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Abstract

We give a direct proof of the spiral property of the g-Eulerian numbers
of type B, which arise from g-counting signed permutations in the hyper-
octahedral group by the negative index. For a given nonnegative real
number ¢, the spiral property implies that the g-polynomial of type B is
unimodal and the maximum coefficient appears exactly in the middle.

1 Introduction

Let [n] ={1,2,...,n} and £[n] = [n]U{-1,-2,..., —n}. Denote by B, the hyper-
octahedral group of rank n. Given 7 € B,,. Elements of B,, are signed permutations
of £[n]| with the property that 7(—i) = —n (i) for all i € [n]. The number of descents
of 7 is defined by

desp(m) =#{i € {0,1,2,...,n—1}: 7(i) >7n(i+ 1)},
where 7(0) = 0. The negative index of 7 is defined by N(7) = #{i € [n] : 7(i) < 0}.

The q-Fulerian polynomials of type B are given as follows:

Bu(z,q) = Y a*s@¢V™ =N "B, (q)z".
k=0

wEBy

Following [Il, Theorem 3.4], the polynomials B, (z, q) satisfy the recurrence relation

Bu(,q) = 14 (1+ ¢)nz — 2] B (z,q) + (1 + q) (z — 2?) a%Bn—l(x, q, (1)

with the initial condition Bg(x,q) = 1. The exponential generating function of
B,(z,q) is given as follows:

> n (1 — x)ett—2)
Z% Bule 07 = T gt
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Various generalizations or variations of B, (z,q) have been extensively studied.
For example, Fulman, Kim, Lee and Petersen [3] recently studied the joint distri-
bution of descents and sign for elements of the hyperoctahedral group, where the
sign of an element 7 € B, is the product of (—1)V™ and the sign of the underlying
unsigned permutation. Below are the polynomials By, (z,q) for n < 4:

Bi(z,q) =1+ qw, Ba(w,q) =1+ (1 +4q+ ¢*)x + ¢*2%,

By(x,q) =1+ (4 4+ 120 + 6¢* + ¢*)x + (1 + 6q + 12¢* + 4¢°)2* + ¢°2°,

By(z,q) =1+ (11 + 32q + 24¢* + 8¢* + ¢*)x + (11 + 56¢ + 96¢° + 56¢° + 11¢*)2?
+ (1 + 8¢ + 24¢* + 32¢° + 11¢") 2> + ¢*2™.

Let f(x) =Y i, fiz" be a polynomial with nonnegative coefficients. We say that
f(x) is unimodal if
Jo<h<-<feZ2fimn=z2/a
for some k, where the index k is called the mode of f(x). Following [2, [6], the
polynomial f(x) is said to be spiral if

fngfogfnflgflggfm/ﬂ

It is clear that the spiral property is stronger than unimodality. We say that f(z) is
real-rooted if it has real roots only. And we say that f(z) is symmetric if f; = f,_;
for each 0 < j7 < n. The real-rootedness of B,(z,q) implies the unimodality of
it; see [1, Corollary 3.7] for details. In particular, when ¢ = 1, the polynomial
By, (x,1) is symmetric. The spiral property of g-Eulerian numbers of type B was first
proved in [, Corollary 42] by using the bi-vy-positivity of certain colored Eulerian
polynomials. In this note we give a direct proof of this property. The main result of
this note is the following.

Theorem 1. For any n > 1, we have the following results:
(A) when 0 < q < 1, the polynomial B, (x,q) is spiral;
(B) when q > 1, the polynomial 2" B,(1/z, q) is spiral.

Example 2. The first few 2" B, (x,1/2) are given as follows:
2B (2,1/2) = 2+, 2°By(x,1/2) = 4+ 132427, 2°Bs(x,1/2) = 8+ 932+ 602* + 2.
The first few B, (x,2) are given as follows:
Bi(z,2) =1+ 2w, By(x,2) =1+ 13z + 42*, Bs(z,2) = 1 + 60z + 932% + 82°.
The first few B, (x,3) are given as follows:
By(1,2) =1+ 3z, By(x,2) =1+ 22z + 92%, Bs(x,2) = 1 + 1212 + 23522 + 272°.

In [5], the sequences { B, x(2)}7_, and { B, x(3)}7_, appear as A225117 and A225118,
respectively.



7. WANG AND Z.-Y. ZHU / AUSTRALAS. J. COMBIN. 87 (1) (2023), 198-202 200

2 The proof of Theorem [

Proof. (A) We first consider the case 0 < ¢ < 1. In order to show that
Byn(q) < Buo(q) < Bpn-1(q) < Bpi(q) <--- < B, L%*lJ( ) < B, (%1( )

when 7 is odd, one has B, ) (¢9) < B, i) (q), and it suffices to prove the following
inequalities:

Bn,nfk(q> < Bn,k(Q) < Bn, nfkfl(q) (2)
for any 0 < k < ("T’?’L and in addition
B, na(q) < B, 221(q) (3)

when n is odd. We proceed to prove the inequalities (2)) and (3) by induction on 7.
It is clear that these inequalities hold for 1 < n < 3. We now assume that they hold
for all integers up to n. We aim to show that

Br1,n41-1(9) < Bry1,1(0) < Bps1,n-1(q) (4)
for any 0 < k < [721 and when n + 1 is odd,
Bn+1,"7+2(9) < By11,2(q)- (5)
For k = 0, we have B, 41,0(q) — Bni1,n41(q) = 1 — ¢ > 0. Tt follows from () that
Bui(q) = (k+kq+1)B,1k(q) +[(n—Fk)+ (n+1—Fk)q|Bn-1x-1(q)-

For k = n, we have B, 11 ,(q) = (n+nq+1)B, »(q) + (14+2¢) By, n—1(q) > By, n-1(q)-
Therefore By, 41 ,,(q) > Bpi1,0(q) with B, ,—1(q) > By 0(q) = Bnt1,0(q)-

For1 <k< (”T_QL we can get

Buiini1-k(q) =[(n+2—Fk) +(n+1—Fk)qBnny1-#(q) + [k + (k+ 1)) By, k(%),)
6

Buik(q) = (k+kq+1)B,k(q) +[(n+1—k)+ (n+2—Fk)qBnr(q); (7)
Bryin-k(q) = m+1—k+(n-— k)Q]Bn,n—k(Q) + [k +1+ (k+2)q ]Bn,n—k—l(qy( )

8

It follows from (@) and ([7) that

Bu115(9) = Buyiny1-1(p) = (k + kq)[Brx(q) — Ban—x(q)]
+n—k+1+(n—Fk+1)q[Bni-1(9) = Bnn-it+1(q)]
+ [Bni(q) = Bun-r1(¢)] + a[Brn—i(q) — Bnr-1(q)]-

By induction, we see that the difference in every pair of parentheses in the above
expression is positive. This implies that for 1 < k < ["T*Q],

Bn+1,k(Q) - Bn—i—l,n-‘,—l—k(Q) > 0. (9)
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Similarly, for 1 < k < [%52], in view of (7)) and (&) we find

Boi1n#(q) = Bnyik(q) = (K + 14+ kq)(Bnnk-1(q9) — Bur(q))
+n—=k+1+n—k)q(Buni(q) — Bur-1(q))
+2q(Bnn—k-1(q) — Bni-1(q))-

Again, by the inductive hypothesis, we deduce that for 1 < k < (”T_QL

Bii1,n-k(q) = Bas1,k(q) > 0. (10)

Combining (@) and (I0) gives @) for 0 < k < [252]. It remains to verify () when
n + 1 is odd. By the recurrence relation for B, 1(q), we have

n+4 n-+2 n n-+2

2 2 2 2 2
n+2 n n+2 n+4
Bn+1,g(q)=( 5 +§q) Bn,g(Q)+( SRR C]) B, »=2(q).

This yields

Bt 5(0) = s 220 = ("5 4 7520 (B ) = By )]
+ [Bn, 2(q) = By, ng2(q)] + ¢[B,, n22(q) — Bn, 2(q)]-

Again, by the inductive hypothesis, we obtain (Bl). The completes the proof of ().

(B) Consider the case ¢ > 1. We shall prove that
Bn,O(Q) < Bn,n(Q) < Bn,l(Q) < Bn,n—l(Q) < < Bn, L%-HJ( ) < B !—%]( )

and when n is odd, one has B, n;l( q) < B 7n+1( ).
According to [1l Proposition 3.10], one has

Busla) = " Bunr (1) (1)

Let p = 1/q. Comparison with () and (II]) yields

Bri1,k(p) < Brs1,ns1-£(P) < Brk11(p).

Comparison with (@) and (II) yields

Bii,2(p) < By, ni2 (p)

when n is odd. This completes the proof. O
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