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1 Introduction
Let A,BeZ,|B|=1,R,=0,R; =1 and
R,.o=AR,.1 — BR,
for n > 0. We consider the equation
R, = 21

in integers n, x, q subject to |z| > 1,4 > 2.

(2)

Shorey and Stewart [8] and independently Pethé [4] proved that (2) has
only finitely many effectively computable solutions in n, x, q. Using only
this result it is hopeless to solve completely (2) for given A and B because
the bound for q is very large. It is about 10° even in the modest cases.
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Equation (2) was examined by several authors for the Fibonacci sequence,
which is defined by A =1, B = —1. You find an extensive literature in [7].
To establish the third and fifth powers in the Fibonacci sequence the author
[5], [6] transformed the problem into the solution of certain third and fifth
degree Thue equation respectively. The solutions of the Thue equations were
then found by means of a computer search.

Our first result is that the transformation of (2) into a g-th degree Thue
equation is possible for a wider class of recurrences. More precisely we prove

Theorem 1 Let ¢ > 3 be odd, B = —1 and D = A?> — 4B = p or 4p with a
prime p. If n,|z| > 1 is a solution of (2) with n odd then there exist integers
y,z, € X, (y,z) = 1 such that

2? = y? + 2?

and

2 — Ai , 24 Ai
f(yaz) = 4 (y—Z’l)q+

Generally, f(y, z) is an irreducible polynomial over Q[y, z] and therefore it is
hard to solve (3) for a given q.
For A =2, B = —1 the sequence defined by (1) is called Pell sequence. We

shall denote it by {P,}>2,. It follows from a result of Ljunggren [3] that the
equation

(y+ 2i)? = +1. (3)

P, =21 (4)

has for ¢ = 2 only the solutions (n,z) = (0,0), (1,1) and (7,13). In his proof
Ljunggren used complicated devices of algebraic number theory and p-adic
analysis.
Combining a recent result of Wolfskill [10] with a simple computer search we
give a new proof of Ljunggrens theorem. Moreover we are able to find not
only the squares but all the powers in the Pell sequence.

It is clear that the pairs (n,z) = (0,0) and (1,1) are solutions of (4) for
any q > 2. We call them trivial solutions.
Using Theorem 1 we prove

Theorem 2 FEquation (4) has only for ¢ = 2 a non-trivial solution, namely
(n,z) = (7,13).



Erdés [1], [2] considered the equation

() - )

in positive integers k,[l,n,y subject to k > 2,;n > 2k,y > 2,1 > 2. If k =
[ =2, then (5) has infinitely many solutions, which are easy to characterize.
He proved that there are no solutions with k£ > 4 or [ = 3. It follows from a
result of Tijdeman [9] that there is an effectively computable upper bound
for the solutions of (5) with £ = 2,1 > 3 and k = 3,1 > 2. From Theorem 2
we derive

Corollary 1 Equation (5) has for k = 2,1 > 2 even no solutions.

2 Proof of Theorem 1

To prove theorem 1 we need the following

Lemma 1 Let D = A? — 4B = b%*p, where b,p € 7 and p is a prime. If
(n,r) € Z*, n  odd is a solution of (2), then there evists u € 7 with

b*r? = (b + Au)® — 4Bu?. (6)

Proof: Let o and 3 denote the zeros of the polynomial X? — AX + B and
put S, = a™ + " for n > 0. If n is odd then it is easy to see that

pb’R: = S2 — 4B. (7)

This implies S2 = 4B (mod p). On the other hand A? = 4B (mod p)
, hence S,, = £A (mod p). Thus, there exists an u € 7 such that S,, =
up + A by a suitable choice of the sign. Inserting this in (7) we get

pb?2% = wPp® £ 2Aup + A% — AB = u?p? + 2Aup + b*p.
Dividing this equation by p and multiplying by b* we get
b1 = b £ 2Aub® + u?b?p = (b + Au)? +u?(b*p — A?) = (b* + Au)® — 4Bu*.

The lemma is proved. O



Proof of Theorem 1: We have

b 1, if A is odd
1 2, if Aiseven

with the notation of Lemma 1. There exists by Lemma 1 an u € Z with
% = (14 Au)® + (2u)?, (8)

if A is odd, and
162°7 = (4 + Au)? + 4u?,

if A is even, say A = 2A;. In the last case u has to be even too, say u = 2u;
and we get
72 = (14 Ayuy)? + . 9)

Since ¢ > 3, x has to be odd in both cases and (8) and (9) can be written in
the common form

7% = v? + w?, (10)
with v, w € Z, (v,w) = 1. Further we may assume without loss of generality
W even.
The right hand side of (10) can be factored in the ring of the Gaussian
integers Z[i]. These two factors must be g-th powers in ZZ[i] because they
are relatively primes and the units of Z[i] are all g-th powers. Thus there
exist y, z € 7 with

v+ wi = (y + 2i)?

and

z? = y2 + 22
Taking complex conjugates we get

v=3lly+ 20+ (g — 20

and

w= gy + =)~ (g — 2]

Consider now the case A odd. Then, by (8), u is even say u = 2u;. Thus
1

w = [y +21)” = (y — 20)]



and ]
2Au; £1 = 5[(3; + 20)7 + (y — 20)7].

From these two equations it follows (3) immediately.
The case A even can be treated similarly, therefore we omit it. Theorem 1
is proved. O

3 Proof of Theorem 2 and the Corollary

To prove Theorem 2 we need the following property of the sequence {R,, }>° .
Lemma 2 Let n > 0,m > 0. Then R,|R,, and

an

(R

Ry) = (m, Ry). (11)

Proof: We use the following well known facts about recursive sequences
(i) Let r > 0 and n,m > 1 then

an+r = Ran(m—1)+r+1 - BRnfan(m—l)—&—r- (12>

(ii) Let n > 1, then (R,, R,—1) = 1.
Let now n > 0 and m > 0 then we have

Roumir = (=BR,_)™ (mod R,). (13)

In fact, (13) is obviously true for m = 0,1. Assume that it is true for an
m > 1. Taking 7 = 1 in (12) and using the induction hypothesis we get

Rn(m—i—l)—i—l = Ranm+2 - BRn—anm—H = (_BRn—l)m+1 (mOd Rn)a

which proves (13).
The first assertion, R,,|R,, is well known and follows easily from (12).
Let n,m > 0. We prove now

an
Ry

=m(—BR, )™ " (mod R,). (14)



This is obviously true for m = 1. Assume (14) is true for an m > 1. Taking
r =0 1in (12), using the induction hypothesis and (13) we get

Ru(m Frm

= (m+1)(—BR,-1)" (mod R,).

Hence (14) is true for any n,m > 0.
It is obvious that (11) is true for m = 0. Let m > 1, then by (14), (ii) and
by B = +1 we have

an

(R—n, R,) = (m(=BR,_))" ' R,) = (m, R,).

The lemma is proved. O

Lemma 3 Let g > 2,n > 0 and assume that P, is a q-th power. Then either
n = 0,1 or there exists a prime p > 3 such that p|n and P, is also a ¢-th
power.

Proof: It is easy to see that any prime divisors of P,, where r is a prime, is
greater than r. Let n = pi"*...p%" with p; < ... < p, primes.
Assume that p, > 3. Then any prime divisors of P, are larger than p,, hence
(P, ) = 1. As (}%, P, ) =1 by Lemma 2, any prime factors of P, , occur
in P, in the same power as in P, , hence P, is a g-th power too.
Let n = 2% As P, = 12 = 4 - 3 exactly the first power of 3 divides Pya for
a > 2, so they can not be g-th powers for ¢ > 2. Finally P, = 2, proves the
lemma completely. O

Proof of Theorem 2: Consider first the case ¢ = 2. Wolfskill [10]
(Example 1, p. 137) proved that if (4) holds for an odd n, then n < 469.
Using this bound and the sieve procedure described in [5] it is easy to check
that the only solutions of (4) with n odd are n =1 and 7.
Hence if (4) holds then n = 2*- 7% with 3 > 1 by Lemma 3. But Py =
2-132%- 239 so, by Lemma 2, exactly the first power of 239 divides Pya.7s for
(£ > 1 and hence they can not be squares. This proves the theorem for ¢ = 2.
Let ¢ > 2, even. Then as P; = 13? equation (4) is solvable only for n = 0
and 1.

Let ¢ > 2 be an odd prime. We prove that the only solution of (4) with n
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odd is n = 1 which implies the assertion of the theorem by means of Lemma

3.

Let n,z be a solution of (4) with n an odd prime. There exist by Theorem

1 integers y,z with
22 = g2 4 22
1—1

fq(ya Z) - 2

Let ¢ = 4k + 3 with k£ € ZZ. Then

144
(y — z0)7 + ;—Z(y + zi)? = £1.

I R S
o« +¢)<2—1 i)y gy _ (0 ¢)2(1 +i)
— —(—2i)2k+1—(2i)2k+1
= 0.

This means ¢ + 1|27f,(¥, 1), which is equivalent to

y+ 2l foy, 2).
Similarly, if ¢ = 4k + 1 with a k € Z, then we have

fq(17 ]') = 07

hence y — z|f,(y, ) in this case.

(15)

(16)

+ Z—)2(2k+1)

The divisibility relations together with (16) imply |y +z| =1 or |y — z| = 1.

Thus y = +(z £ 1). Inserting this value into (15) we get
=24 (2212 =224+22+1,

or equivalently
(22 £1)* - 22* = —1.

The pair (x,z) € Z? is a solution of the last equation if and only if there

exists an m € 7 such that
Tr = :i:Pgm+1.

Hence, by (4) P, = £(Py,+1)9, which means that P, 11|P, for 2m +1 < n.
This contradicts the primality of n. Thus (4) has no solutions with n prime,
and so by Lemma 3 no solutions with n > 2. Theorem 2 is proved. O
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Remark 1 If ¢ = 3 (mod 4) then it is possible to prove that (16) has the
only solutions (y,z) = (0, £1),(£1,0). Forq =1 (mod 4) I am able to prove
that yz| %5t which together with the condition |y — z| = 1 implies the same
result only for small values of q.

Proof of Corollary: Let k = 2 and n,y,l € Z be a solution of (5) with
l =2q,q > 2. Then (5) implies

(2n —1)* = 2(2y")* = 1.

It follows from the theory of Pellian equations that there exists an v > 0
such that

As y > 2 we have u > 2. Let p be the greatest prime divisor of u. If p > 3
then any prime divisors of P, are larger than p and it must be a g-th power
by (11) and (17). By Theorem 2 this is possible only if ¢ = 2 and u = 7. But
Py =2-13%- 239 gives no solutions of (17).

We have seen in the proof of Lemma 3 that exactly the first power of 3 divides
Pso for ae > 2 which proves that (17) has no solutions also for p = 2. O
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