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Abstract

We give a direct proof of the spiral property of the q-Eulerian numbers
of type B, which arise from q-counting signed permutations in the hyper-
octahedral group by the negative index. For a given nonnegative real
number q, the spiral property implies that the q-polynomial of type B is
unimodal and the maximum coefficient appears exactly in the middle.

1 Introduction

Let [n] = {1, 2, . . . , n} and ±[n] = [n]∪ {−1,−2, . . . ,−n}. Denote by Bn the hyper-
octahedral group of rank n. Given π ∈ Bn. Elements of Bn are signed permutations
of ±[n] with the property that π(−i) = −π(i) for all i ∈ [n]. The number of descents
of π is defined by

desB(π) = #{i ∈ {0, 1, 2, . . . , n− 1} : π(i) > π(i+ 1)},
where π(0) = 0. The negative index of π is defined by N(π) = #{i ∈ [n] : π(i) < 0}.
The q-Eulerian polynomials of type B are given as follows:

Bn(x, q) =
∑
π∈Bn

xdesB(π)qN(π) =
n∑

k=0

Bn,k(q)x
k.

Following [1, Theorem 3.4], the polynomials Bn(x, q) satisfy the recurrence relation

Bn(x, q) = [1 + (1 + q)nx− x]Bn−1(x, q) + (1 + q)
(
x− x2

) ∂

∂x
Bn−1(x, q), (1)

with the initial condition B0(x, q) = 1. The exponential generating function of
Bn(x, q) is given as follows:

∞∑
n=0

Bn(x, q)
tn

n!
=

(1− x)et(1−x)

1− xet(1−x)(1+q)
.
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Various generalizations or variations of Bn(x, q) have been extensively studied.
For example, Fulman, Kim, Lee and Petersen [3] recently studied the joint distri-
bution of descents and sign for elements of the hyperoctahedral group, where the
sign of an element π ∈ Bn is the product of (−1)N(π) and the sign of the underlying
unsigned permutation. Below are the polynomials Bn(x, q) for n � 4:

B1(x, q) = 1 + qx, B2(x, q) = 1 + (1 + 4q + q2)x+ q2x2,

B3(x, q) = 1 + (4 + 12q + 6q2 + q3)x+ (1 + 6q + 12q2 + 4q3)x2 + q3x3,

B4(x, q) = 1 + (11 + 32q + 24q2 + 8q3 + q4)x+ (11 + 56q + 96q2 + 56q3 + 11q4)x2

+ (1 + 8q + 24q2 + 32q3 + 11q4)x3 + q4x4.

Let f(x) =
∑n

i=0 fix
i be a polynomial with nonnegative coefficients. We say that

f(x) is unimodal if
f0 � f1 � · · · � fk � fk+1 � · · · � fn

for some k, where the index k is called the mode of f(x). Following [2, 6], the
polynomial f(x) is said to be spiral if

fn � f0 � fn−1 � f1 � · · · � f�n/2�.

It is clear that the spiral property is stronger than unimodality. We say that f(x) is
real-rooted if it has real roots only. And we say that f(x) is symmetric if fj = fn−j

for each 0 ≤ j ≤ n. The real-rootedness of Bn(x, q) implies the unimodality of
it; see [1, Corollary 3.7] for details. In particular, when q = 1, the polynomial
Bn(x, 1) is symmetric. The spiral property of q-Eulerian numbers of type B was first
proved in [4, Corollary 42] by using the bi-γ-positivity of certain colored Eulerian
polynomials. In this note we give a direct proof of this property. The main result of
this note is the following.

Theorem 1. For any n ≥ 1, we have the following results:

(A) when 0 < q < 1, the polynomial Bn(x, q) is spiral;

(B) when q > 1, the polynomial xnBn(1/x, q) is spiral.

Example 2. The first few 2nBn(x, 1/2) are given as follows:

2B1(x, 1/2) = 2+x, 22B2(x, 1/2) = 4+13x+x2, 23B3(x, 1/2) = 8+93x+60x2+x3.

The first few Bn(x, 2) are given as follows:

B1(x, 2) =1 + 2x, B2(x, 2) = 1 + 13x+ 4x2, B3(x, 2) = 1 + 60x+ 93x2 + 8x3.

The first few Bn(x, 3) are given as follows:

B1(x, 2) =1 + 3x, B2(x, 2) = 1 + 22x+ 9x2, B3(x, 2) = 1 + 121x+ 235x2 + 27x3.

In [5], the sequences {Bn,k(2)}nk=0 and {Bn,k(3)}nk=0 appear as A225117 and A225118,
respectively.
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2 The proof of Theorem 1

Proof. (A) We first consider the case 0 < q < 1. In order to show that

Bn, n(q) < Bn, 0(q) < Bn, n−1(q) < Bn, 1(q) < · · · < Bn, �n
2
−1�(q) < Bn, �n

2
�(q)

when n is odd, one has Bn, n+1
2
(q) < Bn, n−1

2
(q), and it suffices to prove the following

inequalities:
Bn, n−k(q) < Bn, k(q) < Bn, n−k−1(q) (2)

for any 0 ≤ k ≤ �n−3
2
�, and in addition

Bn, n+1
2
(q) < Bn, n−1

2
(q) (3)

when n is odd. We proceed to prove the inequalities (2) and (3) by induction on n.
It is clear that these inequalities hold for 1 ≤ n ≤ 3. We now assume that they hold
for all integers up to n. We aim to show that

Bn+1, n+1−k(q) < Bn+1, k(q) < Bn+1, n−k(q) (4)

for any 0 ≤ k ≤ �n−2
2
�, and when n+ 1 is odd,

Bn+1, n+2
2
(q) < Bn+1, n

2
(q). (5)

For k = 0, we have Bn+1, 0(q)−Bn+1, n+1(q) = 1− qn+1 > 0. It follows from (1) that

Bn, k(q) = (k + kq + 1)Bn−1, k(q) + [(n− k) + (n + 1− k)q]Bn−1, k−1(q).

For k = n, we have Bn+1, n(q) = (n+nq+1)Bn, n(q)+(1+2q)Bn, n−1(q) > Bn, n−1(q).
Therefore Bn+1, n(q) > Bn+1, 0(q) with Bn, n−1(q) > Bn, 0(q) = Bn+1, 0(q).

For 1 ≤ k ≤ �n−2
2
�, we can get

Bn+1, n+1−k(q) = [(n + 2− k) + (n + 1− k)q]Bn, n+1−k(q) + [k + (k + 1)q]Bn, n−k(q);
(6)

Bn+1, k(q) = (k + kq + 1)Bn, k(q) + [(n+ 1− k) + (n+ 2− k)q]Bn, k−1(q); (7)

Bn+1, n−k(q) = [n + 1− k + (n− k)q]Bn, n−k(q) + [k + 1 + (k + 2)q]Bn, n−k−1(q).
(8)

It follows from (6) and (7) that

Bn+1,k(q)− Bn+1,n+1−k(p) = (k + kq)[Bn,k(q)− Bn,n−k(q)]

+ [n− k + 1 + (n− k + 1)q][Bn,k−1(q)− Bn,n−k+1(q)]

+ [Bn,k(q)− Bn,n−k+1(q)] + q[Bn,n−k(q)− Bn,k−1(q)].

By induction, we see that the difference in every pair of parentheses in the above
expression is positive. This implies that for 1 ≤ k ≤ �n−2

2
�,

Bn+1, k(q)− Bn+1, n+1−k(q) > 0. (9)
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Similarly, for 1 ≤ k ≤ �n−2
2
�, in view of (7) and (8) we find

Bn+1,n−k(q)−Bn+1,k(q) = (k + 1 + kq)(Bn,n−k−1(q)− Bn,k(q))

+ [n− k + 1 + (n− k)q](Bn,n−k(q)− Bn,k−1(q))

+ 2q(Bn,n−k−1(q)− Bn,k−1(q)).

Again, by the inductive hypothesis, we deduce that for 1 ≤ k ≤ �n−2
2
�,

Bn+1, n−k(q)− Bn+1, k(q) > 0. (10)

Combining (9) and (10) gives (4) for 0 ≤ k ≤ �n−2
2
�. It remains to verify (5) when

n + 1 is odd. By the recurrence relation for Bn, k(q), we have

Bn+1, n+2
2
(q) =

(
n + 4

2
+

n+ 2

2
q

)
Bn, n+2

2
(q) +

(
n

2
+

n+ 2

2
q

)
Bn, n

2
(q),

Bn+1, n
2
(q) =

(
n + 2

2
+

n

2
q

)
Bn, n

2
(q) +

(
n+ 2

2
+

n+ 4

2
q

)
Bn, n−2

2
(q).

This yields

Bn+1, n
2
(q)−Bn+1, n+2

2
(q) =

(
n+ 2

2
+

n+ 2

2
q

)
[Bn, n−2

2
(q)− Bn, n+2

2
(q)]

+ [Bn, n
2
(q)−Bn, n+2

2
(q)] + q[Bn, n−2

2
(q)−Bn, n

2
(q)].

Again, by the inductive hypothesis, we obtain (5). The completes the proof of (2).

(B) Consider the case q > 1. We shall prove that

Bn, 0(q) < Bn, n(q) < Bn, 1(q) < Bn, n−1(q) < · · · < Bn, �n
2
+1�(q) < Bn, �n

2
�(q)

and when n is odd, one has Bn, n−1
2
(q) < Bn, n+1

2
(q).

According to [1, Proposition 3.10], one has

Bn,k(q) = qnBn,n−k

(
1

q

)
. (11)

Let p = 1/q. Comparison with (4) and (11) yields

Bn+1, k(p) < Bn+1, n+1−k(p) < Bn, k+1(p).

Comparison with (5) and (11) yields

Bn+1, n
2
(p) < Bn+1, n+2

2
(p)

when n is odd. This completes the proof.
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