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1 Introduction

Let A,B ∈ ZZ, |B| = 1, Ro = 0, R1 = 1 and

Rn+2 = ARn+1 −BRn (1)

for n ≥ 0. We consider the equation

Rn = xq (2)

in integers n, x, q subject to |x| > 1, q ≥ 2.
Shorey and Stewart [8] and independently Pethö [4] proved that (2) has
only finitely many effectively computable solutions in n, x, q. Using only
this result it is hopeless to solve completely (2) for given A and B because
the bound for q is very large. It is about 1060 even in the modest cases.

∗Research partly done while the author was a visiting professor at the Fachbereich 14
- Informatik, Universität des Saarlandes.
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Equation (2) was examined by several authors for the Fibonacci sequence,
which is defined by A = 1, B = −1. You find an extensive literature in [7].
To establish the third and fifth powers in the Fibonacci sequence the author
[5], [6] transformed the problem into the solution of certain third and fifth
degree Thue equation respectively. The solutions of the Thue equations were
then found by means of a computer search.
Our first result is that the transformation of (2) into a q-th degree Thue
equation is possible for a wider class of recurrences. More precisely we prove

Theorem 1 Let q ≥ 3 be odd, B = −1 and D = A2 − 4B = p or 4p with a
prime p. If n, |x| > 1 is a solution of (2) with n odd then there exist integers
y, z,∈ ZZ, (y, z) = 1 such that

x2 = y2 + z2

and

f(y, z) =
2− Ai

4
(y − zi)q +

2 + Ai

4
(y + zi)q = ±1. (3)

Generally, f(y, z) is an irreducible polynomial over Q[y, z] and therefore it is
hard to solve (3) for a given q.
For A = 2, B = −1 the sequence defined by (1) is called Pell sequence. We
shall denote it by {Pn}∞n=0. It follows from a result of Ljunggren [3] that the
equation

Pn = xq (4)

has for q = 2 only the solutions (n, x) = (0, 0), (1, 1) and (7, 13). In his proof
Ljunggren used complicated devices of algebraic number theory and p-adic
analysis.
Combining a recent result of Wolfskill [10] with a simple computer search we
give a new proof of Ljunggrens theorem. Moreover we are able to find not
only the squares but all the powers in the Pell sequence.

It is clear that the pairs (n, x) = (0, 0) and (1, 1) are solutions of (4) for
any q ≥ 2. We call them trivial solutions.
Using Theorem 1 we prove

Theorem 2 Equation (4) has only for q = 2 a non-trivial solution, namely
(n, x) = (7, 13).
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Erdös [1], [2] considered the equation
(
n

k

)
= yl (5)

in positive integers k, l, n, y subject to k ≥ 2, n ≥ 2k, y ≥ 2, l ≥ 2. If k =
l = 2, then (5) has infinitely many solutions, which are easy to characterize.
He proved that there are no solutions with k ≥ 4 or l = 3. It follows from a
result of Tijdeman [9] that there is an effectively computable upper bound
for the solutions of (5) with k = 2, l ≥ 3 and k = 3, l ≥ 2. From Theorem 2
we derive

Corollary 1 Equation (5) has for k = 2, l > 2 even no solutions.

2 Proof of Theorem 1

To prove theorem 1 we need the following

Lemma 1 Let D = A2 − 4B = b2p, where b, p ∈ ZZ and p is a prime. If
(n, x) ∈ ZZ2, n odd is a solution of (2), then there exists u ∈ ZZ with

b4x2q = (b2 ± Au)2 − 4Bu2. (6)

Proof: Let α and β denote the zeros of the polynomial X2 − AX + B and
put Sn = αn + βn for n ≥ 0. If n is odd then it is easy to see that

pb2R2
n = S2

n − 4B. (7)

This implies S2
n ≡ 4B (mod p). On the other hand A2 ≡ 4B (mod p)

, hence Sn ≡ ±A (mod p). Thus, there exists an u ∈ ZZ such that Sn =
up± A by a suitable choice of the sign. Inserting this in (7) we get

pb2x2q = u2p2 ± 2Aup + A2 − 4B = u2p2 ± 2Aup + b2p.

Dividing this equation by p and multiplying by b2 we get

b4x2q = b4± 2Aub2 +u2b2p = (b2±Au)2 +u2(b2p−A2) = (b2±Au)2− 4Bu2.

The lemma is proved. 2
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Proof of Theorem 1: We have

b =

{
1, if A is odd
2, if A is even

with the notation of Lemma 1. There exists by Lemma 1 an u ∈ ZZ with

x2q = (1± Au)2 + (2u)2, (8)

if A is odd, and
16x2q = (4± Au)2 + 4u2,

if A is even, say A = 2A1. In the last case u has to be even too, say u = 2u1

and we get
x2q = (1± A1u1)

2 + u2
1. (9)

Since q ≥ 3, x has to be odd in both cases and (8) and (9) can be written in
the common form

x2q = v2 + w2, (10)

with v, w ∈ ZZ, (v, w) = 1. Further we may assume without loss of generality
w even.
The right hand side of (10) can be factored in the ring of the Gaussian
integers ZZ[i]. These two factors must be q-th powers in ZZ[i] because they
are relatively primes and the units of ZZ[i] are all q-th powers. Thus there
exist y, z ∈ ZZ with

v + wi = (y + zi)q

and
x2 = y2 + z2.

Taking complex conjugates we get

v =
1

2
[(y + zi)q + (y − zi)q]

and

w =
1

2i
[(y + zi)q − (y − zi)q].

Consider now the case A odd. Then, by (8), u is even say u = 2u1. Thus

u1 =
1

8i
[(y + zi)2 − (y − zi)q]
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and

2Au1 ± 1 =
1

2
[(y + zi)q + (y − zi)q].

From these two equations it follows (3) immediately.
The case A even can be treated similarly, therefore we omit it. Theorem 1
is proved. 2

3 Proof of Theorem 2 and the Corollary

To prove Theorem 2 we need the following property of the sequence {Rn}∞n=0.

Lemma 2 Let n > 0,m ≥ 0. Then Rn|Rnm and

(
Rnm

Rn

, Rn) = (m,Rn). (11)

Proof: We use the following well known facts about recursive sequences
(i) Let r ≥ 0 and n,m ≥ 1 then

Rnm+r = RnRn(m−1)+r+1 −BRn−1Rn(m−1)+r. (12)

(ii) Let n ≥ 1, then (Rn, Rn−1) = 1.
Let now n > 0 and m ≥ 0 then we have

Rnm+1 ≡ (−BRn−1)
m (mod Rn). (13)

In fact, (13) is obviously true for m = 0, 1. Assume that it is true for an
m ≥ 1. Taking r = 1 in (12) and using the induction hypothesis we get

Rn(m+1)+1 = RnRnm+2 −BRn−1Rnm+1 ≡ (−BRn−1)
m+1 (mod Rn),

which proves (13).
The first assertion, Rn|Rnm is well known and follows easily from (12).
Let n,m > 0. We prove now

Rnm

Rn

≡ m(−BRn−1)
m−1 (mod Rn). (14)
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This is obviously true for m = 1. Assume (14) is true for an m ≥ 1. Taking
r = 0 in (12), using the induction hypothesis and (13) we get

Rn(m+1)

Rn

= Rnm+1 −BRn−1
Rnm

Rn

≡ (−BRn−1)
m + m(−BRn−1)

m

= (m + 1)(−BRn−1)
m (mod Rn).

Hence (14) is true for any n, m > 0.
It is obvious that (11) is true for m = 0. Let m > 1, then by (14), (ii) and
by B = ±1 we have

(
Rnm

Rn

, Rn) = (m(−BRn−1)
m−1, Rn) = (m,Rn).

The lemma is proved. 2

Lemma 3 Let q ≥ 2, n ≥ 0 and assume that Pn is a q-th power. Then either
n = 0, 1 or there exists a prime p ≥ 3 such that p|n and Pp is also a q-th
power.

Proof: It is easy to see that any prime divisors of Pr, where r is a prime, is
greater than r. Let n = pα1

1 ...pαr
r with p1 < ... < pr primes.

Assume that pr ≥ 3. Then any prime divisors of Ppr are larger than pr, hence
(Ppr ,

n
pr

) = 1. As ( Pn

Ppr
, Ppr) = 1 by Lemma 2, any prime factors of Ppr , occur

in Pn in the same power as in Ppr , hence Ppr is a q-th power too.
Let n = 2α. As P4 = 12 = 4 · 3 exactly the first power of 3 divides P2α for
α ≥ 2, so they can not be q-th powers for q ≥ 2. Finally P2 = 2, proves the
lemma completely. 2

Proof of Theorem 2: Consider first the case q = 2. Wolfskill [10]
(Example 1, p. 137) proved that if (4) holds for an odd n, then n ≤ 469.
Using this bound and the sieve procedure described in [5] it is easy to check
that the only solutions of (4) with n odd are n = 1 and 7.
Hence if (4) holds then n = 2α · 7β with β ≥ 1 by Lemma 3. But P14 =
2 · 132 · 239 so, by Lemma 2, exactly the first power of 239 divides P2α·7β for
β ≥ 1 and hence they can not be squares. This proves the theorem for q = 2.
Let q > 2, even. Then as P7 = 132 equation (4) is solvable only for n = 0
and 1.
Let q > 2 be an odd prime. We prove that the only solution of (4) with n
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odd is n = 1 which implies the assertion of the theorem by means of Lemma
3.
Let n, x be a solution of (4) with n an odd prime. There exist by Theorem
1 integers y,z with

x2 = y2 + z2 (15)

fq(y, z) =
1− i

2
(y − zi)q +

1 + i

2
(y + zi)q = ±1. (16)

Let q = 4k + 3 with k ∈ ZZ. Then

fq(−1, 1) =
1 + i

2
(−1 + i)q +

1− i

2
(−1− i)q

=
(1 + i)(−1 + i)

2
(−1 + i)2(2k+1) − (1− i)(1 + i)

2
(1 + i)2(2k+1)

= −(−2i)2k+1 − (2i)2k+1

= 0.

This means y
z

+ 1|zqfq(
y
z
, 1), which is equivalent to

y + z|fq(y, z).

Similarly, if q = 4k + 1 with a k ∈ ZZ, then we have

fq(1, 1) = 0,

hence y − z|fq(y, z) in this case.
The divisibility relations together with (16) imply |y + z| = 1 or |y − z| = 1.
Thus y = ±(z ± 1). Inserting this value into (15) we get

x2 = z2 + (z ± 1)2 = 2z2 ± 2z + 1,

or equivalently
(2z ± 1)2 − 2x2 = −1.

The pair (x, z) ∈ ZZ2 is a solution of the last equation if and only if there
exists an m ∈ ZZ such that

x = ±P2m+1.

Hence, by (4) Pn = ±(P2m+1)
q, which means that P2m+1|Pn for 2m + 1 < n.

This contradicts the primality of n. Thus (4) has no solutions with n prime,
and so by Lemma 3 no solutions with n ≥ 2. Theorem 2 is proved. 2
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Remark 1 If q ≡ 3 (mod 4) then it is possible to prove that (16) has the
only solutions (y, z) = (0,±1), (±1, 0). For q ≡ 1 (mod 4) I am able to prove
that yz| q−1

2
which together with the condition |y − z| = 1 implies the same

result only for small values of q.

Proof of Corollary: Let k = 2 and n, y, l ∈ ZZ be a solution of (5) with
l = 2q, q ≥ 2. Then (5) implies

(2n− 1)2 − 2(2yq)2 = 1.

It follows from the theory of Pellian equations that there exists an u ≥ 0
such that

2yq = P2u. (17)

As y ≥ 2 we have u ≥ 2. Let p be the greatest prime divisor of u. If p ≥ 3
then any prime divisors of Pp are larger than p and it must be a q-th power
by (11) and (17). By Theorem 2 this is possible only if q = 2 and u = 7. But
P14 = 2 · 132 · 239 gives no solutions of (17).
We have seen in the proof of Lemma 3 that exactly the first power of 3 divides
P2α for α ≥ 2 which proves that (17) has no solutions also for p = 2. 2
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