list. This requires two changes: the next_ pointer of the 
new node needs to point to the current head, and the head needs to point 
to the new node. These two changes need to happen atomically. To make 
this happen, we try to set the current list head as the element following 
the new node, and then atomically compare-and-swap the head node. If 
the compare_exchange_weak operation succeeds, we still have the 
same head_ value, and the connection is made correctly; if the operation 
fails, then we will load the new head, putting it directly into new_node-
>next_ (as a side effect of the compare_exchange_weak instruction) 
and try again. The chances of converging the loop in a small number of 
iterations are very high even in the case of contention.

The reader might remark that next_ is not an atomic type. It doesn’t 
need to be, as we always interact with it through the head_ pointer. 
Storing any value to it will synchronise with other threads that might read 
data from it (not shown in our example), as the store of head_ has release 
semantics; this ensures that all the previous stores will be visible before 
the store to head_ (for the threads that synchronise with this thread on an 
acquire-load of head_).

We don’t have any subsequent load operations that need to be synchronised 
with the exchange of the head pointer. This means that we don’t need 
acquire semantics for all the loads we have. This means that we can safely 
use relaxed loads when reading the content of head_.

// Acquire the lock.
while (locked_flag.exchange(true,
    std::memory_order_acquire))
  locked_flag.wait(true,
    std::memory_order_relaxed); // NEW
...
// Release the lock.
locked_flag.store(false,
    std::memory_order_release);
locked_flag.notify_one(); // NEW

listing	5

template <typename T> class ref_counted {
  atomic<int> count_;
  unique_ptr<T> data_;
public:
  void inc() { count_.fetch_add(1,
    memory_order_relaxed); }
  void dec() {
    if (count_.fetch_sub(1,
        memory_order_acq_rel) == 1)
      data_.reset();
  }
  // ...
};

listing	6

template <typename T> struct node {
  T data_;
  node* next_;
  node(const T& data) : data_(data), next_
(nullptr) {}
};
template <typename T> class stack {
  atomic<node<T>*> head_;
public:
  void push(const T& data) {
    node<T>* new_node = new node<T>(data);
    new_node->next_ = 
      head_.load(memory_order_relaxed);
    while (!head_.compare_exchange_weak(
      new_node->next_, new_node,
      memory_order_release, 
      memory_order_relaxed));
  }
};

listing	7



lUCIAn	rADU	TeODOreSCUFeATUre

12 | Overload | August 2024

We should reiterate a key point of this algorithm: the new_node->next_ 
is updated when the compare_exchange_weak operation fails. This 
actually prepares the new node for adding it again to the head of the list, 
thus ensuring the precondition needed for changing the head of the stack. 
Without this, the loop of the while instruction would have some more 
operations.

Some	discussions
Atomics are very powerful. They allow programmers to exploit low-level 
primitives for the platform in order to generate fast concurrent code. 
One can build all concurrency primitives on top of the atomics library 
provided by the C++ standard, and they would probably be very fast. 
Atomics lack deep integration with the OS thread scheduler, but other 
than that, they have the potential to express most concurrency primitives 
in the most efficient way.

However, with great power comes great responsibility and a higher 
chance of shooting yourself in the foot. If C++, in general, is considered 
a language in which one can easily shoot themselves in the foot, using 
atomics is like juggling with hand grenades. In this section, we cover a 
few reasons why we should avoid using atomics for most of the programs 
we write.

Atomics	break	local	reasoning
Atomic primitives are like goto instructions. They are fundamental at 
a lower level (e.g., generated machine code), but should be avoided in 
high-level programming. One of the reasons for this is that they both 
break local reasoning.

Local reasoning, a fundamental idea in structured programming, is the 
ability to look at a code fragment in isolation and determine its meaning, 
without knowing what the rest of the program does.

One key aspect of reasoning about atomics is understanding how different 
thread views are correlated. That is, to reason about a code fragment that 
runs on a thread, we need to understand how the other threads are viewing 
different operations. Local reasoning is possible only when thread views 
are either equivalent or they don’t intersect at all.

Using release/acquire semantics, one needs to reason about which stores 
are “published” on a release operation, and which loads are guaranteed to 
be ordered on an acquire operation. Oftentimes, this reasoning expands 
beyond the local code that uses atomics. A good example of this is 
the primitives used to build a spin mutex (see Listing 3). The acquire 
semantics that apply to the step of acquiring a lock need to apply to the 
protected region; similarly, the effects of the protected region need to be 
“published” by the release semantics of the unlocking part.

As it’s easy to misuse atomics, and as bugs are typically hard to catch (the 
code can run in production for years before the bugs manifest), reasoning 
about the code that uses atomics is of utmost importance. And, at this 
point, we don’t seem to have good tools to help us dealing with atomics.

release/acquire	is	better	than	sequentially	consistent	
semantics
The C++ standard takes the stand that the default memory ordering is 
sequentially consistent, even if it is not needed most of the time. It is the 
ordering that provides the most guarantees, thus it’s safer. While this is 
true, it may encourage less reasoning, which may lead to bugs.

As argued above, reasoning about atomics is crucial. The reasoning 
process needs to include the guarantees that an operation needs in order 
to ensure correctness. But, if we fully reason about the use of atomics, 
then it makes little sense to use a suboptimal setting when it’s clear that 
it’s suboptimal.

Using sequential consistency atomics is often a sign that the reasoning 
about the atomics was not carried through to the end. Thus, similar to 
the position of Mara Bos [Bos23], we recommend using the appropriate 
memory ordering, instead of sticking to the default of sequentially 
consistent. And, of course, documenting the rationale helps.

Document	the	choice	of	memory	ordering
The reasoning performed when choosing the memory model should not 
be easily lost. Thus, we recommend adding comments to document such 
reasoning. For example, after an acquire load, document what other loads 
are dependent on this load. Also, for a release store, document which other 
stores need to be published. If using sequential consistency, document the 
cases in which release/acquire semantics are not enough.

As using atomics often implies non-local reasoning, documenting 
expected behaviour, especially in relation to non-local items, is important 
for later readings of the code.

Prefer	using	higher-level	concurrency	abstractions
Using mutexes is generally easier than using atomics for most use 
cases. Using barriers and latches can be easier than using mutexes and 
conditional variables. Although atomics can be more efficient, not all 
code needs to be optimised to the maximum. We should measure the 
performance of a concurrent system before deciding to fully optimise it. 
Thus, for most projects, using higher-level concurrency primitives is the 
right thing to do.

Continuing on this line of thought, we should use concurrency primitives 
that invite users to express high-level concurrency constraints, such as 
dependencies between two or more work chunks (see [Teodorescu24]). 
In C++ one can use the senders/receivers framework [P2300R10] (maybe 
with extra utilities on top of it)1. 

Using fast low-level concurrency is typically a worse strategy than using 
appropriate high-level concurrency primitives for many applications. 
This is true both in terms of maintainability and performance.

Atomics are powerful primitives, but perhaps too powerful for most 
applications. Maybe raw power is not always the answer. Having good 
strategies often produces better results. �

references
[Bos23] Mara Bos, Rust Atomics and Locks: Low-Level Concurrency in 

Practice, O’Reilly Media, 2023.
[cppreference-1] cppreference, ‘Concurrency support library’,  

https://en.cppreference.com/w/cpp/thread, accessed June 2024.
[cppreference-2] cppreference, std::atomic, https://en.cppreference.

com/w/cpp/atomic/atomic , accessed June 2024.
[cppreference-3] cppreference, ‘The as-if rule’, https://en.cppreference.

com/w/cpp/language/as_if , accessed June 2024.
[Doumler20] Timur Doumler, ‘Using locks in real-time audio 

processing, safely’, posted on Timor.Audio on 14 April 2020,  
https://timur.audio/using-locks-in-real-time-audio-processing-safely.

[Giroux] Olivier Giroux,  ‘Sample implementation of C++20 
synchronization facilities’ on GitHub, https://github.com/ogiroux/
atomic_wait/, accessed June 2024.

[P2300R10] Michał Dominiak, et al, P2300R10: std::execution, ISO/
IEC JTC1/SC22/WG21, https://wg21.link/P2300R10.

[Pikus22] Fedor Pikus, A Spinlock Implementation (Lightning Talk), 
CppCon 2022, https://www.youtube.com/watch?v=rmGJc9PXpuE. 

[Preshing12] Jeff Preshing, ‘Weak vs. Strong Memory Models’ posted 
on Preshing on Prgramming (blog) on 30 Sept 2012,  
https://preshing.com/20120930/weak-vs-strong-memory-models/

[Teodorescu24] Lucian Radu Teodorescu, ‘Concurrency: From Theory 
to Practice’, Overload 181, June 2024, https://accu.org/journals/
overload/32/181/teodorescu/.

[Wikipedia], Wikipedia,  Compare-and-swap, https://en.wikipedia.org/
wiki/Compare-and-swap.

[Williams19] Anthony Williams, C++ concurrency in action (2nd 
edition), Manning, 2019.

1 If the reader hasn’t heard yet, it is my great pleasure to announce that 
the P2300 paper was voted, in the June 2024 plenary in St. Louis, to be 
included in the upcoming C++26 standard.

https://en.cppreference.com/w/cpp/thread
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/language/as_if
https://en.cppreference.com/w/cpp/language/as_if
https://timur.audio/using-locks-in-real-time-audio-processing-safely
https://github.com/ogiroux/atomic_wait/
https://github.com/ogiroux/atomic_wait/
https://wg21.link/P2300R10
https://www.youtube.com/watch?v=rmGJc9PXpuE
https://preshing.com/20120930/weak-vs-strong-memory-models/
https://accu.org/journals/overload/32/181/teodorescu/
https://accu.org/journals/overload/32/181/teodorescu/
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Compare-and-swap


SAnDOr	DArgO FeATUre

August 2024 | Overload | 13

Trip	report:	C++	On	Sea	2024
C++ On Sea took place in Folkestone again in February 
this year. Sandor Dargo shares an overview of his 
favourite talks and some emergent ideas.

last week, between the 3rd and 5th of July, I had the privilege of 
attending and presenting at C++ on Sea 2024 [CPPoS-1] for the 5th 
time in a row! I’m grateful that the organizers accepted me not simply 

as a speaker, but that they granted me a double slot to deliver a half-day 
workshop about how to reduce the size of a binary. I’m also thankful for 
my management that they gave me the time to go to Folkestone and share 
our knowledge on binary size. Last but not least, great thanks goes to my 
wife, who took care of the kids alone that week.

Let me share with you a few thoughts about the conference.

First, I’m going to write about the 3 talks that I liked the most during the 
3 days, then I’m going to share 3 interesting ideas I heard about and then 
I’m going to share some personal impressions about the conference.

The recordings will be on YouTube when they are available.

my	favourite	talks
Last year, I wrote that I was pondering what makes a good talk for me and 
that I enjoyed more the talks that covered beginner topics in depth. I still 
feel the same way, but I’m not 100% sure if my selection represents that. 
There are a couple of presenters who due to their outstanding knowledge 
and wonderful presenter skills can captivate any audience full of C++ 
entusiastics.

The talks are ordered by their scheduled time.

Understanding	The	constexpr	2-Step:	From	Compile	Time	To	run	
Time	by	Jason	Turner
The conference had a very strong start. Right after the keynote by Dave 
Abrahams, four incredible speakers were on stage at the same time in 
the four different tracks. Jason Turner, Walter E Brown, Nico Josuttis, 
Mateusz Pusz…

If a conference could have these people spread throughout the whole 
program, it would be a strong conference. C++ On Sea proposed such 
a strong line-up that these people could be scheduled at the same time. 
It didn’t make my decision easier, so I chose based on the topic, and I 
wanted to grow my knowledge on constexpr so I stayed in the main() 
room.

Let’s talk about the talk [CPPoS-2].

C++20 brought us constexpr std::vector and std::string. Yet, 
the simple piece of code below doesn’t compile.
  #include <vector>
  int main()
  {
    constexpr std::vector<int> data{1,2,3,4,5};
  }

constexpr variable data must be initialized by a constant expression…

In Jason’s talk, we learned about why that’s the case and how we can use 
those constexpr constructs. The key to answering that question is in 
understanding that to instantiate objects that (might) allocate dynamic 
memory, memory allocated at compile time must be freed at compile time.

I don’t want to go through all of Jason’s reasoning and examples: I simply 
share the two steps that he referred to in the title. For the rest, watch the 
recording once it’s available:

1. Do all the dynamic storage stuff you want to at compile-time.

2. Copy the dynamic storage stuff to static stuff at compile-time (and 
make sure you free the dynamic thing at compile-time).

While I don’t want to give away all of his talk, I do want to share a 
compiler bug that Jason shared with us. If you use llvm and you want to 
write a consteval function, be aware that you cannot have static local 
variables: the compiler removes them. Here is a minimal example taken 
from the corresponding Github issue [Github]:
  consteval const int* a() {
    static constexpr int b = 3;
    return &b;
  }
  int c() { return *a(); }
  /*
  GCC assembly:
  c():
          mov     eax, 3
          ret
  
  Clang assembly:
  c():                                  # @c()
          xor     eax, eax
          ret
  /*

Now you are aware. Let’s see the other talks.

Core	and	other	guidelines.	The	good,	the	bad,	the…	
questionable?	by	Arne	mertz
Once again, it was a tough call to decide whether I should attend Peter 
Muldoon’s talk on dependency injection [CPPoS-3] or Arne’s on 
guidelines. As my team had recently had some discussions about some of 
the core guidelines, I decided to attend Arne’s talk [CPPoS-4].
Arne has worked on a dozen different projects as a consultant during the 
last 9 years. Based on what he’s seen, he shared how guidelines have been 
misused. In the standard, or in the core guidelines – at least in the titles – 

Sandor Dargo is is a passionate software craftsman focusing on 
reducing maintenance costs by applying and enforcing clean code 
standards. He loves knowledge sharing, both oral and written. When 
not reading or writing, he spends most of his time with his two 
children and wife in the kitchen or travelling. Feel free to contact him 
at sandor.dargo@gmail.com



SAnDOr	DArgOFeATUre

14 | Overload | August 2024

every word is important. If you skip one, or half a sentence, the meaning 
may be something completely different.

Arne brought some examples of guidelines set in different companies that 
were most often based on the core guidelines or some other companies’ 
(in)famous policies, but they were misinterpreted. For example, in one 
place, they had this guideline:

Define or delete all copy, move, and destructor functions.

Does it remind you of the rule of 5? It should. But they forgot to add that 
you should only define all these special member functions if you have to 
define at least one of them…

Another company declared that you should not use exceptions. There was 
no good rationale behind it, except that Google famously banned them. 
Google also said that if they started over, they would probably do things 
differently.

When it comes to adopting guidelines, it’s important to put things into 
context. A guideline that makes sense in a certain context might even be 
harmful in a different environment.

There is also the question of whether rules are just guidelines. The secret 
is in the name. Guidelines are guidelines. Sometimes you might go 
against them. At the same time, if you do so, it’s better to document why. 
Otherwise, you’ll make people waste too much time figuring that out. 
Worse, they might even undo a good decision.

Also, keep your style guide short. At the same time, automate as many 
checks as possible with the right tooling. A subject that I’ll mention in 
later sections of this trip report.

There	is	no	Silver	Bullet	by	Klaus	Iglberger
Klaus had the task of keeping the audience engaged at the end of Friday 
afternoon with his closing keynote. I think I’m not alone in saying that he 
fulfilled his job with his talk ‘There is no silver bullet’ [CPPoS-5].

Most of us can agree that 13 years after the release of C++11, using the 
term ‘modern C++’ is probably not the best idea. Ivan Čukić came up 
with the term ‘progressive C++’, which Klaus likes too [Dargo20]. We’ll 
see if that term sticks.

Klaus used an anonymous comment on one of his earlier talks to give a 
structure for this presentation. According to the commenter:

object-oriented programming and especially its theory is 
overestimated. … C++ always had templates, and now also has 
std::variant, which makes most of the use of inheritance 
unnecessary.

Heck, even Jon Kalb said at CppCon 2019 [Kalb19] that:

object-oriented programming is not what the cool kids are doing in 
C++. They are doing things at compile time, functional programming, 
… Object-oriented programming, this is so 90s.

So, Klaus went on with the good old shapes example and implemented it 
in various ways including the old school OO way, with variants and with 
templates, and compared them.

He indeed managed to get a nice speedup, but it’s not all black and 
white. While it’s easy to add new operations to the variant solution, 
it’s relatively difficult to add new types. With the OO solution, it’s the 
other way around. Moreover, due to the reversed dependencies, the 
std::variant solution is an architectural disaster.

It doesn’t mean that OO doesn’t have a place and that it cannot be used in 
certain situations. It simply means that different solutions have different 
pros and cons.

These solutions can even be combined into a value-based object-oriented 
solution, which is still not a silver bullet but can be well used in high-level 
architecture.

Learn about it by watching the recording once it’s released!

my	favourite	ideas
Now let me share three interesting ideas from four different talks.

‘We	all	write	bad	code	sometimes’	–	Jan	Baart
Jan Baart gave a very useful talk about code modernization and unit testing 
[CPPoS-6]. Talks like this are useful for several kinds of audiences. For 
junior developers, they gave actionable tasks, and for seniors, a reminder. 
A reminder of what is important and what message we have to share and 
distribute.

While modernizing and adding unit tests to legacy code is important, the 
most important message of Jan was about humility:

No blaming, we all write bad code sometimes.

We don’t have to condemn others because a piece of code is bad. Probably 
they did their best writing it. In the past, I wrote much worse code than 
today and hopefully in the future, I’ll write better than nowadays. That’s 
probably true for you as well. Besides, we can simply have bad days. 
Don’t blame others for bad code. Help them grow.

(Let’s leave aside the question of someone not even trying to do a good 
job. That’s a different problem to be dealt by management.)

‘you	should	write	tests’	–	robert	leahy
In my opinion, Robert Leahy was among the best presenters at C++ On 
Sea 2024 [CPPoS-7]. His points were clear and he was exceptionally 
energetic on stage.

His message was clear. We should write tests. Even for components or 
bugs that seem to be too small, simple or trivial to be tested. He brought 
several examples from his code to support his points. Indeed a one-liner 
function calling std::min can have a bug in it, so it’s worth adding 
tests.

Even though I would argue with Robert whether some of his tests are 
actually unit tests, there is nothing to argue with his main message. Write 
tests, not only because of delivered wisdom, but because it levers up your 
output, and improves your design and code.

‘Write	your	own	clang-tidy	checks’	–	mike	Crow	and	Svyatoslav	
Feldsherov
There were two talks about writing your own clang-tidy checks or 
even refactoring actions. One by Mike Crow [CPPoS-8] and another by 
Svyatoslav Feldsherov [CPPoS-9]. I liked the message of both of these 
talks.

clang-tidy and the Abstract Syntax Tree (AST) look sometimes a bit 
too ‘abstract’ to most of us. And if we look at some sample code we’d 
have to write, it doesn’t make things any better. These talks bring these 
tasks a little bit closer to everyone and they clearly tell us that even though 
they are not the simplest things, they’re not rocket science either.

Arne Mertz at C++ On Sea



SAnDOr	DArgO FeATUre

August 2024 | Overload | 15

Until the recordings are available, it’s worth looking into AST Matcher 
Reference [clang].

Personal	impressions
Finally, let me talk about some more personal feelings about the 
conference.

Starts	to	feel	like	home
The first two occasions I attended C++ On Sea, I did so online, but this 
was already the third time I had attended in person. It is starting to feel 
a bit like home. I don’t need a map for anything: I know where to find 
things at the conference and in the town. I have my favourite places.

More importantly, with more and more people, we are greeting each other 
with a big smile. Organizers, speakers and attendees included. This feels 
right and makes me appreciate the social aspects of a conference even 
more. I meet some of these people more than I do my colleagues.

It also made me realize that, so far, C++ On Sea has been the only C++ 
conference where I have given a talk in person. This might change in a 
few months, though.

new	ideas	keep	coming
It’s nice to see that organizers pay close attention to detail. If something 
doesn’t work as expected one day, they improve it for the next day. And 
the venue staff members are partners in this, too.

There were two novelties this year that I want to mention.

Wednesday evening, there was a movie night hosted by Walter E Brown 
with some short or longer clips about the history of computer science. The 
organizers also provided pizza for everyone who wanted to stay around 
so that we couldn’t claim that we needed to find dinner somewhere else. 
Sadly, I couldn’t stay until the end as I had my sessions the next morning. 
Nevertheless, I liked what I saw.

There was a fun buzzword bingo to win some C++ books. The idea was 
that we had C++ buzzwords on a paper such as const_cast, ADL, 
void, etc. just to name a few. At each session, we could tick two of them 
that we heard and the first few people who got 5 words in a single row or 
column could get a book. Although I didn’t intend to take the book as I 
already have it, I liked the idea and played along.

my	talks
On the second morning, I had two consecutive slots to deliver a half-day 
workshop about how to keep your binaries small. During the pandemic, 
I had delivered a half-day workshop online… but obviously, that was a 
vastly different experience.

Last year, I left my clicker at home. This year I had it, but for some strange 
reason, it stopped working properly. So in the end, I was very static on 

stage, as I had to stay close to my laptop and its space button. Apart from 
that, it went quite well.

The first part of the first session was about binary formats. I was afraid 
that it would be too boring for most people, but as it turned out many 
appreciated it and the great majority of people turned up for the second 
session as well.

Overall, I received good feedback from some attendees and also some 
follow-up questions, such as how dynamic linkage affects binary sizes.

I had a second commitment as well. I am someone who feels obligated to 
give a lightning talk, if that is possible. I feel obligated to go on stage and 
practise whenever there is an opportunity. So I did, talking about whether 
engineering teams really resemble sports teams [Dargo24]. I ran a few 
seconds over time, but I finished what I wanted to share.

Conclusion
C++ On Sea was as great an experience in 2024 as during the previous 
years [Dargo]. Three days packed with great presentations about various 
topics, including performance, tooling, design and best practices.

The best we can do is to spread the word so that maybe even more people 
join next year and also to just share what we learned.

I hope to be back in Folkestone in 2025. �

references
[clang] AST Matcher Reference: https://clang.llvm.org/docs/

LibASTMatchersReference.html
[CPPoS-1] C++ on Sea website: https://cpponsea.uk/
[CPPoS-2] Abstract: Jason Turner: https://cpponsea.uk/2024/session/

understanding-the-constexpr-2-step-from-compile-time-to-run-time
[CPPoS-3] Abstract: Peter Muldoon: https://cpponsea.uk/2024/session/

dependency-injection-in-cpp-a-practical-guide
[CPPoS-4] Abstract: Arne Metz: https://cpponsea.uk/2024/session/core-

and-other-guidelines-the-good-the-bad-the-questionable
[CPPoS-5] Abstract: Klaus Iglberger: https://cpponsea.uk/2024/session/

there-is-no-silver-bullet
[CPPoS-6] Abstract: Jan Baart: https://cpponsea.uk/2024/session/who-

needs-unit-tests-anyway-modernizing-legacy-code-with-0pc-code-
coverage

[CPPoS-7] Abstract: Robert Leahy: https://cpponsea.uk/2024/session/
fantastic-bugs-and-how-to-test-them

[CPPoS-8] Abstract: Mike Crowe: https://cpponsea.uk/2024/session/
building-on-clang-tidy-to-move-from-printf-style-to-stdprint-style-
logging-and-beyond

[CPPoS-9] Abstract: Svyatoslav Feldsherov: https://cpponsea.uk/2024/
session/pets-cattle-and-automatic-operations-with-code

[Dargo] C++ on Sea trip reports, listed at https://www.sandordargo.
com/tags/cpponsea/

[Dargo20] ‘Functional Programming in C++ by Ivan Cukic’ posted on 
27 May 2020 at https://www.sandordargo.com/blog/2020/05/28/
functional-programming-in-cpp

[Dargo24] ‘Do engineering teams really resemble sports teams?’, posted 
on 21 May 2024 at https://www.sandordargo.com/blog/2024/05/22/
are-we-a-sports-team

[Github] ‘Permitting static constexpr variables in consteval functions’, 
https://github.com/llvm/llvm-project/issues/82994

[Kalb19] ‘Why don’t cool kids like OOP?’, a Lightening Talk at 
Meeting C++ 2019, available at https://www.youtube.com/
watch?v=x1xkb7Cfo6w

Me at C++ On Sea

This article was previously published on Sandor Dargo’s Blog 
on 10 July 2024, available at https://www.sandordargo.com/
blog/2024/07/10/cpponsea2024-trip-report

https://clang.llvm.org/docs/
https://cpponsea.uk/
https://cpponsea.uk/2024/session/understanding-the-constexpr-2-step-from-compile-time-to-run-time
https://cpponsea.uk/2024/session/understanding-the-constexpr-2-step-from-compile-time-to-run-time
https://cpponsea.uk/2024/session/dependency-injection-in-cpp-a-practical-guide
https://cpponsea.uk/2024/session/dependency-injection-in-cpp-a-practical-guide
https://cpponsea.uk/2024/session/core-and-other-guidelines-the-good-the-bad-the-questionable
https://cpponsea.uk/2024/session/core-and-other-guidelines-the-good-the-bad-the-questionable
https://cpponsea.uk/2024/session/there-is-no-silver-bullet
https://cpponsea.uk/2024/session/there-is-no-silver-bullet
https://cpponsea.uk/2024/session/who-needs-unit-tests-anyway-modernizing-legacy-code-with-0pc-code-coverage
https://cpponsea.uk/2024/session/who-needs-unit-tests-anyway-modernizing-legacy-code-with-0pc-code-coverage
https://cpponsea.uk/2024/session/who-needs-unit-tests-anyway-modernizing-legacy-code-with-0pc-code-coverage
https://cpponsea.uk/2024/session/fantastic-bugs-and-how-to-test-them
https://cpponsea.uk/2024/session/fantastic-bugs-and-how-to-test-them
https://cpponsea.uk/2024/session/building-on-clang-tidy-to-move-from-printf-style-to-stdprint-style-logging-and-beyond
https://cpponsea.uk/2024/session/building-on-clang-tidy-to-move-from-printf-style-to-stdprint-style-logging-and-beyond
https://cpponsea.uk/2024/session/building-on-clang-tidy-to-move-from-printf-style-to-stdprint-style-logging-and-beyond
https://cpponsea.uk/2024/session/pets-cattle-and-automatic-operations-with-code
https://cpponsea.uk/2024/session/pets-cattle-and-automatic-operations-with-code
https://www.sandordargo.com/tags/cpponsea/
https://www.sandordargo.com/tags/cpponsea/
https://www.sandordargo.com/blog/2020/05/28/functional-programming-in-cpp
https://www.sandordargo.com/blog/2020/05/28/functional-programming-in-cpp
https://www.sandordargo.com/blog/2024/05/22/are-we-a-sports-team
https://www.sandordargo.com/blog/2024/05/22/are-we-a-sports-team
https://github.com/llvm/llvm-project/issues/82994
https://www.youtube.com/watch?v=x1xkb7Cfo6w
https://www.youtube.com/watch?v=x1xkb7Cfo6w
https://www.sandordargo.com/blog/2024/07/10/cpponsea2024-trip-report
https://www.sandordargo.com/blog/2024/07/10/cpponsea2024-trip-report


CHrIS	OlDWOODFeATUre

16 | Overload | August 2024

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit micros. 
These days it’s enterprise grade technology from plush corporate offices the comfort of his breakfast bar. He also  commentates 
on the Godmanchester duck race and is easily distracted by emails and DMs to gort@cix.co.uk and @chrisoldwood

Afterwood
Have things become unnecessarily complicated? 
Chris Oldwood is testing simplicity.

Einstein famously told us to keep things as simple as possible, and no 
simpler. Hence, you’d think that being presented with a small snippet 
of simple code would generate a flurry of correct answers along 

with lots of metaphorical shrugging of shoulders and cries of “meh?” as 
people wonder what all the fuss is about. Jason Gorman, someone who 
specialises in training and coaching software teams, recently posted the 
following question on his various social media accounts [Gorman-X]
[Gorman-M]:

Quick experiment: what’s the expected result that’s been blanked 
out in this test code?

   [Test]
   public void FundsTransferDebitsPayer()
   {
     // Arrange
     Account payer = new Account();
     payer.Credit(1000.0);
     Account payee = new Account();

     // Act
     payer.Transfer(250.0, payee);

     //Assert
     Assert.That(payer.Balance, Is.EqualTo(_____));
   }

He doesn’t say what programming language this is written in but it’s fair 
to say it’s either Java or C# – a pair that are so similar these days they 
are easier to mix-up than Pluto and Goofy, or The Munsters and The 
Addams family. Either way, both these languages generally hold very few 
surprises, or dark corners that could lead to the pit of undefined behaviour. 
For those playing along at home, the answer really is just 750.0.

My own response was a somewhat guarded “750, right?”, followed by 
a flippant suggestion that if this was an interview there would almost 
certainly be some gotcha that I hadn’t accounted for. There wasn’t, this 
time, but nobody ever posts a snippet of code on social media that does 
exactly what it says on the tin, so is it any wonder that nearly every reply 
was caveated in some way? We programmers can be such a jaded bunch at 
times, our bodies metaphorically covered from head-to-toe in scar tissue.

Naturally I blame all those ridiculous interviews we go through where 
the apparent goal is not to hire someone capable of doing the job but to 
allow the interviewer to show the candidates how clever they are. If this 
code snippet was presented in a code review or generated during a pair / 
ensemble session I would hardly think twice about it. (That’s not entirely 
true because of the apparent ill-advised use of floating-point numbers for 
monetary values instead of using decimal in C#, BigDecimal in Java, 
scaled integer, etc. but that wasn’t the point of the question.)

Many of the teams I’ve worked in over the years have generally been of 
the ‘you build it, you run it’ stance and so your current teammates provide 
a useful barometer for what passes as ‘simple enough’. In a few cases, 
though, I’ve worked in The Enterprise™ where they have a different 
approach to maintenance, one where they hire a bunch of experienced 
developers to create a new service or application and then, when the first 
release is done, they hand it over to ‘the support team’ for any future 

bug fixes or enhancements. What surprised me was that this team mostly 
spends their time doing system administration but only gets to don their 
software developer hat occasionally.

This difference in maintenance approach made me consider the readers of 
my code more deeply than usual and this popular quote from The Elements 
of Programming Style [Kernighan78] took on a new perspective:

Everyone knows that debugging is twice as hard as writing a 
program in the first place. So if you’re as clever as you can be when 
you write it, how will you ever debug it?

Consequently, patterns and idioms which, up to that point I assumed to 
be perfectly acceptable, I now felt less comfortable using and started 
questioning whether I was carrying over anachronisms instead of 
adopting more modern idioms that would make the code more accessible 
to this different audience. For example, as an industry we now discourage 
people from writing manual loops, and so maybe a retry loop in C# like:
  var attempt = 5;
  while(attempt-- > 0) { … }

is now becoming trickier to reason about when it comes to mentally 
checking the maximum number of times around the loop than:
  foreach(var attempt in 
    Enumerable.  Range(1, 5)) { … }

While the former technique might have been inherited from C by several 
popular languages, that doesn’t guarantee universal comprehension. 
It might be marginally less typing but as we embrace more functional 
idioms the latter style of code is becoming the new norm.

On the other hand, am I falling foul of Einstein’s advice and heading 
into oversimplification territory and as a consequence verging on 
patronisation? Can code become too simple?

What I liked about the replies to Jason’s experiment was seeing people 
answer their own questions about the code without realising it. As Alex 
Horne often says to contestants in this situation on Taskmaster, “all the 
information is on the task”, though in Jason’s example it’s in the names 
of the test, class, methods, and variables. Any other assumptions, like the 
default balance being 0.0, feel like a no-brainer too.

At some point we have to put our spade down and trust that the reader will 
engage their own brain. The trouble seems to be that the reader doesn’t 
always trust us to hold up our end of the bargain. �

references
[Gorman-M] Jason Gorman’s Mastodon account: 

https://mastodon.cloud/@jasongorman/111601548580386385
[Gorman-X] Jason Gorman’s X account: 

https://x.com/jasongorman/status/1736733070726721935
[Kernighan78] Brian Kernighan and P. J. Plauger (1978) 

The Elements of Programming Style 2nd Edition, 
McGraw-Hill Education,  
ISBN-13 978-0070342071

mailto:https://mastodon.cloud/@jasongorman/111601548580386385
https://x.com/jasongorman/status/1736733070726721935


accu

accu.org

Monthly journals, printed and online
Local groups run by ACCU members

Discounted rate for the ACCU Conference
Email discussion lists



To connect  with
like-minded people

visit accu.org

accu


	Editorial: A Humble Proposal
	User-Defined Formatting in std::format – Part 3
	In an Atomic World
	Trip report: C++ On Sea 2024
	Afterwood



