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PREFACE  (1877) 

Physical  Science,  which  up  to  the  end  of  the  eighteenth 
century  had  been  fully  occupied  in  forming  a  conception 
of  natural  phenomena  as  the  result  of  forces  acting 
between  one  body  and  another,  has  now  fairly  entered 

on  the  next  stage  of  progress — that  in  which  the  energy 
of  a  material  system  is  conceived  as  determined  by  the 
configuration  and  motion  of  that  system,  and  in  which 
the  ideas  of  configuration,  motion,  and  force  are 

generalised  to  the  utmost  extent  warranted  by  their 
physical  definitions. 

To  become  acquainted  with  these  fundamental  ideas, 

to  examine  them  under  all  their  aspects,  and  habitually 
to  guide  the  current  of  thought  along  the  channels  of 
strict  dynamical  reasoning,  must  be  the  foundation  of 
the  training  of  the  student  of  Physical  Science. 

The  following  statement  of  the  fundamental  doctrines 
of  Matter  and  Motion  is  therefore  to  be  regarded  as 
an  introduction  to  the  study  of  Physical  Science  in 

general. 





NOTE 

In  this  reprint  of  Prof.  Clerk  Maxwell's  classical 
tractate  on  the  principles  of  dynamics,  the  changes  have 
been  confined  strictly  to  typographical  and  a  few  verbal 
improvements.  After  trial,  the  conclusion  has  been 
reached  that  any  additions  to  the  text  would  alter  the 
flavour  of  the  work,  which  would  then  no  longer  be 
characteristic  of  its  author.  Accordingly  only  brief 
footnotes  have  been  introduced:  and  the  few  original 
footnotes  have  been  distinguished  from  them  by 
Arabic  numeral  references  instead  of  asterisks  and  other 

marks.     A  new  index  has  been  prepared. 
A  general  exposition  of  this  kind  cannot  be  expected, 

and  doubtless  was  not  intended,  to  come  into  use  as  a 

working  textbook :  for  that  purpose  methods  of  syste- 
matic calculation  must  be  prominent.  But  as  a  reasoned 

conspectus  of  the  Newtonian  dynamics,  generalizing 
gradually  from  simple  particles  of  matter  to  physical 
systems  which  are  beyond  complete  analysis,  drawn 
up  by  one  of  the  masters  of  the  science,  with  many 
interesting  side-hghts,  it  must  retain  its  power  of  sug- 

gestion even  though  parts  of  the  vector  exposition  may 
now  seem  somewhat  abstract.  The  few  critical  footnotes 

and  references  to  Appendices  that  have  been  added  may 
help  to  promote  this  feature  of  suggestion  and  stimulus. 
The  treatment  of  the  fundamental  principles  of 

dynamics  has  however  been  enlarged  on  the  author's 
own  lines  by  the  inclusion  of  the  Chapter  "On  the 
Equations  of  Motion  of  a  Connected  System"  from 
vol.  ii  of  Electricity  and  Magnetism.  For  permission  to 
make  use  of  this  chapter  the  thanks  of  the  publishers 
are  due  to  the  Clarendon  Press  of  the  University  of 
Oxford. 



NOTE 

With  the  same  end  in  view  Uvo  Appendices  have 
been  added  by  the  editor.  One  of  them  treats  the 
Principle  of  Relativitv  of  motion,  which  has  recently beconie  very  prominent  in  wider  physical  connexions on  rather  different  lines  from  those  in  the  text.  The  other 
aims  at  development  of  the  wider  aspects  of  the  Prin- 

ciple of  Least  Action,  which  has  been  asserting  its 
position  more  and  more  as  the  essential  principle  of  con- 

nexion between  the  various  domains  of  Theoretical Physics. 
these  additions  are  of  course  much  more  advanced 

than  the  rest  of  the  book :  but  they  will  serve  to  complete It  by  presenting  the  analytical  side  of  dvnamical  science 
on  which  It  justly  aspires  to  be  the  definite  foundation for  all  Natural  Philosophy. 
The  editor  desires  to  express  his  acknowledgment 

A^T  T^  Cambridge  University  Press,  and  especiallv  to Mr  J,  B.  Peace,  for  assistance  and  attention 

J.  L. 



BIOGR.\PHICAL  NOTE 

James  Clerk  Maxwell  was  born  in  Edinburgh  in  1831 , 
the  only  son  of  John  Clerk  Maxwell,  of  Glenlair,  near 
Dalbeattie,  a  family  property  in  south-west  Scotland  to 
which  the  son  succeeded.  After  an  early  education  at 
home,  and  at  the  University  of  Edinburgh,  he  pro- 

ceeded to  Cambridge  in  1850,  first  to  Peterhouse, 
migrating  afterwards  to  Trinity  College.  In  the 
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He  was  professor  of  Natural  Philosophy  at  Aberdeen 

from  1856  to  i860,  in  King's  College,  London  from 
i860  to  1865,  and  then  retired  to  Glenlair  for  six  years, 
during  which  the  teeming  ideas  of  his  mind  doubtless 
matured  and  fell  into  more  systematic  forms.  He  was 
persuaded  to  return  into  residence  at  Cambridge  in 
1 87 1,  to  undertake  the  task  of  organizing  the  new 
Cavendish  Laboratory.  But  after  a  time  his  health 
broke,  and  he  died  in  1879  at  the  age  of  48  years. 

His  scientific  reputation  during  his  lifetime  was 
upheld  mainly  by  British  mathematical  physicists, 
especially  by  the  Cambridge  school.  But  from  the  time 
that  Helmholtz  took  up  the  study  of  his  theory  of 
electric  action  and  light  in  1870,  and  discussed  it  in 
numerous  powerful  memoirs,  the  attention  given  abroad 
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became  the  dominating  force  in  physical  science. 
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mathematical  interpreter  and  continuator  of  Faraday, 
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the  laws  of  the  physical  universe  that  has  appeared 
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MATTER  AND   MOTION 

CHAPTER  I 

INTRODUCTION 

I .  Nature  of  Physical  Science 

Physical  Science  is  that  department  of  knowledge 
which  relates  to  the  order  of  nature,  or,  in  other  words, 
to  the  regular  succession  of  events. 

The  name  of  physical  science,  however,  is  often 
applied  in  a  more  or  less  restricted  manner  to  those 
branches  of  science  in  which  the  phenomena  considered 
are  of  the  simplest  and  most  abstract  kind,  excluding 
the  consideration  of  the  more  complex  phenomena,  such 
as  those  observed  in  living  beings. 

The  simplest  case  of  all  is  that  in  which  an  event 
or  phenomenon  can  be  described  as  a  change  in  the 
arrangement  of  certain  bodies.  Thus  the  motion  of  the 
moon  may  be  described  by  stating  the  changes  in  her 
position  relative  to  the  earth  in  the  order  in  which  they 
follow  one  another. 

In  other  cases  we  may  know  that  some  change  of 
arrangement  has  taken  place,  but  we  may  not  be  able 
to  ascertain  what  that  change  is. 

Thus  when  water  freezes  we  know  that  the  molecules 
or  smallest  parts  of  the  substance  must  be  arranged 
differently  in  ice  and  in  water.  We  also  know  that  this 
arrangement  in  ice  must  have  a  certain  kind  of  sym- 
metr}^  because  the  ice  is  in  the  form  of  symmetrical 
crystals,  but  we  have  as  yet  no  precise  knowledge  of 
the  actual  arrangement  of  the  molecules  in  ice.  But 
whenever  we  can  completely  describe  the  change  of 
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arrangement  we  have  a  knowledge,  perfect  so  far  as  it 
extends,  of  what  has  taken  place,  though  we  mav  still 
have  to  learn  the  necessan,'  conditions  under  which 
a  similar  event  will  always  take  place. 

Hence  the  first  part  of  physical  science  relates  to  the 
relative  position  and  motion  of  bodies. 

2.  Definition  of  a  Material  System 

In  all  scientific  procedure  we  begin  by  marking  out  a 
certain  region  or  subject  as  the  field  of  our  investiga- 

tions. To  this  we  must  confine  our  attention,  leaving 
the  rest  of  the  universe  out  of  account  till  we  have 
completed  the  investigation  in  which  we  are  engaged. 
In  physical  science,  therefore,  the  first  step  is  to  define 
clearly  the  material  system  which  we  make  the  subject 
of  our  statements.  This  system  may  be  of  anv  degree 
of  complexity.  It  may  be  a  single  material  particle,  a 
body  of  finite  size,  or  any  number  of  such  bodies,  and 
it  may  even  be  extended  so  as  to  include  the  whole 
material  universe. 

3.  Definition  of  Internal  and  External 

All  relations  or  actions  betsveen  one  part  of  this  sys- 
tem and  another  are  called  Internal  relations  or  actions. 

Those  between  the  whole  or  any  part  of  the  svstem 
and  bodies  not  included  in  the  system  are  called  Exter- 

nal relations  or  actions.  These  we  study  onlv  so  far  as 

they  afl'ect  the  system  itself,  leaving  'their'  efl^ect  on external  bodies  out  of  consideration.  Relations  and 
actions  between  bodies  not  included  in  the  svstem  are 
to  be  left  out  of  consideration.  We  cannot  investigate 
thern  except  by  making  our  system  include  these  other 
bodies. 

4.  Definition  of  Configuration 

When  a  material  system  is  considered  with  respect 
to  the  relative  position  of  its  parts,  the  assemblage  of 
relative  positions  is  called   the   Configuration  of  the 
system. 
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A  knowledge  of  the  configuration  of  the  system  at  a 
given  instant  implies  a  knowledge  of  the  position  of 
ever}^  point  of  the  system  with  respect  to  every  other 
point  at  that  instant. 

5.   Diagrams 
The  configuration  of  material  systems  may  be  repre- 

sented in  models,  plans,  or  diagrams.  The  model  or 
diagram  is  supposed  to  resemble  the  material  system 
only  in  form,  not  necessarily  in  any  other  respect. 

A  plan  or  a  map  represents  on  paper  in  two  dimen- 
sions what  may  really  be  in  three  dimensions,  and  can 

only  be  completely  represented  by  a  model.  We  shall 
use  the  term  Diagram  to  signify  any  geometrical  figure, 
whether  plane  or  not,  by  means  of  which  we  study  the 
properties  of  a  material  system.  Thus,  when  we  speak 
of  the  configuration  of  a  system,  the  image  which  we 
form  in  our  minds  is  that  of  a  diagram,  which  completely 
represents  the  configuration,  but  which  has  none  of  the 
other  properties  of  the  material  system.  Besides  dia- 

grams of  configuration  we  may  have  diagrams  of  velocity, 
of  stress,  etc.,  which  do  not  represent  the  form  of  the 
system,  but  by  means  of  which  its  relative  velocities  or 
its  internal  forces  may  be  studied. 

6.  A  Material  Particle 

A  body  so  small  that,  for  the  purposes  of  our  investi- 
gation, the  distances  between  its  different  parts  may  be 

neglected,  is  called  a  material  particle. 
Thus  in  certain  astronomical  investigations  the  planets, 

and  even  the  sun,  may  be  regarded  each  as  a  material 
particle,  because  the  difference  of  the  actions  of  different 
parts  of  these  bodies  does  not  come  under  our  notice. 
But  we  cannot  treat  them  as  material  particles  when  we 
investigate  their  rotation.  Even  an  atom,  when  we 
consider  it  as  capable  of  rotation,  must  be  regarded  as 
consisting  of  many  material  particles. 

The  diagram  of  a  material  particle  is  of  course  a 
mathematical  point,  which  has  no  configuration. 
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7.   Relative  Position  of  two  Material  Particles 

The  diagram  of  two  material  particles  consists  of  two 
points,  as,  for  instance,  A  and  B. 

The  position  of  B  relative  to  A  is  indicated  by  the 
direction  and  length  of  the  straight  line  AB  drawn 
from  A  to  B.  If  you  start  from  A  and  travel  in  the 
direction  indicated  by  the  line  AB  and  for  a  distance 
equal  to  the  length  of  that  line,  you  will  get  to  B. 
This  direction  and  distance  may  be  indicated  equally 
well  by  any  o^her  line,  such  as  ab,  which  is  parallel 
and  equal  to  AB.  The  position  of  A  with  respect  to 
Bjs  indicated  by  the  direction  and  length  of  the  line 

BA,  drawn  from  B  to  A,  or  the  line  ha,  equal  and 
parallel  to  B^. 

It  is  evident  that  BA  =  -  AB. 
In  naming  a  line  by  the  letters  at  its  extremities, 

the  order  of  the  letters  is  always  that  in  which  the  line 
is  to  be  drawn. 

8.   Vectors 

The  expression  AB,  in  geometry,  is  merely  the 
name  of  a  line.  Here  it  indicates  the  operation  by 
which  the  line  is  dra\m,  that  of  carrying  a  tracing 
point  in  a  certain  direction  for  a  certain  distance.  As 
indicating  an  operation,  AB  is  called  a  Vector,  and 
the  operation  is  completely  defined  by  the  direction 
and  distance  of  the  transference.  The  starting  point, 
which  is  called  the  Origin  of  the  vector,  may  be  any- 
where. 
To  define  a  finite  straight  line  we  must  state  its 

origin  as  well  as  its  direction  and  length.  All  vectors, 
however,  are  regarded  as  equal  which  are  parallel  (and 
drawn  towards  the  same  parts)  and  of  the  same  magni- 
tude. 

Any  quantity,  such,  for  instance,  as  a  velocity  or  a 
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force*,  which  has  a  definite  direction  and  a  definite 
magnitude  may  be  treated  as  a  vector,  and  may 
be  indicated  in  a  diagram  by  a  straight  line  whose 
direction  is  parallel  to  the  vector,  and  whose  length 
represents,  according  to  a  determinate  scale,  the  mag- 

nitude of  the  vector. 

9.   System  of  Three  Particles 

Let  us  next  consider  a  system  of  three  particles. 
Its  configuration  is  represented  by  a  diagram  of 

three  points,  A,  B,  C. 
The  position  of  B  with  respect  to 

A  is  indicated  by  the  vector  AB, 
and  that  of  C  with  respect  to  B  by 
the  vector  BC. 

It  is  manifest  that  from  these  data, 
when  A  is  known,  we  can  find  B  and 
then  C,  so  that  the  configuration  of  the  three  points  is 
completely  determined. 

The  position  of  C  with  respect  to  A  is  indicated  by 

the  vector  AC,  and  by  the  last  remark  the  value  of  AC 
must  be  deducible  from  those  of  AB  and  BC. 

The  result  of  the  operation  AC  is  to  carr\'  the 
tracing  point  from  A  to  C.  But  the  result  is  the  same 
if  the  tracing  point  is  carried  first  from  A  to  B  and 
then  from  B  to  C,  and  this  is  the  sum  of  the  operations 
AB  +  BC. 

10.  Addition  of  Vectors 

Hence  the  rule  for  the  addition  of  vectors  may  be 
stated  thus: — From  any  point  as  origin  draw  the  suc- 

cessive vectors  in  series,  so  that  each  vector  begins  at 
the  end  of  the  preceding  one.  The  straight  line  from 
the  origin  to  the  extremity  of  the  series  represents  the 
vector  which  is  the  sum  of  the  vectors. 

*  A  force  is  more  completely  specified  as  a  vector  localised  in 
its  line  of  action,  called  by  Clifford  a  rotor;  moreover  it  is  only 
when  the  body  on  which  it  acts  is  treated  as  rigid  that  the  point 
of  application  is  inessential. 
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The  order  of  addition  is  indifferent,  for  if  we  write 
BC  +  AB  the  operation  indicated  mav  be  performed 

by  drawing  AD  parallel  and  equal  to  BC,  and  then 
joining  DC,  which,  by  Euclid,  I.  33,  is  parallel  and 
equal  to  AB,  so  that  by  these  two  operations  we  arrive 
at  the  point  C  in  whichever  order  we  perform  them. 

The  same  is  true  for  any  number  of  vectors,  take 
them  in  what  order  we  please. 

1 1 .  Subtraction  of  one  Vector  from  another 

To  express  the  position  of  C  with  respect  to  B  in 
terms  of  the  positions  of  B  and  C  with  respect  to  A, 
we  observe  that  we  can  get  from  B  to  C  either  by 
passing  along  the  straight  line  BC  or  by  passing  from 
jB  to  ̂   and  then  from  A  to  C.   I  lence 

BC=lBA  +  AC 
=  AC+  BA  since  the  order  of  addition  is  indifferent 

=  AC  —  AB  since  AB  is  equal  and  opposite  to  BA. 

Or  the  vector  BC,  which  expresses  the  position  of  C 
with  respect  to  B,  is  found  by  subtracting  the  vector  of 
B  from  the  vector  of  C,  these  vectors  being  drawn  to 
B  and  C  respectively  from  any  common  origin  A. 

12.   Origin  of  Vectors 

The  positions  of  any  number  of  particles  belonging 
to  a  material  system  may  be  defined  by  means  of  the 
vectors  drawn  to  each  of  these  particles  from  some  one 
point.  This  point  is  called  the  origin  of  the  vectors, 
or,  more  briefly,  the  Origin. 

This  system  of  vectors  determines  the  configura- 
tion of  the  whole  system ;  for  if  we  wish  to  know 

the  position  of  any  point  B  with  respect  to  any  other 
point  A,  it  may  be  found  from  the  vectors  OA  and  OB 
by  the  equation 

AB=OB-OA. 
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We  may  choose  any  point  whatever  for  the  origin, 
and  there  is  for  the  present  no  reason  why  we  should 
choose  one  point  rather  than  another.  The  configura- 

tion of  the  system — that  is  to  say,  the  position  of  its 
parts  with  respect  to  each  other — remains  the  same, 
whatever  point  be  chosen  as  origin.  Many  inquiries, 
however,  are  simpHfied  by  a  proper  selection  of  the 
origin. 

13.  Relative  Position  of  Two  Systems 

If  the  configurations  of  two  different  systems  are 
known,    each    system    having   its    own 
origin,  and  if  we  then  wish  to  include         , 
both     systems     in     a     larger     system, 

having,    say,    the   same    origin   as   the  ^^, 

first    of    the    two    systems,    we    must       *     .^  ̂ 
ascertain  the  position  of  the  origin  of  ^^"  ̂ 
the  second  system  with  respect  to  that  of  the  first,  and 
we  must  be  able  to  draw  lines  in  the  second  system 
parallel  to  those  in  the  first. 

Then  by  Article  9  the  position  of  a  point  P  of  the 
second  system,  with  respect  to  the  first  origin,  O,  is 

represented  by  the  sum  of  the  vector  O'P  of  that  point 
with  respect  to  the  second  origin,  O',  and  the  vector  00' 
of  the  second  origin,  O' ,  with  respect  to  the  first,  O. 

14.  Three  Data  for  the  Comparison  of 
Two  Systems 

We  have  an  instance  of  this  formation  of  a  large 
system  out  of  two  or  more  smaller  systems,  when  two 
neighbouring  nations,  having  each  surveyed  and 
mapped  its  own  territor}^  agree  to  connect  their  sur- 

veys so  as  to  include  both  countries  in  one  system. 
For  this  purpose  three  things  are  necessary. 

I  St.  A  comparison  of  the  origin  selected  by  the  one 
country  with  that  selected  by  the  other, 

2nd.  A  comparison  of  the  directions  of  reference 
used  in  the  two  countries. 
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3rd.  A  comparison  of  the  standards  of  length  used 
in  the  two  countries. 

1.  In  civilised  countries  latitude  is  always  reckoned 
from  the  equator,  but  longitude  is  reckoned  from  an 
arbitrary  point,  as  Greenwich  or  Paris.  Therefore, 
to  make  the  map  of  Britain  fit  that  of  France,  we 
must  ascertain  the  difference  of  longitude  between  the 
Observatory  of  Greenwich  and  that  of  Paris. 

2.  When  a  survey  has  been  made  without  astro- 
nomical instruments,  the  directions  of  reference  have 

sometimes  been  those  given  by  the  magnetic  compass. 
This  was,  I  believe,  the  case  in  the  original  surveys  of 
some  of  the  West  India  islands.  The  results  of  this 

survey,  though  giving  correctly  the  local  configuration 
of  the  island,  could  not  be  made  to  fit  properly  into  a 
general  map  of  the  world  till  the  deviation  of  the 
magnet  from  the  true  north  at  the  time  of  the  survey 
was  ascertained. 

3.  To  compare  the  survey  of  France  with  that  of 
Britain,  the  metre,  which  is  the  French  standard  of 
length,  must  be  compared  with  the  yard,  which  is  the 
British  standard  of  length. 
The  yard  is  defined  by  Act  of  Parliament  18  and 

19  Vict.  c.  72,  July  30,  1855,  which  enacts  "that  the 
straight  line  or  distance  between  the  centres  of  the 
transverse  lines  in  the  two  gold  plugs  in  the  bronze 
bar  deposited  in  the  office  of  the  E.xchequer  shall 

be  the  genuine  standard  yard  at  62^  Fahrenheit, 
and  if  lost,  it  shall  be  replaced  by  means  of  its  copies." 

The  metre  derives  its  authority  from  a  law  of  the 
French  Republic  in  1795.  It  is  defined  to  be  the 
distance  between  the  ends  of  a  certain  rod  of  platinum 
made  by  Borda,  the  rod  being  at  the  temperature  of 
melting  ice.  It  has  been  found  by  the  measurements 
of  Captain  Clarke  that  the  metre  is  equal  to  3937043 
British  inches. 
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15.  On  the  Idea  of  Space* 
We  have  now  gone  through  most  of  the  things  to  be 

attended  to  with  respect  to  the  configuration  of  a 
material  system.  There  remain,  however,  a  few  points 
relating  to  the  metaphysics  of  the  subject,  which  have  a 
very  important  bearing  on  physics. 

We  have  described  the  method  of  combining  several 
configurations  into  one  system  which  includes  them  all. 
In  this  way  we  add  to  the  small  region  which  we  can 
explore  by  stretching  our  limbs  the  more  distant  regions 
which  we  can  reach  by  walking  or  by  being  carried. 
To  these  we  add  those  of  which  we  learn  by  the  reports 
of  others,  and  those  inaccessible  regions  whose  positions 
we  ascertain  only  by  a  process  of  calculation,  till  at  last 
we  recognise  that  every  place  has  a  definite  position 
with  respect  to  every  other  place,  whether  the  one 
place  is  accessible  from  the  other  or  not. 

Thus  from  measurements  made  on  the  earth's  surface 
we  deduce  the  position  of  the  centre  of  the  earth  relative 
to  known  objects,  and  we  calculate  the  number  of 

cubic  miles  in  the  earth's  volume  quite  independently 
of  any  hypothesis  as  to  what  may  exist  at  the  centre  of 
the  earth,  or  in  any  other  place  beneath  that  thin  layer 
of  the  crust  of  the  earth  which  alone  we  can  directly 
explore. 

16.  Error  of  Descartes 

It  appears,  then,  that  the  distance  between  one  thing 
and  another  does  not  depend  on  any  material  thing 
between  them,  as  Descartes  seems  to  assert  when  he 
says  (Princip.  Phil.,  II.  18)  that  if  that  which  is  in  a 
hollow  vessel  were  taken  out  of  it  without  anything 

*  Following  Newton's  method  of  exposition  in  the  Pvincipia, 
a  space  is  assumed  and  a  flux  of  time  is  assumed,  forming  together 
a  framework  into  which  the  dynamical  explanation  of  phenomena 
is  set.  It  is  part  of  the  problem  of  phj-sical  astronomy  to  test  this 
assumption,  and  to  determine  this  frame  with  increasing  precision. 
Its  philosophical  basis  can  be  regarded  as  a  difierent  subject,  to 
which  the  recent  discussions  on  relativity  as  regards  space  and 
time  would  be  attached.   See  Appendix  I. 
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entering  to  fill  its  place,  the  sides  of  the  vessel,  having 
nothing  between  them,  would  be  in  contact. 

This  assertion  is  grounded  on  the  dogma  of  Des- 
cartes, that  the  extension  in  length,  breadth,  and  depth 

which  constitute  space  is  the  sole  essential  property  of 

matter.  "The  nature  of  matter,"  he  tells  us,  "or  of 
body  considered  generally,  does  not  consist  in  a  thing 
being  hard,  or  heavy,  or  coloured,  but  only  in  its 

being  extended  in  length,  breadth,  and  depth  "  (Princip., 
II.  4).  By  thus  confounding  the  properties  of  matter 
with  those  of  space,  he  arrives  at  the  logical  conclusion 
that  if  the  matter  within  a  vessel  could  be  entirely 
removed,  the  space  within  the  vessel  would  no  longer 
exist.  In  fact  he  assumes  that  all  space  must  be  always 
full  of  matter. 

I  have  referred  to  this  opinion  of  Descartes  in  order 

to  show  the  importance  of  sound  views  in  elementary- 
dynamics.  The  primary*  property  of  matter  was  in- 

deed distinctly  announced  by  Descartes  in  what  he 

calls  the  "First  Law  of  Nature"  (Princip.,  II.  37): 
"That  every  individual  thing,  so  far  as  in  it  lies,  per- 

severes in  the  same  state,  whether  of  motion  or  of  rest."* 
We  shall  see  when  we  come  to  Newton's  laws  of 

motion  that  in  the  words  "so  far  as  in  it  lies,"  pro- 
perly understood,  is  to  be  found  the  true  primar)' 

definition  of  matter,  and  the  true  measure  of  its  quantity. 
Descartes,  however,  never  attained  to  a  full  under- 

standing of  his  own  words  {quantum  in  se  est),  and  so 
fell  back  on  his  original  confusion  of  matter  with  space 

— space  being,  according  to  him,  the  only  form  of 
substance,  and  all  existing  things  but  affections  of  space. 

This  errorf  runs  through  every  part  of  Descartes'  great work,  and  it  forms  one  of  the  ultimate  foundations  of 
the  system  of  Spinoza.  I  shall  not  attempt  to  trace 
it  down  to  more  modern  times,  but  I  would  advise 

♦  Compare  the  idea  of  Least  Action:  Appendix  II. 
t  Some  recent  forms  of  relativity  have  come  back  to  his  ideas. 

Cf.  p.  140. 
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those  who  study  any  system  of  metaphysics  to  examine 
carefully  that  part  of  it  which  deals  with  physical  ideas. 
We  shall  find  it  more  conducive  to  scientific  pro- 

gress to  recognise,  with  Newton,  the  ideas  of  time  and 
space  as  distinct,  at  least  in  thought,  from  that  of  the 
material  system  whose  relations  these  ideas  serve  to 
co-ordinate*. 

17.   On  the  Idea  of  Time 

The  idea  of  Time  in  its  most  primitive  form  is  pro- 
bably the  recognition  of  an  order  of  sequence  in  our 

states  of  consciousness.  If  my  memory  were  perfect,  I 
might  be  able  to  refer  every  event  within  my  own 
experience  to  its  proper  place  in  a  chronological  series. 
But  it  would  be  difficult,  if  not  impossible,  for  me  to 
compare  the  interval  between  one  pair  of  events  and 
that  between  another  pair — to  ascertain,  for  instance, 
whether  the  time  during  which  I  can  work  without 
feeling  tired  is  greater  or  less  now  than  when  I  first 
began  to  study.  By  our  intercourse  with  other  persons, 
and  by  our  experience  of  natural  processes  which  go 
on  in  a  uniform  or  a  rhythmical  manner,  we  come 
to  recognise  the  possibiHty  of  arranging  a  system  of 
chronology  in  which  all  events  whatever,  whether  re- 

lating to  ourselves  or  to  others,  must  find  their  places. 
Of  any  two  events,  say  the  actual  disturbance  at  the 
star  in  Corona  Borealis,  which  caused  the  luminous 
effects  examined  spectroscopically  by  Mr  Huggins  on 
the  1 6th  May,  1866,  and  the  mental  suggestion  which 
first  led  Professor  Adams  or  M.  Leverrier  to  begin  the 
researches  which  led  to  the  discovery,  by  Dr  Galle,  on 
the  23rd  September,  1846,  of  the  planet  Neptune,  the 
first  named  must  have  occurred  either  before  or  after 
the  other,  or  else  at  the  same  time. 

Absolute,  true,  and  mathematical  Time  is  conceived 
by  Newton  as  flowing  at  a  constant  rate,  unaffected  by 
the  speed  or  slowness  of  the  motions  of  material  things. 

*  See  Appendix  I. 
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It  is  also  called  Duration.  Relative,  apparent,  and 
common  time  is  duration  as  estimated  by  the  motion 
of  bodies,  as  by  days,  months,  and  years.  These 
measures  of  time  may  be  regarded  as  provisional,  for 
the  progress  of  astronomy  has  taught  us  to  measure  the 
inequality  in  the  lengths  of  days,  months,  and  years, 
and  thereby  to  reduce  the  apparent  time  to  a  more 
uniform  scale,  called  Mean  Solar  Time. 

1 8.   Absolute  Space 

Absolute  space  is  conceived  as  remaining  always 
similar  to  itself  and  immovable.  The  arrangement 
of  the  parts  of  space  can  no  more  be  altered  than  the 
order  of  the  portions  of  time.  To  conceive  them  to 
move  from  their  places  is  to  conceive  a  place  to  move 
away  from  itself. 

Rut  as  there  is  nothing  to  distinguish  one  portion  of 
time  from  another  except  the  different  events  which 
occur  in  them,  so  there  is  nothing  to  distinguish  one 
part  of  space  from  another  except  its  relation  to  the 
place  of  material  bodies.  We  cannot  describe  the  time 
of  an  event  except  by  reference  to  some  other  event,  or 
the  place  of  a  body  except  by  reference  to  some  other 
body.  All  our  knowledge,  both  of  time  and  place,  is 

essentially  relative*.  When  a  man  has  acquired  the 
habit  of  putting  words  together,  without  troubling 
himself  to  form  the  thoughts  which  ought  to  correspond 
to  them,  it  is  easy  for  him  to  frame  an  antithesis  between 
this  relative  knowledge  and  a  so-called  absolute  know- 

ledge, and  to  point  out  our  ignorance  of  the  absolute 
position  of  a  point  as  an  instance  of  the  limitation  of  our 

faculties.  Any  one,  however,  who  will  tr)-  to  imagine 
the  state  of  a  mind  conscious  of  knowing  the  absolute 
position  of  a  point  will  ever  after  be  content  with  our 
relative  knowledge. 

*  The  position  seems  to  be  that  our  knowledge  is  relative,  but 
needs  definite  space  and  time  as  a  frame  for  its  coherent  ex- 
pression. 



GENERAL  MAXIM 

19.   Statement  of  the  General  AL\xim  of 
Physical  Science 

There  is  a  maxim  which  is  often  quoted,  that  "The 
same  causes  will  always  produce  the  same  effects." 
To  make  this  maxim  intelligible  we  must  define 

what  we  mean  by  the  same  causes  and  the  same  effects, 
since  it  is  manifest  that  no  event  ever  happens  more 
than  once,  so  that  the  causes  and  effects  cannot  be 
the  same  in  all  respects.  What  is  really  meant  is  that 
if  the  causes  differ  only  as  regards  the  absolute  time 
or  the  absolute  place  at  which  the  event  occurs,  so 
likewise  will  the  effects. 

The  following  statement,  which  is  equivalent  to  the 
above  maxim,  appears  to  be  more  definite,  more  ex- 

plicitly connected  with  the  ideas  of  space  and  time,  and 
more  capable  of  application  to  particular  cases : 

"The  difference  between  one  event  and  another  does 
not  depend  on  the  mere  difference  of  the  times  or  the 
places  at  which  they  occur,  but  only  on  differences  in 
the  nature,  configuration,  or  motion  of  the  bodies  con- 

cerned." 
It  follows  from  this,  that  if  an  event  has  occurred  at 

a  given  time  and  place  it  is  possible  for  an  event  exactly 
similar  to  occur  at  any  other  time  and  place. 

There  is  another  maxim  which  must  not  be  con- 
founded with  that  quoted  at  the  beginning  of  this 

article,  which  asserts  "That  like  causes  produce  like 
effects." 

This  is  only  true  when  small  variations  in  the  initial 
circumstances  produce  only  small  variations  in  the  final 

state  of  the  system*.  In  a  great  many  physical  pheno- 
mena this  condition  is  satisfied;  but  there  are  other 

*  This  implies  that  it  is  only  in  so  far  as  stability  subsists  that 
principles  of  natural  law  can  be  formulated :  it  thus  perhaps  puts 
a  limitation  on  any  postulate  of  universal  physical  determinacy 
such  as  Laplace  was  credited  with. 
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cases  in  which  a  small  initial  variation  may  produce  a 
very  great  change  in  the  final  state  of  the  system,  as 

when  the  displacement  of  the  "  points  "  causes  a  railway 
train  to  run  into  another  instead  of  keeping  its  proper 
course*. 

♦  We  may  perhaps  say  that  the  observable  regularities  of 
nature  belong  to  statistical  molecular  phenomena  which  have 
settled  down  into  permanent  stable  conditions.  In  so  far  as  the 
weather  may  be  due  to  an  unlimited  assemblage  of  local  m- 
stabilities,  it  may  not  be  amenable  to  a  finite  scheme  of  law  at  all. 



CHAPTER  II 

ON  MOTION 

20.  Definition  of  Displacement 

We  have  already  compared  the  position  of  different 
points  of  a  system  at  the  same  instant  of  time.  We  have 
next  to  compare  the  position  of  a  point  at  a  given  instant 
with  its  position  at  a  former  instant,  called  the  Epoch, 

The  vector  which  indicates  the  final  position  of  a 
point  with  respect  to  its  position  at  the  epoch  is  called 
the  Displacement  of  that  point.  Thus  if  ̂ i  is  the  initial 
and  A  2  the  final  position  of  the  point  ̂ ,  the  fine  A^A^is 
the  displacement  of  A,  and  any  vector  oa  drawn  from 

the  origin  o  parallel  and  equal  toA^A2  indicates  this  dis- 
placement. 

21.  Diagram  of  Displacement 

If  another  point  of  the  system  is  displaced  from  Bj^  to 

5 2  the  vector  ob  paral-  ^ 
lei  and  equal  to  B^JSg 
indicates  the  displace- 

ment of  B. 
In  like  manner  the 

displacement  of  any 
number  of  points  may 
be  represented  by  vec- 

tors drawn  from  the 

same  origin  o.  This 
system  of  vectors  is 
called  the  Diagram  of 
Displacement.  It  is 
not  necessary  to  draw 
actual  lines  to  represent 
these  vectors ;  it  is  suffi- 

cient to  indicate  the 

points  a,  b,  etc 

Fig.  3- 

at  the  extremities  of  the  vectors. The 
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diagram  of  displacement  may  therefore  be  regarded  as 
consisting  of  a  number  of  points,  a,  b,  etc.,  correspond- 

ing with  the  material  particles,  A,  B,  etc.,  belonging 
to  the  system,  together  with  a  point  o,  the  position  of 
which  is  arbitrary,  and  which  is  the  assumed  origin  of 
all  the  vectors. 

22.   Relative  Displ.'vcement 

The  line  ab  in  the  diagram  of  displacement  repre- 
sents the  displacement  of  the  point  B  with  respect 

to^. 

For  if  in  the  diagram  of  displacement  (fig.  3)  we 
draw  ak  parallel  and  equal  to  B^A^,  and  in  the  same 

direction,  and  join  kb,  it  is  easy  to  show^  that  kb  is 
equal  and  parallel  to  A.,Bo. 

For  the  vector  kb  is  the  sum  of  the  vectors  ka,  ao^ 

and  ob,  and  ̂ 2^2  ̂ s  the  sum  of  AJi^y  -^1^1.  and 
BJi^.  But  of  these  ka  is  the  same  as  A^B^,  ao  is  the 

same  as  A^A^,  and  ob  is  the  same  as  B^B^,  and  by 
Article  10  the  order  of  summation  is  indifferent,  so 

that  the  vector  kb  is  the  same,  in  direction  and  magni- 
tude, as  A.^B^.  Now  ka  or  A^B^  represents  the  original 

position  of  B  with  respect  to  A,  and  kb  or  A^^ 
represents  the  final  position  of  B  with  respect  to  A. 
Hence  ab  represents  the  displacement  of  B  with  respect 
to  A,  which  was  to  be  proved. 

In  Article  20  we  purposely  omitted  to  say  whether 
the  origin  to  which  the  original  configuration  was 
referred,  and  that  to  which  the  final  configuration  is 
referred,  arc  absolutely  the  same  point,  or  whether, 
during  the  displacement  of  the  system,  the  origin  also 
is  displaced. 

We  may  now,  for  the  sake  of  argument,  suppose  that 
the  origin  is  absolutely  fixed,  and  that  the  displace- 

ments represented  by  oa,  06,  etc.,  are  the  absolute  dis- 
placements. To  pass  from  this  case  to  that  in  which 
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the  origin  is  displaced  we  have  only  to  take  A,  one  of 
the  movable  points,  as  origin.  The  absolute  displace- 

ment of  A  being  represented  by  oa,  the  displacement 
of  B  with  respect  to  A  is  represented,  as  we  have  seen, 
by  ab,  and  so  on  for  any  other  points  of  the  system. 

The  arrangement  of  the  points  a,  b,  etc.,  in  the  dia- 
gram of  displacement  is  therefore  the  same,  whether 

we  reckon  the  displacements  with  respect  to  a  fixed 
point  or  a  displaced  point;  the  only  difference  is  that 
we  adopt  a  different  origin  of  vectors  in  the  diagram  of 
displacement,  the  rule  being  that  whatever  point  we 
take,  whether  fixed  or  moving,  for  the  origin  of  the 
diagram  of  configuration,  we  take  the  corresponding 
point  as  origin  in  the  diagram  of  displacement.  If  we 
wish  to  indicate  the  fact  that  we  are  entirely  ignorant 
of  the  absolute  displacement  in  space  of  any  point  of 
the  system,  we  may  do  so  by  constructing  the  diagram 
of  displacement  as  a  mere  system  of  points,  without 
indicating  in  any  way  which  of  them  we  take  as  the 
origin. 

This  diagram  of  displacement  (without  an  origin) 
will  then  represent  neither  more  nor  less  than  all  we 
can  ever  know  about  the  displacement  of  the  system. 
It  consists  simply  of  a  number  of  points,  a,  b,  c,  etc., 
corresponding  to  the  points  A,B,C,  etc.,  of  the  material 
system,  and  a  vector,  as  ab  represents  the  displacement 
of  B  with  respect  to  A. 

23.  Uniform^  Displacement 
When  the  displacements  of  all  points  of  a  material 

system  with  respect  to  an  external  point  are  the  same 
in  direction  and  magnitude,  the  diagram  of  displace- 

ment is  reduced  to  two  points — one  corresponding  to 
the  external  point,  and  the  other  to  each  and  every  point 
of  the  displaced  system.    In  this  case  the  points  of  the 

^  When  the  siraultaneous  values  of  a  quantity  for  different 
bodies  or  places  are  equal,  the  quantity  is  said  to  be  uniformly 
distributed  in  space. 
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system  are  not  displaced  with  respect  to  one  another, 
but  only  with  respect  to  the  external  point. 

This  is  the  kind  of  displacement  which  occurs  when 
a  body  of  invariable  form  moves  parallel  to  itself.  It 
may  be  called  uniform  displacement. 

24.   On  Motion 

When  the  change  of  configuration  of  a  system  is 
considered  with  respect  only  to  its  state  at  the  beginning 
and  the  end  of  the  process  of  change,  and  without 
reference  to  the  time  during  which  it  takes  place,  it  is 
called  the  displacement  of  the  system. 

When  we  turn  our  attention  to  the  process  of  change 
itself,  as  taking  place  during  a  certain  time  and  in  a 
continuous  manner,  the  change  of  configuration  is 
ascribed  to  the  motion  of  the  system. 

25.   On  the  Continuity  of  Motion 

When  a  material  particle  is  displaced  so  as  to  pass 
from  one  position  to  another,  it  can  only  do  so  by 
travelling  along  some  course  or  path   from  the  one 
position  to  the  other. 

At  any  instant  during  the  motion  the  particle  will  be 
found  at  some  one  point 

of  the  path,  and  if  we  se- 
lect any  point  of  the  path, 

the  particle  will  pass  that 

D  point  once  at  least  ̂   during 
its  motion. 

This  is  what  is  meant 

by  saying  that  the  particle  describes  a  continuous  path. 
The  motion  of  a  material  particle  which  has  continuous 
existence  in  time  and  space  is  the  type  and  exemplar 
of  ever}'  form  of  continuity. 

>  If  the  path  cuts  itself  so  as  to  form  a  loop,  as  P,  Q,  R  (fig.  4), 
the  particle  will  pass  the  point  of  intersection,  Q.  twice,  and  if 
the  particle  returns  on  its  own  path,  as  in  the  path  A,  B.C.  D,  it 
may  pass  the  same  point,  5,  three  or  more  times. 
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26.  On  Constant^  Velocity 

If  the  motion  of  a  particle  is  such  that  in  equal 
intervals  of  time,  however  short,  the  displacements  of 
the  particle  are  equal  and  in  the  same  direction,  the 
particle  is  said  to  move  with  constant  velocity. 

It  is  manifest  that  in  this  case  the  path  of  the  body 
will  be  a  straight  line,  and  the  length  of  any  part  of  the 
path  will  be  proportional  to  the  time  of  describing  it. 

The  rate  or  speed  of  the  motion  is  called  the  velocity 
of  the  particle,  and  its  magnitude  is  expressed  by  saying 
that  it  is  such  a  distance  in  such  a  time,  as,  for  instance, 
ten  miles  an  hour,  or  one  metre  per  second.  In  general 
we  select  a  unit  of  time,  such  as  a  second,  and  measure 
velocity  by  the  distance  described  in  unit  of  time. 

If  one  metre  be  described  in  a  second  and  if  the 
velocity  be  constant,  a  thousandth  or  a  millionth  of  a 
metre  will  be  described  in  a  thousandth  or  a  millionth 
of  a  second.  Hence,  if  we  can  observe  or  calculate  the 
displacement  during  any  interval  of  time,  however  short, 
we  may  deduce  the  distance  which  would  be  described 
in  a  longer  time  with  the  same  velocity.  This  result, 
which  enables  us  to  state  the  velocity  during  the  short 

interval  of  time,  does  not  depend  on  the  body's  actually 
continuing  to  move  at  the  same  rate  during  the  longer 
time.  Thus  we  may  know  that  a  body  is  moving  at 
the  rate  of  ten  miles  an  hour,  though  its  motion 
at  this  rate  may  last  for  only  the  hundredth  of  a 
second. 

27.  On  the  Measurement  of  Velocity 
WHEN  Variable 

When  the  velocity  of  a  particle  is  not  constant,  its 
value  at  any  given  instant  is  measured  by  the  distance 
which  would  be  described  in  unit  of  time  by  a  body 
having  the  same  velocity  as  that  which  the  particle  has 
at  that  instant. 

^  When  the  successive  values  of  a  quantity  for  successive 
instants  of  time  are  equal,  the  quantity  is  said  to  be  constant. 
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Thus  when  we  say  that  at  a  given  instant,  say  one 
second  after  a  body  has  begun  to  fall,  its  velocity  is  980 
centimetres  per  second,  we  mean  that  if  the  velocity  of 
a  particle  were  constant  and  equal  to  that  of  the  falling 

body  at  the  given  instant,  it  would  describe  980  centi- 
metres in  a  second. 

It  is  specially  important  to  understand  what  is  meant 
by  the  velocity  or  rate  of  motion  of  a  body,  because  the 
ideas  which  are  suggested  to  our  minds  by  considering 
the  motion  of  a  particle  are  those  which  Newton  made 
use  of  in  his  method  of  Fluxions  \  and  they  lie  at  the 
foundation  of  the  great  extension  of  exact  science  which 
has  taken  place  in  modern  times. 

28.  Diagram  of  Velocities 

If  the  velocity  of  each  of  the  bodies  in  the  system  is 
constant,  and  if  we  compare  the  configurations  of  the 

system  at  an  interval  of  a  unit  of  time,  then  the  displace- 
ments, being  those  produced  in  unit  of  time  in  bodies 

moving  with  constant  velocities,  will  represent  those 
velocities  according  to  the  method  of  measurement 
described  in  Article  26. 

If  the  velocities  do  not  actually  continue  constant 
for  a  unit  of  time,  then  we  must  imagine  another  system 
consisting  of  the  same  number  of  bodies,  and  in  which 
the  velocities  are  the  same  as  those  of  the  corresponding 
bodies  of  the  system  at  the  given  instant,  but  remain 
constant  for  a  unit  of  time.  The  displacements  of  this 
system  represent  the  velocities  of  the  actual  system  at 
the  given  instant. 

Another  mode  of  obtaining  the  diagram  of  velocities 
of  a  system  at  a  given  instant  is  to  take  a  small  interval 
of  time,  say  the  nth  part  of  the  unit  of  time,  so  that 
the  middle  of  this  inter\al  corresponds  to  the  given 

»  According  to  the  method  of  Fluxions,  when  the  value  of  one 
quantity  depends  on  that  of  another,  the  rate  of  variation  of  the 
first  quantity  with  respect  to  the  second  may  be  expressed  as  a 
velocity,  by  imagining  the  first  quantity  to  represent  the  displace- 

ment of  a  particle,  while  the  second  flows  uniformly  with  the  time. 
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instant.  Take  the  diagram  of  displacement  corre- 
sponding to  this  interval  and  magnify  all  its  dimensions 

n  times.  The  result  will  be  a  diagram  of  the  mean 
velocities  of  the  system  during  the  interval.  If  we  now 
suppose  the  number  n  to  increase  without  limit  the 
interval  will  diminish  without  limit,  and  the  mean 
velocities  will  approximate  without  limit  to  the  actual 
velocities  at  the  given  instant.  Finally,  when  n  becomes 
infinite  the  diagram  will  represent  accurately  the  velo- 

cities at  the  given  instant. 

29.  Properties  of  the  Diagr.\m  of  Velocities  (fig.  5) 

The  diagram  of  velocities  for  a  system  consisting  of 
a  number  of  material  particles  consists  of  a  number 
of  points,  each  corresponding  to  one  of  the  particles. 

A'  ̂
' Diagram  of  Configuration. 

C-  D- 

b. 
^  *  c»      Diagram  of  Velocities. 

Fig-  5- 

The  velocity  of  any  particle  B  with  respect  to  any 
other,  A,  is  represented  in  direction  and  magnitude  by 
the  line  ab  in  the  diagram  of  velocities,  drawn  from  the 
point  a,  corresponding  to  yi,  to  the  point  b,  corresponding 
to  B. 

We  may  in  this  way  find,  by  means  of  the  diagram, 
the  relative  velocity  of  any  two  particles.  The  diagram 
tells  us  nothing  about  the  absolute  velocity  of  any 
point;  it  expresses  exactly  what  we  can  know  about 
the  motion  and  no  more.   If  we  choose  to  imagine  that 
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oa  represents  the  absolute  velocity  of  A,  then  the 
absolute  velocity  of  any  other  particle,  B,  will  be  repre- 

sented by  the  vector  ob,  drawn  from  o  as  origin  to  the 
point  b,  which  corresponds  to  B. 

But  as  it  is  impossible  to  define  the  position  of  a 
body  except  with  respect  to  the  position  of  some  point 
of  reference,  so  it  is  impossible  to  define  the  velocity' 
of  a  body,  except  with  respect  to  the  velocity  of  the 
point  of  reference.  The  phrase  absolute  velocity  has 
as  little  meaning  as  absolute  position.  It  is  better, 
therefore,  not  to  distinguish  any  point  in  the  diagram 
of  velocities  as  the  origin,  but  to  regard  the  diagram  as 
expressing  the  relations  of  all  the  velocities  without 
defining  the  absolute  value  of  any  one  of  them. 

30.  Meaning  of  the  Phrase  "At  Rest" 
It  is  true  that  when  we  say  that  a  body  is  at  rest  we 

use  a  form  of  words  which  appears  to  assert  something 
about  that  body  considered  in  itself,  and  we  might 
imagine  that  the  vclocit)^  of  another  body,  if  reckoned 
with  respect  to  a  body  at  rest,  would  be  its  true  and 

only  absolute  velocity.  But  the  phrase  "at  rest" 
means  in  ordinary  language  "having  no  velocity  with 
respect  to  that  on  which  the  body  stands,"  as,  for instance,  the  surface  of  the  earth  or  the  deck  of  a  ship. 
It  cannot  be  made  to  mean  more  than  this. 

It  is  therefore  unscientific  to  distinguish  between 
rest  and  motion,  as  between  two  different  states  of  a 
body  in  itself,  since  it  is  impossible  to  speak  of  a  body 
being  at  rest  or  in  motion  except  with  reference,  ex- 

pressed or  implied,  to  some  other  body. 

31.   On  Change  of  Velocity 
As   we   have   compared   the   velocities   of  different 

bodies  at   the  same   time,   so   we   may   compare   the 
relative  velocity  of  one  body  with  respect  to  another  at 
dillerent  times. 
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If  a  I,  bi,  c^,  be  the  diagram  of  velocities  of  the  system 
of  bodies  A,  B,  C,  in  its  original  state,  and  if  a.2,  b^,  c^,, 
be  the  diagram  of  velocities  in  the  final  state  of  the 
system,  then  if  we  take 

any  point  o)  as  origin  ^2» 

and    draw    coa    equal  ^* 
and  parallel  to   a^a^,  b^» 

cajS  equal  and  parallel  b^* 
to  b-^b^y  coy  equal  and  Cj* 
parallel  to  c^c^,  and  so 
on,  we  shall  form  a 
diagram  of  points  a, 
^,  y,  etc.,  such  that 

any    line    a^    in    this  r' 
diagram  represents  in  y» 
direction  and  magni-  Fig.  6. 
tude  the  change  of  the 
velocity  of  B  with  respect  to  A.   This  diagram  may  be 
called  the  diagram  of  Total  Accelerations. 

32.   On  Acceler.\tion 

The  word  Acceleration  is  here  used  to  denote  any 

change  in  the  velocity,  whether  that  change  be  an  in- 
crease, a  diminution,  or  a  change  of  direction.  Hence, 

instead  of  distinguishing,  as  in  ordinary  language, 
between  the  acceleration,  the  retardation,  and  the 
deflexion  of  the  motion  of  a  body,  we  say  that  the 
acceleration  may  be  in  the  direction  of  motion,  in  the 
contrary  direction,  or  transverse  to  that  direction. 

As  the  displacement  of  a  system  is  defined  to  be  the 
change  of  the  configuration  of  the  system,  so  the  Total 
Acceleration  of  the  system  is  defined  to  be  the  change  of 
the  velocities  of  the  system.  The  process  of  constructing 
the  diagram  of  total  accelerations  by  a  comparison  of 
the  initial  and  final  diagrams  of  velocities  is  the  same 
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as  that  by  which  the  diagram  of  displacement  was 
constructed  by  a  comparison  of  the  initial  and  final 
diagrams  of  configuration. 

33.   On  thk  Rate  of  Acceleration 

We  have  hitherto  been  consiilering  the  total  accelera- 
tion which  takes  place  during  a  certain  inter\al  of 

time.  If  the  rate  of  acceleration  is  constant,  it  is 
measured  by  the  total  acceleration  in  a  unit  of  time. 
If  the  rate  of  acceleration  is  variable,  its  value  at  a 
given  instant  is  measured  by  the  total  acceleration 
in  unit  of  time  of  a  point  whose  acceleration  is 
constant  and  equal  to  that  of  the  particle  at  the  given 
instant. 

It  appears  from  this  definition  that  the  method  of 
deducing  the  rate  of  acceleration  from  a  knowledge  of 
the  total  acceleration  in  any  given  time  is  preciselv 
analogous  to  that  by  which  the  velocitv  at  any  instant 
is  deduced  from  a  knowledge  of  the  displacement  in 
any  given  time. 

'I'he  diagram  of  total  accelerations  constructed  for  an 
interval  of  the  nth  fiart  of  the  unit  of  time,  and  then 
magnified  n  times,  is  a  diagram  of  the  mean  rates  of 
acceleration  during  that  interval,  and  by  taking  the 
interval  smaller  and  smaller,  we  ultimately  arrive  at 
the  true  rate  of  acceleration  at  the  middle  of  that 
interval. 

As  rates  of  acceleration  have  to  be  considered  in 

physical  science  much  more  frequently  than  total  ac- 
celerations, the  word  acceleration  has  come  to  be 

employed  in  the  sense  in  which  we  have  hitherto  used 
the  phrase  rate  of  acceleration. 

In  future,  therefore,  when  we  use  the  word  accelera- 
tion without  qualification,  we  mean  what  we  have  here 

described  as  tlie  rate  of  acceleration. 
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34.  DiAGR-\M  OF  Accelerations 

The  diagram  of  accelerations  is  a  system  of  points, 
each  of  which  corresponds  to  one  of  the  bodies  of  the 
material  system,  and  is  such  that  any  line  a^  in  the 
diagram  represents  the  rate  of  acceleration  of  the  body 
B  with  respect  to  the  body  A. 

It  may  be  well  to  observe  here  that  in  the  diagram 
of  configuration  we  use  the  capital  letters.  A,  B,  C,  etc., 
to  indicate  the  relative  position  of  the  bodies  of  the 
system ;  in  the  diagram  of  velocities  we  use  the  small 
letters,  a,  b,  c,  etc.,  to  indicate  the  relative  velocities  of 
these  bodies ;  and  in  the  diagram  of  accelerations  we  use 
the  Greek  letters,  a,  ̂,  y,  etc.,  to  indicate  their  relative 
accelerations. 

35.   Acceleration  a  Relative  Term 

Acceleration,  like  position  and  velocity,  is  a  relative 

term  and  cannot  be  interpreted  absolutely*. 
If  every  particle  of  the  material  universe  within  the 

reach  of  our  means  of  observation  were  at  a  given 
instant  to  have  its  velocity  altered  by  compounding 
therewith  a  new  velocity,  the  same  in  magnitude  and 
direction  for  every  such  particle,  all  the  relative  motions 
of  bodies  within  the  system  would  go  on  in  a  perfectly 
continuous  manner,  and  neither  astronomers  nor 

physicists,  though  using  their  instruments  all  the 
while,  would  be  able  to  find  out  that  anything  had 
happenedf. 

It  is  only  if  the  change  of  motion  occurs  in  a  diflFerent 
manner  in  the  different  bodies  of  the  system  that  any 
event  capable  of  being  observed  takes  place. 

*  A  noteworthy  case  of  relativity  is  Euler's  investigation  of  the 
motion  of  a  sohd  body  as  specified  with  reference  to  its  own 
succession  of  instantaneous  positions. 

t  This  appears  to  be  a  very  drastic  postulate  of  relativity: 
a  universal  imposed  acceleration  can  have  no  effect  during  Us 
occurrence  only  when  all  applied  forces  are  proportional  to  mass. 
See  Appendix  I. 



CHAPTER  111 

ON  FORCE 

36.  Kinematics  and  Kinetics 

We  have  hitherto  been  considering  the  motion  of  a 
system  in  its  purely  geometrical  aspect.  We  have 
shown  how  to  study  and  describe  the  motion  of  such  a 
system,  however  arbitrary,  without  taking  into  account 
any  of  the  conditions  of  motion  which  arise  from  the 
mutual  action  between  the  bodies. 

The  theory  of  motion  treated  in  this  way  is  called 
Kinematics.  When  the  mutual  action  between  bodies 
is  taken  into  account,  the  science  of  motion  is  called 
Kinetics,  and  when  special  attention  is  paid  to  force  as 
the  cause  of  motion,  it  is  called  Dynamics. 

37.  Mutual  Action  between  Two  Bodies— Stress 

The  mutual  action  between  two  portions  of  matter 
receives  different  names  according  to  the  aspect  under 
which  it  is  studied,  and  this  aspect  depends  on  the 
extent  of  the  material  system  which  forms  the  subject 
of  our  attention. 

If  we  take  into  account  the  whole  phenomenon  of  the 
action  between  the  two  portions  of  matter,  we  call  it 
Stress.  This  stress,  according  to  the  mode  in  which  it 
acts,  may  be  described  as  Attraction,  Repulsion,  Ten- 

sion, Pressure,  Shearing  stress.  Torsion,  etc. 

38.  External  Force 

But  if,  as  in  Article  2,  we  confine  our  attention  to 

one  of  the  portions  of  matter,  we  see,  as  it  were,  only 
one  side  of  the  transaction — namely,  that  which  affects 
the  portion  of  matter  under  our  consideration — and  we 
call  this  aspect  of  the  phenomenon,  with  reference  to 
its  effect,  an  External  Force  acting  on  that  portion  of 
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matter,  and  with  reference  to  its  cause  we  call  it  the 
Action  of  the  other  portion  of  matter.  The  opposite 
aspect  of  the  stress  is  called  the  Reaction  on  the  other 
portion  of  matter. 

39.  Different  Aspects  of  the  same  Phenomenon 
In  commercial  affairs  the  same  transaction  between 

two  parties  is  called  Buying  when  we  consider  one 
party,  Selling  when  we  consider  the  other,  and  Trade 
when  we  take  both  parties  into  consideration. 

The  accountant  who  examines  the  records  of  the 
transaction  finds  that  the  two  parties  have  entered  it  on 

opposite  sides  of  their  respective  ledgers,  and  in  com- 
paring the  books  he  must  in  every  case  bear  in  mind  in 

whose  interest  each  book  is  made  up. 
For  similar  reasons  in  dynamical  investigations  we 

must  always  remember  which  of  the  two  bodies  we  are 
dealing  with,  so  that  we  may  state  the  forces  in  the 
interest  of  that  body,  and  not  set  down  any  of  the  forces 
on  the  wrong  side  of  the  account. 

40.   Newton's  Laws  of  Motion 

External  or  "impressed "  force  considered  with  refer- 
ence to  its  effect* — namely,  the  alteration  of  the  motions 

of  bodies — is  completely  defined  and  described  in 
Newton's  three  laws  of  motion. 

The  first  law  tells  us  under  what  conditions  there  is 
no  external  force. 

The  second  shows  us  how  to  measure  the  force  when 
it  exists. 

The  third  compares  the  two  aspects  of  the  action 
between  two  bodies,  as  it  affects  the  one  body  or  the 
other. 

*  As  to  its  nature,  a  stress,  or  balanced  set  of  forces,  is  deter- 
mined by  the  alteration  of  the  permanent  configuration  of  the 

bodies  concerned,  which  reveals  its  existence  and  forms  the  basis 
of  its  statical  measure ;  or  else  by  some  other  property  of  matter. 
Cf.  Art.  68. 
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41.   Thk  Imrst  Law  of  Motion 

Law  L — Every  body  persezercs  in  its  state  of  rest  or 
of  moving   uniformly   in   a   straight   line,   except   in   so 
far  as  it  is  made  to  change  that  state  by  external  forces. 

The  experimental  argument  for  the  truth  of  this 
law  is,  that  in  every  case  in  which  we  find  an  alteration 
of  the  state  of  motion  of  a  body,  we  can  trace  this 
alteration  to  some  action  between  that  body  and  another, 
that  is  to  say,  to  an  external  force.  The  existence  of 
this  action  is  indicated  by  its  effect  on  the  other 
body  when  the  motion  of  that  body  can  be  observed. 
Thus  the  motion  of  a  cannon  ball  is  retarded,  but 
this  arises  from  an  action  between  the  projectile  and 
the  air  which  surrounds  it,  whereby  the  ball  experiences 
a  force  in  the  direction  opposite  to  its  relative  motion, 
while  the  air,  pushed  for^vard  by  an  equal  force,  is 
itself  set  in  motion,  and  constitutes  what  is  called  the 
loind  of  the  cannon  ball. 

But  our  conviction  of  the  truth  of  this  law  may  be 
greatly  strengthened  by  considering  what  is  involved  in 
a  denial  of  it.  Given  a  body  in  motion.  At  a  given 
instant  let  it  be  left  to  itself  and  not  acted  on  by  any 
force.  What  will  happen?  According  to  Newton's 
law  it  will  persevere  in  moving  uniformly  in  a  straight 
line,  that  is,  its  velocity  will  remain  constant  both  in 
direction  and  magnitude. 

If  the  velocity  docs  not  remain  constant  let  us 
suppose  it  to  vary.  The  change  of  velocity,  as  we  saw  in 
Article  31,  must  have  a  definite  direction  and  magni- 

tude. By  the  maxim  of  Article  19  this  variation  must 
be  the  same  whatever  be  the  time  or  place  of  the 
experiment.  The  direction  of  the  change  of  motion 
must  therefore  be  determined  either  by  the  direction  of 
the  motion  itself,  or  by  some  direction  fixed  in  the 
body. 

Let  us,  in  the  first  place,  suppose  the  law  to  be  that 
the  velocity  diminishes  at  a  certain  rate,  which  for  the 
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sake  of  the  argument  we  may  suppose  so  slow  that  by 
no  experiments  on  moving  bodies  could  we  have 
detected  the  diminution  of  velocity  in  hundreds  of 

years. 
The  velocity  referred  to  in  this  hypothetical  law  can 

only  be  the  velocity  referred  to  a  point  absolutely  at 
rest.  For  if  it  is  a  relative  velocity  its  direction  as 
well  as  its  magnitude  depends  on  the  velocity  of  the 
point  of  reference. 

If,  when  referred  to  a  certain  point,  the  body  appears 
to  be  moving  northward  with  diminishing  velocity,  we 
have  only  to  refer  it  to  another  point  moving  northward 
with  a  uniform  velocity  greater  than  that  of  the  body, 
and  it  will  appear  to  be  moving  southward  with  in- 

creasing velocity. 
Hence  the  hypothetical  law  is  without  meaning,  un- 

less we  admit  the  possibility  of  defining  absolute  rest 

and  absolute  velocity*. 
Even  if  we  admit  this  as  a  possibiUty,  the  hypothetical 

law,  if  found  to  be  true,  might  be  interpreted,  not  as 

a  contradiction  of  Newton's  law,  but  as  evidence  of 
the  resisting  action  of  some  medium  in  space. 

To  take  another  case.  Suppose  the  law  to  be  that  a 
body,  not  acted  on  by  any  force,  ceases  at  once  to  move. 
This  is  not  only  contradicted  by  experience,  but  it  leads 
to  a  definition  of  absolute  rest  as  the  state  which  a  body 
assumes  as  soon  as  it  is  freed  from  the  action  of  ex- 

ternal forces. 

It  may  thus  be  shown  that  the  denial  of  Newton's 
law  is  in  contradiction  to  the  only  system  of  consistent 
doctrine  about  space  and  time  which  the  human  mind 
has  been  able  to  formf . 

*  An  aether  might  do  this.  But  even  in  Maxwell's  aether  an 
isolated  body  losing  energy  by  radiation  would  suffer  no  change 
of  velocity  thereby. 

t  The  argument  of  this  section  may  be  made  more  definite. 
It  is  a  result  of  observation  that  the  more  isolated  a  body  is  from 
the  influence  of  other  bodies,  the  more  nearly  is  its  velocity 
constant  with  reference  to  an  assignable  frame  of  reference.    A 
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42.  On  the  Equilibrium  of  Forces 

If  a  body  moves  with  constant  velocity  in  a  straight 
Hne,  the  external  forces,  if  any,  which  act  on  it,  balance 
each  other,  or  are  in  equilibrium. 

Thus  if  a  carriage  in  a  railway  train  moves  with 
constant  velocity  in  a  straight  line,  the  external  forces 

which  act  on  it — such  as  the  traction  of  the  carriage  in 
front  of  it  pulling  it  forwards,  the  drag  of  that  behind 
it,  the  friction  of  the  rails,  the  resistance  of  the  air 
acting  backwards,  the  weight  of  the  carriage  acting 
downwards,  and  the  pressure  of  the  rails  acting  up- 

wards— must  exactly  balance  each  other. 
Bodies  at  rest  with  respect  to  the  surface  of  the  earth 

are  really  in  motion,  and  their  motion  is  not  constant  nor 
in  a  straight  line.  Hence  the  forces  which  act  on  them 
are  not  exactly  balanced.  The  apparent  weight  of  bodies 
is  estimated  by  the  upward  force  required  to  keep  them 
at  rest  relatively  to  the  earth.  The  apparent  weight  is 

main  problem  of  physical  dynamics  is  to  determine  with  in- 
creasing approximation  a  frame  for  which  this  principle  holds, 

for  ail  systems,  with  the  greatest  attainable  precision.  A  frame 
of  space  and  time  thus  determined  has  been  called  (after  James 
Thomson)  a  frame  of  inertia.  The  statements  in  the  text  can  be 
reconstructed  with  regard  to  a  reference  frame  which  is  a  frame 
of  inertia.  Hut  given  one  frame  of  inertia,  any  other  frame  moving 
with  any  uniform  translatory  velocity  with  respect  to  it,  is  also 
a  frame  of  inertia.  Thus  a  first  appro.ximation  for  local  purjxwes 
to  a  frame  of  inertia  is  one  fixed  with  reference  to  the  surrcninciing 
landscape;  when  the  range  of  phenomena  is  widened,  astronomers 
have  to  change  to  a  frame  containing  the  axis  of  the  earth's 
diurnal  rotation,  and  involving  a  definite  value  for  the  length  of 
the  sidereal  day:  this  again  has  to  be  corrected  for  the  very  slow 

movement  of  the  earth's  axis  that  is  revcaletl  by  the  Precession 
of  the  llciuinoxes:  and  so  on.  Such  a  frame  of  inertia  represents 
in  practical  essentials  the  Newtonian  absolute  space  and  time: 
it  is  the  simplest  and  most  natural  scheme  of  mapping  an  ex- 

tension into  which  dynamical  phenomena  can  be  fitted.  If  we 
assume  that  space  is  occupied  by  a  uniform  static  aether  through 
whose  mediation  influences  are  transmitted  from  one  material 
body  to  another,  the  properties  of  that  medium  will  afford  unique 
specification  of  an  absolute  space  and  time  having  physical 
properties  as  well  as  relations  of  extension.  See  Appendix  I. 
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therefore  rather  less  than  the  attraction  of  the  earth, 
and  makes  a  smaller  angle  with  the  axis  of  the  earth, 
so  that  the  combined  effect  of  the  supporting  force  and 

the  earth's  attraction  is  a  force  perpendicular  to  the 
earth's  axis  just  sufficient  to  cause  the  body  to  keep 
to  the  circular  path  which  it  must  describe  if  resting 
on  the  earth*. 

43.   Definition  of  Equal  Times 

The  first  law  of  motion,  by  stating  under  what  cir- 
cumstances the  velocity  of  a  moving  body  remains 

constant,  supphes  us  with  a  method  of  defining  equal 
intervals  of  time.  Let  the  material  system  consist  of 
two  bodies  which  do  not  act  on  one  another,  and 
which  are  not  acted  on  by  any  body  external  to  the 
system.  If  one  of  these  bodies  is  in  motion  with  respect 
to  the  other,  the  relative  velocity  will,  by  the  first 
law  of  motion,  be  constant  and  in  a  straight  line. 

Hence  intervals  of  time  are  equal  when  the  relative 
displacements  during  those  intervals  are  equalf. 

This  might  at  first  sight  appear  to  be  nothing  more 
than  a  definition  of  what  we  mean  by  equal  intervals  of 
time,  an  expression  which  we  have  not  hitherto  defined 
at  all. 

But  if  we  suppose  another  moving  system  of  two 
bodies  to  exist,  each  of  which  is  not  acted  upon  by 
any  body  whatever,  this  second  system  will  give 
us  an  independent  method  of  comparing  intervals  of 
time. 

The  statement  that  equal  intervals  of  time  are  those 
during  which  equal  displacements  occur  in  any  such 

*   See  end  of  Appendix  I. 
t  This  statement  refers  to  the  displacement  of  one  body 

measured  on  a  complete  frame  of  reference  attached  to  the  other. 
It  would  not  be  true  for  two  points  moving  with  uniform  velocities, 
if  relative  displacement  meant  merel}^  change  of  distance  between 
them.  In  fact  their  mutual  distance  undergoes  acceleration  at  a 
rate  varying  inversely  as  the  cube  of  that  distance:  to  an  observer 
not  sensible  of  directions  they  would  seem  to  repel  each  other 
with  a  force  obeying  that  law  of  action. 
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system,  is  therefore  equivalent  to  the  assertion  that  the 
comparison  of  intervals  of  time  leads  to  the  same 
result  whether  we  use  the  first  system  of  two  bodies  or 
the  second  system  as  our  time-piece. 
We  thus  see  the  theoretical  possibility  of  comparing 

intervals  of  time  however  distant,  though  it  is  hardly 
necessary  to  remark  that  the  method  cannot  be  put  in 
practice  in  the  neighbourhood  of  the  earth,  or  any  other 
large  mass  of  gravitating  matter. 

44.   The  Second  Law  of  Motion 

Law  IL — Change  of  tnotiofi   is  proportional  to   the 
impressed  force,  and  takes  place  in  the  direction  in  which 
the  force  is  impressed. 

By  motion  Newton  means  what  in  modern  scientific 
language  is  called  Momentum,  in  which  the  quantity  of 
matter  moved  is  taken  into  account  as  well  as  the  rate 
at  which  it  travels. 

By  impressed  force  he  means  what  is  now  called 
Impulse,  in  which  the  time  during  which  the  force  acts 
is  taken  into  account  as  well  as  the  intensity  of  the  force. 

45.   Definition  of  Equal  Masses  and  of 
Equal  Forces 

An  exposition  of  the  law  therefore  involves  a  defini- 
tion of  equal  quantities  of  matter  and  of  equal  forces. 

We  shall  assume  that  it  is  possible  to  cause  the  force 
with  which  one  body  acts  on  another  to  be  of  the  same 
intensitv  on  different  occasions. 

If  we'admit  the  permanency  of  the  properties  of  bodies this  can  be  done.  We  know  that  a  thread  of  caoutchouc 

when  stretched  beyond  a  certain  length  exerts  a  tension 
which  increases  the  more  the  thread  is  elongated.  On 
account  of  this  property  the  thread  is  said  to  be  elastic. 
When  the  same  thread  is  drawn  out  to  the  same  length 
it  will,  if  its  properties  remain  constant,  exert  the  same 
tension.   Now  let  one  end  of  the  thread  be  fastened  to 
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a  body,  M,  not  acted  on  by  any  other  force  than  the 
tension  of  the  thread,  and  let  the  other  end  be  held 
in  the  hand  and  pulled  in  a  constant  direction  with  a 
force  just  sufficient  to  elongate  the  thread  to  a  given 
length.  The  force  acting  on  the  body  will  then  be  of 
a  given  intensity,  F.  The  body  will  acquire  velocity, 
and  at  the  end  of  a  unit  of  time  this  velocity  will  have 
a  certain  value,  V. 

If  the  same  string  be  fastened  to  another  body.  A'', and  pulled  as  in  the  former  case,  so  that  the  elongation 
is  the  same  as  before,  the  force  acting  on  the  body 
will  be  the  same,  and  if  the  velocity  communicated  to 

A''  in  a  unit  of  time  is  also  the  same,  namely  V,  then 
we  say  of  the  two  bodies  M  and  A"  that  they  consist 
of  equal  quantities  of  matter,  or,  in  modern  language, 
they  are  equal  in  mass.  In  this  way,  by  the  use  of  an 
elastic  string,  we  might  adjust  the  masses  of  a  number 
of  bodies  so  as  to  be  each  equal  to  a  standard  unit 
of  mass,  such  as  a  pound  avoirdupois,  which  is  the 
standard  of  mass  in  Britain. 

46.  Measurement  of  Mass 

The  scientific  value  of  the  dynamical  method  of  com- 
paring quantities  of  matter  is  best  seen  by  comparing  it 

with  other  methods  in  actual  use. 

As  long  as  we  have  to  do  with  bodies  of  exactly  the 
same  kind,  there  is  no  difficulty  in  understanding  how 
the  quantity  of  matter  is  to  be  measured.  If  equal 
quantities  of  the  substance  produce  equal  effects  of  any 
kind,  we  may  employ  these  effects  as  measures  of  the 
quantity  of  the  substance. 

For  instance,  if  we  are  dealing  with  sulphuric  acid  of 
uniform  strength,  we  may  estimate  the  quantity  of  a 
given  portion  of  it  in  several  different  ways.  We  may 
weigh  it,  we  may  pour  it  into  a  graduated  vessel,  and 
so  measure  its  volume,  or  we  may  ascertain  how  much 
of  a  standard  solution  of  potash  it  will  neutralise. 

We   might   use   the   same   methods   to   estimate   a 
M.  3 
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quantity  of  nitric  acid  if  we  were  dealing  only  with 
nitric  acid ;  but  if  we  wished  to  compare  a  quantity 
of  nitric  acid  with  a  quantity  of  sulphuric  acid  we 
should  obtain  different  results  by  weighing,  by  mea- 

suring, and  by  testing  with  an  alkaline  solution. 
Of  these  three  methods,  that  of  weighing  depends  on 

the  attraction  between  the  acid  and  the  earth,  that  of 
measuring  depends  on  the  volume  which  the  acid 
occupies,  and  that  of  titration  depends  on  its  power  of 
combining  with  potash. 

In  abstract  dynamics,  however,  matter  is  considered 
under  no  other  aspect  than  as  that  which  can  have  its 
motion  changed  by  the  application  of  force.  Hence 
any  two  bodies  are  of  equal  mass  if  equal  forces  applied 
to  these  bodies  produce,  in  equal  times,  equal  changes 
of  velocity.  This  is  the  only  definition  of  equal  masses 
which  can  be  admitted  in  dynamics,  and  it  is  applicable 
to  all  material  bodies,  whatever  they  may  be  made  of. 

It  is  an  observed  fact  that  bodies  of  equal  mass, 
placed  in  the  same  position  relative  to  the  earth,  are 
attracted  equally  towards  the  earth,  whatever  they  are 
made  of;  but  this  is  nf)t  a  doctrine  of  abstract  dynamics, 
founded  on  axiomatic  principles,  but  a  fact  discovered 
by  observation,  and  verified  by  the  careful  experiments 
of  Newton*,  on  the  times  of  oscillation  of  hollow  wooden 
balls  suspended  by  strings  of  the  same  length,  and  con- 

taining gold,  silver,  lead,  glass,  sand,  common  salt, 
wood,  water,  and  wheat. 
The  fact,  however,  that  m  the  same  geographical 

position  the  weights  of  equal  masses  are  equal,  is  so 
well  established,  that  no  other  mode  of  comparing 
masses  than  that  of  comparing  their  weights  is  ever 
made  use  of,  either  in  commerce  or  in  science,  except 
in  researches  undertaken  for  the  special  purpose  of 

•  Principia,  III.  Prop.  6.  Actual  weight  is  a  compound  effect, 
in  the  main  attraction,  but  diminished  by  reaction  against 
centripetal  acceleration  of  the  mass  due  to  the  earth's  rotation. Seep.  143. 
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determining  in  absolute  measure  the  weight  of  unit  of 

mass  at  different  parts  of  the  earth's  surface.  The 
method  employed  in  these  researches  is  essentially  the 
same  as  that  of  Newton,  namely,  by  measuring  the 
length  of  a  pendulum  which  swings  seconds. 

The  unit  of  mass  in  this  country  is  defined  by  the 
Act  of  Parliament  (18  &  19  Vict.  c.  72,  July  30,  1855) 

to  be  a  piece  of  platinum  marked  "P.S.,  1844,  i  lb." 
deposited  in  the  office  of  the  Exchequer,  which  "shall 
be  and  be  denominated  the  Imperial  Standard  Pound 

Avoirdupois."  One  seven-thousandth  part  of  this 
pound  is  a  grain.  The  French  standard  of  mass  is  the 

"Kilogramme  des  Archives,"  made  of  platinum  by 
Borda.  Professor  Miller  finds  the  kilogramme  equal  to 

15432-34874  grains. 

47.   Numerical  Measurement  of  Force 

The  unit  of  force  is  that  force  which,  acting  on  the 
unit  of  mass  for  the  unit  of  time,  generates  unit  of 
velocity. 

Thus  the  weight  of  a  gramme — that  is  to  say,  the 
force  which  causes  it  to  fall — may  be  ascertained  by 
letting  it  fall  freely.  At  the  end  of  one  second  its 
velocity  will  be  about  981  centimetres  per  second  if  the 
experiment  be  in  Britain.  Hence  the  weight  of  a  gramme 
is  represented  by  the  number  981,  if  the  centimetre, 
the  gramme,  and  the  second  are  taken  as  the  funda- 

mental units. 

It  is  sometimes  convenient  to  compare  forces  with 
the  weight  of  a  body,  and  to  speak  of  a  force  of  so 
many  pounds  weight  or  grammes  weight.  This  is 
called  Gravitation  measure.  We  must  remember,  how- 

ever, that  though  a  pound  or  a  gramme  is  the  same  all 
over  the  world,  the  weight  of  a  pound  or  a  gramme  is 
greater  in  high  latitudes  than  near  the  equator,  and 
therefore  a  measurement  of  force  in  gravitation  measure 
is  of  no  scientifiic  value  unless  it  is  stated  in  what  part 
of  the  world  the  measurement  was  made. 

3—2 
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If,  as  in  Britain,  the  units  of  length,  mass,  and  time 
are  one  foot,  one  pound,  and  one  second,  the  unit  of 
force  is  that  which,  in  one  second,  would  communicate 
to  one  pound  a  velocity  of  one  foot  per  second.  This 
unit  of  force  is  called  a  Poundal. 

In  the  French  metric  system  the  units  are  one 
centimetre,  one  gramme,  and  one  second.  The  force 
which  in  one  second  would  communicate  to  one  gramme 
a  velocity  of  one  centimetre  per  second  is  called  a  Dyne. 

Since  the  foot  is  30-4797  centimetres  and  the  pound 
is  453*59  grammes,  the  poundal  is  13825-38  dynes. 

48.   Simultaneous  Action  of  Forces  on  a  Body 

Now  let  a  unit  of  force  act  for  unit  of  time  upon  unit 
of  mass.  The  velocity  of  the  mass  will  be  changed, 
and  the  total  acceleration  will  be  unity  in  the  direction 
of  the  force. 

The  magnitude  and  direction  of  this  total  acceleration 
will  be  the  same  whether  the  body  is  originally  at  rest 

or  in  motion*.  For  the  expression  "at  rest"  has  no 
scientific  meaning,  and  the  expression  "  in  motion,"  if  it 
refers  to  relative  motion,  may  mean  anything,  and  if  it 
refers  to  absolute  motion  can  only  refer  to  some  medium 
fixed  in  space.  To  discover  the  existence  of  a  medium, 
and  to  determine  our  velocity  with  respect  to  it  by 
observation  on  the  motion  of  bodies,  is  a  legitimate 
scientific  inquiry,  but  supposing  all  this  done  we  should 
have  discovered,  not  an  error  in  the  laws  of  motion, 
but  a  new  fact  in  science. 

Hence  the  eflPect  of  a  given  force  on  a  body  does  not 
depend  on  the  motion  of  that  body. 

Neither  is  it  affected  by  the  simultaneous  action  of 
other  forces  on  the  body.  For  the  effect  of  these 
forces  on  the  body  is  only  to  produce  motion  in  the 
body,  and  this  does  not  affect  the  acceleration  produced 
by  the  first  force. 

*  Cf.  Appendix  I. 
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Hence  we  arrive  at  the  following  form  of  the  law. 

When  any  number  of  forces  act  on  a  body,  the  accelera- 
tion due  to  each  force  is  the  same  in  direction  and  magnitude 

as  if  the  others  had  not  been  in  action. 
When  a  force,  constant  in  direction  and  magnitude, 

acts  on  a  body,  the  total  acceleration  is  proportional  to 
the  interval  of  time  during  which  the  force  acts. 

For  if  the  force  produces  a  certain  total  acceleration 
in  a  given  interval  of  time,  it  will  produce  an  equal 
total  acceleration  in  the  next,  because  the  effect  of  the 
force  does  not  depend  upon  the  velocity  which  the 
body  has  when  the  force  acts  on  it.  Hence  in  every 
equal  interval  of  time  there  will  be  an  equal  change  of 
the  velocity,  and  the  total  change  of  velocity  from  the 
beginning  of  the  motion  will  be  proportional  to  the  time 
of  action  of  the  force. 

The  total  acceleration  in  a  given  time  is  proportional 
to  the  force. 

For  if  several  equal  forces  act  in  the  same  direction 
on  the  same  body  in  the  same  direction,  each  produces 
its  effect  independently  of  the  others.  Hence  the  total 
acceleration  is  proportional  to  the  number  of  the  equal 
forces. 

49.   On  Impulse 
The  total  effect  of  a  force  in  communicating  velocity 

to  a  body  is  therefore  proportional  to  the  force  and  to 
the  time  during  which  it  acts  conjointly. 

The  product  of  the  time  of  action  of  a  force  into  its 
intensity  if  it  is  constant,  or  its  mean  intensity  if  it  is 
variable,  is  called  the  Impulse  of  the  force. 

There  are  certain  cases  in  which  a  force  acts  for  so 
short  a  time  that  it  is  difficult  to  estimate  either  its 

intensity  or  the  time  during  which  it  acts.  But  it  is 
comparatively  easy  to  measure  the  effect  of  the  force 
in  altering  the  motion  of  the  body  on  which  it  acts, 
which,  as  we  have  seen,  depends  on  the  impulse. 

The  word  impulse  was  originally  used  to  denote  the 
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effect  of  a  force  of  short  duration,  such  as  that  of  a 

hammer  striking  a  nail.  There  is  no  essential  ditTcr- 
ence,  however,  between  this  case  and  any  other  case 
of  the  action  of  force.  We  shall  therefore  use  the 

word  impulse  as  above  defined,  without  restricting  it 
to  cases  in  which  the  action  is  of  an  exceptionally 
transient  character. 

50.   Relation  between  Force  and  M.\ss 
If  a  force  acts  on  a  unit  of  mass  for  a  certain  interval 

of  time,  the  impulse,  as  we  have  seen,  is  measured 
by  the  velocity  generated. 

If  a  number  of  equal  forces  act  in  the  same  direction, 
each  on  a  unit  of  mass,  the  different  masses  will  all 
move  in  the  same  manner,  and  may  be  joined  together 
into  one  body  without  altering  the  phenomenon.  The 
velocity  of  the  whole  body  is  equal  to  that  produced  by 
one  of  the  forces  acting  on  a  unit  of  mass. 

Hence  the  force  required  to  produce  a  given  change 
of  velocity  in  a  given  time  is  proportional  to  the 
number  of  units  of  mass*  of  which  the  body  consists. 

51.   On  Momentum 
The  numerical  value  of  the  Momentum  of  a  body  is 

the  product  of  the  number  of  imits  of  mass  in  the  body 
into  the  number  of  units  of  velocity  with  which  it  is 
moving. 

The  momentum  of  any  body  is  thus  measured  in 
terms  of  the  momentum  of  unit  of  mass  moving  with 
unit  of  velocity,  which  is  taken  as  the  unit  of  momentum. 

The  direction  of  the  momentum  is  the  same  as  that 

of  the  velocity,  and  as  the  velocity  can  only  be  estimated 
with  respect  to  some  point  of  reference,  so  the  particular 
value  of  the  momentum  depends  on  the  point  of  refer- 

•  Here  mass  means  tlic  measure  of  the  inertia  rather  than  the 
quantity  of  matter;  at  extremely  great  speeds  they  would  not 
be  proportional,  but  connected  by  a  law  involving  the  speed,  so 
tliat  momentum  or  impulse  would  then  he  the  priman*  quantity and  inertia  a  derived  one 
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ence  which  we  assume.  The  momentum  of  the  moon, 
for  example,  will  be  very  different  according  as  we  take 
the  earth  or  the  sun  for  the  point  of  reference. 

52.    Statement  of  the  Second  Law  of  Motion  in 
Terms  of  Impulse  and  Momentum 

The  change  of  momentum  of  a  body  is  numerically  equal 
to  the  impulse  which  produces  it,  and  is  in  the  same 
direction. 

53.   Addition 'OF  Forces 
If  any  number  of  forces  act  simultaneously  on  a 

body,  each  force  produces  an  acceleration  proportional 
to  its  own  magnitude  (Article  48).  Hence  if  in  the 
diagram  of  accelerations  (Article  34)  we  draw  from 
any  origin  a  line  representing  in  direction  and  magni- 

tude the  acceleration  due  to  one  of  the  forces,  and 

from  the  end  of  this  Hne  another  representing  the  ac- 
celeration due  to  another  force,  and  so  on,  drawing  lines 

for  each  of  the  forces  taken  in  any  order,  then  the  line 
drawn  from  the  origin  to  the  extremity  of  the  la? t  of  the 
lines  will  represent  the  acceleration  due  to  the  combined 
action  of  all  the  forces. 

Since  in  this  diagram  lines  which  represent  the 
accelerations  are  in  the  same  proportion  as  the  forces 
to  which  these  accelerations  are  due,  we  may  consider 
the  Unes  as  representing  these  forces  themselves. 
The  diagram,  thus  understood,  may  be  called  a  Diagram 
of  Forces,  and  the  line  from  the  origin  to  the  extremity 
of  the  series  represents  the  Resultant  Force. 

An  important  case  is  that  in  which  the  set  of  lines 
representing  the  forces  terminate  at  the  origin  so  as  to 
form  a  closed  figure.  In  this  case  there  is  no  resultant 
force,  and  no  acceleration.  The  effects  of  the  forces  are 
exactly  balanced,  and  the  case  is  one  of  equilibrium. 
The  discussion  of  cases  of  equilibrium  forms  the  subject 
of  the  science  of  Statics. 

It  is  manifest  that  since  the  svstem  of  forces  is 
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exactly  balanced,  and  is  equivalent  to  no  force  at  all*, 
the  forces  will  also  be  balanced  if  they  act  in  the  same 
way  on  any  other  material  systemf,  whatever  be  the 
rnass  of  that  system.  This  is  the  reason  why  the  con- 

sideration of  mass  does  not  enter  into  statical  investi- 
gations. 

54.   The  Third  Law  of  Motion 

Law  lU —Reaction  is  always  equal  and  opposite  to 
action,  that  is  to  say,  the  actions  of  tuo  bodies  upon  each 
other  are  always  equal  and  in  opposite  directions. 
When  the  bodies  between  which  the  action  takes 

place  are  not  acted  on  by  any  other  force,  the  changes 
in  their  respective  momenta  produced  by  the  action  are 
equal  and  in  opposite  directions. 

The  changes  in  the  velocities  of  the  two  bodies  are 
also  in  opposite  directions,  but  not  equal,  e.xcept  in  the 
case  of  equal  masses.  In  other  cases  the  changes  of 
velocity  are  in  the  inverse  ratio  of  the  masses. 

55.  Action  and  Reaction  are  the  Partial 
Aspects  of  a  Stress 

We  have  already  (Article  37)  used  the  word  Stress 
to  denote  the  mutual  action  between  two  portions  of 
matter.  This  word  was  borrowed  from  common 

language,  and  invested  with  a  precise  scientific  meaning 
by  the  late  Professor  Rankine,  to  whom  we  are  indebted 
for  several  other  valuable  scientific  terms. 

As  soon  as  we  have  formed  for  ourselves  the  idea  of 
a  stress,  such  as  the  Tension  of  a  rope  or  the  Pressure 
between  two  bodies,  and  have  recognised  its  double 
aspect  as  it  affects  the  two  portions  of  matter  between 

•  Except  however  as  regards  the  strains  which  the  s>-stcm  of 
forces  sets  up  in  a  dcformable  body,  in  cases  when  they  do  not 
all  act  at  the  same  point.  It  is  when  these  strains  are  not  regarded, 
or  the  body  on  which  they  act  is  considered  as  perfectly  rigid,  that 
we  can  speak  of  the  statical  equivalence  of  two  systems  of  forces. 

t  If  the  forces  do  not  act  at  the  same  point,  the  system  must 
be  a  rigid  one,  else  it  will  be  deformed  by  them. 
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which  it  acts,  the  third  law  of  motion  is  seen  to  be 
equivalent  to  the  statement  that  all  force  is  of  the  nature 
of  stress,  that  stress  exists  only  between  two  portions 
of  matter,  and  that  its  effects  on  these  portions  of 
matter  (measured  by  the  momentum  generated  in  a 
given  time)  are  equal  and  opposite. 
The  stress  is  measured  numerically  by  the  force 

exerted  on  either  of  the  two  portions  of  matter.  It  is 
distinguished  as  a  tension  when  the  force  acting  on 
either  portion  is  towards  the  other,  and  as  a  pressure 
when  the  force  acting  on  either  portion  is  away  from 
the  other. 
When  the  force  is  inclined  to  the  surface  which 

separates  the  two  portions  of  matter  the  stress  cannot 
be  distinguished  by  any  term  in  ordinary  language,  but 
must  be  defined  by  technical  mathematical  terms. 
When  a  tension  is  exerted  between  two  bodies  by  the 

medium  of  a  string,  the  stress,  properly  speaking,  is 
between  any  two  parts  into  which  the  string  may  be 
supposed  to  be  divided  by  an  imaginary  section  or 
transverse  interface.  If,  however,  we  neglect  the  weight 
of  the  string,  each  portion  of  the  string  is  in  equilibrium 
under  the  action  of  the  tensions  at  its  extremities,  so 
that  the  tensions  at  any  two  transverse  interfaces  of  the 
string  must  be  the  same.  For  this  reason  we  often 
speak  of  the  tension  of  the  string  as  a  whole,  without 
specifying  any  particular  section  of  it,  and  also  the 
tension  between  the  two  bodies,  without  considering 
the  nature  of  the  string  through  which  the  tension  is 
exerted. 

56.   Attraction  and  Repulsion 

There  are  other  cases  in  which  two  bodies  at  a  dis- 
tance appear  mutually  to  act  on  each  other,  though  we 

are  not  able  to  detect  any  intermediate  body,  like  the 
string  in  the  former  example,  through  which  the  action 
takes  place.  For  instance,  two  magnets  or  two  electri- 

fied bodies  appear  to  act  on  each  other  when  placed  at 
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considerable  distances  apart,  and  the  motions  of  the 
heavenly  bodies  are  observed  to  be  affected  in  a  manner 
which  depends  on  their  relative  position. 

This  mutual  action  between  distant  bodies  is  called 

attraction  when  it  tends  to  bring  them  nearer,  and 
repulsion  when  it  tends  to  separate  them. 

In  all  cases,  however,  the  action  and  reaction  between 
the  bodies  are  equal  and  opposite. 

57.  The  Third  Law  true  of  Action  at  a  Distance 

The  fact  that  a  magnet  draws  iron  towards  it  was 
noticed  by  the  ancients,  but  no  attention  was  paid  to 
the  force  with  which  the  iron  attracts  the  magnet. 
Newton,  however,  by  placing  the  magnet  in  one  vessel 
and  the  iron  in  another,  and  floating  both  vessels  in 
water  so  as  to  touch  each  other,  showed  expcrimentallv 
that  as  neither  vessel  was  able  to  propel  the  other  along 
with  itself  through  the  water,  the  attraction  of  the  iron 
on  the  magnet  must  be  equal  and  opposite  to  that  of 
the  magnet  on  the  iron,  both  being  equal  to  the  pressure 
between  the  two  vessels. 

Having  given  this  experimental  illustration  Newton 
goes  on  to  point  out  the  consequence  of  denying  the 
truth  of  this  law.  For  instance,  if  the  attraction  of  any 
part  of  the  earth,  say  a  mountain,  upon  the  remainder 
of  the  earth  were  greater  or  less  than  that  of  the  remain- 

der of  the  earth  upon  the  mountain,  there  would  be  a 
residual  force,  acting  upon  the  system  of  the  earth  and 
the  mountain  as  a  whole,  which  would  cause  it  to  move 

off,  with  an  ever-increasing  velocity,  through  infinite 
space. 

58.  Newton's  Proof  not  Experimental 
This  is  contrary  to  the  first  law  of  motion,  which 

asserts  that  a  body  does  not  change  its  state  of  motion 
unless  acted  on  by  external  force.  It  cannot  be  affirmed 
to  be  contrary  to  experience,  for  the  effect  of  an  in- 

equality between  the  attraction  of  the  earth  on  the 
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mountain  and  the  mountain  on  the  earth  would  be  the 

same  as  that  of  a  force  equal  to  the  difference  of  these 
attractions  acting  in  the  direction  of  the  line  joining  the 
centre  of  the  earth  with  the  mountain. 

If  the  mountain  were  at  the  equator  the  earth  would 
be  made  to  rotate  about  an  axis  parallel  to  the  axis 
about  which  it  would  otherwise  rotate,  but  not  passing 

exactly  through  the  centre  of  the  earth's  mass*. 
If  the  mountain  were  at  one  of  the  poles,  the  con- 

stant force  parallel  to  the  earth's  axis  would  cause  the 
orbit  of  the  earth  about  the  sun  to  be  slightly  shifted 
to  the  north  or  south  of  a  plane  passing  through  the 
centre  of  the  sun's  mass. 

If  the  mountain  were  at  any  other  part  of  the  earth's 
surface  its  effect  would  be  partly  of  the  one  kind  and 
partly  of  the  other. 

Neither  of  these  effects,  unless  they  were  very  large, 
could  be  detected  by  direct  astronomical  observations, 
and  the  indirect  method  of  detecting  small  forces,  by 

their  effect  in  slowly  altering  the  elements  of  a  planet's 
orbit,  presupposes  that  the  law  of  gravitation  is  known 
to  be  true.  To  prove  the  laws  of  motion  by  the  law  of 
gravitation  would  be  an  inversion  of  scientific  order. 
We  might  as  well  prove  the  law  of  addition  of  numbers 
by  the  differential  calculus. 

We  cannot,  therefore,  regard  Newton's  statement  as 
an  appeal  to  experience  and  observation,  but  rather  as 
a  deduction  of  the  third  law  of  motion  from  the  first. 

*  This  is  because  such  a  residual  force  would  revolve  along  with 
the  earth's  diurnal  motion.  If  F  is  this  force,  E  the  earth's  mass 
and  w  its  angular  velocity,  the  altered  axis  of  rotation  would  be 
at  a  distance  7?  from  the  centre  of  mass  such  that  F  =  Ew'-R. 

In  the  next  sentence  the  direction  of  the  residual  force  is  con- 
stant; and  the  earth  being  held  in  an  orbit  around  the  sun  by  the 

gravitational  attraction,  that  force  is  transferred  to  the  solar 
system  as  a  whole,  to  which  accordingly,  and  not  to  the  earth 
alone,  the  final  statement  in  Art.  57  would  apply. 
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ON  THE  PROPERTIES  OF  THE  CENTRE  OF 
MASS  OF  A  MATERIAL  SYSTEM 

59.   Definition  of  a  M.\ss-Vector 
We  have  seen  that  a  vector  represents  the  operation 
of  carrying  a  tracing  point  from  a  given  origin  to  a  given 

point. 
Let  us  define  a  mass-vector  as  the  operation  of  carry- 

ing a  given  mass  from  the  origin  to  the  given  point. 
The  direction  of  the  mass-vector  is  the  same  as  that  of 
the  vector  of  the  mass,  but  its  magnitude  is  the  product 
of  the  mass  into  the  vector  of  the  mass. 

Thus  if  OA  is  the  vector  of  the  mass  A,  the  mass- 
vector  is  OA  .A. 

60.   Centre  of  Mass  of  Two  Particles 

If  A  and  B  are  two  masses,  and  if  a  point  C  be  taken 
in  the  straight  line  AB,  so  that  BC  is  to  CA  as  A  to  B, 
then  the  mass-vector  of  a  mass  A  ̂   B  placed  at  C  is 
equal  to  the  sum  of  the  mass-vectors  of  A  and  B. 

For  OA.A  +  OB.B^iqC  +  CA)A  fJOC  +  CB)  B 
-  OC{A  f  B)  +  CA.A^  CB.B. 

Now  the  mass-vectors  CA  .  A  and 

CB.B  are  equal  and  opposite,  and 
so  destroy  each  other,  so  that 

OA.A  +  6B.B=6CiA  +  B) 
or,  C  is  a  point  such  that  if  the 
masses  of  A  and  B  were  concen- 

trated at  C,  their  mass-vector  from 
any  origin  O  would  be  the  same  as 

when  A  and  B  are  in  their  actual  positions.  The  point 
C  is  called  the  Centre  of  Mass  of  A  and  B. 
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6i.   Centre  of  Mass  of  a  System 

If  the  system  consists  of  any  number  of  particles,  we 
may  begin  by  finding  the  centre  of  mass  of  any  two 
particles,  and  substituting  for  the  two  particles  a  particle 
equal  to  their  sum  placed  at  their  centre  of  mass.  We 
may  then  find  the  centre  of  mass  of  this  particle,  to- 

gether with  the  third  particle  of  the  system,  and  place 
the  sum  of  the  three  particles  at  this  point,  and  so  on 
till  we  have  found  the  centre  of  mass  of  the  whole 

system. 
The  mass-vector  drawn  from  any  origin  to  a  mass 

equal  to  that  of  the  whole  system  placed  at  the  centre 
of  mass  of  the  system  is  equal  to  the  sum  of  the  mass- 
vectors  drawn  from  the  same  origin  to  all  the  particles 
of  the  system. 

It  follows,  from  the  proof  in  Article  60,  that  the 
point  found  by  the  construction  here  given  satisfies  this 
condition.  It  is  plain  from  the  condition  itself  that 
only  one  point  can  satisfy  it.  Hence  the  construction 
must  lead  to  the  same  result,  as  to  the  position  of  the 
centre  of  mass,  in  whatever  order  we  take  the  particles 
of  the  system. 

The  centre  of  mass  is  therefore  a  definite  point  in 
the  diagram  of  the  configuration  of  the  system.  By 
assigning  to  the  different  points  in  the  diagrams  of 
displacement,  velocity,  total  acceleration,  and  rate  of 
acceleration,  the  masses  of  the  bodies  to  which  they 
correspond,  we  may  find  in  each  of  these  diagrams  a 
point  which  corresponds  to  the  centre  of  mass,  and 
indicates  the  displacement,  velocity,  total  acceleration, 
or  rate  of  acceleration  of  the  centre  of  mass. 

62.   Momentum  represented  as  the  Rate  of 

Change  of  a  Mass- Vector 

In  the  diagram  of  velocities,  if  the  points  o,  a,  b,  c, 
correspond  to  the  velocities  of  the  origin  O  and  the 
bodies  A,  B,  C,  and  if  p  be  the  centre  of  mass  of  A 
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and  B  placed  at  a  and  b  respectively,  and  if  q  is  the 
centre  of  mass  of  A  +  B  placed  at  p  and  C  at  c,  then 

^  q  will   be  the  centre  of  mass  of 
f,   the  system  of  bodies  A,  B,  C,  at 

a,  b,  c,  respectively. 
The  velocity  of  A  with  respect 

to  O  is  indicated  bv  the  vector  oa. 

•  0  \  and  that  of  B  and  C  by  ob  and  oc. 
op  is  the  velocity  of  the  centre  of 
mass  of  A  and  /?,  and  oq  that  of 

the  centre  of  mass  of  ̂ ,  B,  and  C,  with  respect  to  O. 
The  momentum  of  A  with  respect  to  O  is  the  product 

of  the  velocity  into  the  mass,  or  oa  .A,  or  what  we  have 
already  called  the  mass-vector,  drawn  from  o  to  the 
mass  A  at  a.  Similarly  the  momentum  of  any  other 
body  is  the  mass-vector  drawn  from  o  to  the  point  on 
the  diagram  of  velocities  corresponding  to  that  body,  and 
the  momentum  of  the  mass  of  the  system  concentrated 
at  the  centre  of  mass  is  the  mass-vector  drawn  from  o 
to  the  whole  mass  at  q. 

Since,  therefore,  a  mass-vector  in  the  diagram  of 
velocities  is  what  we  have  already  defined  as  a  momen- 

tum, we  may  state  the  property  proved  in  Article  6i 
in  terms  of  momenta,  thus:  The  momentum  of  a  mass 
equal  to  that  of  the  whole  system,  moving  with  the 
velocity  of  the  centre  of  mass  of  the  system,  is  equal  in 
magnitude  and  parallel  in  direction  to  the  sum  of  the 
momenta  of  all  the  particles  of  the  system. 

63.   Effect  of  External  Forces  on  the  Motion 
OF  THE  Centre  of  Mass 

In  the  same  way  in  the  diagram  of  Total  Acceleration 

the  vectors  a»ri,toj3,  etc., drawn  from  the  origin,  represent 
the  change  of  velocity  of  the  bodies  A,  B,  etc.,  during 
a  certain  interval  of  time.  The  corresponding  mass- 
vectors,  coa  .A,  cujS .  By  etc.,  represent  the  correspond- 
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ing  changes  of  momentum,  or,  by  the  second  law  of 
motion,  the  impulses  of  the  forces  acting  on  these 
bodies  during  that  interval  of 

time.   If  K  is  the  centre  of  mass    ̂    "^   j3 
of  the  system,  cjk  is  the  change 
of  velocity  during  the  interval, 
and    (x}k{A  +  B+  C)    is    the 
momentum   generated   in   the  •<^- 
mass  concentrated  at  the  centre  pig  g 
of  gravity.    Hence,  by  Article 
6i,  the  change  of  momentum  of  the  imaginary  mass 
equal  to  that  of  the  whole  system  concentrated  at  the 
centre  of  mass  is  equal  to  the  sum  of  the  changes  of 
momentum  of  all  the  different  bodies  of  the  system. 

In  virtue  of  the  second  law  of  motion  we  may  put 
this  result  in  the  following  form : 

The  effect  of  the  forces  acting  on  the  different  bodies 
of  the  system  in  altering  the  motion  of  the  centre  of 
mass  of  the  system  is  the  same  as  if  all  these  forces 
had  been  applied  to  a  mass  equal  to  the  whole  mass  of 
the  system,  and  coinciding  with  its  centre  of  mass. 

64.   The  Motion  of  the  Centre  of  Mass  of  k 
System  is  not  affected  by  the  Mutual 
Action  of  the  Parts  of  the  System 

For  if  there  is  an  action  between  two  parts  of  the 
system,  say  A  and  B,  the  action  oi  A  on  B  is  always, 
by  the  third  law  of  motion,  equal  and  opposite  to  the 
reaction  oi  B  on  A.  The  momentum  generated  in  B 
by  the  action  of  A  during  any  interval  is  therefore 
equal  and  opposite  to  that  generated  in  A  by  the 
reaction  of  B  during  the  same  interval,  and  the  motion 
of  the  centre  of  mass  of  A  and  B  is  therefore  not 
affected  by  their  mutual  action. 
We  may  apply  the  result  of  the  last  article  to  this 

case  and  say,  that  since  the  forces  on  A  and  on  B  arising 
from  their  mutual  action  are  equal  and  opposite,  and 
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since  the  effect  of  these  forces  on  the  motion  of  the 

centre  of  mass  of  the  system  is  the  same  as  if  they  had 
been  appHed  to  a  particle  whose  mass  is  equal  to  the 
whole  mass  of  the  system,  and  since  the  effect  of  two 
forces  equal  and  opposite  to  each  other  is  zero,  the 
motion  of  the  centre  of  mass  will  not  be  affected. 

65.  First  and  Second  Laws  of  Motion 

This  is  a  very  important  result.  It  enables  us  to 
render  more  precise  the  enunciation  of  the  first  and 

second  laws  of  motion,  by  defining  that  by  the  velocit}' 
of  a  body  is  meant  the  velocity  of  its  centre  of  mass.  The 
body  may  be  rotating,  or  it  may  consist  of  parts,  and  be 
capable  of  changes  of  configuration,  so  that  the  motions 
of  different  parts  may  be  different,  but  we  can  still 
assert  the  laws  of  motion  in  the  following  form: 

Law  L — The  centre  of  mass  of  the  system  perseveres 
in  its  state  of  rest,  or  of  uniform  motion  in  a  straight 
line,  except  in  so  far  as  it  is  made  to  change  that  state 
by  forces  acting  on  the  system  from  without. 

Law  IL — The  change  of  momentum*  of  the  system 
during  any  interval  of  time  is  measured  by  the  sum  of 
the  impulses  of  the  external  forces  during  that  interval. 

66.  Method  of  treating  Systems  of  Molecules 

When  the  system  is  made  up  of  parts  which  are  so 
small  that  we  cannot  observe  them,  and  whose  motions 
are  so  rapid  and  so  variable  that  even  if  we  could 
observe  them  we  could  not  describe  them,  we  are 
still  able  to  deal  with  the  motion  of  the  centre  of  mass 

of  the  system,  because  the  internal  forces  which  cause 
the  variation  of  the  motion  of  the  parts  do  not  affect 
the  motion  of  the  centre  of  mass. 

•  Meaning  in  the  present  connexion  moniontuin  of  translatory 
motion  or  linear  momentum,  as  distinguished  from  the  angular 
momentum  of  rotatory  motion.  Cf.  Art.  69.  The  law  holds  in  an 
extended  sense  for  both  together.   Cf.  Art.  70. 
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67.   By  the  Introduction  of  the  Idea  of  Mass  we 
PASS  from  Point-Vectors,  Point  Displacements, 
Velocities,  Total  Accelerations,  and  Rates  of 
Acceleration,  to  Mass- Vectors,  Mass  Displace- 

ments, Momenta,  Impulses,  and  Moving  Forces. 

In   the   diagram   of  rates   of  acceleration   (Fig.   9, 
Article  63)  the  vectors  cua,  w^,  etc.,  drawn  from  the 
origin,  represent  the  rates  of  acceleration  of  the  bodies 
A,  B,  etc.,  at  a  given  instant,  with  respect  to  that  of 
the  origin  O.              

The  corresponding  mass- vectors,  coa  .A,  ojfi  .  B,  etc., 
represent  the  forces  acting  on  the  bodies  A,  B,  etc. 

We  sometimes  speak  of  several  forces  acting  on  a  body, 
when  the  force  acting  on  the  body  arises  from  several 
different  causes,  so  that  we  naturally  consider  the  parts 
of  the  force  arising  from  these  different  causes  separately. 

But  when  we  consider  force,  not  with  respect  to  its 

causes,  but  with  respect  to  its  effect^that  of  altering 
the  motion  of  a  body — we  speak  not  of  the  forces,  but 
of  the  force  acting  on  the  body,  and  this  force  is 
measured  by  the  rate  of  change  of  the  momentum  of 
the  body,  and  is  indicated  by  the  mass-vector  in  the 
diagram  of  rates  of  acceleration*. 

*  This  distinction  is  conveniently  expressed  by  the  terms 
applied  forces  and  effective  forces.  For  a  single  particle  these  two 
sets  are  statically  equivalent.  Therefore  for  any  body  which  can 
be  regarded  as  a  system  of  particles  held  together  by  mutual 
influences,  the  same  must  be  true  in  the  aggregate,  when  their 
mutual  forces  are  also  included  among  the  apphed  forces.  But  these 
internal  mutual  forces  must  in  any  case  immediately  become 
adjusted  so  as  to  be  statically  equilibrated  by  themselves,  other- 

wise the  parts  of  the  body  would  be  set  by  them  into  continually 
accelerated  motion  even  when  it  is  removed  from  all  external 
influences.  Therefore,  leaving  them  out  of  account,  the  forces 
applied  from  without  are  statically  equivalent,  as  regards  the 
given  type  of  body,  to  the  effective  forces  that  accelerate  the 
particles  or  elements  of  mass  of  that  body.  This  is  the  Principle 

of  d'Alcmbert:  though  it  is  implied  in  the  Newtonian  scheme, being  provided  for  by  the  Third  Law,  its  more  e.xplicit  recognition 
in  1743  gave  rise  to  great  simplilication  in  the  treatment  of 

abstruse  dynamical  problems,  as  exemplified  in  d'Alembert's 
discussion  of  the  spin  of  the  earth's  axis  which  causes  the  pre- 

cession of  the  equinoxes,  by  reducing  them  to  problems  of  statics. 
M.  4 
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We  have  thus  a  series  of  different  kinds  of  mass- 
vectors  corresponding  to  the  series  of  vectors  which  we 
have  already  discussed. 

We  have,  in  the  first  place,  a  system  of  mass-vectors 
with  a  common  origin,  which  we  may  regard  as  a 
method  of  indicating  the  distribution  of  mass  in  a 
material  system,  just  as  the  corresponding  system  of 
vectors  indicates  the  geometrical  configuration  of  the 
system. 

In  the  next  place,  by  comparing  the  distribution  of 
mass  at  two  different  epochs,  we  obtain  a  system  of 
mass-vectors  of  displacement. 

The  rate  of  mass  displacement  is  momentum,  just  as 
the  rate  of  displacement  is  velocity. 

The  change  of  momentum  is  impulse,  as  the  change 
of  velocity  is  total  acceleration. 

The  rate  of  change  of  momentum  is  moving  force,  as 
the  rate  of  change  of  velocity  is  rate  of  acceleration. 

68.  DnFiNiTioN  OF  A  Mass-Area 

When  a  material  particle  moves  from  one  point  to 
another,  twice  the  area  swept  out  by  the  vector  of  the 
particle  multiplied  by  the  mass  of  the  particle  is  called 
the  mass-area  of  the  displacement  of  the  particle  with 
respect  to  the  origin  from  which  the  vector  is  drawn. 

If  the  area  is  in  one  plane,  the  direction  of  the  mass- 
area  is  normal  to  the  plane,  drawn  so  that,  looking  in 
the  positive  direction  along  the  normal,  the  motion  of 
the  particle  round  its  area  appears  to  be  the  direction 
of  the  motion  of  the  hands  of  a  watch*. 

If  the  area  is  not  in  one  plane,  the  path  of  the 
particle  must  be  dividctl  into  portions  so  small  that 
each  coincides  sensiblv  with  a  straight  line,  and  the 
mass-areas  corresponding  to  these  portions  must  be 
added  together  by  the  rule  for  the  addition  of  vectors. 

♦  Stated  in  absolute  terms,  the  motion  round  the  area  is  in 
the  direction  of  a  riglit-handed  screw  motion  which  progresses 
along  the  normal  in  the  positive  direction. 
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69.  Angular  Momentum 

The  rate  of  change  of  a  mass-area  is  twice  the  mass 
of  the  particle  into  the  triangle,  whose  vertex  is  the 
origin  and  whose  base  is  the  velocity  of  the  particle 
measured  along  the  line  through  the  particle  in  the 
direction  of  its  motion.  The  direction  of  this  mass- 

area  is  indicated  by  the  normal  drawn  according  to  the 
rule  given  above. 

The  rate  of  change  of  the  mass-area  of  a  particle  is 
called  the  Angular  Momentum  of  the  particle  about  the 
origin,  and  the  sum  of  the  angular  momenta  of  all  the 
particles  is  called  the  angular  momentum  of  the  system 
about  the  origin. 

The  angular  momentum  of  a  material  system  with 

respect  to  a  point  is,  therefore,  a  quantit}'^  having  a 
definite  direction  as  well  as  a  definite  magnitude. 

The  definition  of  the  angular  momentum  of  a  particle 

about  a  point  may  be  expressed  somewhat  difi^erently 
as  the  product  of  the  momentum  of  the  particle  with 
respect  to  that  point  into  the  perpendicular  from  that 
point  on  the  line  of  motion  of  the  particle  at  that 
instant. 

70.  Moment  of  a  Force  about  a  Point 

The  rate  of  increase  of  the  angular  momentum  of 
a  particle  is  the  continued  product  of  the  rate  of 
acceleration  of  the  velocity  of  the  particle  into  the 
mass  of  the  particle  into  the  perpendicular  from  the 
origin  on  the  line  through  the  particle  along  which 
the  acceleration  takes  place.  In  other  words,  it  is  the 
product  of  the  moving  force  acting  on  the  particle  into 
the  perpendicular  from  the  origin  on  the  line  of  action 
of  this  force. 

Now  the  product  of  a  force  into  the  perpendicular 
from  the  origin  on  its  line  of  action  is  called  the 
Moment  of  the  force  about  the  origin.  The  axis  of  the 
moment,  which  indicates  its  direction,  is  a  vector 
drawn  perpendicular  to  the  plane  passing  through  the 

4—2 
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force  and  the  origin,  and  in  such  a  direction  that, 
looking  along  this  line  in  the  direction  in  which  it  is 
drawn,  the  force  tends  to  move  the  particle  round  the 
origin  in  the  direction  of  the  hands  of  a  watch. 

Hence  the  rate  of  change  of  the  angular  momentum 
of  a  particle  about  the  origin  is  measured  by  the 
moment  of  the  force  which  acts  on  the  particle  about 
that  point. 

The  rate  of  change  of  the  angular  momentum  of  a 
material  system  about  the  origin  is  in  like  manner 
measured  by  the  geometric  sum  of  the  moments 
of  the  forces  which  act  on  the  particles  of  the  system. 

71.   Conservation  of  Angular  Momentum 

Now  consider  any  two  particles  of  the  system.  The 
forces  acting  on  these  two  particles,  arising  from  their 
mutual  action,  are  equal,  opposite,  and  in  the  same 
straight  line.  Hence  the  moments  of  these  forces  about 
any  point  as  origin  are  equal,  opposite,  and  about  the 
same  axis.  The  sum  of  these  moments  is  therefore  zero. 

In  like  manner  the  mutual  action  between  ever)' 
other  pair  of  particles  in  the  system  consists  of  two 
forces,  the  sum  of  whose  moments  is  zero. 

Hence  the  mutual  action  between  the  bodies  of  a 

material  system  does  not  affect  the  geometric  sum  of 
the  moments  of  the  forces.  The  only  forces,  therefore, 
which  need  be  considered  in  finding  the  geometric  sum 
of  the  moments  are  those  which  are  external  to  the 

system — that  is  to  say,  between  the  whole  or  any 
part  of  the  system  and  bodies  not  included  in  the 

system. 
The  rate  of  change  of  the  angular  momentum  of  the 

system  is  therefore  measured  by  the  geometric  sum  of 
the  moments  of  the  external  forces  acting  on  the 

system. 
If  the  directions  of  all  the  external  forces  pass  through 

the  origin,  their  moments  are  zero,  and  the  angular 
momentum  of  the  system  will  remain  constant. 
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When  a  planet  describes  an  orbit  about  the  sun, 
the  direction  of  the  mutual  action  between  the  two 

bodies  always  passes  through  their  common  centre  of 
mass.  Hence  the  angular  momentum  of  either  body 
about  their  common  centre  of  mass  remains  constant, 
so  far  as  these  two  bodies  only  are  concerned,  though 
it  may  be  affected  by  the  action  of  other  planets.  If, 
however,  we  include  all  the  planets  in  the  system,  the 
geometric  sum  of  their  angular  momenta  about  their 
common  centre  of  mass  will  remain  absolutely  con- 

stant*, whatever  may  be  their  mutual  actions,  provided 
no  force  arising  from  bodies  external  to  the  whole  solar 
system  acts  in  an  unequal  manner  upon  the  different 
members  of  the  system. 

*  That  is,  the  plane  of  the  total  angular  momentum  of  the 
solar  system  is  invariable  in  direction  in  space. 

The  plane  of  this  resultant  angular  momentum,  called  by 

Laplace  the  "invariable  plane,"  is  fundamental  for  the  exact 
specification  of  the  motion  of  the  solar  system. 



CHAPTER  V 

ON  WORK  AND  ENERGY 

72.   Definitions 

Work  is  the  act  of*  producing  a  change  of  configuration 
in  a  system  in  opposition  to  a  force  which  resists  that 
change. 

Energy  is  the  capacity  of  doing  2vork. 
When  the  nature  of  a  material  system  is  such  that 

if,  after  the  system  has  undergone  any  series  of  changes 
it  is  brought  back  in  any  manner  to  its  original  state, 
the  whole  work  done  by  external  agents  on  the  system 
is  equal  to  the  whole  work  done  by  the  system  in  over- 

coming external  forces,  the  system  is  called  a  Con- 
servative SYSTEMf. 

73.  Principle  of  Conservation  of  Energy 

The  progress  of  physical  science  has  led  to  the  dis- 
covery and  investigation  of  different  forms  of  energ}', 

and  to  the  establishment  of  the  doctrine  that  all 

material  systems  may  be  regarded  as  conservative 
systems,  provided  that  all  the  different  forms  of  energy 
which  exist  in  these  systems  are  taken  into  account. 

This  doctrine,  considered  as  a  deduction  from  ob- 
servation and  experiment,  can,  of  course,  assert  no 

more  than  that  no  instance  of  a  non-conservative 
system  has  hitherto  been  discovered. 

As  a  scientific  or  science-producing  doctrine,  how- 

*  The  work  done  is  a  quantitative  measure  of  the  effort  ex- 
pended in  deranging  the  system,  in  terms  of  the  consumption  of 

energy  that  is  required  to  give  effect  to  it. 
The  idea  of  work  impHes  a  fund  of  energy,  from  which  the  work 

is  suppUed. 
t  As  distinguished  from  a  system  in  which  the  energy  available 

for  work  becomes  gradually  degraded  to  less  available  forms  by 
frictional  agencies,  called  a  Dissipative  SysUm.   Cf.  Art.  93. 
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ever,  it  is  always  acquiring  additional  credibility  from 
the  constantly  increasing  number  of  deductions  which 
have  been  drawn  from  it,  and  which  are  found  in  all 
cases  to  be  verified  by  experiment. 

In  fact  the  doctrine  of  the  Conservation  of  Energy  is 
the  one  generalised  statement  which  is  found  to  be 
consistent  with  fact,  not  in  one  physical  science  only, 
but  in  all. 

When  once  apprehended  it  furnishes  to  the  physical 
inquirer  a  principle  on  which  he  may  hang  every  known 
law  relating  to  physical  actions,  and  by  which  he  may 
be  put  in  the  way  to  discover  the  relations  of  such 
actions  in  new  branches  of  science*. 

For  such  reasons  the  doctrine  is  commonly  called  the 
Principle  of  the  Conservation  of  Energy. 

74.   General  Statement  of  the  Principle  of 
THE  Conservation  of  Energy 

The  total  energy  of  any  material  system  is  a  quantity 
which  can  neither  he  increased  nor  diminished  by  any 
action  between  the  parts  of  the  systetn,  though  it  may  be 
transformed  into  any  of  the  forms  of  which  energy  is 
susceptible. 

If,  by  the  action  of  some  agent  external  to  the 
system,  the  configuration  of  the  system  is  changed, 
while  the  forces  of  the  system  resist  this  change  of 
configuration,  the  external  agent  is  said  to  do  work  on 
the  system.  In  this  case  the  energy  of  the  system  is 
increased  by  the  amount  of  work  done  on  it  by  the 
external  agent. 

If,  on  the  contrary,  the  forces  of  the  system  produce 
a  change  of  configuration  which  is  resisted  by  the 
external  agent,  the  system  is  said  to  do  work  on  the 

*  Every  law  relating  to  the  forces  of  statical  or  steady  systems 
is  involved  implicitly  in  the  complete  expression  for  the  Energy 
of  the  system.  But  in  a  kinetic  system,  where  force  is  being  used 
in  producing  energy  of  motion,  a  more  elaborate  principle  is  re- 

quired, that  of  Least  Action,  for  example.  See  infra.  Chapter  ix. 
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external  agent,  and  the  energy  of  the  system  is  dimin- 
ished by  the  amount  of  work  which  it  does. 

Work,  therefore,  is  a  transference  of  energ}-  from 
one  system  to  another;  the  system  which  gives  out 

energ\'  is  said  to  do  work  on  the  system  which  receives 
it,  and  the  amount  of  energ)'  given  out  by  the  first 
system  is  always  exactly  equal  to  that  received  by  the 
second. 

If,  therefore,  we  include  both  systems  in  one  larger 
system,  the  energy  of  the  total  system  is  neither 
increased  nor  diminished  by  the  action  of  the  one 
partial  system  on  the  other. 

75.   Measurement  of  Work 

Work  done  by  an  external  agent  on  a  material  system 

may  be  described  as  a  change*  in  the  configuration  of 
the  system  taking  place  under  the  action  of  an  external 
force  tending  to  produce  that  change. 

Thus,  if  one  pound  is  lifted  one  foot  from  the  ground 
by  a  man  in  opposition  to  the  force  of  gravity,  a  certain 
amount  of  work  is  done  by  the  man,  and  this  quantity 
is  known  among  engineers  as  one  foot-pound. 

Here  the  man  is  the  external  agent,  the  material 
system  consists  of  the  earth  and  the  pound,  the  change  of 
configuration  is  the  increase  of  the  distance  between 
the  matter  of  the  earth  and  the  matter  of  the  pound, 
and  the  force  is  the  upward  force  exerted  by  the  man  in 
lifting  the  pound,  which  is  equal  and  opposite  to  the 
weight  of  the  pound.  To  raise  the  pound  a  foot  higher 
would,  if  gravity  were  a  uniform  force,  require  exactly 
the  same  amount  of  work.  It  is  true  that  gravity  is  not 
really  uniform,  but  diminishes  as  we  ascend  from  the 

earth's  surface,  so  that  a  foot-pound  is  not  an  accurately 
*  See  footnote,  Art.  72. 
These  ideas,  leadinR  to  an  estimate  of  the  total  effect  by  work 

done  rather  than  momentum  produced,  arc  of  the  kind  that 
were  enforced  by  Leibniz.  What  was  then  mainly  needed  to  avoid 
confusion  was  a  set  of  names  for  the  different  effects. 
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known  quantity,  unless  we  specify  the  intensity  of 
gravity  at  the  place.  But  for  the  purpose  of  illustration 
we  may  assume  that  gravity  is  uniform  for  a  few  feet  of 
ascent,  and  in  that  case  the  work  done  in  lifting  a  pound 
would  be  one  foot-pound  for  every  foot  the  pound  is 
lifted. 
To  raise  twenty  pounds  of  water  ten  feet  high 

requires  200  foot-pounds  of  work.  To  raise  one  pound 
ten  feet  high  requires  ten  foot-pounds,  and  as  there  are 
twenty  pounds  the  whole  work  is  twenty  times  as 
much,  or  two  hundred  foot-pounds. 

The  quantity  of  work  done  is,  therefore,  proportional 
to  the  product  of  the  numbers  representing  the  force 
exerted  and  the  displacement  in  the  direction  of  the 
force. 

In  the  case  of  a  foot-pound  the  force  is  the  weight  of 
a  pound — a  quantity  which,  as  we  know,  is  different  in 
different  places.  The  weight  of  a  pound  expressed  in 
absolute  measure  is  numerically  equal  to  the  intensity 
of  gravity,  the  quantity  denoted  by  g,  the  value  of 
which  in  poundals  to  the  pound  varies  from  32-227  at 
the  poles  to  32-117  at  the  equator,  and  diminishes 
without  limit  as  we  recede  from  the  earth.  In  dynes 

to  the  gramme  it  varies  from  978-1  to  983-1.  Hence, 
in  order  to  express  work  in  a  uniform  and  consistent 
manner,  we  must  multiply  the  number  of  foot-pounds 
by  the  number  representing  the  intensity  of  gravity  at 
the  place.  The  work  is  thus  reduced  to  foot-poundals. 
We  shall  always  understand  work  to  be  measured  in 
this  manner  and  reckoned  in  foot-poundals  when  no 
other  system  of  measurement  is  mentioned.  When 
work  is  expressed  in  foot-pounds  the  system  is  that  of 
gravitation-measures,  which  is  not  a  complete  system 
unless  we  also  know  the  intensity  of  gravity  at  the 

place. 
In  the  metrical  system  the  unit  of  work  is  the  Erg, 

which  is  the  work  done  by  a  dyne  acting  through  a 

centimetre.  There  are  421393-8  ergs  in  a  foot-poundal. 
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76.   Potential  Energy 

The  work  done  by  a  man  in  raising  a  hea\T  bodv  is 
done  in  overcoming  the  attraction  between  the  earth 
and  that  body.  The  energy  of  the  material  system, 
consisting  of  the  earth  and  the  heavy  body,  is  thereby 
increased.  If  the  heavy  body  is  the  leaden  weight  of  a 
clock,  the  energy  of  the  clock  is  increased  by  winding 
it  up,  so  that  the  clock  is  able  to  go  for  a  week  in  spite 
of  the  friction  of  the  wheels  and  the  resistance  of  the 

air  to  the  motion  of  the  pendulum,  and  also  to  give  out 
energy  in  other  forms,  such  as  the  communication  of 
the  vibrations  to  the  air,  by  which  we  hear  the  ticking 
of  the  clock. 

When  a  man  winds  up  a  watch  he  does  work  in 
changing  the  form  of  the  mainspring  by  coiling  it  up. 
The  energy  of  the  mainspring  is  thereby  increased,  so 
that  as  it  uncoils  itself  it  is  able  to  keep  the  watch 
going. 

•  In  both  these  cases  the  energy-  communicated  to  the 
system  depends  upon  a  change  of  configuration. 

77.   Kinetic  Energy 

Rut  in  a  very  important  class  of  phenomena  the  work 
is  done  in  changing  the  velocity  of  the  body  on  which  it 
acts.  Let  us  take  as  a  simple  case  that  of  a  body 
moving  without  rotation  under  the  action  of  a  force. 
Let  the  mass  of  the  body  be  .1/  pounds,  and  let  a  force 
of  F  poundals  act  on  it  in  the  line  of  motion  during  an 
interval  of  time,  T  seconds.  Let  the  velocity  at  the 
beginning  of  the  interval  be  V  and  that  at  the  end  V 
feet  per  second,  and  let  the  distance  travelled  by  the 
body  during  the  time  be  S  feet.  The  original  momen- 

tum is  M\\  and  the  final  momentum  is  M\'\  so  that 

the  increase  of  momentum  is  .1/(1"  [').  and  this,  by 
the  second  law  of  motion,  is  equal  to  FT,  the  impulse 
of  the  force  F  acting  for  the  time  T.   Hence 

FT=  M{V'  -  [-)    (i). 
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Since  the  velocity  increases  uniformly  with  the  time 
[when  the  force  is  constant],  the  mean  velocity  is  the 
arithmetical  mean  of  the  original  and  final  velocities, 
or|(F+  V). 

We  can  also  determine  the  mean  velocity  by  dividing 
the  space  S  by  the  time  T,  during  which  it  is  described. 
Hence 

?j^=HV'+v)    (2). 
Multiplying  the  corresponding  members  of  equations 
(i)  and  (2)  each  by  each  we  obtain 

F5=  |MF'2-  l-MF^    (3). 
Here  FS  is  the  work  done  by  the  force  F  acting  on  the 
body  while  it  moves  through  the  space  S  in  the  direction 

of  the  force,  and  this  is  equal  to  the  excess  of  \MV"^ 
above  ̂ MV^.  If  we  call  \MV'^,  or  half  the  product  of 
the  mass  into  the  square  of  the  velocity,  the  kinetic 

energy  of  the  body  at  first,  then  \MV"^  will  be  the 
kinetic  energy  after  the  action  of  the  force  F  through 
the  space  S.  The  energy  is  here  expressed  in  foot- 
poundals. 
We  may  now  express  the  equation  in  words  by 

saying  that  the  work  done  by  the  force  F  in  changing 
the  motion  of  the  body  is  measured  by  the  increase  of 
the  kinetic  energy  of  the  body  during  the  time  that  the 
force  acts. 

We  have  proved  that  this  is  true,  when  the  interval  of 
time  is  so  small  that  we  may  consider  the  force  as 
constant  during  that  time,  and  the  mean  velocity  during 
the  interval  as  the  arithmetical  mean  of  the  velocities  at 

the  beginning  and  end  of  the  interv^al.  This  assumption, 
which  is  exactly  true  when  the  force  is  constant,  how- 

ever long  the  interval  may  be,  becomes  in  every  case 
more  and  more  nearly  true  as  the  interval  of  time  taken 
becomes  smaller  and  smaller.  By  dividing  the  whole 
time  of  action  into  small  parts,  and  proving  that  in 
each  of  these  the  work  done  is  equal  to  the  increase  of 
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the  kinetic  energy  of  the  body,  we  may,  by  adding  the 
successive  portions  of  the  work  and  the  successive 
increments  of  energy,  arrive  at  the  result  that  the  total 
work  done  by  the  force  is  equal  to  the  total  increase  of 
kinetic  energy. 

If  the  force  acts  on  the  body  in  the  direction  opposite 
to  its  motion,  the  kinetic  energy  of  the  body  will  be 
diminished  instead  of  being  increased,  and  the  force, 
instead  of  doing  work  on  the  body,  will  act  as  a  resist- 

ance, which  the  body,  in  its  motion,  o\ercomes.  Hence 
a  moving  body,  as  long  as  it  is  in  motion,  can  do  work  in 
overcoming  resistance,  and  the  work  done  by  the  moving 
body  is  equal  to  the  diminution  of  its  kinetic  energy, 
till  at  last,  when  the  body  is  brought  to  rest,  its  kinetic 
energy  is  exhausted,  and  the  whole  work  it  has  done 
is  then  equal  to  the  whole  kinetic  energy  which  it  had 
at  first. 

We  now  see  the  appropriateness  of  the  name  kinetic 
energy,  which  we  have  hitherto  used  merely  as  a  name 

to  denote  the  product  \MV'^.  For  the  energy  of  a  body 
has  been  defined  as  the  capacity  which  it  has  of  doing 
work,  and  it  is  measured  by  the  work  which  it  can  do. 
The  kinetic  energy  of  a  body  is  the  energy  it  has  in 
virtue  of  being  in  motion,  and  we  have  now  shown  that 

its  value  is  expressed  by  \MV'^  or  \MV  ■:  V,  that  is, 
half  the  product  of  its  momentum  into  its  velocity. 

78.   Oblique  Forces 

If  the  force  acts  on  the  body  at  right  angles  to  the 
direction  of  its  motion  it  does  no  work  on  the  body,  and 
it  alters  the  direction  but  not  the  magnitude  of  the 
velocity.  The  kinetic  energy,  therefore,  which  depends 
on  the  square  of  the  velocity,  remains  unchanged. 

If  the  direction  of  the  force  is  neither  coincident  with, 
nor  at  right  angles  to,  that  of  the  motion  of  the  body  we 
may  resolve  the  force  into  two  components,  one  of  which 
is  at  right  angles  to  the  direction  of  motion,  while  the 
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other  is  in  the  direction  of  motion  (or  in  the  opposite 
direction). 

The  first  of  these  components  may  be  left  out  of 
consideration  in  all  calculations  about  energy,  since  it 
neither  does  work  on  the  body  nor  alters  its  kinetic 
energy. 

The  second  component  is  that  which  we  have  already 
considered.  When  it  is  in  the  direction  of  motion  it 

increases  the  kinetic  energy  of  the  body  by  the  amount 
of  work  which  it  does  on  the  body.  When  it  is  in  the 
opposite  direction  the  kinetic  energy  of  the  body  is 
diminished  by  the  amount  of  work  which  the  body  does 
against  the  force. 

Hence  in  all  cases  the  increase  of  kinetic  energy  is 
equal  to  the  work  done  on  the  body  by  external  agency, 
and  the  diminution  of  kinetic  energy  is  equal  to  the 
work  done  by  the  body  against  external  resistance. 

79.   Kinetic  Energy  of  Two  Particles  referred 
TO  their  Centre  of  Mass 

The  kinetic  energy  of  a  material  system  is  equal  to 
the  kinetic  energy  of  a  mass  equal  to  that  of  the  system 
moving  with  the  velocity  of  the  centre  of  mass  of  the 
system,  together  with  the  kinetic  energy  due  to  the 
motion  of  the  parts  of  the  system 
relative  to  its  centre  of  mass. 

Let  us  begin  with  the  case  of 
two  particles  whose  masses  are  A 
and  B,  and  whose  velocities  are 
represented  in  the  diagram  of 
velocities  by  the  lines  oa  and  ob. 
If  c  is  the  centre  of  mass  of  a 

particle  equal  to  A  placed  at  a, 
and  a  particle  equal  to  B  placed  at  b,  then  oc  will 
represent  the  velocity  of  the  centre  of  mass  of  the  two 
particles. 
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The  kinetic  energ)-  of  the  system  is  the  sum  of  the 
kinetic  energies  of  the  particles,  or 

T  -  lAoa^  -\-  lBoh\ 

Expressing  oa^  and  ob"^  in  terms  of  or,  ca  and  cb,  and the  angle  oca  =  ̂ , 

r  =  lAoc^  +  \Aca^  -  ̂ of  .ca  cos  6 
+  IBoc^  +  \Bcb^  -  Boc.cb  cos  6. 

But  since  c  is  the  centre  of  mass  of  A  at  a,  and  7?  at  b, 
Aca  f  5fA  -  o. 

Hence  adding 

T=\{A  +  B)  oc^  +  ̂ ,Aca^  ̂   IBcb^ 
or,  the  kinetic  energy  of  the  system  of  two  particles  A 
and  B  is  equal  to  that  of  a  mass  equal  to  {A  +  B) 
moving  with  the  velocity  of  the  centre  of  mass,  together 
with  that  of  the  motion  of  the  particles  relative  to  the centre  of  mass. 

8o.    Kinetic  Energy  of  a  Material  System 
REFERRED  TO  ITS  CENTRE  OF  M.\SS 

We  have  begun  with  the  case  of  two  particles,  because 
the  motion  of  a  particle  is  assumed  to  be  that  of  its 
centre  of  mass,  and  we  have  proved  our  proposition 
true  for  a  system  of  two  particles.  But  if  the  proposi- 

tion is  true  for  each  of  two  material  svstems  taken 

separately,  it  must  be  true  of  the  system  which  they 
form  together.  For  if  we  now  suppose  oa  and  ob  to 
represent  the  velocities  of  the  centres  of  mass  of  two 
material  systems  A  and  B,  then  oc  will  represent  the 
velocity  of  the  centre  of  mass  of  the  combined  system 

A  r  B,  and  if  7',,  represents  the  kinetic  cnerg)-  of  the motion  of  the  system  A  relative  to  its  own  centre  of 
mass,  and  7^  the  same  for  the  system  /?,  then  if  the 
proposition  is  true  for  the  systems  A  and  B  taken 
separately,  the  kinetic  energy  of  ̂   is 

\Aoa^+  r^, 
and  that  of/?  ifioA^  4  T„. 
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The  kinetic  energy  of  the  whole  is  therefore 

lAoa^  +  \Boh^  +Ta-\-  Tb,   - 

or,     J  {A  +  B)  oc^  +  iAca^  +  Ta  +  IBcb^  +  Tb- 
The  first  term  represents  the  kinetic  energy  of  a  mass 

equal  to  that  of  the  whole  system  moving  with  the 
velocity  of  the  centre  of  mass  of  the  whole  system. 

The  second  and  third  terms,  taken  together,  represent 
the  kinetic  energy  of  the  system  A  relative  to  the  centre 
of  gravity  of  the  whole  system,  and  the  fourth  and 
fifth  terms  represent  the  same  for  the  system  B. 

Hence  if  the  proposition  is  true  for  the  two  systems 
A  and  B  taken  separately,  it  is  true  for  the  system 
compounded  of  A  and  B.  But  we  have  proved  it  true 
for  the  case  of  two  particles;  it  is  therefore  true  for 
three,  four,  or  any  other  number  of  particles,  and  there- 

fore for  any  material  system. 
The  kinetic  energy  of  a  system  referred  to  its  centre 

of  mass  is  less  than  its  kinetic  energy  when  referred  to 
any  other  point. 

For  the  latter  quantity  exceeds  the  former  by  a 
quantity  equal  to  the  kinetic  energy  of  a  m.ass  equal  to 
that  of  the  whole  system  moving  with  the  velocity  of 
the  centre  of  mass  relative  to  the  other  point,  and  since 
all  kinetic  energy  is  essentially  positive,  this  excess  must 
be  positive. 

81.  Available  Kinetic  Energy 

We  have  already  seen  in  Article  64  that  the  mutual 
action  between  the  parts  of  a  material  system  cannot 
change  the  velocity  of  the  centre  of  mass  of  the  system. 
Hence  that  part  of  the  kinetic  energy  of  the  system 
which  depends  on  the  motion  of  the  centre  of  mass 
cannot  be  affected  by  any  action  internal  to  the  system. 
It  is  therefore  impossible,  by  means  of  the  mutual 
action  of  the  parts  of  the  system,  to  convert  this  part 
of  the  energy  into  work.  As  far  as  the  system  itself 
is  concerned,  this  energy  is  unavailable.    It  can  be 
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converted  into  work  only  by  means  of  the  action 
between  this  system  and  some  other  material  system 
external  to  it. 

Hence  if  we  consider  a  material  system  unconnected 
with  any  other  system,  its  available  kinetic  energy  is 
that  which  is  due  to  the  motions  of  the  parts  of  the 
system  relative  to  its  centre  of  mass. 

Let  us  suppose  that  the  action  between  the  parts  of 
the  system  is  such  that  after  a  certain  time  the  con- 

figuration of  the  system  becomes  invariable,  and  let  us 
call  this  process  the  solidification  of  the  system.  We 
have  shown  that  the  angular  momentum  of  the  whole 
system  is  not  changed  by  any  mutual  action  of  its  parts. 
Hence  if  the  original  angular  momentum  is  zero,  the 
system,  when  its  form  becomes  invariable,  will  not  rotate 
about  its  centre  of  mass,  but  if  it  moves  at  all  will  move 
parallel  to  itself,  and  the  parts  will  be  at  rest  relative 
to  the  centre  of  mass.  In  this  case  therefore  the  whole 

available  energ\'  will  be  converted  into  work  by  the 
mutual  action  of  the  parts  during  the  solidification  of 
the  system. 

If  the  system  has  angular  momentum,  it  will  have 
the  same  angular  momentum  when  solidified.  It  will 
therefore  rotate  about  its  centre  of  mass,  and  will 
therefore  still  have  energy  of  motion  relative  to  its 
centre  of  mass,  and  this  remaining  kinetic  energy  has 
not  been  converted  into  work. 

But  if  the  parts  of  the  system  are  allowed  to  separate 
from  one  another  in  directions  perpendicular  to  the 
axis  of  the  angular  momentum  of  the  system,  and  if  the 
system  when  thus  expanded  is  solidified,  the  remaining 
kinetic  energy  of  rotation  round  the  centre  of  mass 
will  be  less  and  less  the  greater  the  expansion  of  the 
system,  so  that  by  sufficiently  expanding  the  system 
[before  it  is  solidified]  we  may  make  the  remaining 
kinetic  energy  as  small  as  we  please,  so  that  the  whole 
kinetic  energy  relative  to  the  centre  of  mass  of  the 
system  may  be  converted  into  work  within  the  system. 
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82.   Potential  Energy 

The  potential  energy  of  a  material  system  is  the 
capacity  which  it  has  of  doing  work  [on  other  systems] 
depending  on  other  circumstances  than  the  motion 
of  the  system.  In  other  words,  potential  energy  is  that 
energy  which  is  not  kinetic. 

In  the  theoretical  material  system  which  we  build  up 
in  our  imagination  from  the  fundamental  ideas  of  matter 
and  motion,  there  are  no  other  conditions  present  except 
the  configuration  and  motion  of  the  different  masses  of 
which  the  system  is  composed.  Hence  in  such  a  system 
the  circumstances  upon  w^hich  the  energy  must  depend 
are  motion  and  configuration  only,  so  that,  as  the  kinetic 
energy  depends  on  the  motion,  the  potential  energy 
must  depend  on  the  configuration. 

In  many  real  material  systems  we  know  that  part  of 
the  energy  does  depend  on  the  configuration.  Thus 
the  mainspring  of  a  watch  has  more  energy  when 
coiled  up  than  when  partially  uncoiled,  and  two  bar 
magnets  have  more  energy  when  placed  side  by  side 
with  their  similar  poles  turned  the  same  way  than  when 
their  dissimilar  poles  are  placed  next  each  other. 

83.   Elasticity 

In  the  case  of  the  spring  we  may  trace  the  connexion 
between  the  coiling  of  the  spring  and  the  force  which 
it  exerts  somewhat  further  by  conceiving  the  spring 
divided  (in  imagination)  into  very  small  parts  or  ele- 

ments. When  the  spring  is  coiled  up,  the  form  of  each 
of  these  small  parts  is  altered,  and  such  an  alteration  of 
the  form  of  a  solid  body  is  called  a  Strain. 

In  solid  bodies  strain  is  accompanied  with  internal 
force  or  stress ;  those  bodies  in  which  the  stress  depends 
simply  on  the  strain  are  called  Elastic,  and  the  property 
of  exerting  stress  v/hen  strained  is  called  Elasticity. 
We  thus  find  that  the  coiling  of  the  spring  involves 

the  strain  of  its  elements,  and  that  the  external  force 
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which  the  spring  exerts  is  the  resultant  of  the  stresses 
in  its  elements. 
We  thus  substitute  for  the  immediate  relation 

between  the  coiling  of  the  spring  and  the  force  which  it 
exerts,  a  relation  between  the  strains  and  stresses  of 
the  elements  of  the  spring;  that  is  to  say,  for  a  single 
displacement  and  a  single  force,  the  relation  between 
which  may  in  some  cases  be  of  an  exceedingly  compli- 

cated nature,  we  substitute  a  multitude  of  strains  and 

an  equal  number  of  stresses,  each  strain  being  con- 
nected with  its  corresponding  stress  by  a  much  more 

simple  relation. 
But  when  all  is  done,  the  nature  of  the  connexion 

between  configuration  and  force  remains  as  mysterious 
as  ever.  We  can  only  admit  the  fact,  and  if  we  call 
all  such  phenomena  phenomena  of  elasticity,  we  may 
find  it  very  convenient  to  classify  them  in  this  way, 
provided  we  remember  that  by  the  use  of  the  word 
elasticity  we  do  not  profess  to  explain  the  cause  of  the 
connexion  between  configuration  and  energy. 

84.   Action  at  a  Distance 

In  the  case  of  the  two  magnets  there  is  no  visible 
substance  connecting  the  bodies  between  which  the 
stress  exists.  The  space  between  the  magnets  may  be 
filled  with  air  or  with  water,  or  we  may  place  the  magnets 
in  a  vessel  and  remove  the  air  by  an  air-pump,  till  the 
magnets  are  left  in  what  is  commonly  called  a  vacuum, 
and  yet  the  mutual  action  of  the  magnets  will  not  be 
altered.  We  may  even  place  a  solid  plate  of  glass  or 
metal  or  wood  between  the  magnets,  and  still  we  find 
that  their  mutual  action  depends  simply  on  their 
relative  position,  and  is  not  perceptibly  modified  by 
placing  any  substance  between  them,  unless  that 
substance  is  one  of  the  magnetic  metals.  Hence  the 
action  between  the  magnets  is  commonly  spoken  of  as 
action  at  a  distance. 
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Attempts  have  been  made,  with  a  certain  amount  of 
success  \  to  analyse  this  action  at  a  distance  into  a 
continuous  distribution  of  stress  in  an  invisible  medium, 
and  thus  to  estabHsh  an  analogy  between  the  magnetic 
action  and  the  action  of  a  spring  or  a  rope  in  trans- 

mitting force;  but  still  the  general  fact  that  strains  or 
changes  of  configuration  are  accompanied  by  stresses  or 
internal  forces,  and  that  thereby  energy  is  stored  up 
in  the  system  so  strained,  remains  an  ultimate  fact 
which  has  not  yet  been  explained  as  the  result  of  any 
more  fundamental  principle. 

85.  Theory  of  Potential  Energy  more  compli- 
cated THAN  THAT  OF  KiNETIC  ENERGY 

Admitting  that  the  energy  of  a  material  system  may 
depend  on  its  configuration,  the  mode  in  which  it  so 
depends  may  be  much  more  complicated  than  the  mode 
in  which  the  kinetic  energy  depends  on  the  motion  of 
the  system.  For  the  kinetic  energy  may  be  calculated 
from  the  motion  of  the  parts  of  the  system  by  an  in- 

variable method.  We  multiply  the  mass  of  each  part  by 
half  the  square  of  its  velocity,  and  take  the  sum  of  all 
such  products.  But  the  potential  energy  arising  from 
the  mutual  action  of  two  parts  of  the  system  may 
depend  on  the  relative  position  of  the  parts  in  a  manner 
which  may  be  different  in  different  instances.  Thus 
when  two  billiard  balls  approach  each  other  from  a 
distance,  there  is  no  sensible  action  between  them  till 
they  come  so  near  one  another  that  certain  parts  appear 
to  be  in  contact.  To  bring  the  centres  of  the  two  balls 
nearer,  the  parts  in  contact  must  be  made  to  yield,  and 
this  requires  the  expenditure  of  work. 

1  See  Clerk  Maxwell's  Treatise  on  Electricity  and  Magnetism, 
Vol.  II,  Art.  641.  [Modern  scrutiny  requires  a  distribution  of 
momentum  in  the  medium,  which  reveals  itself  for  example  in 
the  pressure  of  radiation,  in  addition  to  the  stress:  cf.  appendix  to 

J.  H.  Poynting's  Collected  Papers.  It  in  fact  develops  into  the 
guiding  tensor  principle  in  the  theory  of  gravitational  relativity.] 

5—2 
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Hence  in  this  case  the  potential  energy  is  constant 
for  all  distances  greater  than  the  distance  of  first 
contact,  and  then  rapidly  increases  when  the  distance 
is  diminished. 

The  force  between  magnets  varies  with  the  distance 
in  a  very  different  manner,  and  in  fact  wc  find  that  it  is 
only  by  experiment  that  we  can  ascertain  the  form  of 
the  relation  between  the  configuration  of  a  system  and 
its  potential  energy. 

86.  Application  of  the  Method  of  Energy  to 
THE  Calculation  of  Forces 

A  complete  knowledge  of  the  mode  in  which  the 
energy  of  a  material  system  varies  when  the  configura- 

tion and  motion  of  the  system  are  made  to  vary  is 
mathematically  equivalent  to  a  knowledge  of  all  the 
dynamical  properties  of  the  system.  The  mathematical 
methods  by  which  all  the  forces  and  stresses  in  a  moving 
system  are  deduced  from  the  single  mathematical 
formula  which  expresses  the  energy  as  a  function  of  the 
variables  have  been  developed  by  Lagrange,  Hamilton, 
and  other  eminent  mathematicians,  but  it  would  be 
difficult  even  to  describe  them  in  terms  of  the  elementary 
ideas  to  which  we  restrict  ourselves  in  this  book.  An 
outline  of  these  methods  is  given  in  my  treatise  on 

Electricity,  Part  IV,  Chapter  V,  Article  533*,  and  the 
application  of  these  dynamical  methods  to  electro- 

magnetic phenomena  is  given  in  the  chapters  im- 
mediately following. 

But  if  we  consider  only  the  case  of  a  system  at  rest 
it  is  easy  to  see  how  we  can  ascertain  the  forces  of  the 
system  when  we  know  how  its  energy  depends  on  its 
configuration. 

For  let  us  suppose  that  an  agent  external  to  the 
system  produces  a  displacement  from  one  configuration 
to  another,  then  if  in  the  new  configuration  the  system 

♦   Reprinted  infra,  p.  123. 
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possesses  more  energy  than  it  did  at  first,  it  can  have 
received  this  increase  of  energy  only  from  the  external 
agent.  This  agent  must  therefore  have  done  an  amount 
of  work  equal  to  the  increase  of  energy.  It  must 
therefore  have  exerted  force  in  the  direction  of  the 

displacement,  and  the  mean  value  of  this  force,  multi- 
plied into  the  displacement,  must  be  equal  to  the  work 

done.  Hence  the  mean  value  of  the  force  may  be  found 
by  dividing  the  increase  of  energy  by  the  displacement. 

If  the  displacement  is  large  this  force  may  vary  con- 
siderably during  the  displacement,  so  that  it  may  be 

difficult  to  calculate  its  mean  value ;  but  since  the  force 

depends  on  the  configuration,  if  we  make  the  displace- 
ment smaller  and  smaller  the  variation  of  the  force  will 

become  smaller  and  smaller,  so  that  at  last  the  force 

may  be  regarded  as  sensibly  constant  during  the  dis- 
placement. 

If,  therefore,  we  calculate  for  a  given  configuration 
the  rate  at  which  the  energy  increases  with  the  dis- 

placement, by  a  method  similar  to  that  described  in 
Articles  27,  28,  and  33,  this  rate  will  be  numerically 
equal  to  the  force  exerted  by  the  external  agent  in  the 
direction  of  the  displacement. 

If  the  energy  diminishes  instead  of  increasing  as  the 
displacement  increases,  the  system  must  do  work  on 
the  external  agent,  and  the  force  exerted  by  the  external 
agent  must  be  in  the  direction  opposite  to  that  of  dis- 
placement. 

87.   Specification  of  the  [Mode  of  Action] 
OF  Forces 

In  treatises  on  dynamics  the  forces  spoken  of  are 
usually  those  exerted  by  the  external  agent  on  the 
material  system.  In  treatises  on  electricity,  on  the 
other  hand,  the  forces  spoken  of  are  usually  those 
exerted  by  the  electrified  system  against  an  external 
agent  which  prevents  the  system  from  moving.  It  is 
necessary,  therefore,  in  reading  any  statement  about 
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forces,  to  ascertain  whether  the  force  spoken  of  is  to 
be  regarded  from  the  one  point  of  view  or  the  other. 
We  may  in  general  avoid  any  ambiguity  by  viewing 

the  phenomenon  as  a  whole,  and  speaking  of  it  as  a 
stress  exerted  between  two  points  or  bodies,  and  dis- 

tinguishing it  as  a  tension  or  a  pressure,  an  attraction  or 
a  repulsion,  according  to  its  direction.   See  Article  ̂ ^. 

88.  Application  to  a  Syste.m  in  Motion 

It  thus  appears  that  from  a  knowledge  of  the  potential 
energy  of  a  system  in  every  possible  configuration 
we  may  deduce  all  the  external  forces  which  are  re- 

quired to  keep  the  system  in  [any  given]  configuration. 
If  the  system  is  at  rest,  and  if  these  external  forces  are 
the  actual  forces,  the  system  will  remain  in  equilibrium. 
If  the  system  is  in  motion  the  force  acting  on  each 
particle  is  that  arising  from  the  connexions  of  the 
system  (equal  and  opposite  to  the  external  force  just 
calculated),  together  with  any  external  force  which  may 
be  applied  to  it.  Hence  a  complete  knowledge  of  the 
mode  in  which  the  potential  energ}-  varies  with  the 
configuration  would  enable  us  to  predict  everv  possible 
motion  of  the  system  under  the  action  of  given  external 
forces,  provided  we  were  able  to  overcome  the  purely 
mathematical  difficulties  of  the  calculation. 

89.  Application  of  the  Method  of  Energy  to 
THE  Investigation  of  Re.\l  Bodies 

When  we  pass  from  abstract  dynamics  to  physics — 
from  material  systems,  whose  only  properties  are  those 
expressed  by  their  definitions,  to  real  bodies,  whose 
properties  we  have  to  investigate— we  find  that  there 
are  many  phenomena  which  we  are  not  able  to  explain 
as  changes  in  the  configuration  and  motion  of  a  material 
system. 

Of  course  if  we  begin  by  assuming  that  the  real 
bodies  are  systems  composed  of  matter  which  agrees 
in  all  respects  with  the  definitions  we  have  laid  down. 
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we  may  go  on  to  assert  that  all  phenomena  are  changes 
of  configuration  and  motion,  though  we  are  not  pre- 

pared to  define  the  kind  of  configuration  and  motion  by 
which  the  particular  phenomena  are  to  be  explained. 
But  in  accurate  science  such  asserted  explanations  must 

be  estimated,  not  by  their  promises,  but  by  their  per- 
formances. The  configuration  and  motion  of  a  system 

are  facts  capable  of  being  described  in  an  accurate 
manner,  and  therefore,  in  order  that  the  explanation  of 
a  phenomenon  by  the  configuration  and  motion  of  a 
material  system,  may  be  admitted  as  an  addition  to  our 
scientific  knowledge,  the  configurations,  motions,  and 
forces  must  be  specified,  and  shown  to  be  consistent 
with  known  facts,  as  well  as  capable  of  accounting  for 
the  phenomenon. 

90.    VARI.A.BLES  ON  WHICH  THE  ENERGY  DEPENDS 

But  even  when  the  phenomena  we  are  studying 
have  not  yet  been  explained  dynamically,  we  are  still 
able  to  make  great  use  of  the  principle  of  the  conserva- 

tion of  energy  as  a  guide  to  our  researches. 
To  apply  this  principle,  we  in  the  first  place  assume 

that  the  quantity  of  energy  in  a  material  system  depends 
on  the  state  of  that  system,  so  that  for  a  given  state 
there  is  a  definite  amount  of  energy. 

Hence  the  first  step  is  to  define  the  different  states 
of  the  system,  and  when  we  have  to  deal  with  real 
bodies  we  must  define  their  state  with  respect  not  only 
to  the  configuration  and  motion  of  their  visible  parts, 
but  if  we  have  reason  to  suspect  that  the  configuration 
and  motion  of  their  invisible  particles  influence  the 
visible  phenomenon,  we  must  devise  some  method  of 
estimating  the  energy  thence  arising. 

Thus  pressure,  temperature,  electric  potential,  and 
chemical  composition  are  variable  quantities,  the  values 
of  which  serve  to  specify  the  state  of  a  body,  and  in 
general  the  energy  of  the  body  depends  on  the  values 
of  these  and  other  variables. 
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91.   Energy  in  "Ffrms  01  the  Variables 
The  next  step  in  our  investigation  is  to  determine 

how  much  work  must  be  done  by  external  agency  on 
the  body  in  order  to  make  it  pass  from  one  specified 
state  to  another. 

For  this  purpose  it  is  sufficient  to  know  the  work 
required  to  make  the  body  pass  from  a  particular  state, 
which  we  may  call  the  standard  state,  into  any  other 
specified  state.  The  energy  in  the  latter  state  is  equal 
to  that  in  the  standard  state,  together  with  the  work 
required  to  bring  it  from  the  standard  state  into  the 
specified  state.  The  fact  that  this  work  is  the  same 
through  whatever  series  of  states  the  system  has  passed 
from  the  standard  state  to  the  specified  state  is  the 
foundation  of  the  whole  theory  of  energy. 

Since  all  the  phenomena  depend  on  the  variations  of 
the  energy  of  the  body,  and  not  on  its  total  value,  it  is 
unnecessary,  even  if  it  were  possible,  to  form  any 
estimate  of  the  energy  of  the  body  in  its  standard  state. 

92.   Theory  of  Heat 

One  of  the  most  important  applications  of  the  prin- 
ciple of  the  conservation  of  energy  is  to  the  investigation 

of  the  nature  of  heat. 

At  one  time  it  was  supposed  that  the  difi'erence  be- tween the  states  of  a  body  when  hot  and  when  coki  was 
due  to  the  presence  of  a  substance  called  caloric,  which 
existed  in  greater  abundance  in  the  body  when  hot  than 
when  cold.  Hut  the  experiments  of  Rumford  on  the 
heat  produced  by  the  friction  of  metal,  and  of  Davy  on 
the  melting  of  ice  by  friction,  have  shown  that  when 
work  is  spent  in  o\  ercoming  friction,  the  amount  of  heat 
produced  is  proportional  to  the  work  spent. 

The  experiments  of  Hirn  have  also  shown  that  when 
heat  is  made  to  do  work  in  a  steam-engine,  part  of  the 
heat  disappears,  and  that  the  heat  which  disappears  is 
proportional  to  the  work  done. 
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A  very  careful  measurement  of  the  work  spent  in 
friction,  and  of  the  heat  produced,  has  been  made  by 
Joule,  who  finds  that  the  heat  required  to  raise  one 

pound  of  water  from  39°  F.  to  40°  F.  is  equivalent  to 
772  foot-pounds  of  work  at  Manchester,  or  24,858  foot- 
poundals. 

From  this  we  may  find  that  the  heat  required  to 

raise  one  gramme  of  water  from  3°  C.  to  4°  C.  is 
42,000,000  ergs. 

93.   Heat  A  Form  OF  EiNERGY 

Now,  since  heat  can  be  produced  it  cannot  be  a  sub- 
stance ;  and  since  whenever  mechanical  energy  is  lost  by 

friction  there  is  a  production  of  heat,  and  whenever 
there  is  a  gain  of  mechanical  energy  in  an  engine  there 
is  a  loss  of  heat ;  and  since  the  quantity  of  energy  lost 
or  gained  is  proportional  to  the  quantity  of  heat  gained 
or  lost,  we  conclude  that  heat  is  a  form  of  energy. 
We  have  also  reasons  for  believing  that  the  minute 

particles  of  a  hot  body  are  in  a  state  of  rapid  agitation, 
that  is  to  say,  that  each  particle  is  always  moving  very 
swiftly,  but  that  the  direction  of  its  motion  alters  so 
often  that  it  makes  little  or  no  progress  from  one  region 
to  another. 

If  this  be  the  case,  a  part,  and  it  may  be  a  ver}'  large 
part,  of  the  energy  of  a  hot  body  must  be  in  the  form 
of  kinetic  energy. 

But  for  our  present  purpose  it  is  unnecessary  to 
ascertain  in  what  form  energy  exists  in  a  hot  body ;  the 
most  important  fact  is  that  energy  may  be  measured  in 
the  form  of  heat,  and  since  every  kind  of  energy  may 
be  converted  into  heat,  this  gives  us  one  of  the  most 
convenient  methods  of  measuring  it. 

94.  Energy  measured  as  Heat 

Thus  when  certain  substances  are  placed  in  contact 
chemical  actions  take  place,  the  substances  combine  in 

a  new  way,  and  the  new  group  of  substances  has  differ- 
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ent  chemical  properties  from  the  original  group  of 
substances.  During  this  process  mechanical  work  mav 
be  done  by  the  expansion  of  the  mixture,  as  when 
gunpowder  is  fired ;  an  electric  current  may  be  produced, 
as  in  the  voltaic  battery;  and  heat  may  be  generated, 
as  in  most  chemical  actions. 

The  energ)'  given  out  in  the  form  of  mechanical 
work  may  be  measured  directly,  or  it  may  be  trans- 

formed into  heat  by  friction.  The  energy-  spent  in 
producing  the  electric  current  may  be  estimated  as 
heat  by  causing  the  current  to  flow  through  a  conductor 
of  such  a  form  that  the  heat  generated  in  it  can  easily 
be  measured.  Care  must  be  taken  that  no  energy  is 
transmitted  to  a  distance  in  the  form  of  sound  or 
radiant  heat  without  being  duly  accounted  for. 

The  energy  remaining  in  the  mixture,  together  with 
the  energy  which  has  escaped,  must  be  equal  to  the 
original  energy. 

Andrews,  Favre  and  Silbermann,  [Julius  Thomsen,] 
and  others,  have  measured  the  quantity  of  heat  pro- 

duced when  a  certain  quantity  of  oxygen  or  of  chlorine 
combines  with  its  equivalent  of  other  substances.  These 
measurements  enable  us  to  calculate  the  excess  of  the 
energy  which  the  substances  concerned  had  in  their 
original  state,  when  uncombined,  above  that  which  they 
have  after  combination. 

95.   Scientific  Work  to  be  done 

Though  a  great  deal  of  excellent  work  of  this  kind 
has  already  been  done,  the  extent  of  the  field  hitherto 
investigated  appears  quite  insignificant  when  we  con- 

sider the  boundless  variety  and  complexity  of  the 
natural  bodies  with  which  we  have  to  deal. 

In  fact  the  special  work  which  lies  before  the  physical 
inquirer  in  the  present  state  of  science  is  the  deter- 

mination of  the  quantity  of  energy  which  enters  or 
leaves  a  material  system  during  the  passage  of  the  sys- 

tem from  its  standard  state  to  any  other  definite  state. 
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96.   History  of  the  Doctrine  of  Energy 

The  scientific  importance  of  giving  a  name  to  the 

quantity  which  we  call  kinetic  energy  seems  to  have 
been  first  recognised  by  Leibniz,  who  gave  to  the 
product  of  the  mass  by  the  square  of  the  velocity  the 
name  of  Vis  Viva.  This  is  twice  the  kinetic  energy. 

Newton,  in  the  "  Scholium  to  the  Laws  of  Motion," 
expresses  the  relation  between  the  rate  at  which  work 
is  done  by  the  external  agent,  and  the  rate  at  which 
it  is  given  out,  stored  up,  or  transformed  by  any  machine 
or  other  material  system,  in  the  following  statement, 
which  he  makes  in  order  to  show  the  wide  extent  of  the 

application  of  the  Third  Law  of  Motion. 

"If  the  action  of  the  external  agent  is  estimated  by 
the  product  of  its  force  into  its  velocity,  and  the  re- 

action of  the  resistance  in  the  same  way  by  the  product 

of  the  velocity  of  each  part  of  the  system  into  the 
resisting  force  arising  from  friction,  cohesion,  weight, 
and  acceleration,  the  action  and  reaction  will  be  equal 
to  each  other,  whatever  be  the  nature  and  motion  of  the 

system."  That  this  statement  of  Newton's  impHcitly 
contains  nearly  the  whole  doctrine  of  energy  was  first 

pointed  out  by  Thomson  and  Tait*. 
The  words  Action  and  Reaction  as  they  occur  in  the 

enunciation  of  the  Third  Law  of  Motion  are  explained 

to  mean  Forces,  that  is  to  say,  they  are  the  opposite 

aspects  of  one  and  the  same  Stress. 

In  the  passage  quoted  above  a  new  and  difi"erent sense  is  given  to  these  words  by  estimating  Action  and 
Reaction  by  the  product  of  a  force  into  the  velocity  of 

*   Treatise  on  Natural  Philosophy,  vol.  i,   1867.  §  268. 
"Newton,  in  a  Scholium  to  his  Third  Law  of  Motion,  has 

stated  the  relation  between  work  and  kinetic  energy  in  a  manner 
so  perfect  that  it  cannot  be  improved,  but  at  the  same  time  with 
so  little  apparent  effort  or  desire  to  attract  attention  that  no 
one  seems  to  have  been  struck  with  the  great  importance  of  the 
passage  till  it  was  pointed  out  recently  (1867)  by  Thomson  and 
Tait."  Clerk  Maxwell's  Theory  of  Heat,  ch.  iv  on  "Elementary 
Dynamical  Principles,"  p.  gi- 



76  ON  ENERGY  [ch. 

its  point  of  application.  According  to  this  definition 
the  Action  of  the  external  agent  is  the  rate  at  which  it 
does  work.  This  is  what  is  meant  by  the  Power  of  a 
steam-engine  or  other  prime  mover.  It  is  generally 
expressed  by  the  estimated  number  of  ideal  horses 
which  would  be  required  to  do  the  work  at  the  same 
rate  as  the  engine,  and  this  is  called  the  Horse-power 
of  the  engine. 
When  we  wish  to  express  by  a  single  word  the  rate 

at  which  work  is  done  by  an  agent  we  shall  call  it  the 
Power  of  the  agent,  defining  the  power  as  the  work 
done  in  the  unit  of  time. 

The  use  of  the  term  Energy,  in  a  precise  and  scientific 
sense,  to  express  the  quantity  of  work  which  a  material 

system  can  do,  was  introduced  by  Dr  Young*. 

97.   On  the  Different  Forms  of  Energy 

The  energy  which  a  body  has  in  virtue  of  its  motion 
is  called  kinetic  energy. 

A  system  may  also  have  energy  in  virtue  of  its  con- 
figuration, if  the  forces  of  the  system  are  such  that  the 

svstem  will  do  work  against  external  resistance  while  it 
passes  into  another  configuration.  This  energy  is  called 
Potential  Energy.  Thus  when  a  stone  has  been  lifted 

to  a  certain  height  above  the  earth's  surface,  the  system 
of  two  bodies,  the  stone  and  the  earth,  has  potential 
energy,  and  is  able  to  do  a  certain  amount  of  work 
during  the  descent  of  the  stone.  This  potential  energy 
is  due  to  the  fact  that  the  stone  and  the  earth  attract 

each  other,  so  that  work  has  to  be  spent  by  the  man 
who  lifts  the  stone  and  draws  it  away  from  the  earth, 
and  after  the  stone  is  lifted  the  attraction  between  the 

earth  and  the  stone  is  capable  of  doing  work  as  the  stone 

descends.  This  kind  of  energ\',  therefore,  depends 
upon  the  w  ork  which  the  forces  of  the  system  would  do 

•   Lectures  on  Natural  Philosophy  [1807],  Lecture  VIII. 
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if  the  parts  of  the  system  were  to  yield  to  the  action 

of  these  forces.  This  is  called  the  "Sum  of  the  Ten- 
sions" by  Helmholtz  in  his  celebrated  memoir  on  the 

*'  Conservation  of  Energy."  *  Thomson  called  it  Statical 
Energy;  it  has  also  been  called  Energy  of  Position; 
but  Rankine  introduced  the  term  Potential  Energyf — a 
ver}'  felicitous  expression,  since  it  not  only  signifies  the 
energy  which  the  system  has  not  in  actual  possession, 
but  only  has  the  power  to  acquire,  but  it  also  indicates 
its  connexion  with  what  has  been  called  (on  other 
grounds)  the  Potential  Function;!:. 

The  different  forms  in  which  energy  has  been  found 
to  exist  in  material  systems  have  been  placed  in  one  or 

other  of  these  two  classes — -Kinetic  Energy,  due  to 
motion,  and  Potential  Energ}^  due  to  configuration. 

Thus  a  hot  body,  by  giving  out  heat  to  a  colder  body, 
may  be  made  to  do  work  by  causing  the  cold  body  to 
expand  in  opposition  to  pressure.  A  material  system, 
therefore,  in  which  there  is  a  non-uniform  distribution 
of  temperature  has  the  capacity  of  doing  work,  or  energy. 
This  energy  is  now  believed  to  be  kinetic  energ\ ,  due  to 
a  motion  of  agitation  in  the  smallest  parts  of  the  hot  body. 

Gunpowder  has  energy,  for  when  fired  it  is  capable 
of  setting  a  cannon-ball  in  motion.  The  energy  of  gun- 

powder is  Chemical  Energy,  arising  from  the  power 
which  the  constituents  cf  gunpowder  possess  of 
arranging  themselves  in  a  new  manner  when  exploded, 
so  as  to  occupy  a  much  larger  volume  than  the  gun- 

powder does.  In  the  present  state  of  science  chemists 
figure  to  themselves  chemical  action  as  a  rearrangement 
of  particles  under  the  action  of  forces  tending  to  produce 

*  Berlin,  1847:  translated  in  Taylor's  Scientific  Memoirs,  Feb. 
1853.  [Remarkable  mainly  for  its  wide  ramifications  into  electric 
and  chemical  theory.] 

t  The  vis  potentialis  of  Daniel  Bernoulli,  as  contrasted  with 
vis  viva,  e.g.  for  the  case  of  a  bent  spring;  cf.  Euler,  De  Curvis 
Elasticis,   in   Appendix   to   Solutio  Problematis  Isoperimetrici... 
(1744)- 

X  The  term  Potential  was  employed  independently  by  Gauss 
and  by  Green,  and  so  probably  originated  with  D.  Bernoulli. 
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this  change  of  arrangement.  From  this  point  of  view, 

therefore,  chemical  energy  is  potential  energy-. 
Air,  compressed  in  the  chamber  of  an  air-gun,  is 

capable  of  propelling  a  bullet.  The  energv'  of  com- 
pressed air  was  at  one  time  supposed  to  arise  from  the 

mutual  repulsion  of  its  particles.  If  this  explanation 
were  the  true  one  its  energy  would  be  potential  energy. 
In  more  recent  times  it  has  been  thought  that  the 
particles  of  the  air  are  in  a  state  of  motion,  and  that 
its  pressure  is  caused  by  the  impact  of  these  particles 
on  the  sides  of  the  vessel.  According  to  this  theory 
the  energy  of  compressed  air  is  kinetic  energy. 

There  are  thus  many  different  modes  in  which  a 

material  system  may  possess  energ)-,  and  it  may  be 
doubtful  in  some  cases  whether  the  energ)-  is  of  the 
kinetic  or  the  potential  form.  The  nature  of  energy, 
however,  is  the  same  in  whatever  form  it  may  be  found. 
The  quantity  of  energy  can  always  be  expressed  as 
equated  to  that  of  a  body  of  a  definite  mass  moving  with 
a  definite  velocity. 



CHAPTER  VI 

RECAPITULATION 

98.   Retrospect  of  Abstract  Dynamics 

We  have  now  gone  through  that  part  of  the  funda- 
mental science  of  the  motion  of  matter  which  we  have 

been  able  to  treat  in  a  manner  sufficiently  elementary 
to  be  consistent  with  the  plan  of  this  book. 

It  remains  for  us  to  take  a  general  view  of  the  rela- 
tions between  the  parts  of  this  science,  and  of  the  whole 

to  other  physical  sciences,  and  this  we  can  now  do  in 
a  more  satisfactory  way  than  we  could  before  we  had 
entered  into  the  subject. 

99.   Kinematics 
We  began  with  kinematics,  or  the  science  of  pure 

motion.  In  this  division  of  the  subject  the  ideas  brought 
before  us  are  those  of  space  and  time.  The  only  attri- 

bute of  matter  which  comes  before  us  is  its  continuity 

of  existence  in  space  and  time — the  fact,  namely,  that 
every  particle  of  matter,  at  any  instant  of  time,  is  in 
one  place  and  in  one  only,  and  that  its  change  of  place 
during  any  interval  of  time  is  accomplished  by  moving 
along  a  continuous  path. 

Neither  the  force  which  affects  the  motion  of  the 

body,  nor  the  mass  of  the  body,  on  which  the  amount  of 
force  required  to  produce  the  motion  depends,  come 
under  our  notice  in  the  pure  science  of  motion. 

100.   Force 

In  the  next  division  of  the  subject  force  is  considered 
in  the  aspect  of  that  which  alters  the  motion  of  a  mass. 

If  we  confine  our  attention  to  a  single  body,  our  in- 
vestigation enables  us,  from  observation  of  its  motion,  to 
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determine  the  direction  and  magnitude  of  the  resultant 
force  which  acts  on  it,  and  this  investigation  is  the 
exemplar  and  type  of  all  researches  undertaken  for  the 
purpose  of  the  discovery  and  measurement  of  physical 
forces. 

But  this  may  be  regarded  as  a  mere  application  of 
the  definition  of  a  force,  and  not  as  a  new  physical 
truth. 

It  is  when  we  come  to  define  equal  forces  as  those 
W'hich  produce  equal  rates  of  acceleration  in  the  same 
mass,  and  equal  masses  as  those  which  are  equally 
accelerated  by  equal  forces,  that  we  find  that  these 
definitions  of  equality  amount  to  the  assertion  of  the 
physical  truth,  that  the  comparison  of  quantities  of 
matter  by  the  forces  required  to  produce  in  them  a  given 
acceleration  is  a  method  which  always  leads  to  con- 

sistent results,  whatever  be  the  absolute  values  of  the 
forces  and  the  accelerations. 

loi.  Stress 

The  next  step  in  the  science  of  force  is  that  in  which 
we  pass  from  the  consideration  of  a  force  as  acting  on 
a  body,  to  that  of  its  being  one  aspect  of  that  mutual 
action  between  two  bodies,  which  is  called  by  Newton 
Action  and  Reaction,  and  which  is  now  more  briefly 
expressed  by  the  single  word  Stress. 

102.  Relativity  of  Dynamical  Knowledge 

Our  whole  progress  up  to  this  point  may  be  described 
as  a  gradual  development  of  the  doctrine  of  relativity  of 
all  physical  phenomena.  Position  we  must  evidently 
acknowledge  to  be  relative,  for  we  cannot  describe  the 
position  of  a  body  in  any  terms  which  do  not  express 
relation.  The  ordinary  language  about  motion  and  rest 
does  not  so  completely  exclude  the  notion  of  their  being 
measured  absolutely,  but  the  reason  of  this  is,  that  in 
our  ordinary  language  we  tacitly  assume  that  the  earth 
is  at  rest. 
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As  our  ideas  of  space  and  motion  become  clearer,  we 
come  to  see  how  the  whole  body  of  dynamical  doctrine 
hangs  together  in  one  consistent  system. 

Our  primitive  notion  may  have  been  that  to  know 
absolutely  where  we  are,  and  in  what  direction  we  are 
going,  are  essential  elements  of  our  knowledge  as  con- 

scious beings. 
But  this  notion,  though  undoubtedly  held  by  many 

wise  men  in  ancient  times,  has  been  gradually  dispelled 
from  the  minds  of  students  of  physics. 

There  are  no  landmarks  in  space;  one  portion  of 
space  is  exactly  like  every  other  portion,  so  that  we 
cannot  tell  where  we  are.  We  are,  as  it  were,  on  an 
unruffled  sea,  without  stars,  compass,  soundings,  wind, 
or  tide,  and  we  cannot  tell  in  what  direction  we  are 
going.  We  have  no  log  which  we  can  cast  out  to  take 
a  dead  reckoning  by;  we  may  compute  our  rate  of 
motion  with  respect  to  the  neighbouring  bodies,  but 
we  do  not  know  how  these  bodies  may  be  moving  in 
space. 

103.   Relativity  of  Force 

We  cannot  even  tell  what  force  may  be  acting  on  us ; 
we  can  only  tell  the  difference  between  the  force  acting 

on  one  thing  and  that  acting  on  another*. 
We  have  an  actual  example  of  this  in  our  every-day 

experience.  The  earth  moves  round  the  sun  in  a  year 

at  a  distance  of  91,520,000  miles  or  1-473  x  iqI^ 
centimetresf.  It  follows  from  this  that  a  force  is  exerted 
on  the  earth  in  the  direction  of  the  sun,  which  produces 
an  acceleration  of  the  earth  in  the  direction  of  the  sun 

of  about  0-019  in  feet  and  seconds,  or  about  yJ^jj  of  the 

intensity  of  gravity  at  the  earth's  surface. 
A  force  equal  to  the  sixteen-hundredth  part  of  the 

weight  of  a  body  might  be  easily  measured  by  known 
experimental  methods,  especially  if  the  direction  of  this 

*  See  Appendix  I;  especially  p.  143- 
t  More  modem  values  are  9-28  x  10'  miles,  or  1-494  x  10"  cm. 
M.  6 
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force  were  differently  inclined  to  the  vertical  at  different 
hours  of  the  day. 

Now,  if  the  attraction  of  the  sun  were  exerted  upon 
the  solid  part  of  the  earth,  as  distinguished  from  the 
movable  bodies  on  which  we  experiment,  a  body  sus- 

pended by  a  string,  and  moving  with  the  earth,  would 
indicate  the  difference  between  the  solar  action  on  the 

body,  and  that  on  the  earth  as  a  whole. 
If,  for  example,  the  sun  attracted  the  earth  and  not 

the  suspended  body,  then  at  sunrise  the  point  of  sus- 
pension, which  is  rigidly  connected  with  the  earth, 

would  be  drawn  towards  the  sun,  while  the  suspended 

body  would  be  acted  on  only  by  the  earth's  attraction, 
and  the  string  would  appear  to  be  deflected  away  from 
the  sun  by  a  sixteen-hundredth  part  of  the  length  of 
the  string.  At  sunset  the  string  would  be  deflected  away 
from  the  setting  sun  by  an  equal  amount;  and  as  the 
sun  sets  at  a  different  point  of  the  compass  from  that 
at  which  he  rises  the  deflexions  of  the  string  would  be 
in  different  directions,  and  the  difference  in  the  position 
of  the  plumb-line  at  sunrise  and  sunset  would  be  easily 
observed. 

But  instead  of  this,  the  attraction  of  gravitation  is 
exerted  upon  all  kinds  of  matter  equally  at  the  same 
distance  from  the  attracting  body.  At  sunrise  and 
sunset  the  centre  of  the  earth  and  the  suspended  body 
are  nearly  at  the  same  distance  from  the  sun,  and  no 

deflexion  of  the  plumb-line  due  to  the  sun's  attraction can  be  observed  at  these  times.  The  attraction  of  the 

sun,  therefore,  in  so  far  as  it  is  exerted  equally  upon  all 
bodies  on  the  earth,  produces  no  effect  on  their  relative 
motions.  It  is  only  the  differences  of  the  intensity  and 
direction  of  the  attraction  acting  on  diflerent  parts  of 
the  earth  which  can  produce  any  effect,  and  these 
differences  are  so  small  for  bodies  at  moderate  distances 

that  it  is  only  when  the  body  acted  on  is  very  large,  as 
in  the  case  of  the  ocean,  that  their  effect  becomes  per- 

ceptible in  the  form  of  tides. 
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104.   Rotation 
In  what  we  have  hitherto  said  about  the  motion  of 

bodies,  we  have  tacitly  assumed  that  in  comparing  one 
configuration  of  the  system  with  another,  we  are  able 
to  draw  a  line  in  the  final  configuration  parallel  to  a 
line  in  the  original  configuration.  In  other  words,  we 
assume  that  there  are  certain  directions  in  space  which 
may  be  regarded  as  constant,  and  to  which  other  direc- 

tions may  be  referred  during  the  motion  of  the  system. 
In  astronomy,  a  line  drawn  from  the  earth  to  a  star 

may  be  considered  as  fixed  in  direction,  because  the 
relative  motion  of  the  earth  and  the  star  is  in  general 
so  small  compared  with  the  distance  between  them  that 
the  change  of  direction,  even  in  a  century,  is  very  small. 
But  it  is  manifest  that  all  such  directions  of  reference 

must  be  indicated  by  the  configuration  of  a  material 
system  existing  in  space,  and  that  if  this  system  were 
altogether  removed,  the  original  directions  of  reference 
could  never  be  recovered. 

But  though  it  is  impossible  to  determine  the  absolute 
velocity  of  a  body  in  space,  it  is  possible  to  determine 
whether  the  direction  of  a  line  in  a  material  system  is 
constant  or  variable. 

For  instance,  it  is  possible  by  observations  made  on 
the  earth  alone,  without  reference  to  the  heavenly  bodies, 
to  determine  whether  the  earth  is  rotating  or  not. 

So  far  as  regards  the  geometrical  configuration  of  the 

earth  and  the  heavenly  bodies,  it  is  evidently  all  the  same* 

"Whether  the  sun,  predominant  in  heaven. 
Rise  on  the  earth,  or  earth  rise  on  the  sun ; 
He  from  the  east  his  flaming  road  begin, 
Or  she  from  west  her  silent  course  advance 

With  inofl^ensive  pace  that  spinning  sleeps 
On  her  soft  axle,  while  she  paces  even, 

And  bears  thee  soft  with  the  smooth  air  along." 
*  From  the  discussion  on  the  celestial  motions  in  Paradise  Lost 

(Book  VIII,  lines  160-6):  Milton's  interview  with  Galileo  when  as 
a  young  man  he  visited  Italy  may  be  recalled. 

6—2 
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The  distances  between  the  bodies  composing  the 
universe,  whether  celestial  or  terrestrial,  and  the  angles 
between  the  lines  joining  them,  are  all  that  can  be 
ascertained  without  an  appeal  to  dynamical  principles, 
and  these  will  not  be  affected  if  any  motion  of  rotation 
of  the  whole  system,  similar  to  that  of  a  rigid  body 
about  an  axis,  is  combined  with  the  actual  motion;  so 
that  from  a  geometrical  point  of  view  the  Copernican 
system,  according  to  which  the  earth  rotates,  has  no 
advantage,  except  that  of  simplicity,  over  that  in  which 
the  earth  is  supposed  to  be  at  rest,  and  the  apparent 
motions  of  the  heavenly  bodies  to  be  their  absolute 
motions. 

Even  if  we  go  a  step  further,  and  consider  the  dyna- 
mical theory  of  the  earth  rotating  round  its  axis,  we 

may  account  for  its  oblate  figure,  and  for  the  equi- 
librium of  the  ocean  and  of  all  other  bodies  on  its 

surface  on  either  of  two  hypotheses — that  of  the  motion 
of  the  earth  round  its  axis,  or  that  of  the  earth  not 
rotating,  but  caused  to  assume  its  oblate  figure  by  a 
force  acting  outwards  in  all  directions  from  its  axis,  the 
intensity  of  this  force  increasing  as  the  distance  from 
the  axis  increases.  Such  a  force,  if  it  acted  on  all 
kinds  of  matter  alike,  would  accoimt  not  only  for  the 

oblateness  of  the  earth's  figure,  but  for  the  conditions 
of  equilibrium  of  all  bodies  at  rest  with  respect  to  the 
earth. 

It  is  only  when  we  go  further  still,  and  consider  the 
phenomena  of  bodies  which  are  in  motion  with  respect 

to  the  earth*,  that  we  are  really  constrained  to  admit 
that  the  earth  rotates. 

105.   Newton's  Determination  of  the  Absolute 
Velocity  of  Rotation 

Newton  was  the  first  to  point  out  that  the  absolute 
motion  of  rotation  of  the  earth  might  be  demonstrated 
by  experiments  on  the  rotation  of  a  material  system. 

♦  .^s  in  Art.  105.    See  also  Appendix  I,  p.  142. 
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For  instance,  if  a  bucket  of  water  is  suspended  from  a 
beam  by  a  string,  and  the  string  twisted  so  as  to  keep 
the  bucket  spinning  round  a  vertical  axis,  the  water 
will  soon  spin  round  at  the  same  rate  as  the  bucket,  so 
that  the  system  of  the  water  and  the  bucket  turns  round 
its  axis  like  a  solid  body. 

The  water  in  the  spinning  bucket  rises  up  at  the 
sides,  and  is  depressed  in  the  middle,  showing  that  in 
order  to  make  it  move  in  a  circle  a  pressure  must  be 
exerted  towards  the  axis.  This  concavity  of  the  surface 
depends  on  the  absolute  motion  of  rotation  of  the  water 
and  not  on  its  relative  rotation. 

For  instance,  it  does  not  depend  on  the  rotation 
relative  to  the  bucket.  For  at  the  beginning  of  the 
experiment,  when  we  set  the  bucket  spinning,  and 
before  the  water  has  taken  up  the  motion,  the  water 
and  the  bucket  are  in  relative  motion,  but  the  surface 
of  the  water  is  flat,  because  the  water  is  not  rotating, 
but  only  the  bucket. 
When  the  water  and  the  bucket  rotate  together, 

there  is  no  motion  of  the  one  relative  to  the  other,  but 
the  surface  of  the  water  is  hollow,  because  it  is  rotating. 
When  the  bucket  is  stopped,  as  long  as  the  water 

continues  to  rotate  its  surface  remains  hollow,  showing 
that  it  is  still  rotating  though  the  bucket  is  not. 

It  is  manifestly  the  same,  as  regards  this  experiment, 
whether  the  rotation  be  in  the  direction  of  the  hands 

of  a  watch  or  the  opposite  direction,  provided  the  rate 
of  rotation  is  the  same. 

Now  let  us  suppose  this  experiment  tried  at  the 
North  Pole.  Let  the  bucket  be  made,  by  a  proper 

arrangement  of  clockwork,  to  rotate  either  in  the  direc- 
tion of  the  hands  of  a  watch,  or  in  the  opposite  direction, 

at  a  perfectly  regular  rate. 
If  it  is  made  to  turn  round  by  clockwork  once  in 

twent}'-four  hours  (sidereal  time)  the  way  of  the  hands 
of  a  watch  laid  face  upwards,  it  will  be  rotating  as 
regards  the  earth,  but  not  rotating  as  regards  the  stars. 
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If  the  clockwork  is  stopped,  it  will  rotate  with 
respect  to  the  stars,  but  not  with  respect  to  the  earth. 

Finally,  if  it  is  made  to  turn  round  once  in  twenty- 
four  hours  (sidereal  time)  in  the  opposite  direction,  it 
will  be  rotating  with  respect  to  the  earth  at  the  same 
rate  as  at  first,  but  instead  of  being  free  from  rotation 
as  respects  the  stars,  it  will  be  rotating  at  the  rate  of  one 
turn  in  twelve  hours. 

Hence  if  the  earth  is  at  rest,  and  the  stars  moving 
round  it,  the  form  of  the  surface  will  be  the  same  in  the 
first  and  last  case;  but  if  the  earth  is  rotating,  the 
water  will  be  rotating  in  the  last  case  but  not  in  the 
first,  and  this  will  be  made  manifest  by  the  water  rising 
higher  at  the  sides  in  the  last  case  than  in  the  first. 

The  surface  of  the  water  will  not  be  really  concave 
in  any  of  the  cases  supposed,  for  the  effect  of  gravity 
acting  towards  the  centre  of  the  earth  is  to  make  the 
surface  convex,  as  the  surface  of  the  sea  is,  and  the 
rate  of  rotation  in  our  experiment  is  not  sufficiently 
rapid  to  make  the  surface  concave.  It  will  only  make 
it  slightly  less  convex  than  the  surface  of  the  sea  in  the 
last  case,  and  slightly  more  convex  in  the  first. 

But  the  difference  in  the  form  of  the  surface  of 

the  water  would  be  so  exceedingly  small,  that  with  our 
methods  of  measurement  it  would  be  hopeless  to 
attempt  to  determine  the  rotation  of  the  earth  in  this 
way. 

1 06.   Foucault's  Pendulum 

The  most  satisfactory  method  of  making  an  experi- 
ment for  this  purpose  is  that  devised  by  M.  Foucault*. 

A  heavy  ball  is  hung  from  a  fixed  point  by  a  wire,  so 
that  it  is  capable  of  swinging  like  a  pendulum  in  any 
vertical  plane  passing  through  the  fixed  point. 

•  Nowadays  the  fixitv  of  direction  in  space  of  the  plane  of 
rotation  of  a  ra]>iilly  spinning  wheel,  freely  pivoted,  a  method 
also  originated  by  Fovicault,  would  reveal  it  most  readily.  Cf. 

Art.  71.  The  syrostatic  compass  interacts  with  the  earth's  rota- tion, on  the  same  principle. 
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In  starting  the  pendulum  care  must  be  taken  that 
the  wire,  when  at  the  lowest  point  of  the  swing,  passes 
exactly  through  the  position  it  assumes  when  hanging 
vertically.  If  it  passes  on  one  side  of  this  position,  it 
will  return  on  the  other  side,  and  this  motion  of  the 
pendulum  round  the  vertical  instead  of  through  the 
vertical  must  be  carefully  avoided,  because  we  wish  to 
get  rid  of  all  motions  of  rotation  either  in  one  direction 
or  the  other. 

Let  us  consider  the  angular  momentum  of  the  pen- 
dulum about  the  vertical  line  through  the  fixed  point. 

At  the  instant  at  which  the  wire  of  the  pendulum 
passes  through  the  vertical  line,  the  angular  momentum 
about  the  vertical  line  is  zero. 
The  force  of  gravity  always  acts  parallel  to  this 

vertical  line,  so  that  it  cannot  produce  angular  momen- 
tum round  it.  The  tension  of  the  wire  always  acts 

through  the  fixed  point,  so  that  it  cannot  produce 
angular  momentum  about  the  vertical  line. 

Hence  the  pendulum  can  never  acquire  angular 
momentum  about  the  vertical  line  through  the  point  of 
suspension. 

Hence  when  the  wire  is  out  of  the  vertical,  the 
vertical  plane  through  the  centre  of  the  ball  and  the 
point  of  suspension  cannot  be  rotating;  for  if  it  were, 
the  pendulum  would  have  an  angular  momentum  about 
the  vertical  line*. 
Now  let  us  suppose  this  experiment  performed  at 

the  North  Pole.  The  plane  of  vibration  of  the  pendulum 
will  remain  absolutely  constant  in  direction,  so  that  if 
the  earth  rotates,  the  rotation  of  the  earth  will  be  made 
manifest. 

*  But  if  from  want  of  precaution  the  ball  described  an  open 
elliptic  curve,  however  elongated,  this  curve  of  vibration  would 
rotate  spontaneously,  throu,s;h  an  angle  Ji2  in  each  revolution  of 
the  ball,  and  in  the  same  direction,  where  fi  is  the  (small)  extent 
of  the  conical  angle  traced  out  by  the  wire.  This  may  readily 
mask  the  effect  of  the  earth's  rotation.  If  the  bob  were  free  to 
revolve  on  the  wire  as  axis,  that  body  would  turn  through  0  in 
each  revolution. 
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We  have  only  to  draw  a  line  on  the  earth  parallel 
to  the  plane  of  vibration,  and  to  compare  the  position 
of  this  line  with  that  of  the  plane  of  vibration  at  a 
subsequent  time. 

As  a  pendulum  of  this  kind  properly  suspended  will 
swing  for  several  hours,  it  is  easy  to  ascertain  whether 
the  position  of  the  plane  of  vibration  is  constant  as 
regards  the  earth,  as  it  would  be  if  the  earth  is  at  rest, 
or  constant  as  regards  the  stars,  if  the  stars  do  not  move 
round  the  earth. 

We  have  supposed,  for  the  sake  of  simplicity  in  the 
description,  that  the  experiment  is  made  at  the  North 
Pole.  It  is  not  necessary  to  go  there  in  order  to 
demonstrate  the  rotation  of  the  earth.  The  only  region 
where  the  experiment  will  not  show  it  is  at  the  equator. 

At  every  other  place  the  pendulum  will  indicate  the 
rate  of  rotation  of  the  earth  with  respect  to  the  vertical 
line  at  that  place.  If  at  any  instant  the  plane  of  the 
pendulum  passes  through  a  star  near  the  horizon  either 
rising  or  setting,  it  will  continue  to  pass  through  that 
star  as  long  as  it  is  near  the  horizon.  That  is  to  say, 
the  horizontal  part  of  the  apparent  motion  of  a  star  on 
the  horizon  is  equal  to  the  rate  of  rotation  of  the  plane 
of  vibration  of  the  pendulum. 

It  has  been  obser\ed  that  the  plane  of  vibration 
appears  to  rotate  in  the  opposite  direction  in  the 
southern  hemisphere,  and  by  a  cotnparison  of  the  rates 
at  various  places  the  actual  time  of  rotation  of  the  earth 
has  been  deduced  without  reference  to  astronomical 
observations.  The  mean  value,  as  deduced  from  these 
experiments  by  Messrs  Galbraith  and  Haughton  in 
their  Manual  of  Astronomy,  is  23  hours  53  minutes 
37  seconds.  The  true  time  of  rotation  of  the  earth  is 
23  hours  56  minutes  4  seconds  mean  solar  time. 
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107.  Matter  and  Energy* 
All  that  we  know  about  matter  relates  to  the  series 

of  phenomena  in  which  energy  is  transferred  from  one 
portion  of  matter  to  another,  till  in  some  part  of  the 
series  our  bodies  are  affected,  and  we  become  conscious 
of  a  sensation. 

By  the  mental  process  which  is  founded  on  such 
sensations  we  come  to  learn  the  conditions  of  these 
sensations,  and  to  trace  them  to  objects  which  are  not 
part  of  ourselves,  but  in  every  case  the  fact  that  we 
learn  is  the  mutual  action  between  bodies.  This 
mutual  action  we  have  endeavoured  to  describe  in  this 
treatise.  Under  various  aspects  it  is  called  Force, 
Action  and  Reaction,  and  Stress,  and  the  evidence  of 
it  is  the  change  of  the  motion  of  the  bodies  between 
which  it  acts. 

The  process  by  which  stress  produces  change  of 
motion  is  called  Work,  and,  as  we  have  already  shown, 
work  may  be  considered  as  the  transference  of  Energy 
from  one  body  or  system  to  another. 

Hence,  as  we  have  said,  we  are  acquainted  with 
matter  only  as  that  which  may  have  energy  communi- 

cated to  it  from  other  matter,  and  which  may,  in  its 
turn,  communicate  energy  to  other  matter. 

Energy,  on  the  other  hand,  we  know  only  as  that 
which  in  all  natural  phenomena  is  continually  passing 
from  one  portion  of  matter  to  another. 

108.  Test  of  a  Material  Substance 

Energy  cannot  exist  except  in  connexion  with  matter. 
Hence  since,  in  the  space  between  the  sun  and  the  earth, 
the  luminous  and  thermal  radiations,  which  have  left 
the  sun  and  which  have  not  reached  the  earth,  possess 
energy,  the  amount  of  which  per  cubic  mile  can  be 
measured,  this  energy  must  belong  to  matter  existing 

*  See  Appendix  II. 
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in  the  interplanetary  spaces,  and  since  it  is  only  by  the 
light  which  reaches  us  that  we  become  aware  of  the 
existence  of  the  most  remote  stars,  we  conclude  that 
the  matter  which  transmits  light  is  disseminated  through 
the  whole  of  the  visible  universe. 

109.   Energy  not  capable  of  Identification 

We  cannot  identify  a  particular  portion  of  energy,  or 
trace  it  through  its  transformations.  It  has  no  individual 
existence,  such  as  that  which  we  attribute  to  particular 
portions  of  matter. 

The  transactions  of  the  material  universe  appear  to 

be  conducted,  as  it  were,  on  a  system  of  credit*.  Each 
transaction  consists  of  the  transfer  of  so  much  credit 

or  energy  from  one  body  to  another.  This  act  of 

transfer  or  payment  is  called  work.  The  energ\'  so 
transferred  does  not  retain  any  character  by  which  it 
can  be  identified  when  it  passes  from  one  form  to 
another. 

no.  Absolute  V.\lue  of  the  Energy  of  a  Body 

UNKNOWN 

The  energy  of  a  material  system  can  only  be  esti- 
mated in  a  relative  manner. 

In  the  first  place,  though  the  energy  of  the  motion 
of  the  parts  relative  to  the  centre  of  mass  of  the  system 

may  be  accurately  defined,  the  whole  energy-  consists 
of  this  together  with  the  energy  of  a  mass  equal  to  that 
of  the  whole  system  moving  with  the  velocity  of  the 
centre  of  mass.  Now  this  latter  velocity— that  of  the 
centre  of  mass — can  be  estimated  only  with  reference  to 
some  body  external  to  the  system,  and  the  value  which 
we  assign  to  this  velocity  will  be  different  according  to 
the  body  which  we  select  as  our  origin. 

Hence  the  estimated   kinetic  energ\-  of  a  material 
•  Except  perhaps  that  credit  can  be  artificially  increased,  or inflated. 
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system  contains  a  part,  the  value  of  which  cannot  be 
determined  except  by  the  arbitrary  selection  of  an 
origin.  The  only  origin  which  would  not  be  arbitrary 
is  the  centre  of  mass  of  the  material  universe,  but  this 
is  a  point  the  position  and  motion  of  which  are  quite 
unknown  to  us. 

III.   Latent  Energy 

But  the  energy  of  a  material  system  is  indeterminate 
for  another  reason.  We  cannot  reduce  the  system  to  a 
state  in  which  it  has  no  energy,  and  any  energy  which 
is  never  removed  from  the  system  must  remain  un- 
perceived  by  us,  for  it  is  only  as  it  enters  or  leaves  the 
system  that  we  can  take  any  account  of  it. 

We  must,  therefore,  regard  the  energy  of  a  material 
system  as  a  quantity  of  which  we  may  ascertain  the 
increase  or  diminution  as  the  system  passes  from  one 
definite  condition  to  another.  The  absolute  value  of 

the  energy  in  the  standard  condition  is  unknown  to 
us,  and  it  would  be  of  no  value  to  us  if  we  did  know  it, 
as  all  phenomena  depend  on  the  variations  of  the  energy, 
and  not  on  its  absolute  value. 

112.  A  Complete  Discussion  of  Energy  would 
INCLUDE  THE  WHOLE  OF  PHYSICAL  SCIENCE 

The  discussion  of  the  various  forms  of  energy — 
gravitational,  electro-magnetic,  molecular,  thermal,  etc. 
— with  the  conditions  of  the  transference  of  cnerg}^  from 
one  form  to  another,  and  the  constant  dissipation  of  the 
energy  available  for  producing  work,  constitutes  the 
whole  of  physical  science,  in  so  far  as  it  has  been  de- 

veloped in  the  dynamical  form  under  the  various 
designations  of  Astronomy,  Electricity,  Magnetism, 
Optics,  Theory  of  the  Physical  States  of  Bodies, 
Thermo-dynamics,  and  Chemistry. 
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THE  PENDULUM  AND  GRAVITY 

113.   On  Uniform  Motion  in  a  Circle 

Let  M  (fig.  11)  be  a  body  moving  in  a  circle  with 
velocity  V. 

Let  OM  --  r  be  the  radius  of  the  circle. 
The  direction  of  the  velocity 

of  M  is  that  of  the  tangent  to 

the  circle.  Draw  OT'  parallel  to 
this  direction  through  the  centre 
of  the  circle  and  equal  to  the 
distance  described  in  unit  of  time 

with  velocity  \\  then  OV  -^  V. 
If  we  take  O  as  the  origin  of 

the  diagram  of  velocity,  f '  will 
represent  the  velocit\-  of  the 
body  at  M. 

As  the  body  moves  round  the 
circle,    the    point    V    will    also 

describe  a  circle,  and  the  velocity  of  the  point  ['  will be  to  that  of  .1/  as  OT  to  OM. 

If,  therefore,  we  draw  OA  in  MO  produced,  and 
therefore  parallel  to  the  direction  of  motion  of  V,  and 
make  OA  a  third  proportional  to  OM  and  0]\  and 
if  we  assume  O  as  the  origin  of  the  diagram  of  rate  of 
acceleration,  then  the  point  A  will  represent  the  velocity 
of  the  point  V,  or,  what  is  the  same  thing,  the  rate  of 
acceleration  of  the  point  M. 

Hence,  when  a  body  moves  with  uniform  velocity  in 
a  circle,  its  acceleration  is  directed  towards  the  centre 
of  the  circle,  and  is  a  third  proportional  to  the  radius 
of  the  circle  and  the  velocity  of  the  body. 
The  force  acting  on   the  body   M  is  equal   to  the 

Fig.  II. 
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product  of  this  acceleration  into  the  mass  of  the  body, 
or  if  F  be  this  force 

r 

114.   Centrifugal  Force 

This  force  F  is  that  which  must  act  on  the  body  M 
in  order  to  keep  it  in  the  circle  of  radius  r,  in  which 
it  is  moving  with  velocity  V . 

The  direction  of  this  force  is  towards  the  centre  of 
the  circle. 

If  this  force  is  applied  by  means  of  a  string  fastened 
to  the  body,  the  string  will  be  in  a  state  of  tension. 
To  a  person  holding  the  other  end  of  the  string  this 
tension  will  appear  to  be  directed  towards  the  body  M, 
as  if  the  body  M  had  a  tendency  to  move  away  from  the 
centre  of  the  circle  which  it  is  describing. 

Hence  this  latter  force  is  often  called  Centrifugal 
Force. 

The  force  which  really  acts  on  the  body ,  being  directed 
towards  the  centre  of  the  circle,  is  called  Centripetal 
Force,  and  in  some  popular  treatises  the  centripetal 
and  centrifugal  forces  are  described  as  opposing  and 
balancing  each  other.  But  they  are  merely  the  different 
aspects  of  the  same  stress  [acting  in  the  string]. 

115.  Periodic  Time 

The  time  of  describing  the  circumference  of  the  circle 
is  called  the  Periodic  Time.  If  -n  represents  the  ratio 
of  the  circumference  of  a  circle  to  its  diameter,  which 

is  3-14159.  . ,  the  circumference  of  a  circle  of  radius  r 
is  27rr;  and  since  this  is  described  in  the  periodic  time  T 
with  velocity  F,  we  have 

27rr  =  VT. 

Hence  ^=477^^^. 
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The  rate  of  circular  motion  is  often  expressed  by  the 
number  of  revolutions  in  unit  of  time.  Let  this  number 

[the  frequency]  be  denoted  by  «,  then 
nT^  I 

and  F  ̂  ̂ TT^Mrn^. 

ii6.   On  Simple  Harmonic  ViBR.\TiONS 

If  while  the  body  M  (fig.  ii)  moves  in  a  circle  with 
uniform  velocity  another  point  P  moves  in  a  fixed 
diameter  of  the  circle,  so  as  to  be  always  at  the  foot 
of  the  perpendicular  from  M  on  that  diameter,  the 
body  P  is  said  to  execute  Simple  Harmonic  Vibrations. 

The  radius,  r,  of  the  circle  is  called  the  Amplitude  of 
the  vibration. 

The  periodic  time  of  M  is  called  the  Periodic  Time 
of  Vibration. 

The  angle  which  OM  makes  with  the  positive 
direction  of  the  fixed  diameter  is  called  the  Phase  of 
the  vibration. 

117.  On  THE  Force  ACTING  ON  THE 
Vibrating  Body 

The  only  diflPerence  between  the  motions  of  M  and 
P  is  that  M  has  a  vertical  motion  compounded  with 
a  horizontal  motion  which  is  the  same  as  that  of  P. 

Hence  the  velocity  and  the  acceleration  of  the  two  bodies 
differ  only  with  respect  to  the  vertical  part  of  the 
velocity  and  acceleration  of  M. 
The  acceleration  of  P  is  therefore  the  horizontal 

component  of  that  of  M,  and  since  the  acceleration 
of  .1/  is  represented  by  OA,  which  is  in  the  direction 
of  MO  produced,  the  acceleration  of  P  will  be  repre- 

sented by  OB,  where  B  is  the  foot  of  the  perpendicular 
from  A  on  the  horizontal  diameter.  Now  by  similar 
triangles  OMP,  OAB 

OM  :  OA  -  OP  :  OP. 
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But  OM  -  r  and  OA  ̂   -  477^  ̂ , . 

Hence  OB=-'^OP=-  ̂ n^n^OP. 

In  simple  harmonic  vibration,  therefore,  the  ac- 
celeration is  always  directed  towards  the  centre  of 

vibration,  and  is  equal  to  the  distance  from  that  centre 

multiplied  by  ̂n^n^,  and  if  the  mass  of  the  vibrating 
body  is  P,  the  force  acting  on  it  at  a  distance  x  from 

O  is  477-«-Px. 
It  appears,  therefore,  that  a  body  which  executes 

simple  harmonic  vibrations  in  a  straight  line  is  acted 
on  by  a  force  which  varies  as  the  distance  from  the 
centre  of  vibration,  and  the  value  of  this  force  at  a 
given  distance  depends  only  on  that  distance,  on  the 
mass  of  the  body,  and  on  the  square  of  the  number 
of  vibrations  in  unit  of  time,  and  is  independent  of  the 
amplitude  of  the  vibrations. 

118.  Isochronous  Vibrations 

It  follows  from  this  that  if  a  body  moves  in  a  straight 
Hne  and  is  acted  on  by  a  force  directed  towards  a  fixed 
point  on  the  hne  and  varying  as  the  distance  from  that 
point,  it  will  execute  simple  harmonic  vibrations,  the 
periodic  time  of  which  will  be  the  same  whatever  the 
ampHtude  of  vibration. 

If  for  a  particular  kind  of  displacement  of  a  body, 
as  turning  round  an  axis,  the  force  tending  to  bring  it 
back  to  a  given  position  varies  as  the  displacement, 
the  body  will  execute  simple  harmonic  vibrations 
about  that  position,  the  periodic  time  of  which  will  be 
independent  of  their  amplitude. 

Vibrations  of  this  kind,  which  are  executed  in  the 
same  time  whatever  be  their  amplitude,  are  called 
Isochronous  Vibrations. 
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119.   Potential  Energy  of  the  Vibr.\ting  Body 

The  velocity  of  the  body  when  it  passes  through  the 
point  of  equilibrium  is  equal  to  that  of  the  body  moving 
in  the  circle,  or 

V  =  2Trrn, 

where  r  is  the  amplitude  of  vibration  and  n  is  the 
number  of  double  vibrations  per  second. 

Hence  the  kinetic  energy  of  the  vibrating  body  at 
the  point  of  equilibrium  is 

mV^  =   2772Mr2«2, 
where  M  is  the  mass  of  the  body. 

At  the  extreme  elongation,  where  x  =  r,  the  velocity, 
and  therefore  the  kinetic  energy,  of  the  body  is  zero. 
The  diminution  of  kinetic  energy  must  correspond  to 
an  equal  increase  of  potential  energy.  Hence  if  we 
reckon  the  potential  energy  from  the  configuration  in 
which  the  body  is  at  its  point  of  equilibrium,  its 
potential  energy  when  at  a  distance  r  from  this  point 
is   2772M«2r2. 

This  is  the  potential  energy  of  a  body  which  vibrates 
isochronously,  and  executes  n  double  vibrations  per 
second  when  it  is  at  rest  at  the  distance,  r,  from  the 
point  of  equilibrium.  As  the  potential  energy  does  not 
depend  on  the  motion  of  the  body,  but  only  on  its 
position,  we  may  write  it 

where  x  is  the  distance  from  the  point  of  equilibrium. 

120.   The  Simple  Pendulum 

The  simple  pendulum  consists  of  a  small  heavy  body 
called  the  bob,  suspended  from  a  fixed  point  by  a  fine 
string  of  invariable  length.  The  bob  is  supposed  to 
be  so  small  that  its  motion  may  be  treated  as  that  of  a 
material  particle,  and  the  string  is  supposed  to  be  so 
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fine  that  we  may  neglect  its  mass  and  weight.  The 
bob  is  set  in  motion  so  as  to  swing  through  a  small 
angle  in  a  vertical  plane.    Its  path,  therefore,  is  an  arc 
of  a  circle,  whose  centre  is  the  point  of  suspension, 
O,  and  whose  radius  is  the  length  of  the  string,  which 
we  shall  denote  by  /. 

Let  O  (fig.  12)  be  the  point 
of    suspension    and    OA    the 
position  of  the  pendulum  when 
hanging  vertically.    When  the 
bob  is  at  M  it  is  higher  than 
when  it  is  at  A  by  the  height 

AM^ ^P=  ̂   where  AM  is  the 
chord    of    the    arc    AM    and 
AB  =  2/. 

If  M  be  the  mass  of  the  bob 

and  g  the  intensity  of  gravity 
the  weight  of  the  bob  will  be  Mg  and  the  work  done 
against  gravity  during  the  motion  of  the  bob  from  A 
to  M  will  be  MgAP.  This,  therefore,  is  the  potential 
energy  of  the  pendulum  when  the  bob  is  at  M,  reckon- 

ing the  energy  zero  when  the  bob  is  at  .4. 
We  may  write  this  energy 

2/ 

The  potential  energy  of  the  bob  when  displaced 
through  any  arc  varies  as  the  square  of  the  chord  of 
that  arc. 

If  it  had  varied  as  the  square  of  the  arc  itself  in 
which  the  bob  moves,  the  vibrations  would  have  been 
strictly  isochronous.  As  the  potential  energy  varies 
more  slowly  than  the  square  of  the  arc,  the  period  of 
each  vibration  will  be  greater  when  the  amplitude  is 
greater. 

For  very  small  vibrations,  however,  we  may  neglect 
the  difference  between  the  chord  and  the  arc,  and 
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denoting  the  arc  by  x  we  may  write  the  potential energy 

2/ 
But  we  have  already  shown  that  in  harmonic  vibrations 

the  potential  energy'  is  27T^Mn\x^. 
Equating  these  two  expressions  and  clearing  fractions 

we  find  9  0, 

where  g  is  the  intensity  of  gravity,  it  is  the  ratio  of  the 
circumference  of  a  circle  to  its  diameter,  n  is  the  number 
of  vibrations  of  the  pendulum  in  unit  of  time,  and  /  is 
the  length  of  the  pendulum. 

121.  A  Rigid  Pendulum 

If  we  could  construct  a  pendulum  with  a  bob  so 
small  and  a  string  so  fine  that  it  might  be  regarded 
for  practical  purposes  as  a  simple  pendulum,  it  would 
be  easy  to  determine  g  by  this  method.  But  all  real 
pendulums  have  bobs  of  considerable  size,  and  in 
order  to  preserve  the  length  invariable  the  bob  must  be 
connected  with  the  point  of  suspension  bv  a  stout  rod, 
the  mass  of  which  cannot  be  neglected.  It  is  always 
possible,  however,  to  determine  the  length  of  a  simple 
pendulum  whose  vibrations  would  be  executed  in  the 
same  manner  as  those  of  a  pendulum  of  anv  shape. 

The  complete  discussion  of  this  subject  would  lead 
us  into  calculations  beyond  the  limits  of  this  treatise. 
We  may,  however,  arrive  at  the  most  important  result 
without  calculation  as  follows. 

The  motion  of  a  rigid  body  in  one  plane  may  be 
completely  defined  by  stating  the  motion  of  its  centre 
of  mass,  and  the  motion  of  the  body  round  its  centre 
of  mass. 

The  force  required  to  produce  a  given  change  in  the 
motion  of  the  centre  of  mass  depends  only  on  the  mass 
of  the  body  (Art.  63). 



VII]  SOLID  PENDULUM  99 

The  moment  required  to  produce  a  given  change  of 
angular  velocity  about  the  centre  of  mass  depends  on  the 
distribution  of  the  mass,  being  greater  the  further  the 
different  parts  of  the  body  are  from  the  centre  of  mass. 

If,  therefore,  we  form  a  system  of  two  particles 
rigidly  connected,  the  sum  of  the  masses  being  equal 
to  the  mass  of  a  pendulum,  their  centre  of  mass  coin- 

ciding with  that  of  the  pendulum,  and  their  distances 
from  the  centre  of  mass  being  such  that  a  couple 
of  the  same  moment  is  required  to  produce  a  given 
rotatory  motion  about  the  centre  of  mass  of  the  new 
system  as  about  that  of  the  pendulum,  then  the  new 
system  will  for  motions  in  a  certain  plane  be  dynamic- 

ally equivalent  to  the  given  pendulum,  that  is,  if  the 
two  systems  are  moved  in  the  same  way  the  forces 
required  to  guide  the  motion  will  be  equal.  Since  the 
two  particles  may  have  any  ratio,  provided  the  sum 
of  their  masses  is  equal  to  the  mass  of  the  pendulum, 
and  since  the  line  joining  them  may  have  any  direction 
provided  it  passes  through  the  centre  of  mass,  we  may 
arrange  them  so  that  one  of  the  particles  corresponds  to 
any  given  point  of  the  pendulum, 

say,  the  point  of  suspension  P  ̂ I^P^  C»  Q' 
(fig.  13).  The  mass  of  this  par- 

ticle and  the  position  and  mass 
of  the  other  at  Q  will  be  determinate.  The  position  of 
the  second  particle,  Q,  is  called  the  Centre  of  Oscilla- 

tion. Now  in  the  system  of  two  particles,  if  one  of 
them,  P,  is  fixed  and  the  other,  Q,  allowed  to  swing 
under  the  action  of  gravit\%  we  have  a  simple  pendulum. 
For  one  of  the  particles,  P,  acts  as  the  point  of  suspen- 

sion, and  the  other,  Q,  is  at  an  invariable  distance  from 
it,  so  that  the  connexion  between  them  is  the  same  as  if 

they  were  united  by  a  string  of  length  /  =  PQ. 
Hence  a  pendulum  of  any  form  swings  in  exactly 

the  same  manner  as  a  simple  pendulum  whose  length 
is  the  distance  from,  the  centre  of  suspension  to  the 
centre  of  oscillation. 

7—2 
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122.   Inversion  of  the  Pendulum 

Now  let  us  suppose  the  system  of  two  particles 
inverted,  O  being  made  the  point  of  suspension  and 
P  being  made  to  swing.  We  have  now  a  simple  pen- 

dulum of  the  same  length  as  before.  Its  vibrations 
will  therefore  be  executed  in  the  same  time.  But  it 

is  dynamically  equivalent  to  the  pendulum  suspended 
by  its  centre  of  oscillation. 

Hence  if  a  pendulum  be  inverted  and  suspended  by 
its  centre  of  oscillation  its  vibrations  will  have  the 

same  period  as  before,  and  the  distance  between  the 
centre  of  suspension  and  that  of  oscillation  will  be 
equal  to  that  of  a  simple  pendulum  having  the  same 
time  of  vibration. 

It  was  in  this  way  that  Captain  Kater  determined 
the  length  of  the  simple  pendulum  which  vibrates 
seconds. 

He  constructed  a  pendulum  which  could  be  made  to 
vibrate  about  two  knife  edges,  on  opposite  sides  of  the 
centre  of  mass  and  at  unequal  distances  from  it. 

By  certain  adjustments,  he  made  the  time  of  vibra- 
tion the  same  whether  the  one  knife  edge  or  the  other 

were  the  centre  of  suspension.  The  length  of  the 
corresponding  simple  pendulum  was  then  found  by 
measuring  the  distance  between  the  knife  edges. 

123.   Illustration  of  Kater's  Pendulum 

The  principle  of  Kater's  Pendulum  may  be  illus- 
trated by  a  very  simple  and  striking  experiment.  Take 

a  flat  board  of  any  form  (fig.  14),  and  drive  a  piece  of 
wire  through  it  near  its  edge,  and  allow  it  to  hang  in 
a  vertical  plane,  holding  the  ends  of  the  wire  by  the 
finger  and  thumb.  Take  a  small  bullet,  fasten  it  to  the 
end  of  a  thread  and  allow  the  thread  to  pass  over  the 
wire,  so  that  the  bullet  hangs  close  to  the  board.  Move 
the  hand  by  which  you  hold  the  wire  horizontally  in 
the  plane  of  the  board,  and  observe  whether  the  board 
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moves  forwards  or  backwards  with  respect  to  the  bullet. 
If  it  moves  forwards  lengthen  the  string,  if  backwards 
shorten  it  till  the  bullet  and  the  board  move  together. 
Now  mark  the  point  of  the  board  opposite  the  centre 
of  the  bullet  and  fasten  the  string  to  the 
wire.  You  will  find  that  if  you  hold  the 
wire  by  the  ends  and  move  it  in  any 
manner,  however  sudden  and  irregular, 
in  the  plane  of  the  board,  the  bullet  will 
never  quit  the  marked  spot  on  the  board. 

Hence  this  spot  is  called  the  centre  of 
oscillation,  because  when  the  board  is 
oscillating  about  the  wire  when  fixed  it 
oscillates  as  if  it  consisted  of  a  single 

particle  placed  at  the  spot.  ^^"-  ̂■^■ 
It  is  also  called  the  centre  of  percussion,  because  if 

the  board  is  at  rest  and  the  wire  is  suddenly  moved 
horizontally  the  board  will  at  first  begin  to  rotate  about 
the  spot  as  a  centre. 

124.   Determination  of  the  Intensity  of  Grwity 

The  most  direct  method  of  determining  g  is,  no 
doubt,  to  let  a  body  fall  and  find  what  velocity  it  has 
gained  in  a  second,  but  it  is  very  difficult  to  make  accu- 

rate observations  of  the  motion  of  bodies  when  their 

velocities  are  so  great  as  981  centimetres  per  second, 
and  besides,  the  experiment  would  have  to  be  conducted 
in  a  vessel  from  which  the  air  has  been  exhausted,  as 
the  resistance  of  the  air  to  such  rapid  motion  is  very 
considerable,  compared  with  the  weight  of  the  falling 
body. 

The  experiment  with  the  pendulum  is  much  more 
satisfactory.  By  making  the  arc  of  vibration  very  small, 
the  motion  of  the  bob  becomes  so  slow  that  the  resist- 

ance of  the  air  can  have  verv'  little  influence  on  the  time 
of  vibration.  In  the  best  experiments  the  pendulum 
is  swung  in  an  air-tight  vessel  from  which  the  air  is 
exhausted. 
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Besides  this,  the  motion  repeats  itself,  and  the  pen- 
dulum swings  to  and  fro  hundreds,  or  even  thousands, 

of  times  before  the  various  resistances  to  which  it  is 

exposed  reduce  the  amplitude  of  the  vibrations  till  they 
can  no  longer  be  observed. 

Thus  the  actual  observation  consists  not  in  watching 
the  beginning  and  end  of  one  vibration,  but  in  deter- 

mining the  duration  of  a  series  of  many  hundred 
vibrations,  and  thence  deducing  the  time  of  a  single 
vibration. 

The  observer  is  relieved  from  the  labour  of  counting 
the  whole  number  of  vibrations,  and  the  measurement 
is  made  one  of  the  most  accurate  in  the  whole  range  of 
practical  science  by  the  following  method. 

125.   Method  of  Observation 

A  pendulum  clock  is  placed  behind  the  experimental 
pendulum,  so  that  when  both  pendulums  are  hanging 
vertically  the  bob,  or  some  other  part  of  the  experi- 

mental pendulum,  just  hides  a  white  spot  on  the  clock 
pendulum,  as  seen  by  a  telescope  fixed  at  some  distance 
in  front  of  the  clock. 

Observations  of  the  transit  of  "clock  stars"  across 
the  meridian  are  made  from  time  to  time,  and  from 
these  the  rate  of  the  clock  is  deduced  in  terms  of 

"mean  solar  time." 
The  experimental  pendulum  is  then  set  a  swinging, 

and  the  two  pendulums  are  observed  through  the 
telescope.  Let  us  suppose  that  the  time  of  a  single 
vibration  is  not  exactly  that  of  the  clock  pendulum,  but 
a  little  more. 

The  observer  at  the  telescope  sees  the  clock  pendulum 
always  gaining  on  the  experimental  pendulum,  till  at 
last  the  experimental  pendulum  just  hides  the  white 
spot  on  the  clock  pendulum  as  it  crosses  the  vertical 
line.  The  time  at  which  this  takes  place  is  observed 

and  recorded  as  the  l-"irst  Positive  Coincidence. 
The  clock  peniluluni  continues  to  gain  on  the  other. 
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and  after  a  certain  time  the  two  pendulums  cross  the 
vertical  line  at  the  same  instant  in  opposite  directions. 
The  time  of  this  is  recorded  as  the  First  Negative  Coin- 

cidence. After  an  equal  interval  of  time  there  will  be  a 
second  positive  coincidence,  and  so  on. 

By  this  method  the  clock  itself  counts  the  number,  A'', 
of  vibrations  of  its  own  pendulum  between  the  coinci- 

dences. During  this  time  the  experimental  pendulum 
has  executed  one  vibration  less  than  the  clock.  Hence 

the  time  of  vibration  of  the  experimental  pendulum  is 
N 

TT   seconds  of  clock  time. 
N  -  I 
When  there  is  no  exact  coincidence,  but  when  the 

clock  pendulum  is  ahead  of  the  experimental  pendulum 
at  one  passage  of  the  vertical  and  behind  at  the  next, 
a  Httle  practice  on  the  part  of  the  observer  will  enable 
him  to  estimate  at  what  time  between  the  passages  the 
two  pendulums  must  have  been  in  the  same  phase.  The 
epoch  of  coincidence  can  thus  be  estimated  to  a  fraction 
of  a  second. 

126.  Estimation  of  Error 

The  experimental  pendulum  will  go  on  swinging  for 
some  hours,  so  that  the  whole  time  to  be  measured  may 
be  ten  thousand  or  more  vibrations. 

But  the  error  introduced  into  the  calculated  time  of 

vibration,  by  a  mistake  even  of  a  whole  second  in  noting 
the  time  of  vibration,  may  be  made  exceedingly  small 
by  prolonging  the  experiment. 

For  if  we  observe  the  first  and  the  tiih  coincidence, 
and  find  that  they  are  separated  by  an  interval   of 

A'^  seconds  of  the  clock,  the  experimental  pendulum will  have  lost  n  vibrations,  as  compared  with  the  clock, 

and  will  have  made  N-n  vibrations  in  A*  seconds. 
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seconds  of  clock  time. 

Let  us  suppose,  however,  that  by  a  mistake  of  a 
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second  we  note  down  the  last  coincidence  as  taking 
place  N  +  I  seconds  after  the  first.  The  value  of  T  as 
deduced  from  this  result  would  be 

N+i 

r  = N+  I 
and  the  error  introduced  by  the  mistake  of  a  second 

N+ I -n      N-n 

{N+  i-n){N-ny 
If  A^  is  10,000  and  n  is  loo,  a  mistake  of  one  second 

in  noting  the  time  of  coincidence  will  alter  the  value  of 
T  only  about  one-millionth  part  of  its  value. 



CHAPTER  VIII 

UNIVERSAL  GRAVITATION 

127.   Newton's  Method 
The  most  instructive  example  of  the  method  of  dynami- 

cal reasoning  is  that  by  which  Newton  determined 
the  law  of  the  force  with  which  the  heavenly  bodies  act 
on  each  other. 

The  process  of  dynamical  reasoning  consists  in 
deducing  from  the  successive  configurations  of  the 
heavenly  bodies,  as  observed  by  astronomers,  their 
velocities  and  their  accelerations,  and  in  this  way 
determining  the  direction  and  the  relative  magnitude 
of  the  force  which  acts  on  them. 

Kepler  had  already  prepared  the  way  for  Newton's 
investigation  by  deducing  from  a  careful  study  of  the 
observations  of  Tycho  Brahe  the  three  laws  of  planetary 
motion  which  bear  his  name. 

128.   Kepler's  Laws 

Kepler's  Laws  are  purely  kinematical.  They  com- 
pletely describe  the  motions  of  the  planets,  but  they  say 

nothing  about  the  forces  by  which  these  motions  are 
determined. 

Their  dynamical  interpretation  was  discovered  by 
Newton. 

The  first  and  second  laws  relate  to  the  motion  of  a 

single  planet. 

Law  I. — The  areas  swept  out  by  the  vector  drawn 
from  the  sun  to  a  planet  are  proportional  to  the  times 
of  describing  them. — If  h  denotes  twice  the  area  swept 
out  in  unit  of  time,  twice  the  area  swept  out  in  time  t 
will  be  ht,  and  if  P  is  the  mass  of  the  planet,  Pht  will 
be  the  mass-area,  as  defined  in  Article  68.  Hence  the 
angular  momentum  of  the  planet  about  the  sun,  which 
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is  the  rate  of  change  of  the  mass-area,  will  be  Ph,  2l 
constant  quantity. 

Hence,  by  Article  70,  the  force,  if  any,  which  acts 
on  the  planet  must  have  no  moment  with  respect  to 
the  sun,  for  if  it  had  it  would  increase  or  diminish  the 
angular  momentum  at  a  rate  measured  by  the  value  of this  moment. 

Hence,  whatever  be  the  force  which  acts  on  the  planet, 
the  direction  of  this  force  must  always  pass  through the  sun. 

129.  Angular  Velocity 

Definition.  The  angular  velocity  of  a  vector  is  the 
rate  at  which  the  angle  increases  which  it  makes  with 
a  fixed  vector  in  the  plane  of  its  motion. 

If  oi  is  the  angular  velocity  of  a  vector,  and  r  its  length, 
the  rate  at  which  it  sweeps  out  an  area  is  \ior-.   Hence, 

h  =  wr^ 
and  since  h  is  constant,  w,  the  angular  velocity  of  a 

planet's  motion  round  the  sun,  varies  inversely  as  the square  of  the  distance  from  the  sun. 

This  is  true  whatever  the  law  of  force  may  be,  pro- 
vided the  force  acting  on  the  planet  always  passes 

through  the  sun. 

130.  Motion  ABOUT  THE  Centre  OF  Mass 

Since  the  stress  between  the  planet  and  the  sun  acts 
on  both  bodies,  neither  of  them  can  remain  at  rest. 

The  only  point  whose 

©_   op     motion  is   not  afi"ected C  by    the    stress    is    the 
Fig.  15.  centre  of  mass  of  the 

two  bodies. 

If  r  is  the  distance  SP  (fig.  15),  and  if  C  is  the  centre 
Pr  Sr 

of  mass,  SC  =  -^-^  and  CP  =  ̂ --p-    The  angular 
C2y2  PC2/, 

momentum  of  P  about  C  is  Pco  ̂ f;^,  =  (i^TTp' 
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131.   The  Orbit 

We  have  already  made  use  of  diagrams  of  configura- 
tion and  of  velocity  in  studying  the  motion  of  a  material 

system.  These  diagrams,  however,  represent  only  the 
state  of  the  system  at  a  given  instant ;  and  this  state  is 
indicated  by  the  relative  position  of  points  corresponding 
to  the  bodies  forming  the  system. 

It  is  often,  however,  convenient  to  represent  in  a 
single  diagram  the  whole  series  of  configurations  or 
velocities  which  the  system  assumes.  If  we  suppose 
the  points  of  the  diagram  to  move  so  as  continu- 

ally to  represent  the  state  of  the  moving  system,  each 

point  of  the  diagram  will  trace  out  a  Hne,^  straight  or curved. 

On  the  diagram  of  configuration,  this  hne  is  called, 
in  general,  the  Path  of  the  body.  In  the  case  of  the 
heavenly  bodies  it  is  often  called  the  Orbit, 

132.   The  Hodogk\ph 

On  the  diagram  of  velocity  the  line  traced  out  by 
each  moving  point  is  called  the  Hodograph  of  the  body 
to  which  it  corresponds. 

The  study  of  the  Hodograph,  as  a  method  of  investi- 
gating the  motion  of  a  body,  was  introduced  by  Sir 

W.  R.  Hamilton.  The  hodograph  may  be  defined  as 
the  path  traced  out  by  the  extremity  of  a  vector  which 
continually  represents,  in  direction  and  magnitude,  the 
velocity  of  a  moving  body. 

In  applying  the  method  of  the  hodograph  to  a  planet, 
the  orbit  of  which  is  in  one  plane,  we  shall  find  it  con- 

venient to  suppose  the  hodograph  turned  round  its 
origin  through  a  right  angle,  so  that  the  vector  of  the 
hodograph  is  perpendicular  instead  of  parallel  to  the 

velocity  it  represents.     ̂  
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133.   Kepler's  Second  Law 

Law  n. — The  orbit  of  a  planet  with  respect  to  the 
sun  is  an  ellipse,  the  sun  being  in  one  of  the  foci. 

Let  APQB  (fig.   16)  be  the  elliptic  orbit.    Let  S 
be  the  sun  in  one  focus,  and  let  //  be  the  other  focus. 

Produce  SP  to  U, 
so  that  S^Ms  equal 
to  the  transverse 
axis  AB,  and  join 

III,  then  //r'will 
be  proportional 
and  perpendicular 
tothe  velocity  at  P. 

For  bisect  HU 
in  Z  and  join  ZP; 
ZP  will  be  a  tan- 

gent to  the  ellipse 
at  P;  let  SY  be 

a  perpendicular 
from  S  on  this 

tangent. 
If  V  is  the  ve- 

locity at  P,  and  h  twice  the  area  swept  out  in  unit  of 
time,  h=  vSY. 

Also  if  b  is  half  the  conjugate  axis  of  the  ellipse 

Now 

hence 

SY.HZ-h\ 
HU=2HZ; 

I  h 
HU. 

Hence  HU  is  always  proportional  to  the  velocity, 
and  it  is  perpendicular  to  its  direction.  Now  SU  is 
always  equal  to  AB.  Hence  the  circle  whose  centre  is 
S  and  radius  AB  is  the  hodograph  of  the  planet,  H 
being  the  origin  of  the  hodograph. 

The  corresponding  points  of  the  orbit  and  the  hodo- 
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graph  are  those  which  He  in  the  same  straight  Hne 
through  S. 

Thus  P  corresponds  to  U  and  Q  to  V. 
The  velocity  communicated  to  the  body  during  its 

passage  from  P  to  Q  is  represented  by  the  geometrical 
difference  between  the  vectors  HU  and  HV,  that  is,  by 
the  line  UV,  and  it  is  perpendicular  to  this  arc  of  the 
circle,  and  is  therefore,  as  we  have  already  proved, 
directed  towards  S. 

If  PQ  is  the  arc  described  in  [a  very  small]  time,  then 
UV  represents  the  acceleration  [of  velocity  in  that  time ;] 
and  since  UV  is  on  a  circle  whose  centre  is  5,  UV  will 
be  a  measure  of  the  angular  [movement  in  that  time]  of 
the  planet  about  S.  Hence  the  acceleration  is  propor- 

tional to  the  angular  velocity,  and  this  by  Art.  129  is 
inversely  as  the  square  of  the  distance  SP.  Hence  the 
acceleration  of  the  planet  is  in  the  direction  of  the  sun, 
and  is  inversely  as  the  square  of  the  distance  from  the 
sun. 

This,  therefore,  is  the  law  according  to  which  the 
attraction  of  the  sun  on  a  planet  varies  as  the  planet 
moves  in  its  orbit  and  alters  its  distance  from  the  sun. 

134.   Force  on  a  Planet 

As  we  have  already  shown,  the  orbit  of  the  planet 
with  respect  to  the  centre  of  mass  of  the  sun  and 
planet  has  its  dimensions  in  the  ratio  of  S  to  S  +  P 
to  those  of  the  orbit  of  the  planet  with  respect  to  the 
sun. 

If  2a  and  26  are  the  axes  of  the  orbit  of  the  planet 
with  respect  to  the  sun,  the  area  is  Trab,  and  if  T  is  the 
time  of  going  completely  round  the  orbit,  the  value  of 

h  is  2TT-ji.  The  velocity  with  respect  to  the  sun  is  there- 

fore V  yf^  HU. lb 
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With  respect  to  the  centre  of  mass  it  is 

__^_  '^  UJJ 
S+PTb 

The  total  acceleration  of  the  planet  towards  the  centre 
of  mass  [in  describing  an  arc  PQ]  is 

5       Tra 
S+PTb 

and  the  impulse  on  the  planet  whose  mass  is  P  is 
therefore  on oP     Tra  jrjy 

S+  PTh 

Let  t  be  the  time  of  describing  PQ,  then  twice  the 
area  SP^  is  ^^  ̂  ̂^,^ 

and  UV  =  zaojt  =  2a  ̂ t  =  \tt  rp  <^t. 

Hence  the  force  on  the  planet  [being  impulse  divided 
by  time]  is  ^    ̂p       ̂ 3 

^"^  5  +  prv2- 
This  then  is  the  value  of  the  stress  or  attraction 

between  a  planet  and  the  sun  in  terms  of  their  masses 
P  and  S,  their  mean  distance  a,  their  actual  distance  r, 
and  the  periodic  time  T. 

135.   Interpretation  of  Kepler's  Third  Law 
To  compare  the  attraction  between  the  sun  and 

different  planets,  Newton  made  use  of  Kepler's  third law. 

Law  I II . — The  squares  of  the  periodic  times  of  differ- 
ent planets  are  proportional  to  the  cubes  of  their  mean 

distances.    In  other  words  ̂ „  is  a  constant,  sav  — 5. 
T"  ^    477-2 

Hence  /<..^^-_^,. 
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In  the  case  of  the  smaller  planets  their  masses  are 

so  small,  compared  with  that  of  the  sun,  that  -q^r~p 
p 

may   be    put    equal   to    i ,    so    that    F  =  c  -^    or   the 

attraction  on  a  planet  is  proportional  to  its  mass  and 
inversely  as  the  square  of  its  distance. 

136.   Law  of  Gravitation 

This  is  the  most  remarkable  fact  about  the  attraction 

of  gravitation,  that  at  the  same  distance  it  acts  equally 
on  equal  masses  of  substances  of  all  kinds.  This  is 
proved  by  pendulum  experiments  for  the  different 
kinds  of  matter  at  the  surface  of  the  earth.  Newton 
extended  the  law  to  the  matter  of  which  the  different 

planets  are  composed. 
It  had  been  suggested,  before  Newton  proved  it, 

that  the  sun  as  a  whole  attracts  a  planet  as  a  whole, 
and  the  law  of  the  inverse  square  had  also  been  pre- 

viously stated,  but  in  the  hands  of  Newton  the  doctrine 
of  gravitation  assumed  its  final  form. 

Every  portion  of  matter  attracts  every  other  portion 
of  matter,  and  the  stress  between  them  is  proportional  to 
the  product  of  their  masses  divided  by  the  square  of 
their  distance. 

For  if  the  attraction  between  a  gramme  of  matter  in 
the  sun  and  a  gramme  of  matter  in  a  planet  at  distance 

.   C  . 
r  is  -g  where  C  is  a  constant,  then  if  there  are  S  grammes 

in  the  sun  and  P  in  the  planet  the  whole  attraction 
between  the  sun  and  one  gramme  in  the  planet  will  be 
CS 
—   ,  and  the  whole  attraction  between  the  sun  and  the 

planet  will  be  C  -^. 

Comparing  this  statement   of  Newton's  "Law  of 



112  MUTUAL  GR.WITATION  [ch. 

Universal  Gravitation"  with  the  vahie  of  F  formerly obtained  we  find 

or  4772^3  ̂   c  (5  +  P)  72. 

137.  Amended  Form  of  Kepler's  Third  Law 

Hence  Kepler's  Third  Law  must  be  amended  thus: 
The  cubes  of  the  mean  distances  are  as  the  squares 

of  the  times  multiplied  into  the  sum  of  the  masses  of 
the  sun  and  the  planet. 

In  the  case  of  the  larger  planets,  Jupiter,  Saturn,  etc., 
the  value  of  S  +  P  is  considerably  greater  than  in 
the  case  of  the  earth  and  the  smaller  planets.  Hence 
the  periodic  times  of  the  larger  planets  should  be  some- 

what less  than  they  would  be  according  to  Kepler's  law, and  this  is  found  to  be  the  case. 

In  the  following  table  the  mean  distances  (a)  of  the 
planets  are  given  in  terms  of  the  mean  distance  of  the 

earth,  and  the  periodic  times  (7')  in  terms  of  the  sidereal 

year: Planet a 

7-
 

<r"
 

■/•i                a*^  7-J 
Mercury 0-38709S 024084 005S0046 00580049    -0-0000003 
Venus 

0-7^333 0-61518 0-378451 

0378453     -0000001 p:arth 1  0000 1-00000 
I  00000 I  00000 

Mars 
i-5i.^6y 1-88082 

3  53 746 3-53747       -oooooi 
Jupiter 

5-20278 ii-86i8 140-832 140-701           ■foi3t 
Satum 9-5.^879 29-4560 

867-914 
867658           +0-J56 

Uranus 191824 840123 
705^-44 7058-07             ̂ 037 

Neptune 30037 
164-616     2 7100-0             2 70984               +  1-6 

It  appears  from  the  table  that  Kepler's  third  law  is 
very  nearly  accurate,  for  a^  is  very  nearly  equal  to  7*2, 
but  that  for  those  planets  whose  mass  is  less  than  that 

of  the  earth — namely,  Mercur}',  Venus,  and  Mars — a^ 
is  less  than  T^,  whereas  for  Jupiter,  Saturn,  Uranus, 
and  Neptune,  whose  mass  is  greater  than  that  of  the 

earth,  a^  is  greater  than  7^. 
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138.  Potential  Energy  due  to  Gravitation 

The  potential  energy  of  the  gravitation  between  the 
bodies  5  and  P  may  be  calculated  when  we  know  the 
attraction  between  them  in  terms  of  their  distance. 

The  process  of  calculation  by  which  we  sum  up  the 
effects  of  a  continually  varying  quantity  belongs  to  the 
Integral  Calculus,  and  though  in  this  case  the  calcula- 

tion may  be  explained  by  elementary  methods,  we  shall 

rather  deduce  the  potential  energy  directly  from  Kepler's first  and  second  laws. 

These  laws  completely  define  the  motion  of  the  sun 
and  planet,  and  therefore  we  may  find  the  kinetic  energy 
of  the  system  corresponding  to  any  part  of  the  elliptic 
orbit.  Now,  since  the  sun  and  planet  form  a  conserva- 

tive system,  the  sum  of  the  kinetic  and  potential  energies 
is  constant,  and  therefore  when  we  know  the  kinetic 
energy  we  may  deduce  that  part  of  the  potential 
energy  which  depends  on  the  distance  between  the 
bodies. 

139.  Kinetic  Energy  of  the  System 

To  determine  the  kinetic  energy  we  observe  that  the 
velocity  of  the  planet  with  respect  to  the  sun  is  by 
Article  133  , 

2  b^ 
The  velocit

ies  
of  the  planet

  
and  the  sun  with  respec

t 

to  the  centre 
 
of  mass  of  the  system

  
are  respec

tively
 

.  V     and     -^   =;  V. S+P  S+P 

The  kinetic  energies  of  the  planet  and  the  sun  are 
therefore  ^2  02 

and  the  whole  kinetic  energy  is 

zS+P^       SS+Pb' 
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To  determine  [more  directly]  t;-  in  terms  of  SP  or  r, 
we  observe  that  by  the  law  of  areas 

i,5y  =  A  =  ̂ -^?*    (.), 
also  by  a  property  of  the  ellipse 

HZ.SY^y-    (2), 

and  by  the  similar  triangles  HZP  and  SYP 

HZ      SP      2a- r   
 ^^^' 

multiplying  (2)  and  (3)  we  find 

2a  -  r 
Hence  by  (i) 

\TT'-a^b~     I     _  4"" 

T2      SY^  -  ~T 

^aW~     I  47r2a2  /2a         \ 

and  the  kinetic  energy  of  the  system  is 
4772^3    SP    /I  _  i\ 

T'    S  +  P[r       2a) 

and  this  by  the  equation  at  the  end  of  Article  136 
becomes  zt        t  x 

C.SP(    -    -) \r      2a) 

where  C  is  the  constant  of  gravitation. 
This  is  the  value  of  the  kinetic  energy  of  the  two 

bodies  S  and  P  when  moving  [relatively]  in  an  ellipse 
of  which  the  transverse  axis  is  2a. 

140.  Potential  Energy  of  the  System 

The  sum  of  the  kinetic  and  potential  energies  is 
constant,  but  its  absolute  value  is  by  Article  no  un- 

known, and  not  necessary  to  be  known. 
Hence  if  we  [conclude,  in  accordance  with  the  con- 

stancy of  the  total  energy,]  that  the  potential  energy  is 
of  the  form  -. 

K-C.SP 
r 
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the  second  term,  which  is  the  only  one  depending  on 
the  distance,  0^,  is  also  the  only  one  which  we  have 
anything  to  do  with.  The  other  term  K  represents  the 
work  done  by  gravitation  while  the  two  bodies  originally 
at  an  infinite  distance  from  each  other  are  allowed 

to  approach  as  near  as  their  dimensions  will  allow  them. 

141.  The  Moon  is  a  Heavy  Body 
Having  thus  determined  the  law  of  the  force  between 

each  planet  and  the  sun,  Newton  proceeded  to  show 

that  the  observed  weight  of  bodies  at  the  earth's  surface and  the  force  which  retains  the  moon  in  her  orbit  round 

the  earth  are  related  to  each  other  according  to  the 
same  law  of  the  inverse  square  of  the  distance. 

This  force  of  gravity  acts  in  every  region  accessible 
to  us,  at  the  top  of  the  highest  mountains  and  at  the 
highest  point  reached  by  balloons.  Its  intensity,  as 
measured  by  pendulum  experiments,  decreases  as  we 
ascend ;  and  although  the  height  to  which  we  can  ascend 

is  so  small  compared  with  the  earth's  radius  that  we 
cannot  from  observations  of  this  kind  infer  that  gravity 
varies  inversely  as  the  square  of  the  distance  from  the 
centre  of  the  earth,  the  observed  decrease  of  the  inten- 

sity of  gravity  is  consistent  with  this  law,  the  form  of 
which  had  been  suggested  to  Newton  by  the  motion  of 
the  planets. 

Assuming,  then,  that  the  intensity  of  gravity  varies 
inversely  as  the  square  of  the  distance  from  the  centre 
of  the  earth,  and  knowing  its  value  at  the  surface  of  the 
earth,  Newton  calculated  its  value  at  the  mean  distance 
of  the  moon. 

His  first  calculations  were  vitiated  by  his  adopting 
an  erroneous  estimate  of  the  dimensions  of  the  earth. 
When,  however,  he  had  obtained  a  more  correct  value 

of  this  quantity  *  he  found  that  the  intensity  of  gravity 
*  And  had  demonstrated  with  great  mathematical  power  the 

proposition  assumed  abo\  e,  that  the  gravitation  to  a  globe  like 
the  earth  is  exactly  the  same  at  all  external  points  as  if  its  mass 
were  condensed  to  a  point  at  its  centre. 
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calculated  for  a  distance  equal  to  that  of  the  moon  was 
equal  to  the  force  required  to  keep  the  moon  in  her 
orbit. 

He  thus  identified  the  force  which  acts  between  the 
earth  and  the  moon  with  that  which  causes  bodies  near 

the  earth's  surface  to  fall  towards  the  earth. 

142.   Cavendish's  Experiment 
Having  thus  shown  that  the  force  with  which  the 

heavenly  bodies  attract  each  other  is  of  the  same  kind 
as  that  with  which  bodies  that  we  can  handle  are 
attracted  to  the  earth,  it  remained  to  be  shown  that 
bodies  such  as  we  can  handle  attract  one  another. 

The  difficulty  of  doing  this  arises  from  the  fact  that 
the  mass  of  bodies  which  we  can  handle  is  so  small 

compared  with  that  of  the  earth,  that  even  when  we 
bring  the  two  bodies  as  near  as  we  can  the  attraction 
between  them  is  an  exceedingly  small  fraction  of  the 
weight  of  either. 

We  cannot  get  rid  of  the  attraction  of  the  earth,  but 
we  must  arrange  the  experiment  in  such  a  way  that  it 
interferes  as  little  as  is  possible  with  the  etTccts  of  the 
attraction  of  the  other  body. 

The  apparatus  devised  by  the  Rev.  John  Michell*  for 
this  purpose  was  that  which  has  since  received  the  name 
of  the  Torsion  Balance.  Michell  died  before  he  was  able 

to  make  the  experiment,  but  his  apparatus  afterwards 

came  into  the  hands  of  Henr\-  Cavendishf ,  who  im- 
proved it  in  many  respects,  and  measured  the  attraction 

between  [fixed]  leaden  balls  and  small  ball?  suspended 
from  the  arms  of  the  balance.  A  similar  instrument 

W'as  afterwards  independently  invented  by  Coulomb 
for  measuring  small  electric  and  magnetic  forces,  and  it 
continues  to  be  the  best  instrument  known  to  science 
for  the  measurement  of  small  forces  of  all  kinds. 

*  Of  Queens'  College.  Cambridge,  Woodwardian  Professor  of 
Geology,  1762-4.    See  Memoir  by  Sir  A.  Geikie.  Cambridge,  1918. 

t  Of  Peterhouse,  Cambridge.  See  his  Scientific  Writings, 
2  vols.,  Cambridge,  1920. 
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143.  The  Torsion  Balance^* 
The  Torsion  Balance  consists  of  a  horizontal  rod 

suspended  by  a  wire  from  a  fixed  support.  When 
the  rod  is  turned  round  by  an  external  force  in  a 
horizontal  plane  it  twists  the  wire,  and  the  wire  being 
elastic  tends  to  resist  this  strain  and  to  untwist  itself. 

This  force  of  torsion  is  proportional  to  the  angle 
through  which  the  wire  is  twisted,  so  that  if  we  cause 
a  force  to  act  in  a  horizontal  direction  at  right  angles 
to  the  rod  at  its  extremity,  we  may,  by  observing  the 
angle  through  which  the  force  is  able  to  turn  the  rod, 
determine  the  magnitude  of  the  force. 

The  force  is  proportional  to  the  angle  of  torsion  and 
to  the  fourth  power  of  the  diameter  of  the  wire  and  in- 

versely to  the  length  of  the  rod  and  the  length  of  the  wire. 
Hence,  by  using  a  long  fine  wire  and  a  long  rod, 

we  may  measure  very  small  forces. 
In  the  experiment  of  Cavendish  two  spheres  of  equal 

mass,  w,  are  suspended  from  the  ex- 
tremities of  the  rod  of  the  torsion 

balance.  We  shall  for  the  present 
neglect  the  mass  of  the  rod  in  com- 

parison with  that  of  the  spheres.  Two 
larger  spheres  of  equal  mass,  M,  are 
so  arranged  that  they  can  be  placed 
either  at  M  and  M  or  at  M'  and  M' . 
In  the  former  position  they  tend  by 
their  attraction  on  the  smaller  spheres, 
m  and  w,  to  turn  the  rod  of  the  balance 
in  the  direction  towards  them.  In  the 

latter  position  they  thus  tend  to  turn  it 
in  the  opposite  direction.  The  torsion 
balance  and  its  suspended  spheres  are 
enclosed  in  a  case,  to  prevent  their 
being  disturbed  by  currents  of  air. 
The  position  of  the  rod  of  the  balance  is  ascertained 

*  See  infra,  p.  143. 

M'
 

M'
 

® 
Fig.  17. 
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by  observing  a  graduated  scale  as  seen  by  reflexion  in 
a  vertical  mirror  fastened  to  the  middle  of  the  rod. 
The  balance  is  placed  in  a  room  by  itself,  and  the 
observer  does  not  enter  the  room,  but  observes  the 

image  of  the  graduated  scale  with  a  telescope. 

144.   Method  of  the  Experiment 

The  time,  T,  of  a  double  vibration  of  the  torsion 
balance  is  first  ascertained,  and  also  the  position  of 
equilibrium  of  the  centres  of  the  suspended  spheres. 

The  large  spheres  are  then  brought  up  to  the  posi- 
tions M,  71/,  so  that  the  centre  of  each  is  at  a  distance 

from  the  position  of  equilibrium  of  the  centre  of  the 
suspended  sphere. 

No  attempt  is  made  to  wait  till  the  vibrations  of  the 
beam  have  subsided,  but  the  scale-divisions  corre- 

sponding to  the  extremities  of  a  single  vibration  are 
observed,  and  are  found  to  be  distant  x  and  y  respec- 

o  X         y  a 

Fig.  18. 

tively  from  the  position  of  equilibrium.  At  these  points 
the  rod  is,  for  an  instant,  at  rest,  so  that  its  energy  is 

entirely  potential,  and  since  the  total  energ)-  is  constant, 
the  potential  energy  corresponding  to  the  position  x 
must  be  equal  to  that  corresponding  to  the  position  y. 

Now  if  T  be  the  time  of  a  double  vibration  about  the 

point  of  equilibrium  o,  the  potential  energ\'  due  to 
torsion  when  the  scale  reading  is  x  is  by  Article  119 

2TT^m    , 

and  that  due  to  the  gravitation  between  ;//  and  M  is  by 
Article  140  ^      ̂ mM 

a  —  X 



VIII]  THE  CONSTANT  OF  GRAVITATION   119 

The  potential  energy  of  the  whole  system  in  the  position 
X  is  therefore 

K-  C     -f  -yf^  x^. 
a  —  X        1^ 

In  the  position  y  it  is 

mM       ZTv'^m 
a-y        T^ 

and  since  the  potential  energy  in  these  two  positions 
is  equal, 

CmM I         \  ZTT^m  ,      2  ON 

-y 

Hence        ̂        277^    ,  ,  .  ,  ,  , 

=  wp-  ̂^  ̂y^^^~  ̂ )  ̂̂   ~  y^- 
By  this  equation  C,  the  constant  of  gravitation,  is 

determined  in  terms  of  the  observed  quantities,  M  the 
mass  of  the  large  spheres  in  grammes,  T  the  time  of  a 
double  vibration  in  seconds,  and  the  distances  x^y  and 
a  in  centimetres. 

According  to  Daily's  experiments,  C  =  6-5  x  io~®. If  we  assume  the  unit  of  mass,  so  that  at  a  distance 

unity  it  would  produce  an  acceleration  unity,  the  centi- 
metre and  the  second  being  units,  the  unit  of  mass 

would  be  about  1*537  ><  10'  grammes,  or  15-37  tonnes. 
This  unit  of  mass  reduces  C,  the  constant  of  gravitation, 
to  unity.  It  is  therefore  used  in  the  calculations  of 
physical  astronomy. 

145.  Universal  Gravitation 

We  have  thus  traced  the  attraction  of  gravitation 
through  a  great  varietv  of  natural  phenomena,  and  have 
found  that  the  law  established  for  the  variation  of  the 

force  at  different  distances  between  a  planet  and  the 
sun  also  holds  when  we  compare  the  attraction  between 
different  planets  and  the  sun,  and  also  when  we  compare 
the  attraction  between  the  moon  and  the  earth  with  that 

between  the  earth  and  heavy  bodies  at  its  surface.   We 
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have  also  found  that  the  gravitation  of  equal  masses  at 
equal  distances  is  the  same  whatever  be  the  nature  of 
the  material  of  which  the  masses  consist.  This  we 

ascertain  by  experiments  on  pendulums  of  different 
substances,  and  also  by  a  comparison  of  the  attraction 
of  the  sun  on  different  planets,  which  are  probably 

not  alike  in  composition.  The  experiments  of  Baily* 
on  spheres  of  different  substances  placed  in  the 
torsion  balance  confirm  this  law. 

Since,  therefore,  we  find  in  so  great  a  number  of 
cases  occurring  in  regions  remote  from  each  other  that 
the  force  of  gravitation  depends  on  the  mass  of  bodies 
only,  and  not  on  their  chemical  nature  or  physical  state, 
we  are  led  to  conclude  that  this  is  true  for  all  substances. 

For  instance,  no  man  of  science  doubts  that  two 
portions  of  atmospheric  air  attract  one  another,  although 
we  have  ver\'  little  hope  that  experimental  methods 
will  ever  be  invented  so  delicate  as  to  measure  or  even 
to  make  manifest  this  attraction.  But  we  know  that 
there  is  attraction  between  any  portion  of  air  and  the 

earth,  and  we  find  by  Cavendish's  experiment  that 
gravitating  bodies,  if  of  sufficient  mass,  gravitate 
sensibly  towards  each  other,  and  we  conclude  that 
two  portions  of  air  gravitate  towards  each  other.  But 
it  is  still  extremely  doubtful  whether  the  medium  of 
light  and  electricity  is  a  gravitating  substance,  though 
it  is  certainly  material  and  has  massf. 

146.   Cause  of  (}r.\vitation 

Newton,  in  his  Principia,  deduces  from  the  obser\ed 
motions  of  the  heavenly  bodies  the  fact  that  they  attract 
one  another  according  to  a  definite  law. 

•  And  more  recently  with  extreme  refinement  by  v.  Jolly,  Bo>-s. 
Eotvcis.  and  many  others.  Apparent  weipht  is  gravitation  di- 

minished by  centrifugal  reaction  to  the  earth's  rotation:  if  these 
did  not  vai^'  in  the  same  way  for  all  kinds  of  matter,  delicate 
weighings  would  detect  the  discrepancy:  the  experiments  of 
Eotvos  show  that  it  could  not  exceed  five  parts  in  io».    See  infra, 
P   143 

t  See  infra,  p.  144. 
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This  he  gives  as  a  result  of  strict  dynamical  reasoning, 
and  by  it  he  shows  how  not  only  the  more  conspicuous 
phenomena,  but  all  the  apparent  irregularities  of  the 
motions  of  these  bodies  are  the  calculable  results  of 

this  single  principle.  In  his  Principia  he  confines 
himself  to  the  demonstration  and  development  of  this 
great  step  in  the  science  of  the  mutual  action  of  bodies. 
He  says  nothing  about  the  means  by  which  bodies  are 
made  to  gravitate  towards  each  other.  We  know  that 
his  mind  did  not  rest  at  this  point — that  he  felt  that 
gravitation  itself  must  be  capable  of  being  explained, 
and  that  he  even  suggested  an  explanation  depending 
on  the  action  of  an  etherial  medium  pervading  space. 
But  with  that  wise  moderation  which  is  characteristic 

of  all  his  investigations,  he  distinguished  such  specula- 
tions from  what  he  had  established  by  observation  and 

demonstration,  and  excluded  from  his  Principia  all 
mention  of  the  cause  of  gravitation,  reserving  his 

thoughts  on  this  subject  for  the  "Queries"  printed  at 
the  end  of  his  Opticks. 

The  attempts  which  have  been  made  since  the  time 
of  Newton  to  solve  this  difficult  question  are  few  in 
number,  and  have  not  led  to  any  well-estabhshed 
result*. 

147.  Application  of  Newton's  Method  of 
Investigation 

The  method  of  investigating  the  forces  which  act 
between  bodies  which  was  thus  pointed  out  and  exem- 

plified by  Newton  in  the  case  of  the  heavenly  bodies, 
was  followed  out  successfully  in  the  case  of  electrified 
and  magnetized  bodies  by  Cavendish,  Coulomb,  and 
Poisson. 

The  investigation  of  the  mode  in  which  the  minute 
particles  of  bodies  act  on  each  other  is  rendered  more 
difficult  from  the  fact  that  both  the  bodies  we  consider 

*  See  Appendix  I,  infra,  p.  140. 
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and  their  distances  are  so  small  that  we  cannot  perceive 
or  measure  them,  and  we  are  therefore  unable  to 
observe  their  motions  as  we  do  those  of  planets,  or  of 
electrified  and  magnetized  bodies. 

148.   Methods  of  Molecular  Investigations 

Hence  the  investigations  of  molecular  science  have 
proceeded  for  the  most  part  by  the  method  of  hypo- 

thesis, and  comparison  of  the  results  of  the  hypothesis 
with  the  observed  facts. 

The  success  of  this  method  depends  on  the  generality 
of  the  hypothesis  we  begin  with.  If  our  hypothesis  is 
the  extremely  general  one  that  the  phenomena  to  be 
investigated  depend  on  the  configuration  and  motion  of 
a  material  system,  then  if  we  are  able  to  deduce  any 
available  results  from  such  an  hvpothesis,  we  may 
safely  apply  them  to  the  phenomena  before  us*. 

If,  on  the  other  hand,  we  frame  the  hypothesis  that 
the  configuration,  motion,  or  action  of  the  material 
system  is  of  a  certain  definite  kind,  and  if  the  results 
of  this  hypothesis  agree  with  the  phenomena,  then, 
unless  we  can  prove  that  no  other  hypothesis  would 
account  for  the  phenomena,  we  must  still  admit  the 
possibility  of  our  hypothesis  being  a  wrong  one. 

149.   Import.\nce  of  Gener.\l  .\nd  Elementary 
Properties 

It  is  therefore  of  the  greatest  importance  in  all 
physical  inquiries  that  we  should  be  thoroughly 
acquainted  with  the  most  general  properties  of  material 
systems,  and  it  is  for  this  reason  that  in  this  book  I 
have  rather  dwelt  on  these  general  properties  than 
entered  on  the  more  varied  and  interesting  field  of  the 
special  properties  of  particular  forms  of  matter. 

*  This  is  the  subject  of  the  next  chapter. 



[CHAPTER  IX] 

ON  THE  EQUATIONS  OF  MOTION  OF  A 

CONNECTED  SYSTEM* 

1.  In  the  fourth  section  of  the  second  part  of  his 
Mecamque  Analytique,  Lagrange  has  given  a  method 
of  reducing  the  ordinary  dynamical  equations  of  the 
motion  of  the  parts  of  a  connected  system  to  a  number 
equal  to  that  of  the  degrees  of  freedom  of  the  system. 

The  equations  of  motion  of  a  connected  system  have 
been  given  in  a  different  form  by  Hamilton,  and  have 
led  to  a  great  extension  of  the  higher  part  of  pure 

dynamics^. As  we  shall  find  it  necessary,  in  our  endeavours  to 
bring  electrical  phenomena  within  the  province  of 
dynamics,  to  have  our  dynamical  ideas  in  a  state  fit  for 
direct  application  to  physical  questions,  we  shall  devote 
this  chapter  to  an  exposition  of  these  dynamical  ideas 
from  a  physical  point  of  view. 

2.  The  aim  of  Lagrange  was  to  bring  dynamics  under 
the  power  of  the  calculus.  He  began  by  expressing  the 
elementary  dynamical  relations  in  terms  of  the  corre- 

sponding relations  of  pure  algebraical  quantities,  and 
from  the  equations  thus  obtained  he  deduced  his  final 
equations  by  a  purely  algebraical  process.  Certain 
quantities  (expressing  the  reactions  between  the  parts 
of  the  system  called  into  play  by  its  physical  connexions) 
appear  in  the  equations  of  motion  of  the  component 

parts  of  the  system,  and  Lagrange's  investigation,  as seen  from  a  mathematical  point  of  view,  is  a  method  of 
eliminating  these  quantities  from  the  final  equations. 

In  following  the  steps  of  this  elimination  the  mind  is 
exercised  in  calculation,  and  should  therefore  be  kept 

*  This  chapter,  now  added,  is  a  reprint  of  Part  IV,  Chapter  v. 

of  Maxwell's  Treatise  on  Electricity  and  Magnetism  (1873). 
1  See  Professor  Cayley's  "Report  on  Theoretical  Dynamics," 

British  Association,  1857;  and  Thomson  and  Tait's  Natural  Philo- 
sophy [1867]. 
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free  from  the  intrusion  of  dynamical  ideas.  Our  aim, 
on  the  other  hand,  is  to  cultivate  our  dynamical  ideas. 
We  therefore  avail  ourselves  of  the  labours  of  the 
mathematicians,  and  retranslate  their  results  from  the 
language  of  the  calculus  into  the  language  of  dynannics, 
so  that  our  words  may  call  up  the  mental  image,  not 
of  some  algebraical  process,  but  of  some  property  of 
moving  bodies. 

The  language  of  dynamics  has  been  considerably 
extended  by  those  who  have  expounded  in  popular 
terms  the  doctrine  of  the  Conservation  of  Energy,  and 
it  will  be  seen  that  much  of  the  follov.ing  statement  is 

suggested  by  the  investigation  in  Thomson  and  Tail's 
Natural  Philosophy,  especially  the  method  of  beginning 

with  the  theor}'  of  impulsive  forces. 
I  have  applied  this  method  so  as  to  avoid  the  explicit 

consideration  of  the  motion  of  any  part  of  the  system 
except  the  coordinates  or  variables,  on  which  the 
motion  of  the  whole  depends.  It  is  doubtless  important 
that  the  student  should  be  able  to  trace  the  connexion 
of  the  motion  of  each  part  of  the  system  with  that  of 
the  variables,  but  it  is  by  no  means  necessary  to  do  this 
in  the  process  of  obtaining  the  final  equations,  which  are 
independent  of  the  particular  form  of  these  connexions. 

The  Variables 

3.  The  number  of  degrees  of  freedom  of  a  system  is 
the  number  of  data  which  must  be  given  in  order 
completely  to  determine  its  position.  Different  forms 
may  be  given  to  these  data,  but  their  number  depends 
on  the  nature  of  the  system  itself,  and  cannot  be  altered. 

To  fix  our  ideas  we  may  conceive  the  system  con- 
nected by  means  of  suitable  mechanism  with  a  number 

of  moveable  pieces,  each  capable  of  motion  along  a 
straight  line,  and  of  no  other  kind  of  motion.  The 
imaginary  mechanism  which  connects  each  of  these 
pieces  with  the  system  must  be  conceived  to  be  free 
from   friction,   destitute   of  inertia,  and   incapable  of 
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being  strained  by  the  action  of  the  appHed  forces.  The 
use  of  this  mechanism  is  merely  to  assist  the  imagination 
in  ascribing  position,  velocity,  and  momentum  to  what 

appear,  in  Lagrange's  investigation,  as  pure  algebraical 
quantities. 

Let  q  denote  the  position  of  one  of  the  moveable 
pieces  as  defined  by  its  distance  from  a  fixed  point  in 
its  fine  of  motion.  We  shall  distinguish  the  values  of 
q  corresponding  to  the  different  pieces  by  the  suffixes 
1,  -2,  etc.  When  we  are  dealing  with  a  set  of  quantities 
belonging  to  one  piece  only  we  may  omit  the  suffix. 

When  the  values  of  all  the  variables  {q)  are  given,  the 
position  of  each  of  the  moveable  pieces  is  known,  and, 
in  virtue  of  the  imaginary  mechanism,  the  configuration 
of  the  entire  system  is  determined. 

The  Velocities 

4.  During  the  motion  of  the  system  the  configuration 
changes  in  some  definite  manner,  and  since  the  con- 

figuration at  each  instant  is  fully  defined  by  the  values 
of  the  variables  {q),  the  velocity  of  every  part  of  the 
system,  as  well  as  its  configuration,  will  be  completely 
defined  if  we  know  the  values  of  the  variables  {q), 

together  with   their  velocities    i^,  or,  according   to 

Newton's  notation,  q\. 

The  Forces 

5.  By  a  proper  regulation  of  the  motion  of  the  vari- 
ables, any  motion  of  the  system,  consistent  with  the 

nature  of  the  connexions,  may  be  produced.  In  order 
to  produce  this  motion  by  moving  the  variable  pieces, 
forces  must  be  applied  to  these  pieces. 
We  shall  denote  the  force  which  must  be  applied  to 

any  variable  q^  by  F^.  The  system  of  forces  (F)  is 
mechanically  equivalent  (in  virtue  of  the  connexions 
of  the  system)  to  the  system  of  forces,  whatever  it  may 
be,  which  really  produces  the  motion. 
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T}ie  Momenta 

6.  When  a  body  moves  in  such  a  way  that  its  con- 
figuration, with  respect  to  the  force  which  acts  on  it, 

remains  ahvays  the  same  (as,  for  instance,  in  the  case 
of  a  force  acting  on  a  single  particle  in  the  line  of  its 
motion),  the  moving  force  is  measured  by  the  rate  of 
increase  of  the  momentum.  If  F  is  the  moving  force, 
and  p  the  momentum, 

P^dp whence  p  =  \  Fdt. 

The  time-integral  of  a  force  is  called  the  Impulse  of 
the  force ;  so  that  we  may  assert  that  the  momentum  is 
the  impulse  of  the  force  which  would  bring  the  body 
from  a  state  of  rest  into  the  given  state  of  motion. 

In  the  case  of  a  connected  system  in  motion,  the 
configuration  is  continually  changing  at  a  rate  depending 
on  the  velocities  {q),  so  that  we  can  no  longer  assume 
that  the  momentum  is  the  time-integral  of  the  force 
which  acts  on  it. 

But  the  increment  hq  of  any  variable  cannot  be 

greater  than  q'ht,  where  8/  is  the  time  during  which  the 
increment  takes  place,  and  q  is  the  greatest  value  of  the 
velocity  during  that  time.  In  the  case  of  a  system 
moving  from  rest  under  the  action  of  forces  always  in 
the  same  direction,  this  is  evidently  the  final  velocity. 

If  the  final  velocity  and  configuration  of  the  system 
are  given,  we  may  conceive  the  velocity  to  be  communi- 

cated to  the  system  in  a  very  small  time  ht,  the  original 
configuration  differing  from  the  final  configuration  by 
quantities  hq^,  Sq.^,  etc.,  which  are  less  than  ̂ i8/, 
^28',  etc.  respectively. 

The  smaller  we  suppose  the  increment  of  time  8/, 
the  greater  must  be  the  impressed  forces,  but  the  time- 
integral,  or  impulse,  of  each  force  will  remain  finite. 
The  limiting  value  of  the  impulse,  when  the  time  is 
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diminished  and  ultimately  vanishes,  is  defined  as  the 
tnstantafieous  impulse;  and  the  momentum  p,  corre- 

sponding to  any  variable  q,  is  defined  as  the  impulse 
corresponding  to  that  variable,  when  the  system  is 
brought  instantaneously  from  a  state  of  rest  into  the 
given  state  of  motion. 

This  conception,  that  the  momenta  are  capable  of 
being  produced  by  instantaneous  impulses  on  the  system 
at  rest,  is  introduced  only  as  a  method  of  defining  the 
magnitude  of  the  momenta ;  for  the  momenta  of  the 
system  depend  only  on  the  instantaneous  state  of  motion 
of  the  system,  and  not  on  the  process  by  which  that 
state  was  produced. 

In  a  connected  system  the  momentum  corresponding 
to  any  variable  is  in  general  a  linear  function  of  the 
velocities  of  all  the  variables,  instead  of  being,  as  in 
the  dynamics  of  a  particle,  simply  proportional  to  the 
velocity. 

The  impulses  required  to  change  the  velocities  of  the 

system  suddenly  from  g^,  g.^,  etc.  to  g^',  g^',  etc.  are 
evidently  equal  to  ̂ /  -  p^,  p^'  -  />,,  etc.  the  changes of  momentum  of  the  several  variables. 

Work  done  by  a  S?nall  Impulse 

7.  The  work  done  by  the  force  F\  during  the  impulse 
is  the  space-integral  of  the  force,  or 

W=  I  F^dq^ 

If  9/  is  the  greatest  and  9/'  the  least  value  of  the 
velocity  g^  during  the  action  of  the  force,  W  must  be 
less  than  r 

g^'  JFdt  or  g^'ip.'-p^, 
and  greater  than 

9i"  \Fdt  or  9i"(/>i'-/>i)- 
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If  we  now  suppose  the  impulse    Fdt  to  be  diminished 

without  Hmit,  the  values  of  ̂ j'  and  q^"  will  approach 
and  ultimately  coincide  with  that  of  ̂ ,,  and  we  may 
write  /)/—/>=  S/)i ;  so  that  the  work  done  is  ultimately 

or,  the  work  done  hy  a  very  small  impulse  is  ultimately  the 
product  of  the  impulse  and  the  velocity. 

Increment  of  the  Kinetic  Energy 

8.  When  work  is  done  in  setting  a  conservative 

system  in  motion,  energy-  is  communicated  to  it,  and 
the  system  becomes  capable  of  doing  an  equal  amount 
of  work  against  resistances  before  it  is  reduced  to  rest. 

The  energ}'  which  a  system  possesses  in  virtue  of  its 
motion  is  called  its  Kinetic  Energy,  and  is  communicated 
to  it  in  the  form  of  the  work  done  by  the  forces  which 
set  it  in  motion. 

If  T  be  the  kinetic  energ}-  of  the  system,  and  if  it 
becomes  T  ~  bT,  on  account  of  the  action  of  an  in- 

finitesimal impulse  whose  components  arc  S/)j,  S/),,  etc. 
the  increment  BT  must  be  the  sum  of  the  quantities 
of  work  done  by  the  components  of  the  impulse,  or  in 

symbols.  sr=^M  +  ̂ M  +  etc. 
=  S(W-    (!)• 

The  instantaneous  state  of  the  system  is  completely 
defined  if  the  variables  and  the  momenta  are  given. 

Hence  the  kinetic  energ)-,  which  depends  on  the 
instantaneous  state  of  the  system,  can  be  expressed  in 
terms  of  the  variables  (g),  and  the  momenta  (/>).  This 
is  the  mode  of  expressing  T  introduced  by  Hamilton. 
When  T  is  expressed  in  this  way  we  shall  distinguish 
it  by  the  suffix  p,  thus,  Tj,. 

The  complete  variation  of  7",  is 

87-,=  Sg- 8/,) +1(2^8,)    (,). 
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The  last  term  may  be  written 

which  diminishes  with  St,  and  ultimately  vanishes  [com- 
pared with  the  first  term]  when  the  impulse  becomes 

instantaneous. 

Hence,  equating  the  coefficients  of  Sp  in  equations  (i) 
and  (2),  we  obtain  071 

*=#    (3). 
or,  the  velocity  corresponding  to  the  variable  q  is  the 
differential  coefficient  of  T^  zcith  respect  to  the  corre- 

sponding momentum  p. 
We  have  arrived  at  this  result  by  the  consideration  of 

impulsive  forces.  By  this  method  we  have  avoided  the 
consideration  of  the  change  of  configuration  during  the 
action  of  the  forces.  But  the  instantaneous  state  of  the 
system  is  in  all  respects  the  same,  whether  the  system  was 
brought  from  a  state  of  rest  to  the  given  state  of  motion  by 
the  transient  application  of  impulsive  forces,  or  whether 
it  arrived  at  that  state  in  any  manner,  however  gradual. 

In  other  words,  the  variables,  and  the  corresponding 
velocities  and  momenta,  depend  on  the  actual  state  of 
motion  of  the  system  at  the  given  instant,  and  not  on 
its  previous  histor}^ 

Hence,  the  equation  (3)  is  equally  valid,  whether  the 
state  of  motion  of  the  system  is  supposed  due  to  impul- 

sive forces,  or  to  forces  acting  in  any  manner  whatever. 
We  may  now  therefore  dismiss  the  consideration  of 

impulsive  forces,  together  with  the  limitations  imposed 
on  their  time  of  action,  and  on  the  changes  of  configura- 

tion during  their  action. 

Hamilton's  Equations  of  Motion 
9.   We  have  already  shown  that 

f=*    w- 
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Let  the  system  move  in  any  arbitran'  way,  subject  to 
the  conditions  imposed  by  its  connexions;  then  the 
variations  of/)  and  q  are 

dp 

dt 

Hence  Z'^P-t^^^ 

8/,=  ̂8/,         hq^^qht    (5). 

'P^    (^)' 
and  the  complete  variation  of  Tj,  is 

S^t)^     <^>- But  the  increment  of  the  kinetic  energy  arises  from 
the  work  done  by  the  impressed  forces,  or 

hT,=-Z{Fhq)    (8). 
In  these  two  expressions  the  variations  hq  are  all 

independent  of  each  other,  so  that  we  are  entitled  to 
equate  the  coefficients  of  each  of  them  in  the  two 
expressions  (7)  and  (8).  We  thus  obtain 

--t-f           (^)- 
where  the  momentum  p^  and  the  force  F^  belong  to  the 

variable  q*. 
There  are  as  many  equations  of  this  form  as  there  are 

variables.  These  equations  were  given  by  Hamilton. 
They  show  that  the  force  corresponding  to  any  variable 
is  the  sum  of  two  parts.  The  first  part  is  the  rate 
of  increase  of  the  momentum  of  that  variable  with 

respect  to  the  time.  The  second  part  is  the  rate  of  in- 
crease of  the  kinetic  energ\'  per  unit  of  increment  of 

the  variable,  the  other  variables  and  all  the  momenta 
being  constant. 

*   But  see  infra,  p.  158. 



IX]  IN  TERMS  OF  MOMENTA  131 

The  Kinetic  Energy  expressed  in  Terms  of  the 
Motnenta  and  Velocities 

10.   Let  p I,  p 2,  etc.  be  the  momenta,  and  9i,  ̂ o,  etc. 
the  velocities  at  a  given  instant,  and  let  p^,  pa,  etc., 
q^,  q2,  etc.  be  another  system  of  momenta  and  velocities, 
such  that                      ^         .           .       ̂   .     . 

Pi=npi,     qi=«9i,etc   (10). 
It  is  manifest  that  the  systems  p,  q  will  be  consistent 

with  each  other  if  the  systems  p,  q  are  so. 
Now  let  n  vary  by  S«.  The  work  done  by  the  force 

^iis[by§7]     F,Sq,=  q,Sp,=  9,p,nS«        (11). 
Let  n  increase  from  o  to  i ;  then  the  system  is  brought 

from  a  state  of  rest  into  the  state  of  motion  {qp),  and  the 
whole  work  expended  in  producing  this  motion  is 

(9i^i  +  ̂2/>2  +  etc.)      ndn 

■  0 

.(12). 

But  I    ndn 
1 

21 

0 

and  the  work  spent  in  producing  the  motion  is  equi- 
valent to  the  kinetic  energy.  Hence 

Tp-^i  =  \  (/>i9i  +  />2^2  +  etc.)      (13), 

where  J",,;,  denotes  the  kinetic  energy  expressed  in terms  of  the  momenta  and  velocities.  The  variables 

g-j,  ̂ 2)  etc.,  do  not  enter  into  this  expression. 
The  kinetic  energy  is  therefore  half  the  sum  of  the 

products  of  the  momenta  into  their  corresponding 
velocities. 

When  the  kinetic  energy  is  expressed  in  this  way  we 
shall  denote  it  by  the  symbol  Tj-^.  It  is  a  function  of  the 
momenta  and  velocities  only,  and  does  not  involve  the 
variables  themselves. 

1 1 .  There  is  a  third  method  of  expressing  the  kinetic 
energ}^  which  is  generally,  indeed,  regarded  as  the 
fimdamental  one.  By  solving  the  equations  (3)  we  may 
express  the  momenta  in  terms  of  the  velocities,  and 
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then,  introducing  these  values  in  (13),  we  shall  have  an 
expression  for  T  involving  only  the  velocities  and  the 
variables.  When  T  is  expressed  in  this  form  we  shall 
indicate  it  by  the  symbol  T;,.  This  is  the  form  in  which 
the  kinetic  energy  is  expressed  in  the  equations  of 
Lagrange. 

12.  It  is  manifest  that,  since  7^,  7-,  and  T^-,  are 
three  different  expressions  for  the  same  thing, 

Tp+  T:^  -  2rp^=  o, 

or  7^^+ 7'^-/>i^i-/>2^2-etc.  =  o    ...(14). 
Hence,  if  all  the  quantities  />,  q,  and  q  van.-, 

+  (|5- p.)  «?.-§-/>.)% -etc. 

The  variations  8/)  are  not  independent  of  the  varia- 
tions 5^  and  hq,  so  that  we  cannot  at  once  assert  that 

the  coefficient  of  each  variation  in  this  equation  is 
zero.   But  we  know,  from  equations  (3),  that 

if-*'=°'"^   '■'•)• 
so  that  the  terms  involving  the  variations  hp  vanish 
of  themselves. 

The  remaining  variations  S^  and  hq  are  now  all 

independent*,  so  that  we  find,  by  equating  to  zero  the 
coefficients  of  S^j,  etc., 

or,  the  components  of  momentum  are  the  differential 

coefficients  of  T",-  zvith  respect  to  the  corresponding velocities. 
♦  See  infra,  p.  159. 
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Again,  by  equating  to  zero  the  coefficients  of  S^^,  etc., 

9/.  +  |?i=o    (18); 

or,  the  differential  coefficiejit  of  the  kinetic  energy  zvith 
respect  to  cuiy  variable  q^  is  equal  in  magnitude  but  opposite 
in  sign  zchen  T  is  expressed  as  a  function  of  the  velocities 
instead  of  as  a  function  of  the-  momenta. 

In  virtue  of  equation  (18)  we  may  write  the  equation 
of  motion  (o)  ,.        ̂ t 

^-f-g           (•"), 
^-sS-i     (-)> 

which  is  the  form  in  which  the  equations  of  motion 
were  given  by  Lagrange. 

13.  In  the  preceding  investigation  we  have  avoided 
the  consideration  of  the  form  of  the  function  which 

expresses  the  kinetic  energy  in  terms  either  of  the 
velocities  or  of  the  momenta.  The  only  explicit  form 
which  we  have  assigned  to  it  is 

^7>i  =  HPi9i  + />2^2  +  etc.)       (21), 

in  which  it  is  expressed  as  half  the  sum  of  the  products 
of  the  momenta  each  into  its  corresponding  velocity. 

We  may  express  the  velocities  in  terms  of  the  differ- 
ential coefficients  of  Tj,  with  respect  to  the  momenta, 

as  in  equation  (3)  [;  thus] 

n-:-(p.f +  P.f +e.c.)     ...(a.). 
This  shows  that  T^  is  a  homogeneous  function  of  the 

second  degree  of  the  momenta  p^,  p.^,  etc. 

We  may  also  express  the  momenta  in  terms  of  J'y, and  we  find 
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which  shows  that  T;^  is  a  homogeneous  function  of  the 
second  degree  with  respect  to  the  velocities  ̂ j,  ̂j,  etc. 

I  f  we  write 

Pj,  for  -~'         P,o  for  -.--:',  etc. 

and        Q„for|J^       O,,  for  .^^^,  etc.; 

then,  since  both  J",,  and  T^  are  functions  of  the  second 
degree  of  q  and  of  p  respectively,  both  the  P's  and  the 
0*s  will  be  functions  of  the  variables  q  only,  and  inde- 

pendent of  the  velocities  and  the  momenta.  We  thus 
obtain  the  expressions  for  T, 

^T-.  =  P„gi2  +  2Pio9,92  ;  etc.      ...(24), 

^T,  -  QuPi'+  20,,p,p,  f-  etc.   ...(25). 
The  momenta  are  expressed  in  terms  of  the  velocities 

by  the  linear  equations 

/>i=P„^i  +  Pi2^2+etc   (26), 
and  the  velocities  are  expressed  in  terms  of  the  momenta 
by  the  linear  equations 

gi-Q,,p,  +  Q,^p^  +  etc   (27). 
In  treatises  on  the  dynamics  of  a  rigid  body,  the 

coefficients  corresponding  to  Pj,,  in  which  the  suffixes 
are  the  same,  are  called  Slomcnts  of  Inertia,  and  those 
corresponding  to  Pj^,  in  which  the  suffixes  are  different, 
are  called  Products  of  Inertia.  We  may  extend  these 
names  to  the  more  general  problem  which  is  now 
before  us,  in  which  these  quantities  are  not,  as  in  the 
case  of  a  rigid  bodv,  absolute  constants,  but  are  func- 

tions of  the  variables  ̂ ,,  q.,,  etc. 
In  like  manner  we  may  call  the  coefficients  of  the 

form  ̂ ,,  Moments  of  Mobilit)-,  and  those  of  the  form 
O12,  Products  of  Mobility.  It  is  not  often,  however, 
that  we  shall  have  occasion  to  speak  of  the  coefficients 
of  mobilitv. 
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14.  The  kinetic  energy  of  the  system  is  a  quantity 
essentially  positive  or  zero.  Hence,  whether  it  be  ex- 

pressed in  terms  of  the  velocities,  or  in  terms  of  the 
momenta,  the  coefficients  must  be  such  that  no  real 
values  of  the  variables  can  make  T  negative. 

There  are  thus  a  set  of  necessary  conditions  which 
the  values  of  the  coefficients  P  must  satisfy.  These 
conditions  are  as  follows: 

The  quantities  P^,  P22'  ̂ tc.  must  all  be  positive. 
The  n  —  I  determinants  formed  in  succession  from 

the  determinant 
...P.r Pll, ^12, 

P. 

P12, P22, 

A ^^13, ^23, 

P, 

Pin >      -c  2n >       ̂ 3n > 

by  the  omission  of  terms  with  suffix  i ,  then  of  terms 
with  either  i  or  2  in  their  suffix,  and  so  on,  must  all  be 

positive. 
The  number  of  conditions  for  n  variables  is  therefore 

2w  —  I. 
The  coefficients  Q  are  subject  to  conditions  of  the 

same  kind. 

15.  In  this  outline  of  the  fundamental  principles  of 
the  dynamics  of  a  connected  system,  we  have  kept  out 
of  view  the  mechanism  by  which  the  parts  of  the  system 
are  connected.  We  have  not  even  written  down  a  set 

of  equations  to  indicate  how  the  motion  of  any  part  of 
the  system  depends  on  the  variation  of  the  variables. 
We  have  confined  our  attention  to  the  variables, 
their  velocities  and  momenta,  and  the  forces  which  act 
on  the  pieces  representing  the  variables.  Our  only 
assumptions  are,  that  the  connexions  of  the  system  are 
such  that  the  time  is  not  explicitly  contained  in  the 
equations  of  condition,  and  that  the  principle  of  the 
conservation  of  energy  is  applicable  to  the  system. 
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Such  a  description  of  the  methods  of  pure  dynamics 
is  not  unnecessary,  because  Lagrange  and  most  of  his 
followers,  to  whom  we  are  indebted  for  these  methods, 
have  in  general  confined  themselves  to  a  demonstration 
of  them,  and,  in  order  to  devote  their  attention  to  the 
symbols  before  them,  they  have  endeavoured  to  banish 

all  ideas  except  those  of  pure  quantit}-,  so  as  not  only 
to  dispense  with  diagrams,  but  even  to  get  rid  of  the 
ideas  of  velocity,  momentum,  and  energy,  after  they 
have  been  once  for  all  supplanted  by  symbols  in  the 
original  equations.  In  order  to  be  able  to  refer  to  the 

results  of  this  analysis  in  ordinary'  dynamical  language, 
we  have  endeavoured  to  retranslate  the  principal 
equations  of  the  method  into  language  which  may  be 
intelligible  without  the  use  of  symbols. 

As  the  development  of  the  ideas  and  methods  of 
pure  mathematics  has  rendered  it  possible,  by  forming 
a  mathematical  theory  of  dynamics,  to  bring  to  light 
many  truths  which  could  not  have  been  discovered 

without  mathematical  training*,  so,  if  we  are  to  form 
dynamical  theories  of  other  sciences,  we  must  have  our 
minds  imbued  with  these  dynamical  truths  as  well  as 
with  mathematical  methods. 

In  forming  the  ideas  and  words  relating  to  any 
science,  which,  like  electricity,  deals  with  forces  and 
their  effects,  we  must  keep  constantly  in  mind  the  ideas 
appropriate  to  the  fundamental  science  of  dynamics,  so 
that  we  may,  during  the  first  development  of  the  science, 
avoid  inconsistency  with  what  is  already  established, 
and  also  that  when  our  views  become  clearer,  the 
language  we  have  adopted  may  be  a  help  to  us  and  not 
a  hindrance. 

♦  It  has  also  generalized  our  conception  of  dynamics,  so  that  it 
is  possible  to  assert  that  a  physical  system  is  of  dynamical  type 
although  we  may  not  have  l-een  able  to  form  an  idea  of  the  con- 
fiRurations  and  motions  that  are  represented  by  the  variables. 
See  Appendix  II. 
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The  Relativity  of  the  Forces  of  Nature 

The  idea  of  the  forces  of  nature  was  introduced  into 

science  in  definite  form  by  Sir  Isaac  Newton,  in  the 
expression  of  his  Laws  of  Motion  in  the  Introduction 

to  the  Principia.  He  specified  physical  force  as  recog- 
nized and  measured  by  the  rate  at  which  the  velocity 

of  the  body  on  which  it  acts  is  changing  with  the  time. 
This  was  the  simplest  measure  conceivable;  it  was 
postulated  tacitly  that  the  forces  so  recognized  corre- 

spond to  actual  invariant  causes  of  motion,  which  are 
always  present,  in  accordance  with  the  uniformity  of 
nature,  whenever  the  same  conditions  of  the  surrounding 
system  of  bodies  recur.  An  underlying  question  is  thus 
suggested  as  to  why  this  particular  measure  corresponds 
to  objective  nature,  and  not  some  more  complex  one, 
involving  for  example  the  velocity  also,  or  the  rate  of 
change  of  the  acceleration  as  well  as  that  of  the  velocity. 

But  this  introduction  of  the  idea  of  forces  of  nature 

also  gave  rise  to  the  practical  need  of  specifying  some 
definite  mode  of  prescribing  velocity  and  its  rate  of 
change.  Position  and  velocity  belong  to  one  system  of 
bodies  in  space  and  time,  but  are  relative  to  some  other 
system.  The  simplest  plan  is  to  postulate  some  standard 
system  for  general  reference.  Accordingly  Newton  laid 
down  a  scheme  of  absolute  space  and  absolute  time, 
with  respect  to  which  the  movements  and  forces  in 
nature  are  to  be  determined.  It  is  then  necessary  for 
dynamical  science  to  determine  this  scheme  of  reference 
provisionally,  for  the  set  of  problems  in  hand,  and 
continually  to  correct  its  specification  as  the  advance  of 
knowledge  requires.  Thus  for  ordinary  purposes  the 
space  referred  to  the  surrounding  landscape  and  the 
time  of  an  ordinary  vibrator  will  suffice  for  a  standard ; 
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but  in  u>ider  problems  when  the  rotation  of  the  Earth 
has  to  be  recognized  these  are  no  longer  adequate,  and 
must  be  replaced  by  a  scheme  of  space  and  time  which 
does  not  revolve  with  the  Earth;  and  so  on.  The 
revolution  effected  by  Copernicus,  in  transferring  the 
centre  of  reference  from  the  Earth  to  the  Sun,  was  thus 
a  preliminary  to  this  dynamical  order  of  ideas.  We  can 
conceive  an  ultimate  system  of  space  and  time  as  that 
frame  to  which  the  stars  and  stellar  universes  can  be 
related,  so  as  to  secure  the  greatest  simplicity  in  the 
mode  of  describing  their  motions.  Any  frame  of  space 
and  time  to  which  the  forces  of  nature  are  thus  con- 

sistently referred,  with  sufficient  precision  for  the 
purposes  in  view,  has  been  named  a  frame  of  inertia, 
because  with  respect  to  it  these  forces  are  determined 
by  the  Newtonian  product  inertia-acceleration.  For 
ordinary'  purposes  there  are  many  equally  approximate 
frames  of  inertia;  any  uniform  motion  of  translation 
of  such  a  frame  will  make  no  difference  in  its  practical 
efficacy. 

This  postulation  of  a  standard  space  and  a  standard 
time  in  the  Principia  in  1687  was  made  with  a  view  to 
simple  treatment  of  the  motions  of  the  planetary  bodies 
in  space:  but  it  at  once  excited  the  criticism  of  philo- 

sophers both  at  home  and  abroad,  though  apparently 
they  had  no  practical  alternative  to  offer.  The  illustrious 
Leibniz  continued  to  challenge  its  validity ;  his  epistolary 
controversy  with  Dr  Samuel  Clarke,  who  assumed  on 
abstract  principles  the  championship  of  the  Newtonian 
practical  formulation,  is  one  of  the  classics  of  meta- 

physical philosophy.  Our  own  Berkeley  as  a  student  at 
Trinity  College,  Dublin,  where  he  was  already  thinking 
out  his  critical  idealist  scheme  of  philosophy,  came  up 
against  the  same  kind  of  difficulties  in  his  study  of  the 
foundations  of  the  Newtonian  system  of  the  world. 
Have  we  any  warrant  for  assigning  an  absolute  frame  of 
space  and  time  for  the  laws  of  nature,  especially  with 
respect  to  the  vast  vacant  spaces  of  astronomy?  and 
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could  we  have  valid  means  of  recognizing  any  such 
frame  ?  It  is  perhaps  largely  a  question  of  expression ; 
if  philosophers  could  come  to  mean  the  same  thing  by 
the  terms  they  use  they  ought  to  agree,  otherwise  the 
universal  validity  of  the  operations  of  the  mind  might 
come  into  doubt. 

The  validity  of  such  practical  specification  of  a 
standard  space  and  time  has  remained  abstractly  an 
open  question;  in  recent  years  it  has  again  come 
prominently  into  discussion.  The  phenomena  of  elec- 

tricity and  light  had  been  thoroughly  explained,  under 
the  guidance  of  Faraday  and  Clerk  Maxwell,  in  terms 
of  activities  established  and  propagated  in  an  aether  of 
space,  which  is  at  rest  in  undisturbed  regions  so  that  it 
is  natural  to  fit  into  it  the  Newtonian  frame  of  space 
and  time.  The  aether  would  thus  be  space  and  time 
endowed  with  physical  properties,  inertia  and  elasticity, 
as  well  as  properties  of  extension.  Bpt  it  was  found 
later  that  very  refined  and  delicate  experiments  that 
seemed  qualified  to  determine  the  motion  of  the  Earth 
relative  to  the  aether — and  it  must  be  at  least  of  the 
order  of  its  orbital  velocity  round  the  Sun — all  failed  to 
show  any  result.  This  was  not  unexpected,  and  was  in 

fact  quite  explicable  on  the  lines  of  Maxwell's  theory. 
But  it  has  stimulated  independent  trains  of  thought 
which  in  the  end  have  propounded  the  question  whether 
it  is  possible,  at  the  cost  of  more  complex  and  pro- 

visional modes  of  reference,  to  get  rid  altogether  of  the 
universal  forces  of  nature  such  as  gravitation,  whose 
sole  evidence  is  the  acceleration  of  motions  for  which 
they  are  introduced  as  the  cause.  Thus  if  the  scale  of 
time  is  made  to  alter  from  place  to  place,  so  that  dura- 

tion is  a  function  of  position,  the  apparent  values  of 
gravitational  accelerations  will  of  course  all  be  changed. 
The  argument  then  is  that  (cf.  §  103)  all  bodies  in  the 
same  locality  possess  exactly  the  same  acceleration  on 
account  of  gravitation :  if  this  universal  feature  can  be 
absorbed  into  a  complex  reckoning  of  space  and  time, 
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and  so  got  rid  of,  the  other  relations  of  physical  nature 
will  merely  have  to  become  relative  to  the  slightly 
altered  reckoning  introduced  for  this  purpose.  But  our 
knowledge  of  physical  extension  and  duration  comes 
mainly  from  the  sense  of  sight:  little  of  it  would  have 
been  acquired  by  a  race  without  vision.  It  is  impossible 
to  ignore  the  rays  of  light  as  messengers  of  direction 
and  duration  from  all  parts  of  the  visible  universe. 
These  essential  and  determining  phenomena  of  radia- 

tion also  must  become  mere  local  features  of  time  and 

space,  or  else  they  would  put  us  in  coimexion  with  a 
universal  frame  with  respect  to  which  they  are  propa- 

gated. However  that  may  be,  a  theory  which  claims 
to  be  founded  on  metaphysical  principles  has  recently 
been  developed  by  Einstein  and  a  numerous  and 
important  school,  in  which  it  is  found  that  the  forces 
of  gravitation,  and  no  other,  can  be  represented  with 
precision  as  inherent  in  a  more  complicated  scheme  of 
space  and  time  instead  of  in  the  physical  nature  that 
that  frame  helps  to  describe ;  while  at  the  same  time  they 
thereby  fall  into  line  with  the  electrodynamic  doctrines 
of  relativity  above-mentioned. 

It  has  been  recognized  however  also  that  the  same 
results  can  arise  naturally,  and  without  involving 
revolutionary  ideas  of  time  and  space,  as  a  slight 
(though  analytically  complex)  expansion  of  the  funda- 

mental physical  formulation  of  Least  Action  {infra) ;  the 
special  relations  of  stress,  energy,  and  momentum  on 

which  as  criteria  the  theor}-  had  to  develop  being  in 
fact  already  implicit  on  that  universal  principle. 

This  alteration  in  the  mode  of  expression  of  New- 
tonian gravitation  of  course  makes  very  little  practical 

difference;  it  however  claimed  special  notice  as  re- 
moving one  outstanding  slight  discrepancy  with  obser- 

vation, in  the  motion  of  the  inner  planet  Mercury, 
which  had  previously  to  be  ascribed  to  an  assumed 
distribution  of  mass  between  the  planet  and  the  Sun. 
Such  an  equivalent  warping  of  the  frame  of  space  and 
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time  must  also  affect  either  in  reality  or  in  appearance 
the  propagation  of  radiation  wherever  gravitation  is 
intense.  One  such  inference  is  that  rays  of  light  would 
be  very  slightly  deviated  in  passing  close  to  the  Sun :  and 
the  results  of  the  Greenwich  and  Cambridge  astronomers 
who  observed  the  solar  eclipse  of  1919  have  in  fact 
confirmed  the  required  amount  rather  closely.  But 
another  result  of  such  an  order  of  ideas,  of  a  spectro- 

scopic character,  still  lacks  any  definite  confirmation. 
The  primary  desideratum  as  regards  gravitation  was 

to  find  a  mathematical  mode  of  expression  which  would 
bring  it  into  touch  with  the  theory  of  electrical  agencies 
and  of  radiation,  from  which  it  had  been  isolated,  and 
even,  as  regards  the  nature  of  the  relation  of  inertia  to 
weight,  in  very  slight  discord.  This  has  been  done  by 
ascribing  the  acceleration  common  to  all  bodies  merely 
to  an  altering  frame  of  reference,  instead  of  the  intro- 

duction into  ordinar}^  space  of  an  intrinsic  gravitational 
potential  function  indicating  an  independent  t)pe  of 
local  activity.  For  velocities  very  large,  thousands  of 
times  greater  than  the  actual  speeds  of  the  heavenly 
bodies,  the  results  of  this  view  would  be  quite  different 
from  the  simple  Newtonian  gravitation,  and  with  our 
means  of  expression  they  would  be  of  extreme  compli- 

cation: but  in  the  actual  stellar  world  the  difference  is 

excessively  slight,  and  in  the  right  direction.  So  far 
from  replacing  Newtonian  astronomy  it  can  only 
establish  connexion  with  reality  by  making  use  of  its 
representations  and  methods.  We  may  perhaps  con- 

clude that  the  Hnking  up  of  gravitation,  previously 
isolated,  with  other  physical  agencies  has  been  effected  : 
but  we  ought  not  to  exclude  a  hope  that  the  mode  of 
expression  of  this  connexion  may  in  time  be  greatly 
simplified,  especially  by  more  attention  to  the  Principle 
of  Action,  as  it  is  only  very  small  changes  that  are  in- 

volved. Meantime  the  extrapolation,  based  on  the  pre- 
sent general  formulation  of  the  theor}%  to  exploration 

of  universes  involving  far  higher  speeds  than  the  stars 
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possess  in  our  own,  is  a  fascinating  subject  for  abstruse 
mathematical  speculation. 

The  general  doctrine  of  relativity,  at  any  rate  in  its 
more  extreme  formulations,  impugns  the  validity  of 
arguments  such  as  those  of  §§  105-6.  This  question  must 
relate  to  the  meanings  of  the  parties  to  a  controversy.  If 
we  were  shut  off  from  sight  of  the  stars  there  might  be 
greater  reason  for  claiming  that  it  would  be  unphilo- 
sophic  even  to  mention  such  a  thing  as  an  absolute 
rotation  of  the  Earth,  or  any  movement  that  could  not 
be  expressed  as  conditioned  by  adjacent  bodies.  That 
type  of  theory  claims  to  settle  all  things  by  local  scale 
and  clock :  but  it  also  has  in  practice  to  requisition  the 
use  of  the  directions  and  periodic  times  of  rays  of  light 
as  valid  means  of  discrimination.  Unless  the  rays  are 
to  bend  to  the  control  of  scale  and  clock,  these  measures 
will  not  be  concordant :  if  they  do,  the  connexion  may 
be  held  to  fix  the  frame  with  respect  to  which  the  rays 
travel  with  their  assumed  universal  velocity,  and  thus 
to  determine  in  part  what  has  been  regarded  as  the 
aether  of  space.  An  artificial  gravitational  field  could 
be  simulated  by  accelerating  the  frame  of  reference, 
provided  it  is  not  done  by  a  mere  algebraic  change  of 
coordinates :  but  the  rays  of  light  might  have  different 
speeds  in  it  forward  and  backward,  which  would  seem 
to  involve  a  discriminating  criterion  for  any  such  un- 

restricted "principle  of  equivalence"  of  a  gravitational 
field  to  a  changing  frame.  Any  purely  algebraic  theory 
is  an  abstraction  from  the  wider  field  of  phenomena, 
and  an  essential  question  for  it  is  the  range  of  its  own 
validity. 

Note  to  §  145 

As  the  mean  result  of  numerous  modern  determina- 

tions Cavendish's  value  5-45  for  the  mean  density  of 
the  Earth  has  to  be  increased  by  less  than  two  per  cent. 
The  torsion  apparatus  has  been  very  greatly  reduced 
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in  size  and  improved  by  C.  V.  Boys  (1894)  by  use  of 
his  extremely  fine  and  perfectly  elastic  quartz  fibres 
for  the  torsional  suspension. 
The  Michell-Cavendish-Coulomb  torsion  balance 

has  been  applied  by  Eotvos  to  test  the  proportionality 
of  gravitation  to  mass,  with  results  of  extreme  precision. 
The  apparent  weight  of  a  body  is  its  gravitation  to  the 
Earth  as  modified  by  a  centrifugal  force  which  is 
oblique  to  the  vertical,  being  directed  away  from  the 
axis  of  the  diurnal  rotation.  The  latter  part  is  of  course 
considerable,  being  a  fraction  of  one  per  cent,  of  the 
whole;  and  it  has  a  horizontal  component  along  the 
meridian.  If  the  mass  factors  in  the  two  parts  were  not 
exactly  equal  a  torsion  balance,  with  the  ends  of  its 
horizontal  bar  loaded  by  masses  of  different  substances, 
would  indicate  a  deflection  of  the  bar  relative  to  its  frame 
when  it  is  turned  round  the  vertical  from  east-west 

to  west-east.  Eotvos  (1891,  1897)  thus  found  that  any 
defect  of  proportionality  of  weight  to  mass  must  actually 
be  less  than  one  part  in  twenty  million :  and  Zeeman,  by 
a  reduced  apparatus  with  quartz-fibre  suspension,  has 
recently  ( 1 9 1 7)  pushed  the  result  still  lower  and  extended 
it  to  cr^'stals  and  to  substances  of  radioactive  origin. 
As  it  happens,  this  is  nearly  to  the  same  order  as  the 
optical  and  electric  verifications  of  absence  of  effects  of 

convection  through  the  aether  owing  to  the  Earth's motion. 

If  m  is  the  inertia-mass  of  the  centrifugal  force  and 

m'  the  mass  which  gravitates,  then  if  m  were  equal  to 
m'  the  apparent  weight  would  be  in  the  same  direction 
for  all  substances  and  the  experiment  would  show  no 
result.  Any  possible  result  would  thus  be  readily  com- 

puted as  that  due  to  the  centrifugal  force  of  the  excess 

m  — w',the  moment  of  its  horizontal  component  round 
the  axis  of  torsion  operating  difl^erent  ways  in  the  two 
positions  of  the  bar  and  frame. 

It  is  a  consequence  of  Maxwell's  electrodynamics 
that  when  a  body  loses  energy  e  by  radiation  it  loses 
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inertia  of  amount  c/r^,  where  c  is  the  velocity  of  light. 
In  modern  extensions  of  that  theory  all  energy  has 
inertia.  The  inertia  of  an  electron  seems  to  be  all 

associated  with  its  steady  kinetic  energ)'  of  motion. 
The  closeness  of  the  Eotvos  result  thus  carries  the 
conclusion  that  the  inertia  of  an  electron  must  all 

gravitate,  and  in  fact  that  all  energy  possesses  inertia 
which  is  also  gravitative.  Thus  neither  inertia  nor 
gravitation  could  continue  to  he  specific  constants  of 
matter:  they  must  be  connected  up  either  with  the 
aether  in  which  matter  subsists,  or  with  the  abstract 

reference-frame  of  space-time  which  is  all  that  can 
remain  if  such  a  medium  is  denied. 



APPENDIX  II  (1920) 

The  Principle  of  Least  Action 

The  great  desideratum  for  any  science  is  its  reduction  to 
the  smallest  number  of  dominating  principles.  This 
has  been  effected  for  dynamical  science  mainly  by  Sir 

William  Rowan  Hamilton,  of  Dublin  (1834-5),  building 
on  the  analytical  foundations  provided  by  Lagrange  in 
the  formulation  of  Least  Action  in  terms  of  the  methods 

of  his  Calculus  of  Variations  (1758),  and  later  (1788) 
but  less  fundamentally  for  physical  purposes  on  the 
principle  of  virtual  work  in  the  Mecanique  Analytique. 

The  principle  of  the  Conservation  of  Energy,  inas- 
much as  it  can  provide  only  one  equation,  cannot 

determine  by  itself  alone  the  orbit  of  a  single  body, 
much  less  the  course  of  a  more  complex  system  (thus 

§§  107-112  above  need  some  qualification).  But  if  the 
body  starts  on  its  path  from  a  given  position  in  the 
field  of  force  and  with  assigned  velocity,  the  principle 
of  energy  then  determines  the  velocity  this  body  must 
have  when  it  arrives  at  any  other  position,  either  in  the 
course  of  free  motion  or  under  guidance  by  constraints 
such  as  are  frictionless  and  so  consume  no  energy.  If 
W,  a  function  of  position,  represents  the  potential 
energy  of  a  body  in  the  field,  per  unit  mass,  the  velocity 
V  of  the  body  is  in  fact  determined  by  the  equation 

^^mi^  +  mW  =  hnvQ^  +  mWQ=  niE, 
where  the  subscripts  in  v^  and  Wq  refer  to  the  initial 
position;  and  mE  is  the  total  energy  of  the  body  in 
relation  to  the  field  offeree,  which  is  conserved  through- 

out its  path.    Thus 

v={2E-2W)^; 
so  that  the  velocity  v  depends,  through  W,  on  position 
alone. 

Now  we  can  propound  the  following  problem.    By 
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what  path  must  the  body,  of  mass  m,  be  guided  under 
frictionless  constraint  from  an  initial  position  A  to  a 
final  position  B  in  space,  with  given  conserved  total 
energy  mE,  so  that  the  Action  in  the  path,  defined  as 

the  limit  of  the  sum  I.mt'8s,  that  is  as  |  mvds,  where  Bs 

is  an  element  of  length  of  this  path,  shall,  over  each 
stage,  be  least  possible?  The  method  of  treating  the 
simpler  problems  of  this  kind  is  known  to  have  been 
familiar  to  Newton :  in  the  case  of  the  present  question, 
first  vaguely  proposed  by  Maupertuis*  when  President 
of  the  Berlin  Academy  under  Frederic  the  Great,  the 
solution  was  gradually  e\olved  and  enlarged  by  the 
famous  Swiss  mathematical  family  of  Bernoulli  and 
their  compatriot  Euler:  and  finally,  extended  to  more 

complex  cases,  it  gave  rise,  after  Euler's  treatise  of  date 
1744,  in  the  hands  of  the  youthful  Lagrange  (Turin 
Memoirs,  1758)  to  the  Calculus  of  Variations,  the  most 
fruitful  expansion  of  the  processes  of  the  infinitesimal 
calculus,  for  purposes  of  physical  science,  since  the  time 
of  Newton  and  Leibniz. 

Let  us  draw  in  the  given  field  of  force  a  series  of 
closely  consecutive  surfaces  of  constant  velocity,  and 

therefore  of  constant  potential  cnerg}-  mil':  and  let  us 
consider  an  orbit  ABCD. . .  intersecting  these  surfaces  at 
the  points  B,  C\D,....  We  shall  regard,  in  the  Newtonian 
mannerf,  the  velocity  as  constant,  say  fj,  in  the  in- 

finitesimal path  from  B  to  C,  and  constant,  say  r.^,  from 
C  to  D:  these  elements  of  the  path  are  thus  to  be  re- 

garded as  straight,  the  field  of  force  being  supposed  to 

operate  by  a  succession  of  verj-  slight  impulses  at  B, 
C,  D,y  such  as  in  the  limit,  as  the  elements  of  the  path 
diminish  indefinitely,  will  converge  to  the  continuous 
operation  of  a  finite  force. 

*  Tlie  notion  of  an  Action  possibly  with  minimal  quality',  not 
merely  passive  mertia,  as  concerned  m  the  transmission  of 
Potentia  or  energy,  is  ascribed  to  Leibniz  by  Helmholtz  in  1887. 

t  Cf.  Princtpia.  Book  i,  Sec.  11,  Prop,  i,  on  equable  description 
of  areas  in  a  central  orbit. 
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If  'LvSs  is  to  be  a  minimum  over  this  section  ABCD. . . 
of  the  path,  then  by  the  usual  criterion  any  slight  altera- 

tion, by  frictionless  constraint,  which  would  compel  the 
body  to  take  locally  an 
adjacent  course  BCD, 
ought  not  to  alter  the 
value  of  the  Action  so  far 

as  regards  the  first  order 

of  small  quantities.  Now*, 
on  our  representation  of 
the  force  as  a  rapid  suc- 

cession of  small  impulses, 
the  change  so  produced  in 
the  value  of  this  function  of  Action  is  equal  to 

Vj^  {EC  -  EC)  +  v^  {CD  -  CD) ; 
hence  this  must  vanish,  up  to  the  first  order.  But 

EC  -  EC  is  equal  to  -  CC  cos  BCC\  and  CD  -  CD 
is  equal  to  —  CC  cos  DCC .  Thus  the  condition  for  a 
stationary  value  is  that  the  component  of  v^  along  CC 

is  equal  to  the  component  of  t'2  along  the  same  direction, 
where  CC  is  any  element  of  length  on  the  surface  of 
constant  v,  that  is  of  constant  W,  draw^n  through  C. 
This  involves  that  the  impulse  which  must  be  imparted 
to  the  body  at  C  in  order  to  change  its  velocity  from 
v-^^  to  V2  must  be  wholly  transverse  to  this  surface:  or, 
on  passing  to  the  limit,  that  the  force  acting  on  the 
body  must  everywhere  be  in  the  direction  of  the 
gradient  of  the  potential  W.  That  is,  whatever  the  form 
of  this  potential  function  may  be,  the  succession  of 
impulses  must  be  in  the  direction  of  its  force;  it  is 
already  prescribed  by  the  form  of  v  that  they  are  of 
the  amounts  necessary  to  make  changes  in  the  velocity 
that  are  in  accord  with  conservation  of  energy.  These 
are  just  the  criteria  for  a  free  orbit.  Hence  for  any  short 
arc  of  any  free  orbit  the  Action  7ti^vhs  is  smaller  than 
it  could  be  if  the  orbit  were  slightly  altered  locally 
owing  to  any  frictionless  constraint.  The  free  orbit  is 
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thus  describable  as  the  path  of  advance  that  would  be 
determined  by  minimum  expenditure  of  Action  in  each 
stage,  as  the  body  proceeds:  though  this  does  not  imply 
that  the  total  expenditure  of  Action  from  one  end  to 
the  other  of  a  longer  path  is  necessarily  or  always  the 
least  possible.  This  formula  of  stationary  (or  say  mini- 

mal) Action,  expressed  by  the  variational  equation 

S    mvds  =  o,  where  ̂ mz^  +  mW  ==  mE, 

is  by  itself  competent  to  select  the  actual  free  orbit 
from  among  all  possible  constrained  paths. 

And  generally,  for  any  dynamical  system  having  kinetic 
energ}'  expressed  by  a  function  T  of  a  sufficient  number 
of  geometrical  coordinates,  and  potential  energy  ex- 

pressed by  W,  it  can  be  shown  that  the  course  of 
motion  from  one  given  configuration  to  another  is  com- 

pletely determined  by  the  single  variational  equation 

h{Tdt  =  o  subject  io  T  +  W  -  E, 

E  being  the  total  energy,  which  is  prescribed  as  con- 
served, so   that   the   variations   contemplated    in   the 

motion  must  be  due  only  to  frictionless  constraints. 
Another  form  of  the  principle  is  that 

8  \{T-  W)dt^o 
provided  the  total  time  of  motion  from  the  given  initial 
to  the  given  final  configuration  is  kept  constant.  This 
form  is  more  convenient  for  analytical  purposes  because 
the  mode  of  variation  is  not  restricted  to  frictionless 
constraint ;  as  conservation  of  the  energy  is  not  imposed, 
extraneous  forces,  which  can  be  included  in  a  modifica- 

tion of  H',  may  be  in  operation  imparting  energy  to  the system.  Constancy  of  the  time  of  transit,  which  here 
takes  the  place  of  conservation  of  the  energy,  is  analyti- 

cally,  though  not  physically ,  a  simpler  form  of  restriction. 
From  this  form  the  complete  set  of  general  equations 
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of  motion  developed  by  Lagrange  (see  p.  133)  is 
immediately  derived  by  effecting  the  process  of  varia- 
tion. 

If  r  is  a  homogeneous  quadratic  function  of  the 

generalized  components  of  velocity,  T^dt  is  a  quadratic 
function  of  infinitesimal  elements  of  the  coordinates: 

therefore  the  first  form  when  expressed  (after  Jacobi)  as 

\UE~wf{T^dt) 

does  not  any  longer  involve  the  time.  It  thus  determines 
the  geometrical  relations  of  the  path  of  the  system 
without  reference  to  time ;  for  a  simple  orbit  it  reduces 
to  the  earliest  form  investigated  above. 

In  the  modern  discussions  of  the  fundamental  prin- 
ciples of  dynamics,  especially  as  regards  their  tentative 

adaptation  to  new  regions  of  physical  phenomena 
whose  dynamical  connexions  are  concealed,  this  prin- 

ciple of  variation  of  the  Action,  which  condenses  the 
whole  subject  into  a  single  formula  independent  of  any 
particular  system  of  coordinates,  naturally  occupies  the 
most  prominent  place. 

As  a  supplement  to  Chapter  IX,  these  statements  of 
the  Principle  of  Action  will  now  be  established  for  a 
general  dynamical  system.  This  can  be  done  most 
simply  and  powerfully  by  introducing  the  analytical 
method  of  Variations,  invented  by  Lagrange  as  above 
mentioned. 

The  principle,  as  already  deduced  for  the  simplest 
case,  relates  to  the  forms  of  paths  or  orbits:  if  it  is  also 
to  involve  the  manner  in  which  the  orbits  are  described 

the  time  must  come  in.  The  criterion  of  a  free  path  was 

.that  8  I  vds  =  o  with  energy  Eq  constant  throughout  the 

motion :  it  is  the  same  as  S  (  vMt  =-  o  under  the  same 
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condition;  or,  writing  T  for  the  kinetic  energy  Jmu*, 

it  is  8  I  zTdt  =  o  under  the  same  restriction  to  constancy 

of  the  total  energy. 
Let  us  conduct  the  variation  directly  from  this  latter 

form,  but  now  keeping  the  time  unvaried, 

in  which  d  is  the  differential  of  x  as  the  body  moves 
along  its  orbit  with  changing  time,  but  hx  is  the 
variation  of  the  value  of  x  as  we  pass  from  a  point  on 
the  orbit  to  a  corresponding  point  on  the  adjacent  pos- 

sible path  that  is  compared  with  it.  The  introduction  of 
different  symbols  d  and  8  to  discriminate  these  two 
types  of  change  is  the  essential  feature  of  the  Calculus 
of  Variations:  we  have  already  used  the  fundamental 
relation  S^.r  =  dhx.  Integrating  now  by  parts,  in  order 
to  get  rid  of  variations  of  velocities  which  are  not  inde- 

pendent variations  and  so  not  arbitrary,  we  obtain 

h\Tdt 
m </jf  5     ,       dy  ̂     ̂        dz  ̂    \ 

[('^  dt^^^  +m-y^Sy+m  ̂ ^^  8c)  df; 
in  this  the  first  term  represents  the  difference  of  the 
values  at  the  upper  and  lower  limits  of  the  integral, 
indicated  by  subscripts  2  and  i ,  which  correspond  to 
the  final  and  initial  positions  of  the  body.  The  second 
term  is  equal  to 

-  \{Xhx+  ̂ 'hy+ZSz)dt, 

where  (A',  Y,  Z)  is  the  effective  force  acting  on  the  par- 
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tide  m,  as  determined  by  the  acceleration  which  the 
particle  acquires. 

We  can  extend  this  equation  at  once  to  any  system  of 
particles  in  motion  under  both  extraneous  and  mutual 
forces.  If  there  are  no  forces  exerted  from  outside  the 

system,  but  only  an  internal  potential  energy  expressed 
by  a  function  W,  then  the  work  of  the  internal  forces 
of  the  system  tends  to  exhaust  this  energy,  so  that 

S  {Xhx  +  Yhy  +  Xhz)  =  -  hW, 

and  this  holds  good  whether  the  algebraic  equations 
expressing  the  constraints  contain  t  or  not. 

Thus  if  T  now  represents  the  total  kinetic  energy, 
and  all  the  forces  are  internal,  we  can  write,  for  variation 
from  a  free  path  to  any  adjacent  path  by  frictionless 
constraint,  and  with  times  unvaried, 

§  \(T-  W0^i=l2w^Sx+2w^^Sy  +  2w^S^f. .'  '  \        at  at  at       \i 
Strictly,  this  result  has  been  obtained  for  a  system  of 

separate  particles  influencing  each  other  by  mutual 
forces.  It  is  natural  to  expand  it  to  any  material  system 
consisting  of  elements  of  mass  subject  to  mutual  forces, 
thus  including  the  dynamics  of  elastic  systems.  The 
ultimate  analysis  of  the  element  of  mass  is  into  mole- 

cules or  atoms  in  a  state  of  internal  motion:  that 
final  extension  would  include  the  dynamical  theory  of 
heat. 

We  can  now  express  all  the  coordinates  x,  y,  z  of 
the  particles  or  elements  of  mass  in  terms  of  any  suffi- 

cient number  of  independent  quantities  6,  cf),  ip,  ... 
which  determine  the  position  and  configuration  of  the 
system  as  restricted  by  its  structure.  Their  number 
is  that  of  the  degrees  of  freedom  of  the  system.  The 
equations  which  express  x,  y,  z  in  terms  of  them  may 
involve  t  explicitly,  for  the  equation  of  virtual  work 
involves  the  displacements  possible  at  given  time ;  thus 
the  new  form  oi  T  —  W  can  contain  t.   Then  we  can 
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assert  that  when  t  is  not  varied,  and  the  time  Hmits 
ty  and  /g  sre  therefore  constant, 

S  {'\T-  W)dt^o 
when  the  frictionless  variation  is  taken  between  fixed 

initial  and  final  positions  of  the  dynamical  system. 

This  quantity  T  —  W  is  the  Lagrangian  function  L 
defining  by  itself  alone  the  dynamical  character  of  the 

system :  the  function  —  L  or  IV  —  Tis  thus  the  potential 
energy  W  as  modified  for  kinetic  applications,  and  has 
been  appropriately  named  by  Helmholtz  the  kinetic 
potential  of  the  system.  Thus  the  particular  case  of 
a  system  at  rest  is  included:  for 

8\wdt   or    ibWdt   is  equal  to   BIV  j  dt 

as  W  remains  constant  during  the  time:  hence  the 
equation  of  Action  asserts  in  this  case  that 

which  comprehends  the  laws  of  Statics  in  the  form 
that  the  equilibrium  is  determined  by  making  the 
potential  energy  stationary.  For  stability  it  must  be 
minimum. 

Again,  as  L  is  expressed  as  a  function  of  the  generalized 
coordinates  6,  (fi, ...  and  their  velocities, 

where  ̂   represents  .  ,  and  86  is  equal  to  ..^O-  thus 

integrating  by  parts  as  before 

As  the  left  side  vanishes,  when  the  terminal  positions 
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are  unvaried,  for  all  values  of  the  current  variations 

Sdfhcf),  ...,  and  these  are  all  independent  and  arbitrarj', 
the  coordinate  quantities  9,(f),  ...  being  just  sufficient 
to  determine  the  system,  the  coefficient  of  each  of  these 
variations  must  vanish  separately  in  the  integrand.  Thus 
we  obtain  a  set  of  equations  of  type 

d_dL  _dL_ 

dt  dd  d
d~° which  are  the  Lagrangia

n  
equations 

 
of  motion  of  any 

general  dynamical 
 
system  (20,  p.  133  supra).  If  there  are 

in  addition  extraneous
  

forces  in  action  on  the  system, 

the  appropriat
e  

component
  

force  Fg,  defined  as  that 
part  whose  work  FgSd  is  confined  to  change  of  the  one 

coordinate
  

9,  must  be  added  on  the  right-han
d  

side. 
These  applied  forces  may  vary  with  t  in  any  manner: 

they  can  be  merged  in  W  by  addition  of  terms  —  Fe6  —  ... 
to  it:  their  presence  will  prevent  the  energy  of  the 
system  from  remaining

  
constant. 

If  we  restrict  this  comparison  of  paths  to  variation  from 
a  free  path  of  the  system  to  adjacent  free  paths,  we  have 

now  as  an  exact  equation,  and  so  capable  of  further 
differentiation ;  and  it  provides  the  basis  of  the  Hamil- 

'tonian  theory  of  varying  Action. 
It  will  be  convenient  at  this  stage  to  remove  the 

restriction  that  the  time  is  not  to  be  varied :  to  allow  for 

this  change  we  must  substitute  in  the  equation  in 
place  of  S^the  expression  S6  —  dSt  which  deducts  from 
the  total  variation  of  6  that  part  of  it  which  arises  from 
the  motion  in  the  interval  of  varied  time  St.  We  must 
also  add  LSt  in  order  to  include  in  the  time  of  transit 

the  new  interval  of  time  St  added  on  at  the  end  by 
the  variation.   Thus  now 

p  ...       ...  .  dL  ,..       .,...   .   dL 8\    LSt  =  LBt  +  \.  {86  -  68t)  -f  ̂ ^  {8cf>  -  cf>8t)  +  . 
.'  ti  00  defy 10—5 
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Also  L  =  T  -  W\  and  T  being  a  honnogeneous 
quadratic  function, 

hence      h  \\dt  =  ̂̂   hd  -\-^h  h6  +  ...  -  Eht .'<,  dd  d^ 

where  E  is  the  final  value  of  the  total  energ}'  T  -r   W. 
When  no  extraneous  forces  are  supposed  to  be  in 

action  E  is  constant  at  all  times :  thus 

-  Eht  =tBE-8  (Et)  =tSE-S  \  Edt. 

Hence,  transposing  the  last  term,  the  alternative  form 
arises, 

8  I '  zTdt  =  ̂J.Se  +  ̂J^.S<f>+  ...  +  iBE, .'  <,  dd  d(p 

for  variations  throughout  which  the  energ\-  is  conserved. 
This   is   the   generalization   of  the   previous    form 

8  I  mvds  ==  o  for  a  particle,  except  that  now  the  time  also 

is  involved,  and  is  determined  as  cAjcE,  where  A  is  the 
time  integral  of  2  7  as  expressed  in  terms  of  initial  and 
final  configurations  and  the  conserved  energy. 

This  involves  the  analytical  result  that  if  (■),  <I>,  ...  are 
the  momenta*  corresponding  to  the  coordinates 0,^, ..., 
then  there  must  exist  a  certain  function  A  (of  form 
however  that  is  usually  difHcult  to  calculate)  of 
6,  (j),  ...  E,  such  that  in  vanning  from  the  free  path  to 
adjacent  free  paths  of  the  system, 

8^  -  0S^  +  cD8<^  +  ...  +  tbE. 

A  more  explicit  and  wider  form,  especially  for  optical 
apphcations,  is  immediately  involved  in  this  formula, 

•  The  subscript  notation  of  Chapter  ix  would  here  be  incon- venient. 
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that  there  is  a  function  A  !^  of  the  initial  and  final  con- 
figurations of  the  system  and  the  energy,  such  that 

-  0i8^i  -  OiS(/.i  _  ...  -  (^2  -  ̂ 1)  ̂E. 

There  also  exists  a  function  P\'^  of  the  final  and  initial 

coordinates  and  the  time, equal  in  value  to  j  {T  —  W)  dt, 
such  that  ■  ̂' 

8P|;=  028^2 -^2S<^'2+  ••• 
-  0i80i  -  Oi8^i  -  ...  -  ̂25^2  +  ̂iS^i. 

on  var}4ng  from  any  free  orbit  to  adjacent  free  orbits ; 
but  now  as  there  is  no  restriction  to  E  remaining  con- 

stant along  an  orbit,  the  forces  may  be  in  part  extraneous 
forces  whose  work  will  impart  new  energy  to  the  system. 

The  mere  fact  that  such  a  function  P  ox  A  exists 

involves  a  crowd  of  reciprocal  differential  relations 
connecting  directly  the  initial  and  final  configurations 
of  the  system  or  a  group  of  systems,  of  type  such  as 

001/9(^2  =  -  2^)2/3^1, 

which  are  often  the  expression  of  important  physical 
results.  Moreover  in  the  form  of  8P,  and  therefore  in 
such  resulting  relations,  the  final  set  of  coordinates  may 
be  different  from  the  initial  set. 

The  influence  of  disturbing  agencies  on  any  dy- 
namical system,  whose  undisturbed  path  was  known,  is 

by  these  principles  reduced  to  determining  by  approxi- 
mation (from  a  differential  equation  which  it  satisfies) 

the  slight  change  they  produce  in  this  single  function 
P  or  A  which  expresses  the  system,  a  method  perfect 
in  idea  but  amenable  to  further  simplifications  in 
practice. 

This  beautiful  theory  of  variation  of  the  Action  from 
any  free  path  to  the  adjacent  ones  was  fully  elaborated 
by  Hamilton  in  a  single  memoir  in  two  parts  {Phil 
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Trans.,  1834  and  1835),  and  soon  further  expanded  in 
analytical  directions  by  Jacobi  and  other  investigators. 
It  brings  a  set  of  final  positions  of  a  dynamical  system 
into  direct  relations  with  the  corresponding  initial  posi- 

tions, independently  of  any  knowledge  whatever  of  the 
details  of  the  paths  of  transition.  In  connexion  with  the 
simplest  case  of  orbits  it  has  been  characterized  by 
Thomson  and  Tait  as  a  theory  of  aim,  connecting  up, 
so  to  say,  the  deviations  on  a  final  target,  arising  from 
changes  of  aim  at  a  firing  point,  with  the  correspond- 

ing quantities  of  the  reversed  motion.  In  geometrical 
optics,  from  which  the  original  clue  to  the  theory  came, 
where  the  rays  might  be  regarded  as  orbits  of  imagined 
Newtonian  corpuscles  of  light,  it  involves  the  general 
relations  of  image  to  object  that  must  hold  for  all  types 
of  instrument,  as  originally  discovered  by  Huygens  and 
by  Cotes.  Its  scope  now  extends  all  through  physical 
science. 

In  certain  cases  the  number  of  coordinate  variables 

required  for  the  discussion  of  a  dynamical  problem  can 
be  diminished.  Thus  if  the  kinetic  potential  involves 
one  or  more  coordinates  only  through  their  velocities, 
the  corresponding  equations  of  motion  merely  express 
the  constancy  throughout  time  of  the  momentum  that 
is  associated  with  each  such  coordinate:  this  holds  for 

instance  for  the  case  of  freely  spinning  flywheels 
attached  to  any  system  of  machinery,  and  for  all  other 
cases  in  which  configuration  is  not  affected  by  the 
changing  value  of  the  coordinate.  In  all  such  cases  the 
velocity  can  be  eliminated,  being  replaced  by  its 
momentum  which  is  a  physical  constant  of  the  motion. 
The  kinetic  potential  can  thus  be  modified  (Routh, 
Kelvin,  Melmholtz)so  as  to  involve  one  or  more  variables 
the  less,  but  still  to  maintain  the  stationary  property  of 
its  time-integral.  It  is  now  no  longer  a  homogeneous 
quadratic,  but  involves  terms  containing  the  other 
velocities  to  the  first  degree,  multiplied  of  course  by 
these  constant  momenta  as  all  the  terms  must  be  of  the 
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same  dimensions.  Every  such  kinetic  potential  belongs 
to  a  system  possessing  one  or  more  latent  unchanging 
(steady)  motions ;  and  a  general  theory  of  this  important 
physical  class  of  systems,  and  of  the  transformation  of 
their  energies,  arises. 

In  fact  if  L'  =  L-Yil>-  ... 
where  ̂   ...  are  a  group  of  coordinates  and  T  ...  the 
related  momenta,  then 

~-Cii-->^^i^-^) 

in  which  the  first  term  vanishes  identically,  while  h^L 
is  the  variation  of  L  with  regard  to  the  remaining 
variables.  Hence  if  L  do  not  involve  the  coordinates 

iji  . . . ,  so  that  T  . . .  are  constant  and  are  not  made  subject 

to  variation,  and  i/r  ...  are  eliminated  from  L'  by  intro- 
duction of  T,  ...  then 

S  \L'dt=  |0S^+O8<^+  ...-Eht\\ 

depending  only  on  the  variations  of  the  expUcit  co- 
ordinates at  the  Hmits,  provided  T...  are  kept  un- 

varied, or  the  flywheels  of  the  system,  are  not  tampered 
vnth. 

Although  the  cyclic  coordinates  do  not  appear  at  all 

in  L,  yet  it  is  only  in  terms  of  L'  modified  as  here  that 
we  can  avoid  their  asserting  themselves  in  the  domain 
of  varying  Action. 

The  ultimate  aim  of  theoretical  physical  science  is  to 
reduce  the  laws  of  change  in  the  physical  world  as  far 
as  possible  to  dynamical  principles.  It  is  not  necessary 
to  insist  on  the  fundamental  position  which  the  kinetic 

potential  and  the  stationar}^  property  of  its  time-integral 
assume  in  this  connexion.  Two  dynamical  systems 
whose  kinetic  potentials  have  the  same  algebraic  form 
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are  thoroughly  correlative  as  regards  their  phenomena, 
however  different  they  may  be  in  actuality.  If  any  range 
of  physical  phenomena  can  be  brought  under  such  a 
stationary  variational  form,  its  dynamical  nature  is 
suggested:  there  still  remains  the  problem  to  extricate 
the  coordinates  and  velocities  and  momenta,  and  to 
render  their  relations  familiar  by  comparison  with 
analogous  systems  that  are  more  amenable  to  inspection 
and  so  better  known. 

Note  on  Chapter  IX,  §  9. 

It  has  appeared  above,  as  Lagrange  long  ago  em- 
phasized, that  the  principle  of  Conservation  of  Energy 

can  provide  only  one  of  the  equations  that  are  required 
to  determine  the  motion  of  a  dynamical  system.  It 
follows  that  the  reasoning  of  this  section  (§  9),  which 
seems  to  deduce  them  all,  must  be  insufiicicnt.  The 
argument  there  begins  by  supposing  the  system  to  move 
in  any  arbitrar)'  way;  that  is,  it  assumes  motions  deter- 

mined by  the  various  possible  types  of  frictionless 
constraint  that  are  consistent  with  the  constitution  of 

the  system.  The  equation  (9)  is  then  derived  correctly 
from  (7)  and  (8),  as  the  variations  5^  are  fully  arbitrary. 
But  the  imposed  constraints  introduce  new  and  un- 

known constraining  forces  which  must  be  included  in 

the  applied  forces  /'\;  and  they  would  make  the  result, 
so  far  as  there  demonstrated,  nugator}-. 

The  equations  (9)  are  however  valid,  though  this 
deduction  of  them  fails.  As  explained  above,  the  La- 
grangian  equations  (20)  are  derivable  immediately  from 
the  Principle  of  Least  Action,  independently  established 
as  here:  and  then  the  equations  (9)  can  be  derived 
by  reversing  the  argument. 
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The  procedure  of  §  12  seems  to  lead  to  a  noteworthy 
result.  It  asserts  that  if 

then  the  single  relation 

hF^o 

involves  all  the  equations  connecting  coordinates, 
velocities  and  momenta  in  the  system.  This  will  remain 
true  when  the  three  sets  of  variables,  regarded  still  as 
independent,  are  changed  to  new  ones  by  any  equations 
of  transformation,  so  that  this  threefold  classification 
into  types  becomes  lost.  Now  there  are  cases  in  which 
the  steady  motion  of  a  system,  or  an  instantaneous 
phase  of  a  varying  mode  of  change,  can  be  thoroughly 
explored  experimentally,  leading  to  the  recognition  say 
of  3«  physical  quantities  of  which  only  2n  can  be 
independent;  but  it  is  not  indicated  by  our  knowledge 
how  we  are  to  deduce  from  them  a  scheme  of  n  coordi- 

nates, n  corresponding  velocities,  and  n  momenta.  We 

have  arrived  at  the  result  that  in  ever}'  such  case  a 
function  F  must  exist,  and  is  capable  of  construction, 
such  that  SF  =  o  provides  a  set  of  3W  equations  con- 

taining all  the  knowledge  that  is  needed.  The  relations 
(treated  after  Maxwell)  of  a  network  of  mutually 
influencing  electric  coils  carrying  currents  would  form 
an  example. 

In  cognate  manner  we  may  assert  another  type  of 
equation  of  Variation  of  Action 

h\{T^-zT^^-{-W)dt  =  o 

where  Tj,;^=  ̂ Hqp,  containing  n  coordinates  g,  their 
n  velocities  q  and  their  n  momenta/).  For  this  equation 
is  equivalent  to 

H 
-^p  -  q)  ̂P  ~Ph  +  -^^q  +  -^  ̂q\  dt 
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leading  on  integration  by  parts  as  usual  to  tAvo  sets  of 
relations  of  the  types 

dT\_.        dp^_dT\_dW 
dp       ̂'       dt  dq         dq 

if  in  it  the  momenta  and  coordinates  are  regarded  as 

independent  variables.    As  -^=  — ^-  by  (i8),  the 

second  set  are  the  Lagrangian  dynamical  equations  (20). 
Thus  we  have  here  a  single  function 

involving  coordinates  and  their  velocities,  linear  in  the 
latter,  and  an  equal  number  of  quantities/)  of  the  nature 
of  momenta,  the  coordinates  and  momenta  being  thus 
independent  variables,  such  that  the  relation 

h\<l>dt^o 
leads  both  to  the  identification  of  the  relations  in  which 
the  momenta  stand  to  the  coordinates  and  to  the 

dynamical  equations  of  motion  of  the  system. 
This  result  is  virtually  the  same  as  equation  12  a  \n 

Hamilton,  Phil.  Trans.,  1835,  p.  247.  In  Helmholtz's 
memoir  on  Least  Action,  C reliefs  Journal,  vol.  100 
(1886),  Collected  Papers,  vol.  iii,  p.  218  another  function 
is  introduced,  apparently  with  less  fitness,  in  which  the 
velocities  are  regarded  as  independent  of  their  coordi- 

nates but  the  momenta  are  the  gradients  of  L  with 
regard  to  the  velocities.  Cf.  also  Proc.  Lond.  Math.  Soc, 
1884. 

A  main  source  of  the  great  power  of  these  dynamical 
relations  of  minimal  or  stationary  value,  as  exploring 
agents  in  physical  science,  is  that  the  results  remain 
valid  however  the  physical  character  of  the  functions 
involved  may  be  disguised  by  transformation  to  new 
variables,  given  in  terms  of  the  more  fundamental 

dynamical  ones  by  any  equations  whatever.  This  func- 
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tion  (f)  may  thus  be  expressed  in  terms  of  2n  quantities 
which  are  in  any  way  mixed  functions  of  coordinates 
and  momenta  and  their  gradients  with  respect  to  time — 
remaining  a  Hnear  function  of  the  latter  and  subject  to 

other  limitation — and  the  equation  8    (f)dt  =  o  will  still 

subsist  and  will  express  all  the  dynamical  relations  of 
the  physical  system. 

The  existence  of  a  variational  relation  of  this  type 
may  be  taken  as  the  ultimate  criterion  that  a  partially 
explored  physical  system  conforms  to  the  general  laws  of 
dynamics ;  while  from  its  nature  the  coordinate  quantities, 
in  terms  of  which  the  configuration  and  motion  of  the 
system  happen  to  be  expressed,  shrink  to  subsidiary 
importance. 
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