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PREFACE

'
I
''HE philosophy of mathematics has suffered from a

superfluity of technicalities. This is a pity because

it increases the difficulties of acquaintance with that delightful

subject. But a more serious consequence is the lack of

co-operation and mutual criticism between different groups

of experts in this field. In England, for example, the fame

of Russell and Whitehead's justly celebrated Principia

Mathematical is accompanied by almost complete neglect

and ignorance of the equally interesting work of the Formalists

and Intuitionists on the Continent. There is much to be

said in extenuation for this state of affairs, for the relevant

papers are scattered in foreign periodicals, untranslated,

often difficult to obtain, and are unintelligible without an

extensive acquaintance with the terminology and context of

their authors' opinions. To fill this gap in the literature of

the nature of mathematics would be a work of many years,

and the pages which follow are intended to be no more than

an introduction to the whole subject.

I have had two aims in mind : to present a considered

critical exposition of Principia Mathematica and to give

supplementary accounts of the formalist and intuitionist

doctrines in sufiicient detail to lighten the paths of all who

may be provoked to read the original papers. Various innova-

tions have been introduced and, though I have not avoided

technicalities where they were necessary, all technical terms

and symbols have been as far as possible defined. So I

hope this book may be of use not only to specialists in

mathematical logic but to philosophers and others who

xiii



xiv PREFACE

begin to read it with less knowledge of the complexities of

symbolism. In order to assist readers who may wish to omit

sections chiefly concerned with technicalities or familiar

definitions, I have adopted the device of adding to many

sections a summary or comment, printed in small type

immediately after the corresponding subheadings ; and I

would encourage readers new to the subject to read the

introduction and these scattered comments before reading the

remainder of the text,

I wish to express my thanks to Professor Bernays for much

helpful information concerning the formalists, to Dr. Chwistek

for copies of his papers, to the Aristotelian Society for permis-

sion to incorporate part of a paper read in 1933, to Professor

L. S. Stebbing, Dr. J. H. Woodger, and Miss M. MacDonald

for reading the following pages in proof and for much

encouragement, and to S. Black, J. M. Burnett, and

L. E. R. Mowat for assistance with the transcription of

manuscript.

M. B.

May, 1933.



THE NATURE OF MATHEMATICS

A CRITICAL SURVEY

INTRODUCTION

The task of philosophy, qua critic, is to exhibit the structure of the
sciences by discriminating between hypotheses and principles, etc.

The successes of the scientific method have led philosophers

to dream of a scientific philosophy which, by borrowing the

technique of the established sciences, might hope to reach

something of their certainty and cumulative success.

Philosophy, however, in its function of critic—and it is with

that aspect of philosophy that we shall be here concerned

—

cannot desire to compete with the sciences. The discovery

of empirical generalization is the work of the experimental

sciences, the formulation of self-evident laws belongs to

mathematics, and both are outside the scope of critical

philosophy. Its object is to clarify by criticizing knowledge

already organized into systems ;
and of these it prefers the

older, more developed, sciences, which combine extreme

complexity of theory with consistency in practice. For

these qualities are associated with a high degree of utility

in practical applications and induce in the creators and

admirers of the science a state of self-consciousness inviting

the apologetic services of philosophy. In each of these respects

the science of mathematics is a most admirable field for the

exercise of applied philosophy.

The implied assertion that the established sciences are

highly consistent needs to be qualified by the explicit
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recognition that no science which is still in the process of

developing is more than partially self-consistent. For scientific

research is characterized by the choice between mutually

inconsistent theories, lack of relevant data leading to the

postulation of provisional h5rpotheses which subsequently

require to be limited in their application or even totally

abandoned.

Postulates need to be distinguished as hypotheses and

principles
;

for, of those postulates which are not ultimately

rejected but are incorporated into the main body of the

science as knowledge accumulates, some become theorems

or laws while others, through their success in stimulating

fruitful research, gradually acquire the character of general

principles, which embody concepts fundamental to the

science. Hypotheses, that is postulates which may become

laws, can be disproved casually enough, but principles, since

they control the manner in which problems are formulated

or difficulties resolved, are formally not susceptible to disproof,

and their rejection requires a violent revolution in the methods

of the science.

Vagueness of the concepts which occur in the normative

principles makes their exact formulation an ideal which is

approached by gradual approximation ; clear understanding

of the concepts used occurs late in the history of a science.

Postulates and concepts are created not by the common

agreement of scientists but by scattered individuals or small

groups. At the moment of conception concepts are formless,

implications of theories are only partially understood ; later,

theories produced by specialists in one department of the

science are found to conflict with the postulates of other

departments, in themselves equally plausible or as firmly

established. The necessity of resolving such discords reacts

upon the concepts of the science, leads to more exact formula-

tion of the postulates and clearer understanding of the concepts



INTRODUCTION 3

involved. Even at moments of apparently extreme stability,

the equilibrium of scientific opinion is the immobility of a

body under the action of mutually opposing forces.

This state of affairs is a commonplace in the experience of

any scientific researcher, yet it is more than that private

conflict of ideas in the inventor’s mind which is part of the

process of invention. The contradictions inhere in the

very principles of the science, produced by the inevitable

vagueness of the concepts it employs. However much reflection

and experiment by the inventors of theories may mitigate

the opposition of mutually contradictory opinions by modifica-

tion and elimination of obscurity, contradictions remain even

in scientific theories which find widespread acceptance. In

the theories of all branches of science where progress is still

being made, in biology, physics, chemistry, mathematics,

there are striking paradoxes and contradictions to be found,

and those sciences alone are completely consistent which,

like anatomy, have degenerated into catalogues. It is

important to recognize and distinguish contradictions

produced by imprecise formulation of concepts ; they are

often a sign of vitahty and indicate that the scientist’s capacity

for recognizing relevance and unity in a confusing multiplicity

of heterogeneous phenomena is ahead of the careful expression

of its discoveries.

Nowhere have such contradictions been more frequent

than in mathematics, nor has progress in any science been

more steady. Gauss and Fermat, among scores of other

famous names, are sufficient illustrations of famous

mathematicians who were able to obtain, by apparently

fallacious reasoning, valid results of the highest importance

in subsequent mathematical researches.

The title of ** The Foimdations of Mathematics ” which

the philosophical analysis of mathematics has often received

is therefore a misleading one if, taken in conjunction with
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these contradictions, it suggests that the traditional certainty

of mathematics is in question. It is a fallacy to which the

philosopher is particularly liable to imagine that the

mathematical edifice is in danger through weak foundations,

or that philosophy must be invited like a newer Atlas to

carry the burden of the disaster on its shoulders.

The progressive elimination of contradictions in mathe-

matics is the work of mathematical insight, a continuous

process which can be clearly traced in successive mathematical

researches. Philosophical analysis has the equally valuable

aim of exhibiting the structure of mathematics : first, the

internal structure, by showing the interdependence of

theorems, axioms, and definitions, distinguishing between

hypotheses and principles, etc. ; secondly, the external

structure, the relation of mathematical knowledge to non-

mathematical.

Exhibition of internal structure has technical importance

for mathematics by leading to the rejection of unnecessary

postulates and again to the recognition of unexpected analogies

between the anatomies of different mathematical disciplines.

Such morphological investigations require mathematical

technique, and particularly the extensive use of symbols.

For mathematics is the study of all structures whose form

can be expressed in s3mibols, it is the grammar of all symbolic

systems and, as such, its methods are peculiarly appropriate

to the investigation of its own internal structure. But the

structure of mathematics, though implicit in its theorems, is

not clearly shown and tends to be confused even by those who

are most familiar with it. It is the philosopher's task to

exhibit the inherent structure and to invent a suitable

symbolism for its expression. Elimination of unnecessary

postulates and the explicit exhibition of the structure of

mathematics prevents confusion of purpose within the science

and adds to the aesthetic satisfaction of contemplating it.
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The technique required for this type of analysis does not,

in the present writer's opinion, require the acceptance of any

metaphysical dogmas ; in its systematic aspect it can be

correctly regarded as a branch of applied mathematics if that

science is not restricted to physical applications but is allowed

to include any subject-matter amenable to mathematical

investigations ; in its philosophic aspect it is a branch of

applied logic.^ The details of such a technique must, however,

be reserved for future exposition. The purpose of this essay

is only to report and criticize attempts that have already

been made to analyze mathematics.

Philosophical analysis must take into account lack of

structure for, in so far as a science contains inconsistencies,

it cannot be considered as a system, it is to that extent in

process of acquiring a form and not in possession of one.

Philosophers, however, under scholastic influences, have too

often overlooked this fact and have been suspected in

consequence by the practising scientist. For, when faced with

the difficulty of clarifying existing knowledge, the temptation

is great to find compensation in admiring the complex structure

which represents partial success and to supplement it by

unwarranted extrapolation. In the case of one's own

philosophic system familiarity or the inertia of habitual

thought processes inspires exaggerated respect and tempts

the philosopher to bring the technique of theology to the

help of the analytic method. God arrives to solve the

difficulties of Berkeleian idealism or Earl Russell in less

ambitious times invokes the Axiom of Reducibility.

In no branch of critical philosophy is this danger greater

than in the analysis of mathematics, a discipline which

acquires from its subject-matter a dangerous facility in the

manufacture of vast systems of symbols whose architectonic

1 For definition of the distinction between the philosophic and
systematic aspects of any study cf. infra, p. 141.
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complexity is occasionally of the same order as the labour

required for their intelligent manipulation.

Recent research in the philosophy of mathematics has

shown that each of the three principal theories of the nature

of mathematics which are discussed in this book contains

serious imperfections, some of which may be attributed to

the causes indicated above. With this warning to the reader

we may conclude these generalities and proceed to a pre-

liminary summary of the three main types of theories which

are to be the objects of our investigation.



Preliminaxy Survey of Three Types of Opinions Considered

Before commencing a detailed account a short description

of the general features of the three main schools of

mathematical philosophy with which we shall be concerned

and their relations to one another may facilitate the orienta-

tion of the reader who is unfamiliar with the subject.

The three schools of thought chosen on account of their

importance and influence are usually distinguished as Logistic,

Formalistic, and Intuitionist, their be^t known living

exponents being Earl Russell, Professor Hilbert, and Pro-

fessor Brouwer respectively. Their doctrines differ as much

in methods of approaching problems as in their conclusions.

Logistic

The logistic thesis : pure mathematics is a branch of logic.

The programme of the logistic school has been expressed

by Russell as follows :

'' Pure Mathematics is the class of all

propositions of the form " p implies q
'

where p and q are

propositions containing one or more variables, the same in

the two propositions, and neither p nor q contains any

constants except logical constants. And logical constants

are all notions definable in terms of the following : implica-

tion, the relation of a term to a class of which it is a member,

the notion of such that, the notion of relation, and such further

notions as may be involved in the general notion of propositions

of the above form. In addition to these mathematics uses

a notion which is not a constituent of the propositions which

it considers, namely the notion of truth {Principles of

Mathematics, p. 3). In other words, the propositions of

7
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mathematics are propositions of logic, they state relations

between propositions whose content has been abstracted to

leave only their form, shown by the logical constants and,

or, etc.

On this view, all mathematical concepts such as number,

differential coefficient, etc., must be capable of definition in

terms of logical concepts, pure mathematics becomes a branch

of logic and the distinction between the two subjects is

merely one of practical convenience. Much of Russell's work,

like that of his collaborator. Professor Whitehead, and his

great predecessors, Frege and Peano, was devoted to per-

forming the reduction of mathematical concepts to logical

concepts. The culminating achievement of this school is

Russell and Whitehead’s Principia Mathematica, a massive

work of bewildering complexity but great logical beauty,

which purports to be a detailed reduction of the whole of

pure mathematics to logic.

Formalism

The formalist thesis
:

pure mathematics is the science of the formal
structure of symbols.

The formalists, on the other hand, deny that mathematical

concepts can be reduced to logical concepts and assert that

the many difficulties of logic which beset the path of the

logistic philosophies have nothing to do with mathematics.

They see in mathematics the science of the structure of

objects. Numbers are the simplest structural properties of

objects and are themselves objects with new properties.

The mathematician can study the properties of objects only

by making a system of signs which stand for them and by

recognizing and allowing for the irrelevant features of the

signs he uses. But provided he has an adequate system of
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signs he need no longer worry about their meaning since he

can see in the signs themselves those structural properties

which interest him. Hence the formalists emphasize the

importance of the formal characteristics of the mathematician's

sign-language, those which are independent of the meaning

he may want to attach to them. This is not to say that

mathematics is a meaningless game as the formalists have

often been accused of asserting ; they say that mathematics

is concerned with the structural properties of symbols (and

hence of all objects) independent of their meaning. This

view has proved very fruitful in geometry and its success in

that field is largely responsible for its widespread popularity.

The formalists naturally lay a greater value upon a consistent

symbolism than the logisticians ;
the contradictions in pure

mathematics can be removed, they say, only by the provision

of a symbolism which has been demonstrated to be foolproof.

The demonstration itself cannot be carried through by the

use of symbols independently of their meaning, for these

symbols in turn would have to be legitimized and so ad

infinitum] but they demand a demonstration using no

process of thought essentially more complicated than that by

which we see that two things and two things together make

four. Most of the recent work of the formalists has been

directed towards an elementary proof of the validity of

mathematics from this angle. So far their success has been

only partial, and there are grave doubts whether their

programme can be consistently carried through.

Intuitionism

The intuitionist thesis : pure mathematics is founded on a basic

intuition of the possibility of constructing an infinite series of

numbers.

The formalists lay the emphasis on symbolism, the

intuitionists on thought. For the latter the body of
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mathematical truth is not the timeless objective structure

that it appears in the formalist and logistic philosophies.

Mathematics, regarded as a body of knowledge, grows, it is

a becoming, a process, which can never be completely

symbolized—and even this manner of regarding it is perhaps

dangerously abstract. Mathematics should be regarded as

a social activity by which individuals organize phenomena

in their most general aspect to satisfy their needs. Hence

it is not enough to have a symbolism for mathematical

thoughts ; they are independent of the particular language

used to express them. What is absolutely necessary is that

the language should significantly express thoughts. We
must be able to stop at every point in mathematics and see

the state of affairs which is expressed as clearly as we can

see the fact that to a heap of objects, no matter how many,

it would always be possible to add one more and again one

more in a never-ending process. Knowledge of this particular

process, the possibility of indefinitely extending a series of

objects by the addition of extra members, which may be

expressed alternatively with sufficient precision for present

purposes as direct knowledge of the sequence of the natural

numbers, is termed the * Urintuition
'

(basic intuition) by

Brouwer ; it is fundamental and irreducible in his philosophy.

His emphasis on the necessity for mathematical state-

ments to have a clear * intuitive ' meaning leads him to

reject general assertions such as “ There is a prime number

the sum of whose digits is divisible by 1004 on the ground

that they are neither true nor false but meaningless. General

statements have meaning, he asserts, only when a definite

construction is known by which they might in theory (though

not necessarily in practice) be tested for truth or falsehood

with the certainty of obtaining an answer. So when and

if a prime number is ever found the sum of whose digits is

divisible by 1004 the assertion given above (or strictly the



PRELIMINARY SURVEY ii

assertion which will then be expressed by the same words) will

have sense. If general propositions whose truth can be tested

by a known procedure be called constructive propositions it

is easily seen that the contradictory of a constructive proposi-

tion is not in general constructive. This doctrine has often

been misunderstood to amount to a denial of the law of the

excluded middle that a proposition is either true or false.

Mutnal Relations of the Three Schools

The logistic and formalist programmes have enormous

difficulties to overcome if they are to be ultimately successful.

For the logistic reduction of mathematics to logic breaks

down at a crucial point and a complete formalist proof of the

consistency of mathematics is probably impossible. But the

intuitionist doctrines require the larger part of mathematics

to be rewritten, reject proofs that have long been accepted,

abandon large portions of pure mathematics, and introduce

a disheartening and almost impracticable complexity into

those domains which are remodelled.

The mutual interaction of the three movements are, briefly,

as follows : the logistic thesis of the necessity for symbolizing

mathematical proof has been completely adopted and

improved in important technical aspects by the formalists,

who use the logical notation evolved in essence by the logistic

school. The intuitionists have, on the whole, been negatively

influenced, reacting away from symbolism in consequence

of the logistician*s failures, but they too are beginning to

produce an intuitionist formal logic. Research by the

formalists, especially in geometry, has undermined the

Kantian conception of space, and, by incidentally revealing

the technical deficiencies in the logistic systems has largely

destroyed what may be called the theological view of
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mathematics with its unrestrained belief in such transcen-

dental entities as transfinite numbers. The influence of

intuitionism has been very marked upon the other systems ;

it can be clearly seen in HilberUs insistence on the need for

finite non-formal proofs of the consistency of mathematics,

i.e. what are now called metamathematical proofs, and also

in modem demands for constructive development of such

subjects as the theory of sets of points.

These three types of theories modify and inspire all the

rest, but eclectic compromises are common. By using some

of the innumerable modifications which a crowd of com-

mentators and critics have devised it is possible and quite

usual for the defenders of almost any philosophy of mathe-

matics to shift their ground sufficiently to meet all criticisms.

While drawing attention to such sophistries, we must not fall

into the opposite extreme of judging philosophies of mathe-

matics by their failures and omissions. We propose to judge

them by their ability to analyse the whole field of mathematical

fact and by the extent to which they can be formulated as

precise and internally consistent systems. This is a test

which requires a clearer statement of the opposing doctrines

than their expositors have always provided, a test which

none of the three philosophies here considered triumphantly

satisfies.
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This section will be devoted to a detailed description of a

group of theories concerning the nature of mathematics which

assert that mathematics should be considered as a branch of

logic. If this opinion is correct the distinction between the

two sciences, though venerable and established, is quite

arbitrary. This claim is based on proofs which seek to

demonstrate in detail how the reduction of mathematics to

logic is accomplished.

Any philosophy of mathematics which includes this doctrine

will for convenience of reference, and with the reader's

permission, be qualified in this book by the adjective ' logistic

This usage of the term is frequent in the literature of the

subject and it is sufficient to mention another, less frequent,

use of the same term, viz, as a substantive denoting the

science which deals with types of order as such " (C. I. Lewis,

Survey of Symbolic Logic, p. 3), to forestall any confusion

between the two meanings. The latter use of the word is

based upon and implies a distinction between logistic, the

science which treats of all types of order, and symbolic logic,

that section of logistic which is concerned with the specific

types of order exemplified by propositions ; but our use of

the word will not presuppose that this distinction is recognized

by the philosophers whose theories will be termed logistic.

We commence with a brief historical summary of the

views under consideration.

History of Logistic Views of Mathematics

A notice of the chief logistic writers from Leibniz to Wittgenstein.

The beginnings of logistic philosophies of mathematics are

to be foimd in the gradual application to logic of a symbolic
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technique modelled upon the parallel use of symbols in

mathematics. In its later stages this process was accompanied

by extensive alterations in the traditional Aristotelian logic,

by the introduction of many more propositional forms than

Aristotle or those who expounded his logic recognized. This

in time presented fresh opportunities for the application of

symbolic technique, until finally systems of symbols were

invented of sufficient generality to be used in the attempt

to reduce mathematics to logic.

A convenient starting point for the present brief mention

of the landmarks of this process of development is made by

Leibniz, whose technical researches in symbolism preceded

and often inspired the long series of inventors who perfected

the algebra of logic. His work contained the germ of the

entire logistic conception
; it is no mere coincidence that

many of the logistic philosophers find themselves sympathetic

to Leibniz and inherit the characteristic atomism of his

system.^

The significance for our purposes of Leibniz's studies in the

algebra of logic ® lies in the fact that no proof with any

pretensions to rigour of the thesis that mathematics can

be reduced to logic is possible without a well-developed

symbolism and calculus for logic itself. Statements occurring

in logic must be systematically symbolized in order that

their relationships to mathematical theorems should become

apparent. Leibniz, a mathematician of genius as well as

a philosopher, was eminently fitted to begin the task of

inventing the algebra of logic and his papers ^ show him to

have made several attempts though with other motives.

Subsequent writers, of whom the most important are De

Morgan (Formal Logic, 1847), George Boole [An Investigation

into the Laws of Thought, 1854), E. Schroder [Vorlesungen

^ The Axiom of Reducibility is a generalization of the Leibnizian
principle of the* identity of indiscemibles.

• Cf. C. I. Lewis, op. cit., for further details.
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iiher die Algebra der Logik, 1890-1905), and C. S. Pierce (see

bibliography), by their elaboration of the algebra of logic

fulfilled Leibniz's dream of a Characteristica Universalis

,

a

calculus of reasoning suited for the logical analysis of concepts

and the structure of scientific systems, and provided the

necessary technical equipment for the logistic school. SchrOder

and Pierce emancipated symbolic logic not only from the

Aristotelian view which permitted only the subject-predicate

form for propositions but also to a great extent from the

insistent preoccupation with mathematical analogies which

retarded the early advance of the subject ;
the way is clear

for the actual analysis of mathematics. The first important

work of this second period was accomplished by R. Dedekind

(Was sind und was sollen die Zahlen ?, 1888), who supplied

the now famous method of defining real numbers in the

mathematical continuum in terms of the rational or fractional

numbers. His work may be regarded as a continuation of

Weierstrass’s movement to * arithmetize ' mathematics, that

is to reduce all pure mathematics to the study of the properties

of integers ; for after Dedekind the study of irrational numbers

could be replaced by the study of certain classes of fractional

numbers
;

and the reduction of the study of fractional

numbers to that of integers presents no difficulties and had

already been accomplished.

The definition of real numbers by * Dedekind section ' as

his method is called, although accepted by mathematicians

and used as the very foundation of the modern theory of

functions, had to meet serious criticism which subsequently

led to attempts at improvement by the logistic philosophers.

The next works of historical importance are Frege's

Begriffsschrift, 1879, Grundlagen der Arithmetik, 1884, and

Grundgesetze der Arithnetik, 1893-1903. The last two books

completed the reduction of mathematics by defining the

rational numbers in terms of logical entities. Unfortunately
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Frege did not use Boole’s calculus of logic, preferring an

elaborate but clumsy symbolism of his own, whose intricacy

prevented his work receiving the recognition it deserved ; his

books remained almost unknown until rediscovered by Russell

after the latter’s Principles of Mathematics had been written.

While Frege had given a philosophic analysis of the concept

of number, the Italian mathematician Peano and his school

{Formulaire de Mathematiques, 1895-1905), in the course of

extensive researches in symbolic logic, had shown that all

propositions concerning the natural numbers which are

required in mathematics can be deduced from a set of five

axioms.

The results of Dedekind, Frege, and Peano had covered in

conjunction the whole field of elementary pure mathematics,^

and by reducing the real numbers to integers, integers to

entities occurring in logic, had supplied all the materials for

the logistic thesis. There was still needed a synthesis to

co-ordinate these results and remedy the imperfections of these

early proofs. This was begun by Bertrand Russell in

Principles of Mathematics, 1903, and continued in Principia

Mathematica (first edition, 1910) written in collabora-

tion with Alfred North Whitehead. These two books are

at the apex of the second period in the logistic movement

;

they profess to prove, rigorously and with the utmost detail,

the identity of mathematics and logic.

The first is a philosophical and polemical discussion of the

logistic theories ; the second, written except for a minimum

of incidental explanation entirely in mathematical symbols,

a proof of the theories.

Since Principia Mathematica little advance has been

made by the logistic school and time has shown serious

defects in that work, so that the third period has been one

^ Excluding Cantor’s theory of transfinite numbers at that time
still undiscovered.
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of successive attempts to consolidate a position which at

one time Whitehead and Russell appeared to have reached

triumphantly.

Among the most notable of these attempts are H. Weyl’s

Das Kontinuum, 1918 ; L. Chwistek's Theory of Constructive

Types, 1923-5 ;
and F. P. Ramsey's Foundations of Mathe-

matics, 1927. All these defend a logistic position. In addition

there remains the remarkable Tractatus Logico—Philosophicus,

1922, of L. Wittgenstein, a former pupil of Russell, whose

conclusions, in many respects unfavourable to Principia

Mathematica, should be regarded as the self-critical culmination

of the logistic movement.

Tasks of a Philosophy of Mathematics

The finite and infinite problems of a philosophy of mathematics are
the investigations of the notions ‘ integer ' and ‘ continuum '

respectively. The subsequent analysis tends to replace these
unclear notions by more precise ones with the same formal
properties. The plan of such analysis is outlined.

A philosophy of mathematics has two principal objects

intimately connected with arithmetic and the theory of

functions respectively :

—

(1) To elucidate and analyze the notion of * integer ' or

‘ natural number ',

(2) to elucidate the nature of the mathematical continuum.

These are formidable tasks ; ignorance of the correct answers

has provided paradoxes which date back to Zeno.

For convenience of reference let these problems be called

the finite and the infinite problems of mathematical

philosophy respectively. They are distinct, although the

solution of the second may presuppose knowledge of the

solution of the first.

In spite of the contradictions which the second of these

concepts appears to contain (p. 89), the notions of * integer

'
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and * continuum ' have been used with constant success and

with such mutual agreement that the validity of proofs

involving them can, with a few notable exceptions, be decided

by the unanimous vote of those with sufficient mathematical

training to understand them.^

It would therefore appear that the terms ' continuum ' and

* integer ' have meaning for the mathematician and the same

meaning for all of them,* and the natural procedure for

solving both the finite and the infinite problems would seem

to be to examine as closely as possible, and subsequently to

analyze, the meanings of these terms. Such an approach

would be bound to emphasize the ideas which mathematicians

associate with the symbols they use, rather than the apparent

interconnection of these symbols shown by marks on paper.

And the resulting analysis would need to be such as the

mathematician himself could accept as clarifications of his

notions. Similar remarks are applicable to the philosophic

analysis of any system of interconnected notions. Such a

programme has in effect been adopted by the so-called logico-

analytic school of philosophers ® who have, however,

^ The principal exceptions are proofs involving transfinite numbers
to which more detailed reference will be made later.

* This can scarcely be a truism
;

for the contrary view—viz., that
mathematicians are discussing nothing and that their terms have no
meaning—has been seriously discussed. Thus F. P. Ramsey in a
paper read to the British Association (1926) said :

“ Mathematics
proper is thus regarded [i.e. by the formalists] as a sort of game
played with meaningless marks on paper rather like noughts and
crosses

; but besides this there will be another subject called meta-
mathematics, which is not meaningless, but consists of real assertions

about mathematics, telling us that this or that formula can or cannot
be obtained from the axioms by the rules of deduction ”

: {vide F. P.

Ramsey, Foundations of Mathematics, p. 68). This is an inadequate
account of the formalist philosophy of mathematics and it is extremely
doubtful whether a theory of the meaninglessness of mathematics has
ever had supporters in this crude form. Such a theory would find

it hard to account for the agreement between mathematicians.
If mathematics is merely a game played with symbols there is

no reason except convention why the rules should not be broken ;

chess played backwards is still a game that can be played consistently,

but a topsy-turvy mathematics would be false.
• These include Professor G. E. Moore {Philosophical Essays and

Principia Ethica), Earl Russell (in some only of his writings, especially

Our Knowledge of the External World and The Analysis of M otter)

»



THE OBJECTIVES OF PHILOSOPHICAL ANALYSIS 21

contributed but little to the analysis of mathematics, being

rather concerned with the analysis of facts of everyday

experience.

We will restrict ourselves to two comments on the scope

of this method in the analysis of mathematical notions.

(1) In spite of the mentioned agreement between mathe-

maticians, it seems possible to deduce contradictions from

the mathematical notion of the continuum
;

these contra-

dictions refer to the subject-matter of mathematics and

can be deduced by formally correct mathematical reasoning

(p. 89). They are sufficiently striking to have led a

very celebrated living mathematician to speak of a

vicious circle in present-day mathematics (Herman Weyl

:

“ Der circulus vitiosus in der heutigen Begriindung der

Analysis Jahresbericht der Deutschen Mathematiker Vereini-

gung, vol. xxviii, pp. 85-92, 1919). So it is not unfair to

ascribe much of the agreement between mathematicians to

the fact that they find no need to use in most proofs dubious

notions such as “all properties of real numbers “
; these

occur nevertheless in mathematical textbooks and are an

integral part of mathematics.

It follows that unless the result of philosophic investigation

is to reveal that the contradictions in question are illusory,

produced by fallacious reasoning, ambiguity of terms, or some

other trivial cause, clarification of the notions used by

mathematicians will be inadequate unless supplemented by

revision ; it will be necessary actually to alter the meanings

attached by mathematicians to many terms and imperative

to find new meanings so clear and consistent that the contra-

dictions no longer occur. This is a process of analysis supple-

mented by synthesis. Such a procedure diverts emphasis

Professor L. S. Stebbing {Introduction to Modern Logic), J. Wisdom
{Interpretation and Analysis, etc.), and J. Nicod {The Foundations of
Geometry), all of whom sometimes and some of whom always emphasize
that they are analyzing the meanings of words.
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from the original notions to be analyzed, which in so far as

they are confused and inconsistent permit of no exact analysis.

Much discussion has been devoted during recent years to

proving that the contradictions are only apparent, that they

are trivial confusions of no interest to mathematics. Welcome

as such a conclusion would be to all except those philosophers

whose lives have been spent creating philosophic systems

based on the necessary existence of contradictions, these

attempts have met with little success and the balance of

critical opinion is against them.

Philosophic analysis of mathematical concepts therefore

tends to become a synthetic, constructive process, providing

new notions which are more precise and clearer than the old

notions they replace, and so chosen that all true statements

involving the concepts inside the mathematical system

considered shall remain true when the new are substituted.

(2) Such constructive analysis may however acquire a

purely formal character when instead of analyzing it replaces

the concepts by a completely new set having the same inter-

connections. A process of this kind is appropriate in the

analysis of mathematics whose ‘ formal ' character we now

proceed to examine.

Our conception of the nature of philosophic analysis as

actually practised by the logistic school may be summarized

in the following manner : the system to be analyzed contains

a number of notions ^ denoted by symbols a, h, c, . . . say.

These are combined in various theorems, say abc, deab, etc.,

which may be denoted by A, B,C, . . . From A, B,C, . . .

taken together a contradiction can be deduced. Analysis

attempts to replace a,b,c,,,. by new notions a\ b', c', . . .

say, so that as many of the corresponding theorems a'b'c\

d'e'a'b\ . . . i.e. A\ B\ C', . . . may still be true, and

^ ‘ Notions ’ is chosen as a neutral word and is not intended to

prejudge the character of the entities which occur in the system.
Thus a, b, c, , . . may include proper names, relations, adjectives, etc.
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yet such that no contradiction can be deduced from

A \ B\ C', . . . taken together.^ And a\ b', c', . . . may be

either clarifications of a, b, c, . (genuine philosophic

analysis) or merely any concepts of which the statements

above are true (formal analysis).

^ This is, of course, a very simplified account of the nature of a
system omitting for example the distinction between the formal and
non-formal elements of such a system.



Sapplementary Note on Logical Analjrsis ^

A discussion of the general features of all systems of symbols (languages
introduces a definition of logical analysis in terms of the explained
notions, multiplicity, significance, and structure. Difficulties

arising in the logical analysis of language and here discussed throw
light upon analogous difficulties in the analysis of mathematics.

Logical analysis is a method for elucidating the structure

of systems of symbols or * languages i.e. any set of symbols

used in recurrent combinations for communication between

persons. A language in this generalized sense always contains

rules of syntax though not necessarily explicitly formulated.

It will be convenient to confine the discussion to systems of

symbols which constitute a language such as English, though

much of what will be said is applicable to such systems as

the languages of pure mathematics and physics.

Ambiguity of terms complicates the account of such systems,

but this is unavoidable, since languages are made for use and

not for analysis.

Logical analysis of a language is best understood in terms

of the structure of the language. Though all readers of this

account will be familiar with what is meant by structure it is

not easy to give a short and, at the same time, accurate

account of this notion. It may be described somewhat

inadequately as the relations between the forms of complex

symbols.

In more detail, what is meant by saying that language has

a structure is essentially that certain elements (which are, as

it were, the material out of which the language is built)

recur as members in various complexes of elements while

^ Extracted, with a few alterations, from the author's paper on
** Philosophical Analysis ”, Proceedings of the Aristotelian Society,
1932-3, p. 237.

24
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remaining recognizably the same in these different contexts,

so that complexes can be transformed into one another by

the reciprocal exchange of elements.

Complexes of symbols (phrases, sentences) can function as

elements, and by substitution in other complexes lead to the

construction of symbols of ever-increasing complication. To

some extent this complexity is visibly manifested in the visibly-

increasing number, variety, and arrangement of signs used,

but to a great extent and for reasons of practical convenience

this complexity is latent and is therefore revealed by the

possible transformations of a given complex instead of by its

visible complexity.

It is the purpose of logical analysis to make these com-

plexities explicit by the discovery of laws for transforming

symbols and by the manufacture of new symbols of sufficient

visible complexity. It may be added that this would serve

as a fair account of the mathematical method in general, and

logical analysis is, in effect, a branch of applied mathematical

investigation differing from what is conventionally known as

pure mathematics chiefly in having a less abstract and more

specialized subject-matter and from ‘ applied * mathematics

only in dealing with linguistic elements in place of material

bodies.

Logic proper is concerned principally with systems composed

of words, and I must now particularize the foregoing account

to apply to such languages. By language in the following

paragraphs I shall usually mean the English language.

The elements of language which combine to form complexes

include words, intonation, sentence-order, etc.

By elements are meant any features such as sounds, marks,

shapes, etc., which can affect the senses of persons using a

language for communication. In describing such elements

it is necessary to distinguish those which are significant from

those which are not. Significant elements in a sentence are
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those features whose variation alters the meaning of the

sentence ; thus in the printed sentence the word-order is

significant, while the size of the letters composing the words

is a merely accidental feature. It is not possible to make a

very rigid distinction between the two kinds of elements

;

the spelling of words, though, in fact, a significant feature of

printed sentences, is of merely conventional and trivial

significance, for the spelling pf all or any words in the English

language might be simultaneously changed with no essential

alteration in meaning.^

The definition of significance is in terms of difference of

meaning, and this preliminary account of structure and

significance must not be interpreted as an attempted definition

of structure in terms of * meaning *, for the latter term is

again subject to the peculiar ambiguity affecting all terms

which have direct or indirect reference to mental processes.

Though meaning is notoriously difficult to define, no final
,

definition is needed for logical analysis, for whose purposes

it is sufficient that some distinctions of meaning should be

recognizable, for logical analysis is not a dissection of complexes

into completely definite elements. Progressively more

distinctions of meaning are perceived in the course of analysis,

which is a process of successive approximations revealing

increasing complexity of structure. The same is true of

significant elements
;

it is impossible to enumerate in advance

all significant features of a language, but the recognition of

some such features is a sufficient starting point for analysis.

The differences in meaning with which I shall be concerned

in this account are differences in literal meaning as distinct

from metaphorical, aesthetic, or poetic meaning, for though the

' Any significant feature might be altered without injury to sense :

cf. the Morse code, which employs only four elements (thxee are the
theoretical minimum for any language), but such transformations do not
destroy the structure of a language, which is what aU the transforma-
tions of that language and no transformation of any other language
have in common.
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artist employs symbols they are insufficiently precise to lend

themselves to logical analysis.

A list of the chief features of language significant with

respect to literal meaning would include :

—

(1) the occurrence of specific words or word-groups,

(2) word-order,

(3) emphasis,

(4) factual context,

each of which requires some explanation.

(1) It is a distinctive characteristic of all languages made

to be spoken that groups of words combine into unities such

as descriptive phrases, sentences, etc., which in turn can

function like simple symbols and replace words in definite

contexts. In most languages (in the widest sense) such groups

are continually denoted by a single symbol concealing an imder-

lying complexity of structure. Such substitutions, inevitable

in the process of growth of any living language, are one of

the circumstances which make logical analysis necessary.

Limitations of the human larynx and the human memory

demand the suppression of differences of structure which

logical analysis has to reveal. That this is recognized to some

extent in ordinary usage is illustrated by the fact that although

difference in the marks or sounds used to express words is

sufficient to, and usually does, indicate that the words are

different, difference of words is based not on the difference

of the marks which express them, but upon difference of

meaning ; the same mark, if used with different meanings

(e.g. vice, a carpenter’s tool, and vice, for which sinners

are punished), is said to express different words. This

distinction must be rigidly preserved in the use of words and

symbols in describing logical analysis, with the consequence

that marks which would ordinarily be said to belong to the

same word must be coimted as belonging to different s5anbols ;

thus the copula in This is green is not the same symbol as
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that in Green is a colour

»

and both differ from the is in A man

is not a woman.

(2) Word-order is a significant feature of language—for

Hitler hates Stalin does not mean the same as Stalin hates

Hitler—and plays a part in determining what combinations

of words are nonsense. The latter term is to be taken in its

strict meaning with none of the abusive connotations which

render it so useful in philosophic discussion. Shorn of these

it denotes simply any complex of symbols which is not

constructed in accordance with the laws of combination

(syntax) of the language in question. Examples of nonsensical

combinations of symbols are such inadmissible groups as

succulent substantives, adjectives love analysis, the law of

diminishing returns is blue ; these groups have no meaning

as groups, and that fact is another aspect of the structure

of language, for if all possible combinations of symbols were

permitted the language would have a minimum or vanishing

structure. Since our concern is with literal meaning, meta-

phorical or poetic phrases such as yellow jealousy, necessity is

the mother of invention must also count as * nonsense though

the latter type of nonsense differs from the former in being

capable of being paraphrased into matter-of-fact language.

(3) Through preoccupation with the printed rather than

the spoken word it is easily overlooked that intonation or

emphasis is a significant feature of sentences. Shifting of

emphasis from one word of a sentence to another usually

alters the sense ; increase of emphasis on one particular

word alters what may be called the intensity of emphasis of

the meaning.

The intensity with which a word is emphasized in a sentence

corresponds to the degree of attention called to the use of

that particular s3nnbol with all its implications rather than

any other. To emphasize a word is to state that only the word

actually used will fit the situation and hence to imply, with
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varying degrees of definiteness, certain facts about the situa-

tion. If I say Mrs. Jones did so and so with a certain

emphasis on the Mrs., part of my assertion is roughly

translatable as ** It is Mrs. Jones, a married woman and no

spinster, that I am referring to In such a case I am not

using Mrs. Jones as a (grammatical) proper name, but as a

description
; the two uses are quite distinct and the implica-

tions of two sentences in which they occur are very different.

It does not seem possible to remove the ambiguity often

caused by doubt as to the degrees of absolute intensity of

emphasis (of each word) and relative intensity of emphasis

(of words in relation to one another) in a sentence by a

convention that maximum intensity is in all cases to be

employed, i.e. by a convention that all conceivable implica-

tions of any form of words are to be allowed. For this could

not remove the difficulty of relative emphasis, and there is no

maximum to the number of possible implications of the use

of any symbol (except a logical proper name) in a sentence.

The connotation of an attribute may include the existence of

antecedently causal events which may, in turn, imply the

previous existence of other events and so on— being

married,'* in one sense at least, entails having signed a book

in the presence of a registrar, and being a registrar " entails

having been authorized by the proper authorities, etc.,—and

such an infinite chain never is intended. Or, alternatively, at

some stage, some * simple
'
quality is attributed to some

subject. In the latter case the common use of the same sign

by various persons carries implications. To say so-and-so

is red may (or may not) imply that the so-and-so has the

colour commmly denoted by red, which in turn implies further

statements. And language cannot be used so as to be

deliberately charged with this kind of implication
;

for if

by *red' I mean ** what is commonly denoted by red",

then by ‘ commonly ' I must mean " what is commonly
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denoted by commonly
**

so that either I can never express

what I mean or else I am using language parrot fashion.

(4) The factual context of a sentence, i.e. the circumstances

in which it is uttered or printed, serves in practice as a

substitute for the direct symbolizing of structure and thus,

by suppressing the manifestation of structure, may lead to

confusions. It is not sufficiently appreciated that every

form of words may express several different propositions

according to context ; this effect is well illustrated by con-

sidering the different meanings of This is a white mantelpiece

as an answer to each of the following eight questions in

turn :

—

What is this white object ?

What colour is this mantelpiece ?

What is this object ?

This is not a white mantelpiece, is it ?

Is this a white or a black mantelpiece ?

Is this the white mantelpiece ?

Is this a white mantelpiece ?

Where is there a white mantelpiece ?

If the reader will take the trouble to repeat the sentence

as if it were an answer to each of these questions

successively the differences in literal meaning should soon

become apparent.^

It may be objected that emphasis and intonation are

subjective elements of language, indicating the attitude of a

person asserting a proposition (or making a judgment) with

respect to the order in which he wishes the terms to be

considered, the relative importance he attaches to them, etc.,

and that there is a definite Oxford Dictionary meaning of

any form of words even though the person using those words

' The number of variants is, of course, not confined to eight, and
some could be more unambiguously expressed by the use of alternative
forms of words.
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is unaware of that full meaning. If that is a valid objection

the task of logical analysis is considerably simplified, but

it appears to be more correct to regard the significant sentence

as being, as it were, two-dimensional, having both extent

and intensity. The terms of which it is composed determine

its extent or area of reference, the relative and absolute

emphasis attached to its terms regulates the fashion in which

the truth of the statement is tested.

This can also be expressed in another way ; the significant

sentence, i.e. a sentence actually in use to convey meaning,

contains two heterogeneous elements in its expression ; it

names the members of a configuration of objects and indicates

one of various possible correspondences between the sentence

and the configuration. Thus the statement may categorically

assert or deny, question, doubt, assert with varying degrees

of probability, the existence of the configuration. This view

may, perhaps, be made clearer by an example : I will assume

that the reader knows that there is a cathedral on Ludgate

Hill. It has often been said that in addition to the cathedral,

and the hill (or better, perhaps, the cathedral-on-the-hill)

there is also a fact, viz. that there is a cathedral on Ludgate Hill,

and that it is the correspondence of this fact with the proposi-

tion, ** There is a cathedral on Ludgate Hill which makes

the last a true statement. The alternative view here suggested

is to consider the correspondence to be between two configura-

tions of objects
:

(a) St. Paul's Cathedral with Ludgate Hill,

etc., and {h) the symbols cathedral, Ludgate Hill, etc., in their

arrangement in the proposition considered ;
and to regard

the characteristic falling intonation with which the is is pro-

nounced or understood to be pronounced as showing the kind

of correspondence which is asserted. The correspondence is

simple in its expression (the intonation which expresses it

being comprehended as a simple symbolic feature like red,

and not as a complex like gold-fish), but can be unfolded in a
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characteristic fashion by stating explicitly as many of the

implications as there is time for on any given occasion.^

It is, however, possible to sketch the rudiments of logical

analysis without taking into account the difficult questions

associated with emphasis ; this is in accordance with the

general view of the nature of logical analysis explained above.

For simplicity it is as well to break up the definition of logical

analysis as follows :

—

A is of the same type as B means : in every context where

A can occur without making nonsense B can also do so, and

vice versa. Here A , B are, of course, symbols, and it is easy

to see that being of the same type as is a transitive symmetrical

relation which separates all symbols into a set of mutually

exclusive classes each containing all the sjunbols of the same

type as any member of the class.

A is of the same level as B where A ,
B are propositional

functions, that is symbols expressing qualities or relations,*

means : all the arguments to A are of the same type as all the

arguments to B. Propositional functions and their arguments

are symbols.

I cannot define propositional sentence, and a description

must suffice : Propositional sentences are a subclass of

sentences, consisting of all those which express statements

and are, therefore, neither questions, requests, or commands,

and excluding all sentences which contain nonsensical combina-

tions of symbols
;

tautologies, equations, identities, and

contradictions may all be propositional sentences. Sentence

will be used as an abbreviation for propositional sentence

from this point onwards.

^ The process of unfolding wiU, of course, not constitute part of the

logical analysis of the sentence.
* Propositional functions are better defined as parts of propositional

sentences obtained by omitting nouns or noun clauses ; an argument
to a propositional function is any word whose addition (with or

without arguments) changes the propositional function into a pro-

positional sentence.
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A has the same multiplicity as B where A, B big sentences,

means : the symbols composing A can be put into one to

one correlation with the symbols composing B in such a

manner that corresponding symbols are of the same type.

In applying the above definitions to investigate the multipli-

cities of specific symbols complications are produced by the

systematic ambiguity of words which makes it difficult to

recognize whether two symbols are of the same type
; substitu-

tion of one for the other may seem to make sense because all

the other symbols in the context are unconsciously replaced

by new symbols of different type expressed by the same signs.

Often, indeed, it is by no means easy to recognize whether

two marks represent the same or different symbols, a circum-

stance responsible for many of the fallacies in philosophic

reasoning.

It is therefore worth indicating how relations of identity

and difference, whether of type, level, or multiplicity, can be

recognized. Relations of multiplicity are internal relations

between sentences, holding independently of the truth or false-

hood of the assertions expressed by the sentences. They, and

from them the corresponding relations of level and type, can

be made more obvious by using the sentences A and R, say,

under comparison as premisses in deductions. For if A and B
have different multiplicities, but appear to have the same,

then some deduction which will be correct when A is used as

premiss will furnish a fallacious deduction when the deduction

is transformed in such a manner that B takes the place of A

and all else is unchanged. That is to say that since all logical

deduction is in virtue of multiplicity of sentences, difference

of multiplicity is revealed by the impossibility of reciprocal

substitution in deductions.

Further, language usually provides alternative forms of

expression for the same meaning ; if A can be translated from

one grammatical form into another, and B has the same
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multiplicity, it must be possible to translate B into a

corresponding sentence.

So differences of multiplicity can be tested :

—

(1) By performing the transformations mentioned in the

definition of multiplicity,

(2) By translating A into equivalent sentences and per-

forming the same transformations on B.

(3) By constructing deductions with ^ as a premiss and

substituting B,

Finally then, Logical Analysis of symbols consists of showing

their logical form, that is their type, level, or multiplicity, more

explicitly. This can be done in several ways :

—

(1) One symbol can be replaced by several, e.g. if a s5mibol

A is found to have the same type as a group of two symbols

BJB^ it must be possible to replace ^ by a group of two

symbols AiA^^here Ai has the same type as and A 2

the same as Bj ; A 1A 2 means exactly the same as A, but

their use leads to less confusion.

But (2) it is not possible to show explicitly all the multiplicity

of a sentence in this fashion for the multiplicity is partly

constituted by the fact that the sentence is composed of

symbols of certain definite kinds and no others. Thus

‘ multiplicity ' as here defined is not exhausted by the

number of symbols which can be substituted and logical

analysis will partly consist of statements A is of the same

type as B where B is a symbol whose type is clearly under-

stood and A is not. Or again, the same result can sometimes

be achieved by statements of the kind : A is a colour or A is

a sense-datum which indicate the type of A by describing the

kind of context in which it can be sensically (or non-

nonsensically) used.

Good examples of logical analysis are Russell's theory of

descriptions, Moore's analysis of existential propositions,

Wittgenstein's critique of identity.
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It is now possible to define logically misleading symbol : If

in some usage a symbol A occurs in a sentence which can be

translated into another showing its multiplicity more

explicitly, and such that A no longer appears in the new

sentence, A is said to be a logically misleading expression in

that usage.

Examples are :

—

(1) real in lions are real.

(2) fact in It is a fact that I work in the British

Museum.

For to write lions are real is to suggest that the sentence has

the same multiplicity as lions are fierce, and this is not the

case. The two ares are different symbols ; real and fierce

are of different types. Lions are real is better written Some-

thing is characterized by being a lion and real is therefore

a logically misleading expression in that usage.

Again, It is a fact that I work in the British Museum can be

more simply expressed by I work in the British Museum,

and, therefore, fact in that usage is a logically misleading

expression.

In elaborating logical analysis still further it would be

necessary to distinguish between various kinds of logically

misleading symbols. For the sense in which every condensed

S3anbol such as president capable of being replaced by an

explicit description is a logically misleading expression is

not the same as that in which fact is logically misleading in

some usages. The basis of the distinction is this : A logically

misleading expression of the first kind can be replaced by a

group of other symbols without alteration to the remainder

of the sentence in which it occurs (e.g. uncle = brother of a

parent), whereas a transformation of a logically misleading

expression of the second kind involves alteration of other parts

of the sentence as well (e.g. the transformation of real above).

Logical construction is sometimes used by the logico-analyst
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in such a fashion as to be identical with a subspecies of the

second kind of logically misleading symbol^

The materials for the actual practice of logical analysis are

partly available in the propositional calculus and calculus

of relations elaborated by Frege, Schroder, Pierce, Russell,

and others, but the point of view of most of them differs

fundamentally from my own, in neglecting such symbolic

features as emphasis and in adopting an extensional view of

symbolism, mistakenly thought to be necessary for the

analysis of mathematics.

1 The notions of multiplicity and type which have been used above
were suggested by remarks made by Dr. Wittgenstein in his Tractatus,

and also in lectures at Cambridge. Without making him responsible

for my conception of analysis I think it will be found that my definition

of multiplicity and logical analysis agrees in many respects with what
he has said concerning analysis.



The Formal Character of Pure Mathematics

This section describes the ideal arrangement of a branch of pure
mathematics as a system of deductions from initial axioms.
It is a consequence of the generality of pure mathematics that the
subject-matter of such a system is indefinite : the axioms treat of
any set of objects whose names will fit into the axioms.

The theorems which constitute any branch of pure mathe-

matics can be arranged in the following manner :

—

First come a number of axioms containing those mathe-

matical objects, such as integers, lines and points, groups,

and their properties or relations, with which that branch of

pure mathematics specifically deals. These axioms will

usually take the form of general and existential statements

concerning the properties and relations of the entities
;

the

relations are named but the entities are referred to by indefinite

descriptions.^ Relations themselves can of course be the

' entities ’ of another system of axioms, and the theorems of

one department may be the axioms of another. Axioms are

so called because they are accepted without proof in the

context of the branch of mathematics of which they are the

axioms : they are the premisses from which all theorems,

as distinct from axioms, are deduced. In what follows

* theorems ' will be understood to exclude axioms.

The objects referred to by indefinite descriptions in the

axioms, together with their properties and relations, may

be called the subject-matter of the particular system of

inter-connected theorems in whose axioms they occur ;
their

mutual relationships are specified by the axioms and thereby

determine the character of all the theorems which follow.

^ More accurately, using terminology defined later, symbols denoting
* entities ’ appear as apparent variables, symbols denoting their

properties or relations as undetermined constants.

37
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Thus geometry will be characterized by axioms dealing with

lines, points, etc., the theory of groups by axioms in which

groups are mentioned. Arithmetic is in a peculiar position

since definite integers occur in all systems of axioms, but even

that subject can be arranged as above to begin with axioms

whose subject-matter consists of integers and relations

between integers.

In each branch of mathematics considerable choice can

be exercised in selecting axioms, for many alternative sets

can be obtained by suitable arrangement of the fundamental

objects, but this fact is of minor importance for the present

discussion.

Theorems are obtained by logical deduction from the

axioms, which implies that no objects must be mentioned

except entities composing the subject-matter nor any state-

ments concerning them except the axioms. For the purposes

of mathematics all that needs to be known of these objects

is stated in the axioms and this is true not only for the

subject-matter of a given branch of mathematics, but

of all objects which occur in mathematics since, by combina-

tion, a set of axioms could be constructed for the whole of

mathematics.

It follows that many different sets of objects and relations

can serve as the subject-matter of any given mathematical

theory. For example, the ' points ‘ lines * circles etc.,

which are the subject-matter of the axioms of Euclidean

geometry are primarily understood to be the geometrical

figures usually denoted by these names
;

yet the axioms

remain true if the following transformations are made

:

‘ points ' are taken to mean ordered ^ triplets of real numbers,

‘ lines ' are translated into linear equations in three variables,

and statements such as the point P lies on the line I
**

into

the statement that the corresponding tripilet of real numbers

1 So that (1, 5, 6) say is not the same * point ’ as (5, 1, 6).
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satisfies the corresponding linear equation, etc.^ Since axioms

of pure geometry can be translated in this fashion all theorems

deduced from them undergo the corresponding transforma-

tion ; all statements of pure geometry may be interpreted

either as concerned with points, lines, circles, etc., in the

common significance of these terms, or with certain sets of

numbers, equations, etc. The theorems of pure mathematics

are true of any objects and relations which satisfy the axioms ^

;

and transformations of meaning of the type described can be

performed in any branch of mathematics which can be

arranged in the form of axioms and theorems.

Hence, although even mathematicians themselves associate

such terms as * line ’ and ‘ point ' with images of definite

geometrical figures, the names fimction as terms of variable

meaning whose use facilitates the construction of very general

theories of the relations between many different systems of

objects and exhibits the common structure of these various

systems elegantly and succinctly.

The formal character of pure mathematics described in the

immediately preceding paragraphs indicates why an ' analysis

'

which substitutes new notions for the notions to be analysed

is a legitimate process. Any analyses of mathematical terms

which left the mathematical theorems superficially unchanged

must not be summarily rejected on the ground that they are

repugnant to common sense or that they are not analyses of

mathematicians* notions.

This apology for formal analysis requires two important

reservations in the case of pure mathematics. (1) The natural

numbers as we have just seen are in the peculiar position of

1 The fact that this transformation is possible is the basis of Cartesian
or co-ordinate geometry which is essentially the application of algebraic
methods to geometry by transformations of the l^e sketched in the
text. For further details cf. D. Hilbert, Grundlagen der Geometrie.

* Every system of things will have some relations and will therefore
satisfy some conceivable system of axioms, so every system of things
will have a geometry ; mathematics studies the more ^ interesting ' of
these.
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occurring as constants in all axiom systems and therefore

marks denoting integers must be understood in a sense in

which lines, points, etc. need not be understood. (2) No

complete axiom system can be set up for * real numbers \

That is to say in the two cases where the fundamental problems

of philosophical analysis of mathematics arise it will be

fotmd that no ' formal * analysis is adequate. A justification

of this thesis however requires further explanation of the

nature of axiom systems and will be reserved for a later

section.

The next topic for discussion is the so-called propositional

calculus, the elementary portion of the algebra of logic.



The Propositional Calcolns

The manipulation of propositions, definitions of implication, equivalence,

tautology, and a typical proof.

We turn now to the details of the logistic proof of the

identity of mathematics and logic ; until further notice

the system considered will be that of Ptincipia Mathematical

first edition, but we have substantially revised the account

of the matter to be found in that book and made considerable

use of improvements that have been perfected since its

appearance. We begin by a short account of the post-

Aristotelian view of the nature of logic and of the manner

in which an algebra of logic is constructed.

Logic deals with such relations between propositions as

depend only on the logical form of the propositions and not

on their content. In order to explain what is meant by logical

form it is best to begin with an illustration ; the two

propositions the sky is blue and the grass is green have the

same logical form, for if the sky is substituted for the grass

and blue for green the one proposition transforms into the

other. It is difficult to give an exact description of logical

form ; the following is a good approximation : the logical

form of a proposition is that which it has in common with

all propositions whose constituents can be put into one-one

correspondence with its own constituents. But the notion

of constituent is not sufficiently precise for this definition to

be satisfactory. What is desired is that words like red, house,

Jones, when occurring in a proposition, should denote

constituents of the proposition, and that words like is, not.

41
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or, should not.^ The difficulty of defining logical form will

not affect the exposition of the logistic calculus of proposi-

tions where it is never necessary to mention parts of proposi-

tions, but it is important later in the calculus of propositional

functions.

Formal logic studies the rules which state the conditions

under which the truth of a proposition, p say, can be deduced

from the truth of a set of propositions, pi, p^, , , . pn say,

by virtue of their logical form alone. The classical syllogistic

rules will illustrate this ;
for they state the circumstances in

which a proposition can be deduced from two others. We
call relations which hold between propositions by reason of

their logical form internal relations. Among the most obvious

kinds of internal relations between propositions are those

between compound propositions such as this paper is white

and this line has several words and simpler propositions like

this paper is white which are part of them. If the logical

forms of propositions are known, deductions can be made

from them without reference to the particular state of affairs

they assert. Thus, if this paper is white and this line has

several words is true, the truth of this line has several words

can be deduced in consequence of the relation between the

forms of the two propositions, the particular assertions they

make being irrelevant
;
and in general if a proposition p and q,

where p and q are any propositions whatsoever, is true the

truth of p (and also of q) can be deduced.

The appropriate symbolism for all statements of how

propositions can be deduced from other propositions by

^ This description of logical form implies a conception of logic which
would be inacceptable to some logicians : those who agree, with
Aristotle, that all propositions have the subject-predicate form would
say that the definition in the text supplies too many * logical forms *

;

Wittgenstein (in Tractatus Logico-Philosophicus), on the other hand,
needs more forms than the definition supphes. For the definition

of ' multiphcity ' implied though not actually stated in the Tractatus
makes logical multiplicity a narrower notion than logical form defined
above. Two propositions of same multiphcity must have the same
logical form, but the converse is not always true.
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reason of their logical form, together with the appropriate

rules for manipulating such statements in order to obtain

others, is called the propositional calculus. The symbolism

is such that propositions are always represented either by

simple variable symbols such as p, q, r, or by complex symbols

which consist of the simple symbols connected by a small

number of words such as not, or, and, which indicate logical

form. All considerations of internal relations between

propositions which involve reference to their constituents

are reserved for the calculus of propositional functions.

For convenience of manipulation not~p or p is false is

written f^p) p or qis^ replaced by ^ v ^ and ^ by ^ The

word or is ambiguous
;

the meaning chosen is such that the

assertion oi py q does not exclude the possibility that both

p and q are true. It is also necessary to symbolize the relation

which holds between two propositions p and q when the second

can be deduced from the first ; this is expressed by saying p
implies q or, in symbols, pD q^ If however the word implies

is used with this meaning it is found very difficult to develop

a calculus
;

therefore a modified definition is adopted and

pD q is understood to mean “ either p is false or q is

true '' which is equivalent to “it is false that p is true

and q false

The relation implies is therefore not an internal one, as

is shown by the fact that it holds between any false proposi-

tion p and any true proposition q, irrespective of their logical

forms.^ This fact is without detriment to the use of the

calculus since we need in actual deduction to deduce proposi-

tions only from propositions already known to be true ;
and

it follows at once from the definition of implies that, ii pZ) q

and p are both true, then q must necessarily be true. Although

p'D q will be asserted in some cases where there is no internal

^ The internal relation which corresponds to the first definition of

implies is usually referred to as the entailing relation. This terminology
is due to Professor G. E. Moore {Philosophical Studies).
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relation between p and q, all cases where there is the corre-

sponding internal relation can consistently be represented by

pD q \
and the use of this symbol will lead to no mistakes

as to the truth of propositions.

Some further definitions are required : Two propositions

which imply one another are said to be equivalent and the

statement p is equivalent to q symbolized hy p = q ; the use

of this sign to denote equivalence must not be confused with

the use of * = . . . . Df.* which means ' equals by definition
*

and is used for defining the meaning of new symbols in terms

of those already known. For example the verbal definition

which has just been given of equivalence in terms of implication

can be expressed as follows:

—

= 9) = {(^ 3 9) • (9 3 P)) Df-

Here, as in general, the definiendum is placed to the left and

the definiens to the right of the sign of equality, while the

occurrence of the symbol Df, signifies that the expression

preceding it is a definition and not a theorem of the

propositional calculus.

The preceding definition indicates the necessity for using

brackets in order to render unambiguous the meaning of

complicated expressions. Principia Mathematica adopts an

ingenious method, replacing the conventional pairs of enclosing

marks used for bracketing mathematical expressions by

groups of dots . : :: etc. Each complete group of dots

functions as a bracketing mark with the convention that any

group of bracket dots dominates a group containing fewer

dots. Thus the expression p,w v. q.w :,r \py q\. would be

expressed in the older notation by

^ v(gv(r.{/)vg))).

The use of dots for brackets cannot be confused with the

use of dots to symbolize the logical constant and {supra),

for and always occurs between two complexes of signs which



THE PROPOSITIONAL CALCULUS 45

denote propositions, while bracket dots cannot do so. If

suitable conventions are formulated as to the relative strength

with which the signs . v D s and bind propositions the

number of bracket dots required to symbolize a given

expression can be considerably reduced
;

just as in the

algebra of integers (a x b) — (c x d) can without risk of

ambiguity be written ab — cd, the expression pq v rs in the

algebra of propositions is understood to mean

{p.q)w{r.s).

Such simplification has only partially been performed in

Principia Mathematica.

The materials of the propositional calculus having now

been sufficiently enumerated it remains to explain how logical

calculations are performed The purpose of the calculus is

to determine which formulae composed of symbols for

variable propositions and logical constants remain correct

for all determinations of the variables
; an example of such

a formula is p,p'3 q -q (if p is true, and p implies q, q is

true). Such formulae will be called tautologies.

In accordance with the usual procedure of pure mathe-

matics the calculus commences with a number of axioms,

formulae which must be seen without proof to be tautologies.

These axioms of the propositional calculus were called

‘ primitive propositions ' in Principia Mathematica. Further

tautologies, the theorems of this calculus, are derived by the

use of specified rules of manipulation described below.

The advantages to be derived from the use of a propositional

calculus of this type are those inherent in the mathematical

method. By indicating at all crucial points of a complicated

demonstration the axioms, previously proved theorems, or

manipulative principles, which are used, it becomes possible

to test each step of a proof and to be certain that no fallacious

reasoning has been introduced. This aim is of particular
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importance in the logistic thesis which requires scrupulous

care to ensure the absence of all extra-logical elements.

In any branch of pure mathematics the rules of manipula-

tion used in deriving theorems from axioms include the

principles of logic
; in the special case of the propositional

calculus which is used to prove logical principles some logical

principles occur twice, as formulae and as principles for

manipulating formulae to obtain tautologies ; this may be

compared with the dual occurrence of integers in an axiom-

system of relations between integers.

The principles of manipulation used in the propositional

calculus of Principia Mathematica are the following :

—

(1)

The principle of substitution : tautologies are obtained

whenever some propositional symbol, p say, is replaced

wherever it occurs in a given tautology by some other one

and the same propositional symbol. An example : by

replacing p in the tautology py r-^p [pis either true or false)

hy py p the following tautology is obtained :

—

(2)

the syllogistic principle : if both A and ^ D i5 have

been shown to be tautologies, is a tautology. Here A and B
can be any formulae.

This account of the propositional calculus may be concluded

by a specimen proof, typical of others in the calculus. To

assist the reader ordinary brackets have been used. We
begin with the primitive propositions used in Principia

Mathematica, viz. :

—

(1) {pyp)Dp

(2) qDipyq)

(3) {p>/q)D iqvp)

(4) (py {qwr))D {qw {pw r))

(5) (9 D r) D {(/) V ?) D (/> V r))
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It is required to demonstrate that the expression

{pDq)D({qDr)D{pz>r))

is a tautology. According to definition

(^3?) = Df.

Substitution of for p and r^q for q in the fourth of the

primitive propositions quoted above and replacing D by its

definition supplies the tautology

(('^ P)v{ r>>m>
9)

vr))

which, by the same definition supplies

(pD{qDr))0(qD{pDr)). (a)

Substitution of r>^p for p in the fifth of the axioms and use

of the definition for D furnishes in similar fashion the

tautology

(qDr)0({p3q)3(pDr)), (b)

Substitution of q 3 r for p, p 3 q for q, p 3 r for r in {a)

provides a tautology

\-DipZir))) (c)

which is of the type A3 B where A is identical with (h)

already shown to be a tautology. The second principle of

manipulation permits the deduction that B, viz. the expression

ip "D q)’D [{q’D r) 3 (p3 r)), is a tautology as was required

to be proved.

This completes the account of the propositional calculus

of Principia Mathematica ; comment, criticism, and the

consideration of possible modifications may profitably be

reserved until the calculus of propositional functions has

been described.^

1 For further detail the reader must be referred to Principia
Mathematica, to Hilbert and Ackermann’s Grundziige der Theoretischen

Logik or to Carnap’s Abriss der Logistik.
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The Calcolos o! Propositional Functions

Russell's definition of propositional function described.

We have seen that the purpose of a logical calculus is to

symbolize as completely as possible the logical form of proposi-

tions and the internal relations which hold between proposi-

tions in consequence of their logical form, and to provide

rules for the demonstration of tautological formulae. The

propositional calculus partially satisfies these demands but is

not able to symbolize the logical form of such propositions

as cannot be analyzed into conjunctive or disjunctive combina-

tions of simpler propositions. Consider for example the

following tautology : If A is B and B is C then A is C, whose

tautological form is ensured by the logical form of the simpler

propositions which enter into its composition. The resources

of the propositional calculus will only suffice to indicate that

A is B, B is C, C is A, are different propositions, but cannot

indicate that relation between the structures of the three

propositions which allows the third to be deduced from the

logical product of the first two.

The extra symbolic machinery required is furnished by

Russell's * propositional functions ' which he defines as

follows : “A propositional function is simply an expression

containing an undetermined constituent, or several undeter-

mined constituents, and becoming a proposition as soon as

the undetermined constituents are determined. If I say

* is a man ' or ‘ w is a number ' that is a propositional

function" (The Monist, 1919, p. 162), and again: “Let

<l>x be a statement containing a variable x and such that it

becomes a proposition when x is given any fixed determinate

meaning. Then <f>x is called a propositional function

"

(Principia Mathematical vol. i, p. 15). It is easy to see the

connection between logical form and proposittonal function
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as so defined. For it has been seen that the form of a proposi-

tion is what it has in common with all propositions whose

constituents can be put into an ordered one to one corre-

spondence with its constituents. Hence, if some of the words

occurring in the proposition be replaced by symbols such as

y, attention will be explicitly drawn to the form of the

proposition rather than its meaning, and the symbolic

construct so obtained will serve to define the propositional

form without reference to a specific proposition.^

Propositional functions were independently used by Frege

and are a distinctive feature of logistic systems ; they were

introduced by analogy with mathematical functions and are

used in conjunction with the mathematical terms ' variable
'

and * value which, in common with ‘ function ' itself,

unfortunately have very ambiguous meanings in mathematics.

The consequence in Principia Mathematica is a lack of

clarity as to the meaning of propositional function which

has done much to confuse its readers. A short discussion of

the mathematical notions of variable, value of a variable, and

function will therefore be advisable.

1 Cf. Russell, " Philosophy of Logical Atomism," Monist, 1919,

p. 202. " I mean by the form of a proposition that which you get

when for every single one of its constituents you substitute a variable."

This, however, is not quite correct, since it would imply that the form
of propositions is a variable propositional function ;

the correct view
is that the form is what the proposition has in common with the
variable propositional functions derived from it by changing all its

constituents into variables.



Variable and Function in Mathematics

The purpose of this section is to give definitions of the

terms variable and function as used in mathematics and to

distinguish between the various usages in which they occur.

In what follows we shall often have to speak of symbols,

using a word of great ambiguity which might conceivably

lead to confusion. Without attempting to analyze or describe

the meaning of the term symbol it may prevent some of these

confusions to observe that, in the sense intended, symbol is a

word of the same logical type as word. Anything that can

significantly be asserted of a word can be significantly asserted

of a symbol, and vice versa ; symbols include words and

algebraic signs such as x, y. The relation of the symbol x

to the mark or sound which is used to express it is the same

as the relation of a word to the mark or sound which expresses

the word.^

A symbol is said to be a variable in mathematics if it is

used to denote any one of a certain set of mathematical

objects ; which of these objects it denotes being left completely

indeterminate.* The totality of these objects may be called

the field of variation of the variable. The usefulness of a

variable symbol in mathematics is due to and is exhausted by

its ability to denote a member of its field of variation without

an inconveniently exact specification of that member.

The values a variable can assume, or, elliptically, the

possible values of a variable, are the objects contained in its

field of variation. An example : if a; is a variable real number

1 This is, of course, a very sketchy account of the relation between
symbols, words, and signs.

• The * objects ' themselves may in turn be variables.

50
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between 0 and 1 its possible values consist of the numbers

0, 1 and all the real numbers which lie between those limits.

The signs chosen for variables are usually taken from the

end of the alphabet, e.g. x, y, z. In accordance with what

has been said, variable symbols will be particularly useful in

all cases where statements are to be made which apply

indiscriminately either to any member or to all members of

a certain totality of objects. From this primary use of the

signs X, y, z, etc., are derived various others which as they

are liable to be confused with it must be considered separately.

Various Usages of Variable Symbols

New definitions, often used in the sequel, of the illustrative, formal,
determinative, and apparent uses of a variable symbol.

(a) A variable symbol may sometimes be used to denote

a member of its field of variation in a theorem or proof

when some particular member must be chosen but any

member of the field of variation is equally suitable. A
statement containing the variable in this usage illustrates

relationships which hold no matter which member of its

field of variation the variable denotes. The statement

^Xy=yx^ in elementary algebra is a good

example, xxy—yxx illustrates all the relationships

2 x3=3 x2, 4x9 = 9x4, etc. This will be

called the illustrative use of the variable sign.

(h) A variable symbol may occur as part of a larger construct

partly or wholly in order to indicate formal features of that

construct. The most important example of this use is the

occurrence of variable signs as arguments to a function,

e.g. X in <I)X (in statements containing as grammatical

subject). This use is quite distinct from (a) ;
x no longer

denotes a member of its field of variation but is used to
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complete the sign of which ^ is a part and to indicate

that the propositional function
<f>

takes one argument. Or

again the symbol x may be used in conjunction with the

name of a function to show that it is the function which is

being discussed rather than one of its values.

The use of a variable to indicate formal properties of

symbol constructs of which it forms part will be called its

formed use. Any symbol, not necessarily variable, indicates

more or less explicitly the form of any larger symbol of

which it forms part, but variables are often explicitly used in

order to draw attention to the form : cf. the example above :

IfA is B and B is C then A is C. Here A, B, C are variables

which occur primarily in the formal and not in the illustrative

usage for their field of variation remains completely indefinite

and unspecified. A symbol may of course occur in several

usages simultaneously.

(c) A variable may be used to denote a mathematical

object known by a description insufficient to determine it

exactly. In such a case the field of variation of the variable

consists of all the objects to which the description in question

applies and variable symbols are often used in this manner

in order to determine these objects more exactly. This

usage will be called the determinative. In a particularly

important special case, viz. reductio ad absurdum proofs,

the variable is used determinatively to denote a member of

a field of variation which proves to be empty.

(d) A variable may occur in expressions which denote

the result of mathematical operations on its field of variation.

jl^x^dx denotes the result of performing in succession the

two operations of squaring and integrating over the range

of variation of the variable consisting in this case of the

real numbers between 0 and 1.^

In such cases the variable is no longer capable of further

' As part of x* the variable also occurs in its formal usage.
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determinations, the s5nnbol of which it forms a part is a

constant, and in such usage the variable is usually called

apparent. This terminology however appears to have been

invented for the logical calculus and does not occur in

mathematics. The variable is termed apparent as opposed to

real because it is no longer capable of varying, i.e. of being

replaced by a symbol denoting a member of its field of varia-

tion. To summarize :

—

in its illustrative use (a) the variable indicates an

indeterminate member of a known field of variation
;

in its formal use (h) the variable indicates certain

formal characteristics of larger symbols in which it occurs
;

exact knowledge of the field of variation is usually irrelevant,

emphasis being laid on the mere possibility of the ' variation
'

of a variable symbol

;

in its determinative use [c) the variable is used to

obtain a more exact description of its field of variation

;

and, finally, in its apparent use [d) the variable occurs

as parts of symbols denoting constants obtained as the result

of operations on the field of variation of the variable.^

Definitions of Mathematical Functions

Two sharply contrasted definitions of mathematical function are

current
;

in the extensional definition a function is an extended
list of pairs of numbers ; the intensional definition is in terms of

the relation part and whole between symbols.

After this digression we may return to the definition of

mathematical function. When the values of a variable,

y say, are connected with the values of another variable,

X say, in such a manner that whenever a value of x is known

1 The first three definitions are new ; the distinctions they are

based on were partially recognized in Principia Mathematica by the
use of the thoroughly confused ‘ cap ’ notation for variables.
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the corresponding value of y can be determined, y is said

to depend on x, or y is said to be a function of x, or there is

said to be a functional relation between x and y. These

alternative phrasings correspond to various ways of regarding

such a situation.

The case considered in the above definition is a particularly

simple one, that of a one-valued function of a single variable ;

if several values of y correspond to each value of x, y is said

to be a two-, three-, . . . valued function ; if the knowledge

of the values of other variables as well as the values of x is

required in order to determine the values of y the function

would be one of several variables. But no essential difference

is produced by this additional complexity.

It has already been seen that the purpose of introducing

variable symbols in all their various usages is to be able to

make statements concerning their fields of variation, varying

emphasis being laid either on the variable or its field of

variation according to the purpose for which the variable

is being used. The concept of function derives from that of

variable, being the generalized notion of the interdependence of

variables. It will be convenient and not misleading to restrict

the discussion to the case of the one-valued function of one

variable, that is to the case in which two fields of variation

are connected in the particularly simple fashion described

above.

Let us now proceed to consider in greater detail various

methods of regarding the functional relation. First, the

so-caUed extensional conception of the nature of mathematical

functions.

When it becomes necessary in the course of mathematical

proofs to consider a relation between the members of two

classes of objects it is sometimes natural to define the

correspondence in question by enumerating the pairs of

corresponding objects in the two classes and to consider the
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functional relation in such a case as a correspondence between

two fields of variation, that is between two collections of

objects, rather than as a relation between two variables

(symbols). Such is the case when each field of variation

consists of a finite number of known objects. In the

extensional conception of mathematical functions a one-

valued function is always conceived of as a many-one correla-

tion between two collections of objects, the correlation being

defined by a complete list of pairs of corresponding objects.

These pairs must be ordered in such a way as to indicate

which objects belong to the same collection ; an obvious

convention is so to write the list that the left-hand members

of each pair belong to one collection, while the right-hand

members belong to the other. On this view a function is

identical with such a list.

This is the view of mathematical function current in present-

day pure mathematics. The same conception is however

extended with doubtful justification to include cases when

the fields of variation in question have an infinity of members,

as happens, for example, if one field of variation is that of

the real variable and consists of all real numbers. Mathe-

maticians often regard functions as lists of infinitely many

pairs of numbers.

Such a definition of a function as equivalent to a collection

of ordered pairs of objects makes no mention of, and does not

appear to involve, the notion of a variable ; and the distinction

between the dependent and independent variables, which

recurs so often in mathematics, would appear purely arbitrary

and unnecessary if imposed upon such a definition. When

however one of the two collections of objects is infinite (as in

the definition of a function of a real variable) it becomes

impossible actually to write out the list of objects correlated ;

and although this fact does not distress the pure mathematician

who contrives to think of his infinite collections of ordered
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pairs as if they were set out for inspection ^ it is at this

point that the extensional notion of function is seen to be

inadequate and needs to be supplemented by the notion of

a function as expressing a law of correlation of two variables.

The alternative view of the nature of mathematical

functions regards the use of variables as fundamental and

provides a new definition which differs in many respects from

the extensional definition. For if the values of two variables,

X and y, are to be connected without recourse to the enumera-

tion of pairs of corresponding values, this can be accomplished

only by a law indicating how from any given value of x, no

matter which, the corresponding value of y can be calculated.

1 The attitude referred to can be well illustrated by quotations
from F. P. Ramsey’s Foundations of Mathematics, e.g. “ It is obvious
that two classes could be similar, i.e. capable of being correlated, without
there being any relation actually correlating them ” and again, “ Real
numbers are defined as segments of rationals ; any segment of rational

is a real number. It is not necessary that the segment should he

defined by any property or predicate of its members in any ordinary sense

of predicate. A real number is therefore an extension and it may even
be an extension with no corresponding intension. In the same way
a function of a real variable is a relation in extension, which need not

he given any real relation or formula ” [p. 15—italics inserted]. These
are however statements of a very extreme position which would
probably be qualified by most mathematicians. Thus, e.g. E. W.
Hobson, Theory of Functions of a Real Variable, vol. i (ed. 3), p. 272,
defines ‘ the functional relation ’ as follows : “If to each point of

the domain [or field of variation] of the independent variable x
there be made to correspond in any manner a definite number, so
that all such numbers form a new aggregate which can be regarded
as the domain, or field, of a new variable y, this variable y is said to
be a [single-valued] function of x.” And although he proceeds to
say : “In this definition no restriction is made a priori as regards the
mode in which corresponding to each value of x, the value of y is

assigned ; and the conception of function contains nothing more than
the notion of determinate correspondence in its abstract form, free from
any implication as to the mode of specification of such correspondence,**

[my italics] he immediately adds : “In any particular case, however,
the special functional relation must be assigned by means of a set

of prescribed rules or specifications,” and later explicitly excludes
the case of an infinite table of values :

“ It is sometimes said, in order
to illustrate the generahty of the functional relation, that a function
is definable in the form of a table which specifies values of y correspond-
ing to the values of x. The inadequacy of such an illustration is

manifest, if we consider that, even if the table were an endless
one ... no aggregate of y values can be defined by an endless set of
numbers apart from the production of a norm [or law] by which
these numbers are defined ” (p. 274). Insertions made in the above
quotation are shown in square brackets.
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If both variables are taken in their illustrative usage this

connection can be neatly indicated by an equation involving

the two variables. From each such equation a law of

calculation can be extracted ; for example the equation

y = sin %y where both variables occur in the illustrative

usage, will define a certain function of %y the law of calcula-

tion implied being that the value which corresponds to any

given value of x is obtained on finding the sine of x by

evaluating the appropriate convergent series.

This conception may be crystallized into an intensional

definition of function which should be contrasted with the

previous extensional definition. A symbol is now said to be

a function of a second symbol if it contains the second symbol

as part of itself, e.g. the symbol x^ is a function of the symbol x.

There are several important points to be noticed concerning

this definition :

—

[) Although applicable to any kinds of symbols, the

definition is designed for use only when the second symbol is

a variable, say x. x is then said to be an argument to the

function.

() A function may have several arguments, that is several

different parts containing variable symbols, but for simplicity

we shall assume as before that this is not the case and that

only one argument occurs.

(c) If X is replaced in the function by one of its values,

the resultant expression then becomes a constant which is

said to be the value of thefunction for that value of the argument,

[d) In comparing the extensional and intensional definitions

it will be seen that while the former must refer to the ' mathe-

matical objects ' denoted by the variables, the latter is defined

in terms of symbols alone. If it is considered that the correct

definition of mathematical function should have reference to

the objects denoted by the symbols it is easy to modify the

intensional definition here adopted. The form we have chosen
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emphasizes that the intensional notion of function is always

based on the use of variable, argument, etc., concepts which

cannot be made precise except by reference to systems of

symbols, but need not involve explicitly the concept of

object denoted,

(e) The term function, in a meaning derived from that

given by the intensional definition above, comes to be used

for the manner in which the symbol, which is the function

of X, is formed out of x, i.e. for the form of the symbol which

has previously been called the function of x. This is the

sense in which the mathematician will speak of * the sine

function ' or * the logarithmic function meaning neither

a symbol nor a correlation but the manner in which the

function-symbol is related to its argument or the manner in

which the corresponding values of the two variables are

correlated, i.e. the form of the rule which establishes the

correlation. This conception is particularly important for

the mathematician : in the ' theory of functions of a real

variable * it is precisely generalized properties of this kind

of function which he is, for the most part, engaged in studying.

And it is clear that this notion cannot be derived from the

extensional definition of function, for the only possible

abstraction to be derived from a bare collection of pairs of

values where no law of correlation is assumed is the general

notion of such collections.

(/) An extensional definition of a functional relation between

two variables is only possible when the members of both

fields of variation are known and can be enumerated. Not

only is this* impossible, as already stated, when either field

of variation has an infinite number of members, it is also

impossible to form extensional functions of a variable x

occurring in the determinative usage. For in that case the

members of x's field of variation are unknown (and may not

exist) so that their enumeration is impossible. It is however
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still possible to form intensional functions of variables in

this usage, since the fields of variation are relevant to functions

as intensionally defined only to the extent that they restrict

the types of the resulting functions ; symbols involving

X as part can be constructed without knowledge of :!i;’s field

of variation.

(g) Finally, a word concerning the ambiguities in the

mathematical notion of function. Three definitions of the

term function have been indicated in the preceding para-

graphs : the extensional definition, the intensional, and a

third derived from the second of these two. This number

could be easily multiplied by taking account of the ambiguity

of the term symbol used in the intensional definition. The

ambiguity can be best illustrated by an example : When

speaking of the symbol the, there is one sense (1) in which it

is sensible to speak of five the*s occurring on one page as

distinct symbols
; there is another sense (2) in which there

is just one symbol, the, in the English language, while the

French language has three {le, la, les), and the German language

six [der, die, das, des, dem, den)
; (3) there is a sense in which

le, la, les are all instances of the same symbol
; (4) there

may be a sense in which der, the, le, are all instances of the

same symbol. In addition it is possible to use the term

symbol in such a sense (5) that a symbol is a particular

sense datum. In this sense each time the inscription on

a signpost is read and understood by any person it functions

as a new symbol. These five differentiations by no means

exhaust the possibilities of type token ambiguity ^ and are

relevant to the analysis of the relation between the various

notions of function.

^ Cf. on this topic C. S. Peirce :
“ Prolegomena to an Apology for

Pragmaticism,” Monist, 1906, reproduced in part, with other relevant

matter, in The Meaning of Meaning, Appendix D.
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Propositional Functions

The intensional definition of function adapted to the propositional
calculus and contrasted with Russell's definition.

The intensional definition of mathematical function will

serve mutatis mutandis for the definition of functions in any

system of symbols where variable symbols occur. Thus, in

the propositional calculus, any symbol such as ^ v ^ may be

considered as a function of the symbols p and q which form

part of it ; an example of a function of one variable in this

calculus would be the symbol p. It is easily seen in this

special case what symbols represent the notions already

defined for the case of mathematical functions : the field of

variation of p is the aggregate of all propositions, the values

of the function will be the propositions which are the

contradictories of the values of the independent variable

p, p is the argument of the fimction, and finally the variable

p occurs in both a formal and an illustrative use in the symbol

^ p. The sign ^ is of course not a variable
; it indicates

the manner in which a typical proposition ^ ^ is derived from

a typical proposition p, S5nnbols like pwq^ ^p, etc., which

occur in the propositional calculus, are called truth functions

of their arguments because their truth or falsity depends

only on the truth or falsehood, and not on the specific nature,

of the values of their arguments.

Similarly, it will be possible to form functions whose values

are propositions and whose arguments are variables capable

of denoting any object ; we thus arrive by analogy with the

intensional mathematical definition of function at a definition

parallel to, but not identical with, Russell's definition of

propositional function. An example can be obtained by

changing the waU in the wall is red into a variable x, furnishing

a propositional function x is red of which the proposition



VARIABLE AND FUNCTION 6i

the wall is red is one value. The function has two arguments,

and could be represented by x is y where the is is the only

portion of the symbol which is neither a variable nor a value

of a variable and therefore shows the manner in which the

function is constructed out of its arguments.^ This, however,

is not the view adopted by Russell, who considers, e.g. x is red

to be a function of one argument only, analogous therefore to

the function sin x. For convenience, let is red be represented

by
(f) ((f)

being an illustrative variable) ; then (f>x means x is red.

The function itself Russell represents by
<l>^

which may be

read as '
(ftx blank He seems to have believed that the

<f)

shows the form of a function of one argument in this case.

There seems no good reason to assume, as Russell does,

that the relational or predicative terms in a proposition

must represent the form of the propositional function

involved ;
this assumption serves not only to complicate the

development of the calculus but leaves the whole notion of

propositional function inconsistent and vague.

^

^ It should be noticed that x is y would not be an adequate generaliza-

tion of the wall is red and would need to be supplemented by a state-

ment restricting the fields of variation of x and y to objects of the same
logical type as ‘ the wall ’ and * red ' respectively.

* Cf. W. E. Johnson, Logic, vol. ii, ch. 3, for this type of criticism

of Russell's definition of propositional function.



The Calculus o! Propositional Functions Resumed

Having defined propositional functions we can now proceed

with our exposition of the functional calculus of Principia

Mathematica ; we shall give an account first of the new

symbols introduced, then the theory of types and the axiom

of infinity, and finally describe and criticize the axiom of

reducibility. We begin with a number of definitions. These

are based with occasional simplifications on those given in

the introduction to Principia Mathematica. Their purpose

is to facilitate and abbreviate the discussion of the theory of

types and the axiom of reducibility to which the reader who

is familiar with these definitions may therefore at once

proceed.

Quantifiers^ Truth-Values, etc.

Manipulation of the notions some and all in the calculus of propositional
functions. This section and the four short sections which follow
deal with the technicalities of manipulating the calculus of

propositional calculus.

The notion of propositional function, which chiefly

distinguishes the calculus of propositional functions from the

calculus of propositions has already been described. In order

to remain as close as may be to some standard logistic

position in the following paragraphs, Russell's definition of

propositional function will always be assumed : it will be

remembered that a propositional function is so called because

all its values are propositions. If all the arguments of a

propositional function are replaced by definite values chosen

from their respective fields of variation, the propositional

function becomes a definite proposition which may be either

62
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true or false ; if it is true, the propositional function in

question is often said to have the truth-value truth for those

values of its arguments, while if the substitution of those

values of the argument produces a false proposition, the

function is said to have the truth-value falsehood for those

values of the argument. In other words the ‘ truth-value

'

of a true proposition is truth
;

of a false proposition, false-

hood. The values of a function must not be confused with

its truth-value, for the former are propositions while the

latter is either truth or falsehood.

The calculus of propositional functions now introduces two

new primitive ideas which roughly correspond to ' all ' and

* there is a * and are necessary for the analysis of general

and existential propositions. All and there is a are symbolized

respectively by (x) and (Ex)} two symbols which are attached

Hke indices to propositional functions, converting them into

propositions, in a manner which two examples will make

clear : If L(x) means a line passes through the point x, (x)L(x)

means all points have a line passing through them, and (Ex)L(x)

means there is a point through which a line passes. Or again

(x)L(x) may be considered as equivalent to the simultaneous

assertion of all the propositions L(^), and (Ex)L[x) as equivalent

to the assertion that L(x) has the truth-value truth for one

at least of the values of its arguments. Since these new

S5nnbols are both primitive in the functional calculus it is

not necessary to define them, provided the foregoing explana-

tions have made clear how propositions whose expression in

ordinary language would require the use of all or there is a

are to be replaced by symbolic expressions containing (x)

and {JEx) respectively. The two s5nnbols thus introduced may

for convenience be called quantifiers, and qualified by the

^ In Principia Mathematica the E of (Ex) is written backwards ;

it has become quite usual, for the convenience of typography, to write

the symbols as in the text above.



64 LOGISTIC

words general and existential respectively.^ There are

several points to be noticed about the use of quantifiers :

—

(1) The quantifiers are for the present meant to apply

only to individuals, i.e to objects which are values of arguments

to propositional functions and are not themselves propositional

functions, but not to propositional functions themselves.

This use of the quantifiers is narrower than the use of all

and there is a in ordinary speech, for the latter are often

made to refer to predicates, as when we say '' there is a certain

colour I need while predicates occur in the functional

calculus of Principia Mathematica as propositional functions

and cannot for the present be quantified. The calculus which

results when this condition is satisfied will be called the

restricted functional calculus,^ Very soon it will also be

necessary to consider the general functional calculus}

(2) In order for propositions involving quantifiers to have

an exact meaning the field of variation of the variable in

question must be known and specified ; it is usually assumed

in the functional calculus as in ordinary speech that the

field of variation of the variables is the widest possible

consistent with the condition that the corresponding values

of the function are propositions and not nonsense, e.g. for

the propositional function x is an ocean, the North Sea belongs

to the field of variation of x, but Wednesday does not. In

this way each propositional function determines fields of

variation for its arguments if a narrower field than this

is desired it is usually obtained by modifying the propositional

function in question accordingly.

(3) A propositional function of several arguments will,

by the successive application of existential or general

quantifiers, give rise to several different symbolic constructs.

^ These terms axe not used in Principia Mathematica.
This statement is subject to modification later owing to the theory

of tjrpes.
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which will, in general, represent a number of distinct proposi-

tions. In fact a proposition obtained by quantification of a

function is not completely determined by specifying which

of the various arguments of the function are to be made

apparent by the application of existential and which by the

application of general quantifiers, for the order in which

these symbols are applied will in general be significant. For

example let F(x, y) = x is the father of y ; then [Ex) ([y)

F(x, y)) is the proposition there is somebody who is everybody's

father but (y) ({Ex) F(x, y)) is the proposition everybody has

a father. It is however easily seen that changing the order

in a group of successive quantifiers, all of the same kind, does

not alter the sense of the expression in which they occur.

Such groups of quantifiers may therefore be written [x, y,z , . .
.)

or [Ex, y, , . .) respectively. Thus the expression

(x) (Ey) (Ez) (x) F (x, y, z, w),

where a number of brackets have been dispensed with in a

manner which is sufficiently obvious, can also be written

ix){Ey, z){w)F(x, y, z, w) without ambiguity.^

(4) It may be noticed that any variable to which a quantifier

has been applied in some context becomes an apparent one

in that context.

(5) If a quantifier is placed before an expression containing

several propositional functions it is necessary to indicate

to which of these functions the quantifier is meant to apply ;

the scope of a quantifier is defined as the function to which

the quantifier is meant to apply and is indicated in Principia

Mathematica by dots bracketing the scope on to the quantifiers,

e.g. in (x): (f>x,3 •
px (or : <l>x always implies i/jx) the scope of

the quantifier is the function <^^.D
.
px, but in {x).px:D, px

(or : if px is always true then px is true for the value x) its

scope is px.

^ These conventions, again, have come into general use since Principia
Mathematica.
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The Algebra o! Propositioiial Functions

After the sjonbols mentioned in the previous paragraph

have been introduced the algebra of propositional functions

proceeds in the same fashion as the algebra of propositions.

Starting with a number of tautologies, i.e. propositions

involving propositional functions and true whatever

propositional functions are substituted (just as the tautologies

of the propositional calculus yielded true propositions for all

values of p, q, etc.), we obtain new tautologies by the use

of certain rules of manipulation. Apart from the additional

complexity produced by the introduction of additional

symbols for propositional functions, quantifiers, etc., the

restricted functional calculus presents no features which

have not already been discussed in the case of the propositional

calculus
; it may however be noticed that, whereas in the

latter a uniform procedure has been found to determine which

expressions are tautologies, so that manipulation of formulae

in that calculus may proceed without use of a definite system

of axioms, this is not the case with the restricted functional

calculus, where no uniform procedure is known for detecting

tautologies. This makes the use of a system of axioms

essential for the demonstration of tautologies in the restricted

functional calculus.

In order to prepare the way for the definition of integers

in terms of logical notions one or two further definitions

are necessary. They include definitions of extensional

propositional functions (not to be confused with the previous

extensional definition of mathematical functions which has

already been discussed), important for their bearing on

the question of the necessity for an axiom of reducibility in

the logistic systems, and definitions of incomplete symbols,

the last of which include classes and descriptions as special

cases.
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Extensional Propositional Functions

When an implication, say <l>(x) D iff {x), holds between two

propositional functions for all values of the argument x it

is said that
<f>

(x) formally implies p (x). Two propositional

functions are said to be equivalent if each formally implies

the other ; in terms of the symbols already defined this may

be expressed as

= ^x)) = {x){(<f>(x) D Hx)).{^(x) D i>(x))} Df.

If some or all of the symbols for propositions in a truth

function of propositions be replaced by symbols for

undetermined values of propositional functions, truth-functions

of propositional functions are obtained, e.g. p (x).^ (x) will be

a truth-function of p and p. In general, a truth function

of propositional functions is defined as a symbol which contains

the propositional functions and whose truth-value depends

only on the truth values of these propositional functions.

PropositioBal Functions 0! Functions and the General

Functional Calculus

By analogy with the representation of properties of and

relations between individuals as propositional functions,

properties of and relations between propositional functions

can in turn be represented by functions whose arguments are

variable propositional functions. From previous discussion

on the nature of functions in general, it will be clear that any

expression in which symbols for a propositional function of

individuals occur as illustrative variables may be regarded

as a function of propositional functions ; if the expression

in question is such that when the variable propositional

functions occurring in it are replaced by specific functions

the resulting expression is a proposition, we shall have a

propositional function of functions. Hence any variables
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denoting individuals in such an expression must be apparent.

Examples of such propositional functions of functions would

be the expressions {x) .ifjxi’D .(f>x) or <j>a where a is the name

of some individual. The introduction of such propositional

functions of functions and, where occasion arises, of quantifiers

attached to them produces a calculus of propositional functions

wider than the restricted calculus already described.

Eztensional Functions o! Functions

A propositional function of functions is said to be extensional

if it has the same truth-value for all arguments which are

formally equivalent.

At first sight it may appear obvious that some functions of

functions are not extensional as here defined. Consider, for

example, the propositional function ^x has seven letters one

of whose values is the proposition * is a man ' has seven letters.

If in this proposition i is a man be replaced by the formally

equivalent function ^ is a featherless biped the truth-value of

the proposition changes from truth to falsehood. So an

example of non-extensional function appears to have been

constructed. Wittgenstein (Tractatus Logico-Philosophicus)

and Carnap (cf. Der Logischer Aufbau der Welt, p. 62), among

others, have asserted that all functions of functions are

extensional. Cf. p. 122.



Derivation ol Mathematical Functions from Propositional

Descriptions

In the logistic thesis the problem of adequately symbolizing mathe-
matical expressions reduces in general to the problem of analyzing
the inter-connections between propositional functions and descrip-

tions. The logistic solution involves difficulties associated with
the definition of identity.

It is now our business to consider how mathematical

functions are derived from propositional functions in the

logistic system of Principia Mathematica
;

it will be a simplified

account, reserving for subsequent discussion complications

produced by the Principia definition of identity
;

for the

present no difficulty will be caused by treating identity as a

primitive or fundamental notion.

We need to consider two principal types of expression

involving mathematical functions
: (1) expressions of which

sin X is a, typical example, where the variable is real and

occurs in its illustrative use, and (2) expressions such as

sin
(77/2), derived from expressions of type

(
1

)
by substituting

a constant for the variable. The Principia view is to regard

sin
(
77/2)

as a definite description of the number 1, since

sin
(
77/2)

= 1
; sin

(
77/2)

is asserted to bear the same relation

to the number 1 as the present King of England to King

George V.

Further, the distinction made between expressions such

as sin x of type
(
1

)
above and expressions such as sin

(
77/2),

is to regard the latter as completely determinate or definite

descriptions of some unique number, and the former as

indefinite descriptions of some unspecified number comprised

in the field of variation of x.

Since mathematical functions and their values are thus

69
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considered to be analogous to propositional functions in

general, the problem of reducing mathematical fimctions to

propositional functions becomes a special case of the very

general problem of exhibiting the connection between

propositional functions and descriptive phrases and explaining

how the latter may be derived from the former.

In order to render as simple as possible the account of the

manner in which this is accomplished in Principia Mathematica

it is best to start with some specific descriptive phrase, say

The present King of England. Instead of analyzing this

phrase in isolation a rule is given for symbolizing any proposi-

tion in which the present King of England occurs. Consider

the proposition The present King of England lives in Bucking-

ham Palace for example ; this is analyzed into the conjunction

of the two propositions There is one and only one x such that x

is the present King ofEngland and x lives in Buckingham Palace.

X lives in Buckingham Palace and x is the present King of

England are propositional functions of one variable of the

form px and the statement there is one and only one x

satisfying px is symbolized by

It is important to notice {a) that the is which occurs in

there is one and only one x such that . .
' and is symbolized

by (Ex) has a different meaning from the is which occurs in

X is the present king of England*' ; for the first denotes

the existence of a particular while the second denotes what

W. E. Johnson refers to as the characterizing tie, viz. the

characteristic and indefinable manner in which a particular

is attached to a quality which qualifies it.

{b) Identity is treated as a propositional function of two

arguments. There is clearly some difficulty here since to

say two things are identical is merely a clumsy way of asserting

^ i.e. " Some x satisfies and all things which satisfy <ft are identical
with that X.*’
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that there is in reality only one thing. It is difficult to see

how identity is to be regarded as a relation between two

things, or, if it is not, what then becomes of the logistic

definition of descriptive phrases.^ This is to some extent

overcome in Principia Mathematica by defining two

things as identical if they have all their properties in

common. Two objections arise immediately : first that

the definition is incorrect since even if it is never true

that two distinct things have all their properties in common

it is yet significant to assert that they have.^ And, secondly,

on account of the contradictions which the theory of types

(p. 101) was invented to eliminate, it is not permissible in

the logistic scheme to speak of all the properties which two

things have in common. The second objection is met in

Principia Mathematica by the use of the axiom of reducibility

which considerably complicates the final definition.

Plural Descriptiye Phrases

Plural descriptive phrases are derived from propositional functions by
the technical device of definitions in use involving the use of
' incomplete symbols The limitations of this method are noted.

Descriptive phrases of the type so far discussed, viz. the

so-and-so, can be derived only from propositional functions

satisfied by one and only one argument ; and, conversely,

every such propositional function gives rise to a descriptive

phrase of this kind. It is, however, easy to apply similar

considerations to propositional functions satisfied by more

than one argument, and thus to obtain plural descriptive

phrases analogous to the descriptive phrases already

^ It has been proposed to do altogether without the use of ‘ identity
’

under discussion. Thus, e.g. Wittgenstein says “ 5.53, Identity of the
object I express by identity of the sign and not by means of a sign of

identity. Difference of objects by difference of the signs " Tractatus
Logico-Philosophicus .

• L. Wittgenstein, op. cit., 5.5302.
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mentioned ;
the plural descriptive phrase denotes all the

arguments satisfpng the propositional function just as a

uniquely descriptive phrase of the form the so-and-so denotes

the single argument. That is to say a plural descriptive

phrase denotes what would usually be called ' the class of

all the arguments ' satisfying the propositional function

considered
;

classes therefore enter the logistic scheme

through plural descriptive phrases.

Speculations concerning the nature of classes and the

associated problem of the connection between the extension

and intension of classes, to use the traditional terminology,

have presented great difficulties to logicians and have received

as yet no adequate r^solution.^ The difficulties involved in

answering such questions can however be avoided by trans-

forming the symbols called propositional functions in the

spirit of the technique of formal analysis which we have

already explained.

Choice of the transformation appropriate for the expression

of classes is facilitated by the fact that the distinction between

a predicate and the objects it qualifies is not a discovery

of logicians but is already made in the unsophisticated

language of common sense. This is shown by the possibility

of converting such a statement as red is a colour into all red

things are coloured {things). For the purpose of reducing

mathematics to logic it is sufficient to invent a self-consistent

symbolic mechanism for exhibiting this distinction systematic-

ally and quite unnecessary to speculate upon the ontological

significance of this distinction.

In the case of the x which satisfies <l>x the s5mibolism chosen

^ “ Extension, as used in relation to intension, is an extremely
ambiguous word. The traditional treatment of this topic is very
unclear owing to the fact that quite different notions have been
confused, and the topics connected with each of them have been dealt
with together. These confusions run throughout the traditional logic

which is based upon the metaphysical theories implicit in AristoUe's
theory of logic.’* L. S. Stebbing, A Modern Introdtudion to Logic, p. 28.
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is {'*%) {<f}x) ; the transformation consists in the first place

of adding the same pseudo-quantifier {fx) to any propositional

function <I)X, This apparently trivial alteration modifies the

form of some of the propositions in which <l>x can occur and

leads to a considerable simplification of theorems. In the

same manner we represent Ihe x’s which satisfy <j>x by ^ {(f>x).

New symbols cannot be derived from old in this fashion

quite arbitrarily. When defining symbols it is necessary first

to indicate which features of such symbols are significant,

i.e. to state in which circumstances two such symbols are

regarded as identical and, secondly, to indicate the contexts

in which the symbols may be correctly employed.

In the case of classes the answers of Principia Mathematica

to these two demands are :

—

(1) Two classes are said to be identical if the propositional

functions from which they are derived are equivalent in the

technical sense of equivalence previously defined (p. 44) ; and

(2) Though no explicit statement concerning the contexts

of classes is made, the most important contexts are in fact

(a) of type a ex (px) which means a is a member of the x's

satisfying <f>x, a being of the same type as the arguments to

and (b) x (<j>x) [px) which means the x's satisfying the

function p and the function if/ simultaneously.

The statement of the significant features and possible

contexts of a newly-defined symbol means that the choice

of such symbols is subject to limitations which must be

investigated before the symbol can be safely employed. For

it may be that the definition of the symbol is inconsistent

either with the rules of identity, as defined in (1) above, or

with the rule stating the contexts to which it is restricted.

These conditions are not discussed in Principia Mathematica.

The reason for this omission is insufficient recognition of

the distinction between formal and non-formal analysis

upon which we have already had occasion to remark. Before
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long we shall return to the question of the consistency of the

Principia definition of classes.

De&nitioxis of Descriptions and Classes

The definitions are of the kind termed ' definitions in use

that is, a definition is given, not of the symbol to be defined,

but of certain expressions containing it. Though it is not

possible to replace the symbol itself by symbols already

defined, a rule is given for translating every expression in

which it occurs into expressions containing only symbols

previously defined.

We have seen that the x satisfying px is symbolized by

(
ia

;) (px) and the x's satisfying <f)X by ^ {<f>x) ; it is also necessary

to indicate the scope of these expressions, i.e. the proposition

to which ['^x){px) is to be considered as belonging. This is

achieved by prefixing the pseudo-quantifier [{'*x){<f>x)] to

such expressions, with sufficient dots to bracket the scope.

For the sake of economizing symbols the convention is

made that the pseudo-quantifier may be omitted

when the scope of {'»x){px) is the smallest propositional

function containing it. {Principia Mathematica, i, p. 181.)

Omitting the complications due to the Principia definition

of identity (involving the use of the axiom of reducibility) the

definition of a proposition containing ('ix){(l>x), say p{{

becomes

i.e. any statement p about the x which satisfies (f>x means

:

one and only one thing does as a matter of fact satisfy ^
and ^ is true of that thing.

It will be noted that the definition is so chosen that if

px is not satisfied by exactly one argument any proposition

1 This is Principia definition 14.01 simplified.
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containing ''the x which satisfies is false (and not

meaningless as it should strictly be).

Similar symbolism is adopted for classes. means

the x*s which satisfy <f>x and any phrase in which it occurs,

say {ilsx)} is defined by



Complete and Incomplete Symbols

This and the next three sections continue the discussion of incomplete
symbols. Russell’s definition is stated and rejected in favour of a
more precise definition.

The occurrence in Principia Mathematica of * definitions

in use ' leads to a distinction between complete and incomplete

symbols. According to the definition given there, the latter

are such as have no meaning in isolation and cannot be

legitimately used without the addition of further symbols.

Examples of incomplete symbols in this sense would be the

mathematical symbols for multiplication and addition,

X and +, which are used only in contexts such as 2 -f 4,

a X b, etc.

This definition is however unsatisfactory for the following

two reasons :

—

(1) It follows from the definition that any propositional

function symbol, say /, is incomplete, since it requires the

addition of one or more arguments x, y, . , , to complete its

meaning by an indication of the number of variables on which

it depends, and propositional functions were not intended to

be incomplete s5mibols.

(2) To say incomplete symbols are such as have no meaning

in isolation is insufficiently precise language for a definition.

In one sense no symbol can occur in isolation, for it must

be capable of combination with other symbols of the system

to which it belongs. It will be accompanied by such symbols

in aU contexts in which it occurs ; its syntax is part of its

' meaning

The definition of incomplete symbols can be improved either

by replacing ' meaning ' by some more precise notion or

76
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by eliminating the reference to meaning altogether in order

to provide a formal definition based on the manner in which

symbols can occur in systems. The first method has been

adopted by Professor G. E. Moore ^
;

the second will be

chosen here.

Definition o! Incomplete Symbol

The road from logic to mathematics runs from propositional functions

to descriptions to classes to integers
;

classes have suffered

vicissitudes and the change from collections existing in their own
right to incomplete symbols manufactured from symbols needs
safeguards.

A symbol is complete in a given system of symbols if it is

either undefined, i.e. occurs in the axioms of the system, or

else is defined in such a manner that it can be replaced

in every context in which it occurs by a group of defined

S5mibols. In a definition of a complete symbol the

definiens is a group of symbols specified independently of

any context.

An incomplete symbol is one whose definition consists of

a rule for transforming any expression in which it occurs

into an expression containing only complete symbols, the

manner in which this transformation is effected depending on

the context of the incomplete symbol.

These definitions agree with the usage of Principia

Mathematica and all S5nnbols * defined in use ' will be

incomplete. From this point of view the use of classes and

^ Professor Moore defines incomplete in a certain usage ; the definition

is unpublished but is quoted by Miss Stebbing in A Modern Introduction
to Logic (p. 158) as follows :

**
5, in this usage is an incomplete

symbol S, in this usage, does occur in expressions which
express propositions, and, in the case of eve^ such expression, S
never stands for any constituent of the proposition expressed.*' This
definition involves the notion of constituent of a proposition which
needs further explanation.
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descriptions in a logistic system is purely one of convenience.

Nevertheless, the use of incomplete symbols is important for

the following reasons :

—

Importance ol Incomplete Symbols

(1) In spite of the fact that incomplete symbols can

be replaced by complete symbols in every context and

are therefore theoretically unnecessary their introduction

enormously abbreviates complicated demonstrations. The

amount of paper occupied by the first part of the Principia

Mathematica would no doubt be of astronomical dimensions

if the use of incomplete symbols were forbidden. This

favourable characteristic is shared by all symbols whether

complete or incomplete which are defined in order to be

used in demonstrations.

(2) More important than this saving in space and the

consequent facility of manipulation is the fact that trans-

forming complicated theorems composed of complete symbols

into comparatively simple theorems containing both kinds

of symbols leads to the discovery of formal analogies between

incomplete and complete symbols. New, incomplete symbols

are found to combine in modes identical with the laws of

combination of symbols previously studied
; once such a

correspondence has been established, sets of theorems already

proved can be transformed at one stroke into theorems

concerning the new symbols. The advantages of this

technique are clear ; it provokes the discovery of unsuspected

relationships and a profounder comprehension of the inter-

dependence of diverse fields. The calculus of classes offers

striking examples of such analogies in the formal similarity

of the operations of class-addition and class-multiplication to

the operations which bear the corresponding names in the

propositional calculus.
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Ontological Status of Incomidete Symbols

A few remarks may be added concerning the ‘ reality ' of

classes and other objects denoted by incomplete symbols.

Though it is a fact which belongs to psychology rather

than to logic it is noteworthy that since incomplete symbols

appear to behave like complete symbols and eventually appear

in expressions which contain only incomplete symbols, the

latter attain the status of complete symbols in the opinion

of those who manipulate them, i.e. they are considered to

denote ‘ real things \

The metaphysical respectability of the things which

incomplete symbols denote, though it appears to need the

successful incorporation of the symbols into a calculus, is

not guaranteed when this demand is satisfied and appears

to depend on subjective factors which include the following :

—

(1) The extent to which the symbol in question is used

and finds applications : the greater the number of applica-

tions to and analogies with other symbols already accepted

as denoting real entities, the more pretensions to reality our

incomplete s5niibol acquires.

(2) The decision whether the introduction of incomplete

symbols in any given case leads to the discovery of genuine

mathematical entities or is merely a technical trick with no

further significance is influenced by the possibility of

remodelling whole systems, containing both complete and

incomplete symbols by a new choice of axioms into a new

system in which some of the previously incomplete symbols

now appear as complete. If the new system is valid such

incomplete s5mibols will gain in respectability.

Nature of Principia CSasses

Turning now to consider the nature of classes in Principia

Mathematica in order to decide whether the introduction of
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incomplete symbols in this connection is a valid device, we

find a curious position. For classes were introduced in

Russell's earlier expositions of the logistic thesis as aggregates

or collections of objects. This fact was chiefly responsible

for the paradoxical flavour of early logistic definitions of

integers ; for an integer is a class of classes and hence,

originally, a collection of collections of objects. Yet, for

compensation, no need was felt to prove the reality of such

classes ; that was regarded as self-evident. Such a theory

made the truth of mathematics contingent upon the existence

of sufficient objects in the universe of perception and required

a special axiom of infinity to that effect. And what was

meant by the existence of a class remained unanalyzed and

unanalyzable. This theory collapsed through internal

inconsistencies associated with the existence of infinite classes,

and was succeeded by many alternative theories of

classes all less realist than that described above, until

classes eventually came to be degraded to incomplete symbols.^

But no attempt was then made either to give a fresh

discussion of the ontological status of classes or, alternatively,

to verify that the definition was technically free from defects.

Consdstency of Definition of Classes as Incomplete Symbols

To interpret classes as incomplete symbols is a tour de force, needing to
be safeguarded against inconsistency by methods here discussed.

When classes are regarded in such a light that their

introduction is purely a technical device, emphasis shifts to

1 Russell :
“ It is reasonable to regard the theory ... as right in

its main lines, i.e. in its reduction of propositions nominally about
classes to propositions about their defining functions. The avoidance
of classes as entities by this method must, it would seem, be sound in

principle " (Intro, to Mathematical Philosophy, 1919, p. 183). But
ten years previously in the Principles of Mathematics he was saying
When a class is regarded as defined by the enumeration of its terms

it is more naturally called a collection ” (p. 69) and a class we agreed
is essentially to be interpreted in extension ; it is either a single term,
or that kind of combination of terms which is indicated when terms
are connected by the word and " (p. 80).
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the validity and self-consistency of this technique. It is not

permissible to manufacture incomplete symbols arbitrarily.

If by mischance the definition of incomplete symbols were

to lead to results inconsistent with the axioms of the

propositional calculus all theorems in whose demonstrations

classes occurred would be suspect, and classes would become

of no value as a symbolic device. This question, then, though

completely ignored in Principia Mathematica, is of extreme

importance in the rigidly deductive scheme which the logistic

definition of mathematical notions aspires to be. It is

necessary to be quite explicit on this point, even at the risk

of wearying the reader, for it is a major issue in deciding upon

the virtues of Principia Mathematica. It will be recalled that

the definition of the class associated with some propositional

function, px say, in the simplified form adopted for the

present discussion is

The p and p which occur in this formula play very different

parts
; p is merely a propositional function proper, one of

the objects contained in the subject-matter of the axioms, and

need have no further meaning than that, when the correctness

of the deductions of Principia is investigated, p on the

other hand is a shorthand symbol to replace a set of words

;

it means any expression in which £{px) occurs and in applying

the formula above it is essential that the meaning p should be

so understood.

The validity of introducing classes appears at least dubious

when viewed in this light
; for if it were true, as it is not,

that every expression containing class symbols can be trans-

formed into one not containing such symbols, such a fact

could be perceived only by ‘ intuitive induction i.e. by

direct recognition of the validity of such a transformation

in all the infinitely varied cases which might arise.

The number of types of possible expressions containing
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class symbols is infinite so that the validity of any technical

device applicable to all such expressions must be based either

on (1) direct recognition that every such expression is

capable of being transformed in the manner required, or

on (2) a proof by ‘ mathematical induction i.e. one which

proceeds as follows :

—

{a) The definition is verified to be consistent for some set of

simple expressions from which all other expressions can be

built up by the use of certain principles of construction

(e.g. application of quantifiers, increase in the number of

variables, etc.), and (b) it is proved that the growth of an

expression by the application of any such principle leads to

no inconsistencies. If (a) and (Z>) can be demonstrated, the

definitions can be seen to be consistent for any given expression

on applying the proofs referred to under (1) and (2) a finite

number of times. Method (1) which we have referred to above

by the name ' intuitive induction ' is specially applicable to

unorganized collections, method (2) to organized infinite sets

of expressions.

In regard to the definition of classes in Principia Mathe-

matica the situation is as follows : method (1) cannot be

applied
;

for the expressions which can be constructed from

the materials of the calculus of propositional functions are too

complex to permit of any such general survey as that method

requires. Further, without additional restrictions on the

possibility of constructing expressions containing classes the

definitions are inconsistent and lead to contradictions.^

* It may perhaps be objected that in the actual demonstrations
which occur in Principia Mathematica the number of expressions
containing class symbols must be finite, and that it is unnecessary to
establish the correctness of the definition for all such expressions if

it can be seen to be valid in the case of the finite number which actually

occur. Our answer must be that unless the definition is restricted to
apply to the expressions which actually occur in those specific proofs
the definition must be a consistent one for all expressions which can
be constructed. Otherwise, a contradiction could be demonstrated
inside the logistic calculus and eventually in mathematics

; there is

good cause to assert that the unrestricted use of incomplete symbols
does produce such contradictions.
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Russell and Whitehead invented the Theory of Types to

eliminate the contradictions due to the unrestricted use of

classes ; their remedy is based on a theory of the illegitimacy

of the notion of ' all ' and will be discussed later. The effect

of the theory of types and its associated symbolism is to

impose additional order upon the unorganized assemblage

of expressions in which classes may occur, and to prevent

some possibilities of inconsistency by forbidding certain types

of expressions. Nevertheless, it is still not possible to

enumerate the principles of construction which are needed

for method (2) above, and even after the introduction of the

theory of types there remains no guarantee that the

conventions are consistent. In fact the authors of Principia

Mathematica seem nowhere to have recognized that any

purely symbolic device such as the introduction of incomplete

symbols, or even the omission of the pseudo-quantifiers which

precede them and indicate their scope, needs justification

;

the impossibility or extreme difficulty of establishing the

validity of the Principia Mathematica definitions of incomplete

symbols is due to the vagueness of the notion of propositional

function already discussed.

The pertinence of these objections is very strikingly shown

by Dr. Chwistek's discovery that the apparently innocent

convention for omitting scope indicators is inconsistent and

has to be abandoned.

Attempts have been made to remedy these defects of

Principia Mathematics in at least two ways :
(a) by restricting

the logical calculus of propositional functions to the so-called

' restricted ' calculus already discussed, and demonstrating

the consistency of all conventions used (Hilbert)
;

{h) by

giving a constructive definition of propositional functions to

permit of the application of mathematical induction. Of

these the first involves the rejection of the reduction of

mathematics to logic.
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Discussion of the use of incomplete symbols in the logistic

scheme might usefully be supplemented by consideration of

the analogous occurrence of abstraction and ideal elements in

mathematics which in turn assists in understanding how

mathematical objects are derived from logical.^

1 An excellent account is to be found in Professor H. Weyl’s
Philosophie der Mathematik (§ 2 : Die aufbauende Mathematische
Definition ").



The Beal Nmuher

At a critical point in the logistic system surprising contradictions
appear and must be expelled

;
the problems involved are associated

with the mathematical theory of continuity, based upon
‘ intuitions * whose exact nature is always conveniently vague.

This section will exhibit the connection between the so-called

mathematical paradoxes and the logistic construction of real

number. In the course of the account it will be maintained

that the contradictions which occur in the logistic scheme

cannot be regarded as analogous to ' slips ' in mathematical

proofs, possibly to be eliminated by increased care with

definitions and substitutions. They are not fortuitous

blemishes but difficulties inherent in the conception of an

actual or extended infinity, a notion whose uncritical assimila-

tion into the logistic scheme reproduces in a new form the

very difficulties which are already familiar to the mathe-

matician, The treatment of Principia Mathematica and the

logistic philosophers in general has clarified the questions

which are involved but has not succeeded in eliminating the

difficulties.

We begin by considering the relation between the notions

of real number and the continuum. The real number,

is a concept intimately connected with that of the

continuum and enters into that part of pure mathematics

which is specifically concerned with problems arising from

the analysis of continuity. Of this domain the most important

for present purposes consists of the infinitesimal calculus and

the modem theory of functions which are usually grouped

together as analysis, a term which excludes both arithmetic

and geometry. The relation between these three disciplines

can be expressed summarily by stating that the method of

85
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analysis essentially consists of applying arithmetical methods

to the manipulation of certain geometrical intuitions of

continuity.

In order to amplify this statement, whose conciseness would

otherwise be misleading, it is necessary to supply a more

detailed description of the so-called intuitions of continuity.

It is a remarkable fact that, although the mathematical theory

of continuity is alleged to be based on direct experiences of

continuity, no descriptions of these alleged experiences are to

be found in the literature of mathematical philosophy. The

following is an attempt to describe some at least of the features

of these experiences. We shall not need to make any assump-

tions at this stage concerning the psychological or epistemo-

logical status of these * intuitions It will be convenient

to confine our attention to the visual field where intuitions

of continuity are least vague, not prejudging, however,

questions of the existence and status of intuitions of

continuity in the fields 'Of sensations associated with sense

organs other than the eye.

‘ Intuitive ' in the sense used here is to be translated

approximately by * direct ' and ‘ not arrived at by a process

of reasoning \ The purpose of our inquiry does not demand

a more exact description of the meaning of this term.^

^ A distinction needs to be made between direct or intuitive

experience of continuity of the visual field, i.e. of a field of sense data,

and between intuitive (i.e. not based on premisses) beliefs as to the
continuity of physical space. These two senses of continuity are often
confused, e.g. by Weyl who uses ' continuum ' sometimes for portions
of physical space (or space time) as in the sentence “ Davon zu unter-
scheiden ist seine Verwirklichung an einem konkret vorliegenden
Kontinuum, wie es die rdumliche Strecke ist [Philosophic der Math.,

p. 43—my italics] and sometimes for a continuum of sense data,
e.g. in supporting Brouwers objections to the tertium non datur

” Das
passt sehix gut zu dem Charakter des anschaulichen Kontinuums ;

denn in ihen geht das Getrennt-sein zweier Stellen, beim Zusammen-
riicken sozusagen graduell, in vagen Abstufungen, fiber in die Ununter-
scheidbarkeit " (ibid.). Presumably in stating

** Die Mathematik
gewinnt mit Brouwer die hbchste intuitive Klarkeit ” it must be to
the (alleged) connection between Brouwer's analysis of continuity
and direct intuitions of continuity to which he is referring

;
but he

nowhere supplies a precise description of these intuitions.



Inttdtions ot Continuity in a Sensory Field

‘ Intuitions ' of continuity are here analyzed into an apprehension of

connectivity and the possibility of indefinitely continued division

;

neither is directly observed and both must be translated, in any
accurate logistic analysis, into statements concerning the multi-

plicity of symbols denoting portions of the continuum.

First it may be asked whether any such intuitions exist.

Before the elaboration of logistic ideas geometry and, through

geometry, analysis, was universally believed to be based on

some geometrical intuitions such as we are trying to discover.

Thus Dedekind in formulating his mathematical analysis of

continuity said :
“ Es ist mir sehr lieb, wenn Jedermann das

obige Princip [i.e. the principle of continuity we shall soon

have occasion to describe] so einleuchtend findet und so

ubereinstimmend mit seinen Vorstellungen von einer Linie
;

denn ich bin ausser Stande irgend einen Beweis fiir seine

Richtigkeit zu bringen, und Niemand ist dazu im Stande

(Stetigkeit und Irrationale Zahlen, p. 11). That is to say the

principle of continuity is obviously true (einleuchtend) because

it agrees with everybody's representation or conception

(Vorstellung) of a line.

Although the continuum which is the subject of mathe-

matical inquiry is in the first place a geometrical continuum

(an ideal continuous line composed of points) and, eventually,

an arithmetical continuum, i.e. a collection of real numbers,

it is necessary to begin with intuitions of continuity in

the visual field.

Intuition of the continuity of the visual field consists in

apprehending [a) the connectivity of various portions of the

field and (6) the possibility of infinitely dividing any portion

of it. The field is conceived to have no gaps, to hang together,

and to be capable of division into successively smaller portions.

87
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On examining in more detail what is meant by [a) and (6) we

observe that in one sense of ' connected ' the visual field is

certainly disconnected and not free from gaps
; this is the

sense in which the blind spot would be said to constitute a

gap in the field. But this is not the sense in which the intuition

that the visual field is connected formed the starting point

for the formulation of mathematical continuity ; it is

connected in the sense that we can’t see any gaps in it

And in this sense the statement that visual space is continuous

is a tautology. There is, however, another genuine sense in

which we have intuitions both of visual connectivity and of

visual disconnectivity, not of the parts which compose the

whole visual field but of elements which constitute a selection

or abstraction from it
;

e.g. it may be observed that one band

of coloured light consists of strips of various shades of red

connected without the intervention of other colours while

another consists of strips of red separated by strips of

blue ; the red in the first band would be said to be connected

and the red in the second band would be said to be dis-

connected. And the so-called connectivity of the visual field

is derived from the intuition of the manner in which patches

of the same colour (possibly of difierent shades) may be either

separated or in proximity. Hence part of an analysis of

what is meant by saying that the visual field is connected might

include the statement
:
given any portion of the visual field

there is another portion of the field bearing to the first portion

the relation of contiguity, i.e. the relation between red patches

of various shades when no other colour separates them.

Hence the important result that the connectivity of visual

space is in no way a property of the field taken by itself,

but a relation between the field and ' portions ’ of it. Whether

the field is connected or not depends on what is meant by a

portion of it ; if the portions were differently defined the

visual field might become disconnected.
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As for the alleged intuition of the infinite divisibility of

visual space, it may be doubted whether any such knowledge

is furnished by intuition. The possibility of endless division

appears to be a schematic programme abstracted from the

(directly apprehended) relation of one portion of visual space

to another which contains it. When it is postulated that any

portion of visual space could contain a smaller portion, it is

difficult to understand how this fact, if it were a fact, could

be apprehended directly. Here, as in the case of connectivity,

the ‘ intuition ' consists of postulating certain hypothetical

relations between portions of the visual field, these

hypothetical relations being based upon the relation of

' containing * or * including ’ actually observed between some

portions of the field.

Our conclusion is therefore that both the ' connectivity

'

and ‘ infinite divisibility ' of the visual field are forms of the

various ways into which the field can be regarded as divided

into portions, i.e. if for any such division not only the portions

but the relations of contiguity and ' containing ' between

them were symbolized, the ' connectivity ' and infinite

divisibility could be translated into statements concerning

the multiplicity (cf. defn. p. 33) of all sentences constructed

from these symbols.

Continuity in Geometrical Space

The evolution of the notion of continuity from Greek mathematics
through Dedekind to Principia Mathematica. Uncritical applica-

tion of the notions of connectivity and infinite divisibility to the
space of geometry, conceived as real, provokes paradoxes (Zeno).

The connection between continuity and the possibility of measure-
ment leads to the discovery of a mathematical device for comparing
incommensurable numbers (Eudoxus) and so eventually to a
purely arithmetical conception of the continuum. The Achilles-

Tortoise paradox and Eudoxus’ construction are discussed.

The next stage in the formulation of mathematical

continuity is the transition from the continuity of the visual
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field to the continuity of space. At the level of Greek mathe-

matics the connection between the two was inevitable, for

the geometry of Euclid was never doubted to be the geometry

of actual space, i.e. an idealization by subtraction of irrelevant

details, optical illusions, etc., of the geometry of the sensory

fields. Yet the application to physical space of the concepts

of connectivity^ and of infinite divisibility immediately

produced contradictions. For on the one hand it seemed

necessary to demand the infinite divisibility, if not of matter,

then certainly of space. If, however, space was real, it could in

no way be regarded as something unfinished or in the process of

becoming and the application of the concept of infinite divisi-

bility to it would seem to be unjustified. The application of the

notion of infinite divisibility to reality conflicts acutely with

the recognition that this divisibility is essentially a process.

In their most acute form these difiiculties were formulated

in Zeno's paradoxes : Achilles can never catch the Tortoise

if he starts behind it ; for when Achilles has reached the

position where the Tortoise started, it has advanced a little ;

and when he has reached that second position, it has moved a

little farther forward. Thus Achilles, in order to pass the

Tortoise, must actually perform an infinite number of acts,

which is impossible.

This demonstration very clearly exhibits the contradictions

produced by the notion of the reality of the extended

infinite. It may be expressed in another form : if a line

in space actually consists of infinitely many points, no motion

at all is possible, for the smallest shift of position would

involve the crossing of infinitely many points, i.e. the

actual performance of an infinite number of acts.^

^ The difficulties produced by the application of connectivity to
physical space were principally centred around the possibility of

empty space and are of less importance for the present discussion.
* Russell's discussion of the Achilles-Tortoise paradox (Principles

of Mathematics, p. 350) takes an alternative and perhaps less interesting

interpretation. The slower " he says will never be overtaken by
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Zeno's paradoxes attacked not only infinite divisibility

(i.e. the existence of the infinitesimal) but also finite divisi-

bility (i.e. atomicity). Nevertheless, in the conflict between

atomicity and infinite divisibility the choice made both

in the geometry of Euclid and in the development of pure

analysis in the nineteenth century was that of accepting the

actual infinitesimal. Thus the geometrical line was regarded

as composed of infinitely many points, the end-products of

the infinite dividing process, conceived per impossible as

actually completed.

The importance of the notion of indefinitely continued

divisibility of continuous lines in geometry is due to its

connection with the theory of measurement, i.e. the possibility

of the exact specification of congruent stretches ^ of lines by

means of numbers, which we now proceed to explain.

With the help of the notion of congruence it is in the first

place easy to explain how to obtain from any given stretch L

another stretch U whose length is any integral multiple of

the length L. It follows immediately that the lengths of

two stretches can be compared if each is an integral

multiple of the length of L ; for if m x is congruent

to n X L 2 , tn and n being whole numbers, and m X

denoting a stretch whose length is m times that of L^, the

length of Lg will be mjn of the length of L^. In particular, if

some arbitrary stretch Lo be taken as a unit of reference, all

stretches L such that two numbers m, n, can be found to

specify their length in the manner described (i.e. all stretches

commensurable with can be assigned a fraction mjn to

specify their length. If on a line A some point 0 is taken

the swifter, for the pursuer must first reach the point when the fugitive

is departed, so that the slower must always necessarily remain ahead
"

(ibid.). The comment which immediately follows is “ When this

argument is translated into arithmetical language, it is seen to be
concerned with the one-one correlation of infinite classes ” (ibid.).

Thus Russell in his discussion accepts precisely the attitude of the
extended infinite which the paradox, in our interpretation of it, attacks."

^ A stretch means a finite portion of a line between two points.
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as origin, points A(\), A A (\), . . . can be associated in

this way with each positive and negative fraction.

aJ^) A{^i) O '^) ^2)^

The Greeks discovered the existence of incommensurable

lengths, e.g. the fact that in an isosceles right-angled triangle

whose sides are equal in length to the unit stretch, the

hypotenuse is incommensurable with Lq* Nevertheless,

geometrical intuition shows that the hypotenuse in question

can be transferred to the line A, i.e. that there is some point

J5 in A such that the stretch OB is congruent to the

hypotenuse.

The incommensurable lines appeared, in fact, to have the

same status as any other lines for the following reasons :

—

(1) They could be geometrically constructed.

(2) The incommensurable lines could be approximated to

as closely as desired by commensurable lines
;

i.e. in the

representation above, commensurable points A^y

left of the point B, and commensurable points A[y ri', to

the right of By can be obtained, and such that the distance

AnAn becomes as small as we please for sufficiently large n.

The part which (1) plays in the so-called geometrical

intuition of continuity is often forgotten
;

it is, however, a

mistake to imagine that (2) alone will furnish the existence

of incommensurable lengths. The mere existence of the two

convergingseriesof points

^

1,^ 2 * • • • An>^TidA[A 2 , . . . A^

furnishes no intuitive evidence of the existence of a point to

fill the gap. Intuition cannot discover the existence of the

(infinitely many) gaps left in the line A even after all the

points obtainable by constructions in Euclid's geometry have

been named.

^

^ Cf. also Galileo’s demonstration {Dialogues Concerning Two New
Sciences, trans. by Crew and Salvio, pp. 20 sqq.) that the conception
of a line as composed of an extended infinity of points requires also the
existence of an infinity of gaps in the line.
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For the Greeks the existence of an incommensurable length

was demonstrated by its geometrical construction.

Eudoxus' solution ^ of the problem of the existence of

incommensurable stretches consisted of postulating first the

so-called Archimedean axiom : If La are any two stretches

then L can be added to itself, say n times, until w x L^ is

greater than Lg. The effect of this axiom is to eliminate the

possibility of the existence either of infinitely small or of

infinitely large stretches. And in the next place the ratios

of four stretches taken in pairs L^ : Lg, L^ : Lg are equal if,

for all integers m, n,

nL^> mLg implies mU^

nL2 = wLg implies nL[ — mL^

fiLi < wLg implies nL[ < wLg

In this manner the length of an incommensurable stretch,

I say, is determined by a division of all the rational numbers

m/n into three classes, viz. those which are less than I, those

equal to /, those greater than I ; and the second class contains

either no, or exactly one, member.

Dedekind’s Definition of Real Number

Dedekind’s analysis of continuity is a natural extension of the mathe-
matical method due to Eudoxus. The Dedekind definition of real

number and a few of its consequences are discussed.

If Eudoxus' definition of the ratio of incommensurable

lengths is used in conjunction with the criterion, already

mentioned, of the existence of stretches, viz. that they can

be constructed by the use of ruler and compass alone (for

these were the only geometrical instruments used in Greek

geometry) it is found that all those numbers ' exist ' which

can be obtained by applying to the rational numbers, any finite

^ This account is based on Weyl (op. cit., p. 31).
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number of times and in any order, the operations of taking the

square root and the ordinary arithmetical operations of

addition, subtraction, division, and multiplication ; but

numbers whose expression involves roots of higher orders

cannot be obtained in this way. These so-called ‘ irrational
’

numbers however can often be given interpretations which

make their existence intuitively plausible even at the stage

at which the Eudoxian definition is regarded as satisfactory.

Thus, for example, the cube root of a can be interpreted as the

length of side of a cube of volume a. If the number is a

perfect cube, i.e. can be expressed as the cube of some rational

number, then there is no difficulty. If this is not the case,

e.g. if a is any prime number, any material cube of volume a

could have a side whose length could not be expressed by the

Eudoxian definition. Nevertheless, it is easily proved that

any number of material cubes can be obtained both greater

and less than a cube, whose sides have rational lengths and

whose volumes differ as little as required from the volume of a.

Thus, either a physical cube can be obtained whose volume is a,

and this will mean that the Eudoxian definition is inadequate,

or no physical cube can exist whose volume is a. The second

of these alternatives is highly repugnant because it appears

to involve gaps in the series of rational numbers which may

be used to denote volumes, and arbitrary exclusion of rational

volumes seems no better than eirbitrary exclusion of

constructible rational lengths. This type of argument

applies of course to transcendental numbers as well as to

irrationals of order greater than two. With the progress of

mathematics the criterion of constructibility on a Euclidean

plane begins to appear purely arbitrary ; tt soon comes to be

as ' real * as y/2.

It is at this stage that Dedekind produces his abstract

definition of pure number. Suppose the rational numbers are

divided in any way into two classes, L, R, say, such that
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(i) all the members of L are less than all the numbers of R ;

(ii) L contains at least one rational number

;

(iii) all the rational numbers belong either to L or to -R.

Any such division is called a section of the rational numbers.

Then there are two different kinds of sections possible :

—

ia) Either one number in L is greater than all the other

numbers m L or one number in R is less than all the other

numbers in R {or here excludes and).

(h) Or no number in L is greater than all the other numbers

in L and no number in R is less than all the other numbers

in R. In case (Z)) it is easy to show that the difference between

two rational numbers, one chosen from L, the other from

R can be made less than any number, however small, given

in advance. L and R converge together but, as distinct from

case {a) no rational number separates them. If (6) is the case,

a ‘ real ' number is said to be defined by the section, and is

conceived of as a number, on the same level as the rationals

which compose L and i?, and filling the gap between them.^

The quotation from Dedekind already given on p. 87

leaves little doubt as to the status of his definition. It is

essentially the definition of Eudoxus generalized to the extent

that the criterion of constructibility has been dispensed with

(for it does not matter how L and R are constructed provided

they possess the three properties detailed above)
;

but the

existence of the real numbers is still based in some vague

sense on geometrical intuition.

It is necessary to interpolate at this point a short account

^ The principle was actually given the following geometrical form
when first enumerated by Dedekind : “If all the points of a line

are separated into two classes such that every point of the first class

is to the left of every point of the second class, there exists one and
only one point which produces this division of all the points into two
classes and divides the line into two parts in this way ."—[Stetigheit

u. ifrationale Zdhlen, p. 11, translated.) In the text liie more arith-

metical form which is now usual has been chosen but the two state-

ments are essentially equivalent.
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of the mathematical consequences of the Dedekind definition

of real numbers :

—

(1) The real numbers as defined by Dedekind leave no gaps

in the field of geometric intuition. This can be expressed

more exactly in two ways which are equivalent : if the

Dedekind definition is applied to the real numbers, dividing

them into classes L and R with the properties stated, no

further numbers are obtained.^ The alternative phrasing is

as follows : no system of objects, 5 say, can be found obeying

the axioms which the real numbers obey and containing all

the real numbers as a subclass.^

(2) Any particular real number must be defined by actually

stating the method or law for dividing the rational numbers

into L and R and in all such cases it is true in general that the

properties of the real number in question can be expressed in

a rather more complicated fashion as properties of the rational

numbers which are used in the definition of the specific real

number. This is not the case however in certain very general

theorems concerning the properties of functions (i.e. certain

infinite collections of real numbers)
;

these are the crucial

cases where the contradictions inseparably connected with

the extended infinite reappear. The case of the so-called

' theorem of the upper bound ' is discussed below.

It is interesting to see that Dedekind himself appears to

have been well aware of the provisional nature of his definition.

He says : Die Annahme dieser Eigenschaft [i.e. continuity

as defined by the existence of real numbers] der Linie ist

nichts als ein Axiom durch welches wir erst der Linie ihre

Stetigkeit zuerkennen, durch welches wir die Stetigkeit in

^ This statement is, of course, based on the ordinary realistic view
of real numbers. It would not be true in the intuitionist mathematics
because it would have no meaning to talk of two classes L, R of real

numbers in this way.
* This is the formalist enunciation of the property and is used by

Hibbert as a definition of continuity, i.e. by postulating the ' Voll-

standigkeit * of his system of geometrical axioms he ensures Dedekind
continuity : cf. his Grundlagen der Geometric

.
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die Linie hineindenken. Hat liberhaupt der Raum eine reale

Existenz, so braucht er doch nicht notwendig stetig zu sein

;

unzahlige seiner Eigenschaften wiirden dieselben bleiben,

wenn er auch unstetig w&re. Und wiissten wir gewiss, dass

der Raum unstetig ware, so konnte uns doch wieder nichts

hindern, falls es uns beliebt, ihn durch Ausfiillung seiner

Liicken in Gedanken zu einem stetigen zu machen
;
diese

Ausfulling wiirde aber in einer Schopfung von neuen Punct-

Individuen bestehen und dem obigen Princip gemass auszu-

fiihren sein ’’ [Stetigkeit u. irrationale Zahlen, p. 11

The Logistico-Mathematical Paradoxes

The paradoxes are classified according as they can or cannot be
accurately expressed in mathematical symbolism.

The paradoxes and contradictions now to be described fall

naturally into two classes :

—

{a) Those which are due to the vagueness of words.

ip) Those which can be expressed in exact mathematical

symbolism.

Of these two, (b) is by far the more important, for those

features of (a) which do not reduce to (b) belong to a discussion

of the limitations of any language which has evolved historic-

ally as an instrument for practical communication, rather

than to a discussion of the foundations of mathematics.

1 “ The assumption that a line has this property [continuity defined
by the existence of real numbers] is no more than an axiom by which
the continuity of the line is recognized, or by which the line is

conceived, in our thinking, to possess continuity. If space has any
real existence at all, it need not be continuous, for innumerable
properties would remain the same if it were discontinuous. And even
if we were certain that space was discontinuous nothing could prevent
us; if we pleased, from making it continuous by conceiving its gaps
filled

; such a process would consist of creating new points and would
have to proceed in accordance with the above principle [i.e. the definition

of real number].”
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It will be well to quote a few examples of contradictions

both of type {a) and (ft). The letter which follows the

description of the contradiction refers to this classification.

(1) WeyVs contradiction ^ (a),
—‘‘ Some adjectives have

meanings which are predicates of the adjective word itself

;

thus the word * short ’ is short, but the word ‘ long ' is not

long. Let us call adjectives whose meanings are predicates

of them, like ‘ short autological
; others heterological.

Now is * heterological ‘ heterological ? If it is, its meaning

is not a predicate of it ; that is, it is not heterological. But

if it is not heterological, its meaning is a predicate of it,

and therefore it is heterological. So we have a complete

contradiction '' (Ramsay, Foundations of Mathematics, p. 27).

(2) The least integer not named in this hook ^ [a).—Some, but

not all integers occur in this book, either as the corresponding

cipher (the numbers at the head of each page for instance)

or as an integer which satisfies a description. Only a finite

^ Vide Das Kontinum, p. 2 : Ein Eigenschaftswort heisse autologisch
wenn dieses Wort selber die Eigenschaft besitzt, die seine Bedeutung
ausmacht

;
falls es sie nicht besitzt, heterologisch. Das Wort ‘ kurz

'

z.B. ist selber kurz (ein nur aus 4 Buchstaben bestehendes Wort wird
man in der deutschen Sprache ohne Frage als ein kurzes zu bezeichnen
haben) daher autologisch ; das Wort ‘ lang ’ hingegen ist selber nicht
lang, daher heterologisch. Wie steht es nun mit den Wort
* heterologisch ’ ? Ist is autologisch, so hat es die Eigenschaft, die es

aussagt, ist also heterologisch ; ist es hingegen heterologisch, so hat
es diese Eigenschaft nicht, ist also autologisch." Weyl’s own solution

is that the question whether the word ‘ heterologisch ’ is itself hetero-

or autological cannot be given any sense.
* A refinement of a paradox given by Russell, cf. Principia

Mathematica, p. 61, subheading (5). The paradox as given there
is too vaguely stated to carry much conviction. The invention of

contradictions is one of the lighter sides of mathematical logic. A good
example is that of the barber in a village where all and only the men
who do not shave themselves are shaved by the barber. If the barber
does not shave himself, he is one of the men who are non-shavers and
is therefore shaved by the barber, i.e. by himself. If, on the other
hand, the barber does shave himself, he is one of the men who shave
themselves, hence he is not shaved by the barber, i.e. he does not
shave himself. Symbolically, the definition of the collection of men
can be written ^{xSx = (S= shaves, b = the barber), and the
fallacy arises from the substitution of 6 for x in the defining equivalence.

This illustrates the very important point that the mere formation of

a definition of a class does not guarantee the existence (freedom from
contradiction) of the class.
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number of integers can occur in the book in this way for the

number of words in the book is limited. Consider now the

least integer which does not occur in this hook. This phrase

defines just one integer, hence by definition that integer

occurs in this book, which is a contradiction.

(3) The class of all classes which are not members of them-

selves (b).— Let w be the class of all those classes which are

not members of themselves. Then, whatever class may be,

‘a; is a is equivalent to * x is not an Hence, giving to

X the value w, ' w is sl w ' is equivalent to ‘
ze; is not a w

{Principia Mathematical p. 60). Since classes are incomplete

symbols, this contradiction can be translated in terms of

functions and in this form the cause of the contradiction

becomes very apparent. Let be a function of functions

X such that

W(X) =:r^X{X)

Substituting W, which is a function, for X in this equation

we obtain W{W) —r^W{W), i.e. we cannot have W{W).

On the other hand if f^W{W), the same equation gives

W{W) hence in either case a contradiction.

(4) Burali-FortVs contradiction'^ (6).—(This paradox is

inserted here on account of its mathematical importance and

requires some knowledge of the mathematical theory of

ordinal numbers.)

The following three theorems can be proved in the classical

theory of ordinal numbers developed by Cantor.^

(i) Every well ordered series has an ordinal number.

(ii) The series of ordinals up to and including a given

ordinal number, say 0^, has an ordinal number + 1.

(iii) The series of all ordinal numbers is well-ordered and

hence, by (ii), has an ordinal number, Q say.

^ “ Una questione sui numeri transfinite,” Rendiconii del circolo

matematico di Palermo, vol. xi (1897). See also p. 208 below.
® Cf., for instance, J. E. Littlewood, Elements of Theory of Real

Functions, chapter 2.
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But from (ii) the series of all ordinals including Q has

ordinal number Q + 1 which is greater than Q. . Hence Q
cannot be the ordinal number of all ordinal numbers.

Solution of the Paxadoxes

They are produced by lack of indication of the field of variation of
a variable in its determinative usage. Special technical devices

(theory of types) are needed to ensure the appropriate restriction

of fields of variation.

On examining the contradictions of which the above will

serve as examples it will be seen that those of type (a) have a

certain circularity in common with those of type {b), differing

only in the relative inexactitude of notions like description,

adjective, occurring, etc. This inexactitude consists of

(a) type token ambiguity and {b) vagueness, which may be

defined with reference to situations where it is impossible to

decide whether the term in question applies or not.^ When

this inexactitude is eliminated by the use of more precise

symbols, which may then be written in the form of the

propositional calculus for convenience, it will be necessary

to give rules stating which kind of symbol can stand as

argument to a given functional symbol. For it has been seen

that in our conception of the nature of the propositional

function the argument forms part of the function-symbol

;

and unless the field of variation of the variable has been or is

capable of precise definition, the meaning of the propositional

function will be indeterminate. It has been already explained

that a variable may be correctly used (determinative usage)

to obtain a more precise description of the field of variation

when that field is initially unknown.

The essential feature of the fallacies committed in the four

contradictions given above is therefore as follows : the

^ Red, for instance, is a vague concept because colours may be
presented for which it is impossible to say whether they are red or not,

i.e. for which the question “ Is this colour red ? " begins to lose meaning.
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field of variation of the variable involved is taken to be all

the members of a certain class which proves to be wider than

the variable in its determinative usage permits. The example

of WeyFs contradiction will illustrate this : if heterological

is heterological this means, by definition, that its meaning is

not a predicate of the word itself, i.e. its meaning is defined

in terms of its meaning and we are no nearer understanding

what this meaning is. Thus the word heterological cannot be

part of the field of variation of the argument of the function

heterological. The fallacy consists of assuming that the field

includes all words.

Russell’s solution of this difficulty is to adopt the principle

that no function can be a value of its own argument. This

restricts the field of variation of every variable and eliminates

the contradictions. The effect of the principle is to segregate

functions into distinct types or levels. No function can

take a function of the same or higher type as level. That is

the first part of the Theory of Types.

Note on Types and Orders

The method adopted in Principia Mathematica for restricting fields

of variation involves a hierarchy of types and a subsidiary
hierarchy of orders. The latter is untenable and must be
abandoned : two methods for dispensing with it are noted.

The segregation of propositional functions into various

levels or types according as they are functions of individuals

or functions of functions of individuals, etc., is a classification

too crude for the Principia reduction of mathematics to

logic, and it can be shown that the principles on which that

classification was based demand a further sub-classification of

functions of the same type or else a radical alteration in the

whole notion of propositional functions. For the paradoxes

which the first part of the theory of types was designed to

remove are all ultimately based on the employment of variables
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with indefinite fields of variation, i.e. fields so defined that

crucial cases arise in which it is impossible to say whether

a given individual belongs to the field without previously

knowing all the members of that field. That indefiniteness of

this kind is a consequence of permitting circular definitions

of a propositional function in terms of itself is obvious ; but

segregation into types, while obviating this specific possibility

of circularity, permits others of the same kind and with

consequences as disastrous. For expressions such as (^)/ (^, ;t),

where is a variable propositional function of type one and

/ some constant propositional function of type two, define

a function of individuals (therefore of type one), by means

of a totality of functions of an individual. Hence the field

of variation of a variable propositional function of type one

is viciously indeterminate and paradoxes will recur unless

functions of the same type are subdivided into further levels,

which may be termed orders to distinguish them from types.

Two attempts have been made to define orders in the first

and second editions respectively of the Principia Mathematica,

They must be very briefly sketched at this point. In the first

attempt individuals are defined as things which are neither

functions nor propositions, and matrices as values of functions

in which all the variables are real—e.g. p (x, y) or / (x, y, z),

where x, y, z are variable individuals, are prst order matrices.

Functions obtained by quantifying first order matrices, i.e. by

converting some of the variables in such matrices into

apparent variables, are termed first order functions (of

individuals)
;

second order matrices are matrices some of

whose variables are first order functions, second order functions

are derived from them by quantification, and so on, wth order

functions being defined by (mathematical) induction.

Objections to this subsidiary hierarchy can be raised on the

score of the immense complexity thereby introduced and to

the extreme difficulty of discovering the order of specific
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propositional functions. The latter of these is the crucial

criticism arising from the fact that the principles implicit

in the notation of propositional functions according to which

functions of continually increasing complexity may be con-

structed (e.g. quantification of variables, replacement of

variables by constants, identification of various variables,

etc.) do not coincide with the simple principle for constructing

series of matrices (and hence functions) of increasing orders.

An attempt is made in the second edition to remedy these

defects by systematizing the principles for constructing

propositional functions ; the form of propositional functions

of lowest type is specified more exactly, operations which may

be applied to them in order to produce functions of greater

complexity are restricted, and the definition of matrices

is modified. Fundamentally, however, these alterations do

not save the second part of the theory of types from the

criticisms made above, and most writers have rejected it

while preserving the distinction of types.

It was implied above that an alternative to the introduction

of orders would be alteration in the conception of propositional

function
; and there are two entirely different methods

which have been pursued with this purpose. If a propositional

function is regarded extensionally as a collection of the

arguments (or ordered pairs of arguments in the case of a two-

termed function) which satisfy it, distinctions of order

between formally equivalent functions appear as differences

merely of expression and not of meaning or reference of the

two fimctions
; such a view if pursued consistently appears

to involve the identification of formally equivalent functions

and reasons have been given above for rejecting it. The

best exposition of this type of solution may be found in

Ramsey's Foundations of Mathematics
;

Carnap's thesis of

extensionality is based on similar considerations and has the

same consequences.
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The remaining of the two methods mentioned is to adopt

the intensional definition of propositional function given on

p. 57 above, which automatically ensures the absence from

circularity required to avoid all paradoxes which segregation

into types eliminates. For, as previously stated, the essence

of the paradoxes lies in the indeterminacy of the notions used

and especially in the notion of propositional function

;

precision in the definition of the latter will eliminate the

paradoxes. The theory of orders in its second form appears

to be an essay towards such precision and Chwistek's Theory

of Constructive Types (see p. 135) is a more elaborate attempt

of the same kind.

It will therefore be assumed in the sections which follow

that, while distinctions of level of some kinds are necessary

and the hierarchy of types is both valid and useful, the

hierarchy of orders is not to be adopted in the form chosen

in Principia Mathematica, The one term type will be here

used to denote the kind of distinctions of level which may

ultimately be necessary
;
and no attempt will be made to

distinguish between orders and types.

Before proceeding to a detailed examination and criticism

of the theory of types we must attempt to show the connection

between the so-called extended infinite and the contradictions

already mentioned.

Connection Between the ^ Extended Infinite ’ and the

Paradoxes

The use of the ‘ extended ’ infinite is equivalent to a confusion of types.
Difficulties inherent in an extended infinity or geometrical
continuum are therefore reproduced in the theory of propositional
functions and their correction tends to destroy the possibility

of adequately symbolizing, by the propositional calculus, of the
mathematical theory of functions.

First, the notion of the ' extended infinite ' must be made a

little more precise. It has already been shown (p. 55),
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as is indeed obvious, that the list of pairs of numbers consisting

on the one hand of the field of variation of the argument and

on the other hand of the corresponding values of the function

can be completely enumerated only if the specific field of

variation contains only a finite number of members. And,

in general, any specific infinite ' list ' of numbers can be

given only by supplying a law which will successively produce

each member. A vagiie description of what occurs when

the infinite is regarded as ' actual ' is that infinite lists or

collections are considered to be of precisely the same nature

as finite ones ; and the impossibility of enumerating such

infinite lists is regarded as in some way psychological, a

feature of man’s limitations in the presence of reality. Belief

in the reality of infinite collections shows itself in the writings

of those who share it in two ways :

—

{a) in certain metaphysical pseudo-propositions of the type

infinite collections are real Such propositions prove to

be incapable of either verification or disproof ; and it appears

to be impossible either to analyse or describe the concept of

' reality ’ involved in such statements.

{h) in the manner in which the corresponding symbols

are used in non-metaphysical, i.e. scientific or mathematical

propositions, capable of disproof or verification either by the

methods of experimental science or of mathematics. In

accordance with what has been said above as to the definition

of an infinite list requiring a law concerning the manner in

which members are obtained, it always happens that symbols

defining infinite classes are of a higher type than those defining

finite classes. This is true whether the symbols of the

propositional calculus and Russell’s definition of the type

of a symbol are used, or any other alternative array of symbols

and symbolic conventions ;
for the necessity for dividing

s5mibols into types is based on the need (1) for specifying

exactly the field of variation of variable symbols, and (2) for
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defining new symbols in terms of old, and therefore recurs,

either explicitly or by implication, in all systems.

Hence the effect under head (6) of a belief in the actual

infinite is that, since infinite lists or collections are considered

to be on the same level as finite ones, the corresponding

symbols are treated as if of the same type.

We are not concerned here with that part of the use of and

belief in the actual infinite which fall under head {a) above,

for these elements are in their nature unsuited for discussion.

So restricting attention to (6) the above discussion of the use

of the ' actual infinite ' can be concluded by saying that its

effect is essentially that symbols of different types are treated

as having the same type.

If this is a correct account, it is to be expected that (1) the

modern theory of functions will actually contain confusions

of type of exactly the kind which occur in the paradoxes given

here and (2) that RusselTs theory of types, by removing this

confusion and compelling the distinction between types to

be rigidly observed, will accomplish too much and will

destroy the validity of some theorems in the theory of

functions which have been accepted by mathematicians.

The dilemma is indeed a more formidable one than this

formulation suggests, for the identification of different types

happens continually in mathematics whenever formal

analogies between symbols of different lines of complexity

are discovered ; Russell's theory of types is particularly

stringent and makes the formulation of all such cases

a matter of great difficulty.

It is quite easy to show that confusions of type

are conunon in the theory of functions. Dedekind's

definition of the real number (p. 94) at once produces

examples.^

^ I foUow here the argument of Weyl, Das Kontinuum, pp. 19 ff.
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Confusion of Types in the Theorem of the Upper Bound

A specific and important example of confusion of types in pure mathe-
matics is here demonstrated.

In order to simplify the account somewhat we may assume

that we are dealing with variables Xy y, Zy and undetermined

constants a, hy c, which denote rational numbers, and in

addition certain propositional functions, F{%)y G(x)y etc., in

which the rational numbers occur as real variables
; the fact

that Xy yiy Zy etc., are themselves functions or incomplete

symbols of a high type in the exposition of Principia Mathe-

matica will not affect the discussion.

It has been seen that a real number is defined by dividing

the rationals by a ' Dedekind section ’ i.e., in the present

symbolism, any specific real number must always be defined

by some propositional function, F(x) say, such that F has

the properties expressed by headings (i), (ii), (iii) on p. 95,

For example < 2 will be such a function defining the real

number \/Y. For we have only to put in L (p. 94) the

rational numbers which make the statement < 2 true and

in R the numbers which make < 2 false.

Then (i) every L is less than every R, for if < 2 and

2 < b^y must be less than and hence a <b'y

(ii) contains at least one rational, viz. 1/2 ;

(iii) all the rational numbers obviously belong either to

L or to Ry since for each Xy x^ <,2 is either true or false

;

if the first, x belongs to L, if the second to R. Let us call

the three conditions (i), (ii), (iii), taken together, C for

convenience.

By this method of definition, there will be a (many-one)

correlation between those functions F{x) which satisfy C and

the real numbers. Now it has been seen that, unless some

restriction is placed upon the method of formation of the
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functions- F{x), contradictions will occur, i.e. functions can

be produced which satisfy C but whose employment is self-

contradictory.^ Let the functions F{x) which are used to

define the real numbers be termed functions of type one. Some
* real numbers ' are defined in terms of real numbers already

defined ; an important case is that of the so-called upper

bound. Given any collection of real numbers, i.e. the real

numbers defined by all those functions of type one which

satisfy C, and in addition some specific D which defines the

collection, the upper bound U is defined as the real number

produced by a Dedekind section (L^, Ry) such that any rational

number x belongs to Lj if and only if it belongs to the L class

of one of the F{x) which satisfies Z).^ It is easy to show

that such a bound always exists if all the real numbers are

less than some given number.

The number U however has been defined by a propositional

function into which functions F enter as variable, i.e. U is

defined by a function of type two. In mathematical text-

books, however, U is treated as of exactly the same kind as

real numbers such as \/2 defined directly in terms of the

rationals ; this is an identification of types of exactly the

kind that Russell's theory of types prevents.

It should however be noticed that this result does not

prove that the mathematicians procedure is incorrect (as

Weyl appears to suggest by the use of ' vicious circle ' to

describe the situation) for all that has been shown is [a) the

use of symbols requires some conventions as to type and {h) if

Russell's theory of types is correct the mathematician's

construction of the upper bound is definitely incorrect. On

the other hand (c), when specific real numbers are used, it

^ e.g. let F(x).^ .X is less than the least integer not named in this

book (p. 98). F{x) satisfies C but is self-contradictory.
* In the language of Principia Mathematica this can be simply

expressed by saying that is the sum class of all the classes L
corresponding to the real numbers of the particular collection considered.
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is nearly always possible to give equivalent functions of type

one to define any further real numbers (upper bounds, limits,

etc.) which may be required—so that only the most generalized

theorems of the theory of real functions fall under this

criticism : and {d) circularity need not be ‘ vicious '—it might

be possible to invent consistent conventions of type which

permitted circularity of certain specified kinds and in particular

such as to permit the construction of the upper bound of any

collection of real numbers.

The Axiom of Reducibility and the Logistic Definition 0!

Real Number

Dedekind's definition of real number is based on vague geometrical
intuitions and is therefore unsatisfactory

;
but the Principia

substitute needs axioms of infinity and reducibility whose
validity is doubtful.

The essential defects of Dedekind’s definition of real number

are (a) that the evidence for the correctness of the definition

rests on geometrical intuition of the relations between ideal

points and lines in a specific geometry whose selection for

this purpose may be attributed either to historical reasons

or to an (alleged) necessary connection between Euclidean

geometry and the relations of apprehended sense-data. Since

Euclidean geometry is one only of many that can now be

constructed the evidence for the existence of real numbers

requires to be of a nature at once more general and more

reliable.

(6) The notion of the * existence of a real number ’ is

vague and requires further analysis. For example, it becomes

a matter of critical importance to determine whether, and in

what circumstances, the existence of a real number implies

more than the presence of some method for calculating its

value to any required degree of approximation.



no LOGISTIC

The truth of (a) clearly implies the truth of criticism (b)

;

those who would defend Dedekind's definition—a group which

no doubt includes a great many expert pure mathematicians

—

would need to reject criticism (a).

Thus it might be argued that the ‘ existence of a real

number ' is not synonymous with the ‘ knowledge of a

necessary and sufficient criterion ' or even with the existence

of a necessary and sufficient criterion for the existence of

a real number. Hence, although the Dedekind definition

does in fact supply a necessary and sufficient criterion for

the existence of some real numbers (namely, the possibility

of separating the rationals into the classes L and R described

above), it would be urged that real numbers may exist which

are incapable of definition.

There are at least two views that might be held as to what

is meant by the existence of a real number :

—

(1) (Realist argument). It might be urged that the Dedekind

criterion for the existence of a real number cannot be self-

contradictory ; that the presence of a sufficient and/or

necessary criterion for the existence of a real number is not

the same as the existence of a real number ; and that the

existence of all the real numbers used in mathematical analysis

is guaranteed by evidence based on geometrical intuition.

This argument is based on the supposed identity of the symbol

exists in two such sentences as V'2 exists and The King of

England exists, i.e. on a confusion between two senses of

existence, the first that in which a number can be said to exist

and the second that in which a person can be said to exist.

This view is therefore a mistaken one.

(2) (Neo-Machian standpoint). Existence of a real number

is synonymous with the presence of a necessary and sufficient

criterion. This view also requires a revision of the Dedekind

definition in order to avoid contradictions.

Thus Dedekind's definition cannot be regarded as a final
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solution. This fact was clearly recognized among others by

Russell whose emendation consisted essentially in defining

the class L itself (cf. p. 94) as the real number, i.e. the real

number was defined as the class of all the rational numbers

less than it.^

This definition apparently eliminates the difficulty about

the meaning of the ' existence ' of a real number for in

Russell’s own language it ' constructs ’ the real number

instead of ‘ postulating * it. The difficulties associated with

existence reappear however almost as obstinately in the

logistic scheme in the following forms :

—

(1) the axiom of reducibility.

(2) the axiom of infinity.

The Axiom of Reducibility ^

In accordance with the logistic definition of real number

just described a real number is a class of rational numbers

and an upper bound (p. 108) is a class of real numbers

;

hence the upper bound of a set of real numbers is a real

number of higher type. Thus there must be infinitely many

different types of real numbers.

The solution of this dilemma in Principia Mathematica is

to postulate that each propositional function of any type

whatsoever has some propositional function of type one

formally equivalent to it. This effectually destroys the

segregation of types without reproducing the contradictions

as might at first be supposed. For the contradictions depend

on the meaning of the propositional functions in question,

whereas for mathematics only the truth values of propositions

matter so that any propositional function can be replaced

by any formally equivalent propositional function.

^ Vide Russell, Intro, to Math. Phil., ch. vii, for a detailed definition.

Vide Principia Mathematica, vol. i, pp, 55-60, pp. 160-7, and
* 12 .
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This principle of the existence of propositional functions

of lowest type formally equivalent to any propositional

function was termed an axiom by Russell presumably because

there appeared to be no method of proving it ; but the

difficulty facing all subsequent commentators has been not

so much to decide whether it is true as to understand what

is meant by asserting the existence of propositional functions.

The Axiom ot Infinity ^

Russell’s definition of integral number is based on the

existence of a sufficient number of propositional functions

with certain properties
;

to put the matter very crudely, if

there are only a finite number of propositional functions,

only a finite number of integers will exist. Thus an ' axiom

of infinity ’ is required, postulating the existence of infinitely

many propositional functions.^ Here again the stubborn

difficulty is to understand what can be meant by the existence

of the required propositional functions.

Arguments for the Axiom of Beducibility

Russell’s arguments in favour are criticized but conventions are

suggested which may remove some of the objections to the axioms
of reducibility and infinity.

Russell’s arguments in favour of the axiom of reducibility

in the first edition of Principia Mathematica (vol. i, pp. 55-60)

1 Principia Mathematica, *125 and vol. ii, p. 183.
* It is by no means obvious that the Principia Mathematica statement

of the axiom occurring at an advanced stage in the architectonic

superimposition of definitions does in fact reduce to an axiom of the
nature stated in the text above ; but the detailed analysis required
to demonstrate this would be out of place here. It may, however, be
noticed that the P.M. form of the axiom could be simplified and that
the existence of one relation conforming to certain specified conditions
would probably be sufficient. The relation in question must be a one-one
relation whose converse domain is strictly contained in its domain,
for a class which can be put into a one-one correlation with a subclass
of its members must have an infinity of members.
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amount to the contention that “ the reason for accepting any

axiom, as for accepting any other proposition, is always largely

inductive, namely that many other propositions which are

nearly indubitable can be deduced from it, and that no

equally plausible way is known by which these propositions

could be true if the axiom were false, and nothing which is

probably false can be deduced from it The first part of th e

quotation appears to be of doubtful validity since in the logic

of Principia Mathematica a false proposition implies every

proposition, so that all the ' indubitable ' propositions could

very well be deduced from the axiom if it happened to be

false ; and the remainder of the quotation tries to justify

expediency by an appeal to the truth of unverified hypotheses.

The fundamental reasons for introducing the axiom are

clearly indicated in another statement of Russell's : The

axiom of reducibility is introduced in order to legitimize a great

mass of reasoning in which, prima facie, we are concerned with

such notions as ' all properties of a ' or ‘ all a-functions ' and

in which, nevertheless, it seems scarcely possible to suspect

any substantial error " (ibid., p. 56). Which means that the

axiom is introduced in order to be able to make precisely

those general statements involving the term all which the

theory of types forbids.

To state the axiom as in Principia Mathematica in the form

that every function is equivalent, for all values of its argument,

to some function of the lowest type is misleading, and has

led to some unjustified criticism of the theory of types. For

the enunciation of the axiom itself appears to sin against the

theory of types by mentioning ' all propositional functions

'

and thus invites adverse criticism which seeks to establish

self-contradiction in the notion of a hierarchy of types. This

misunderstanding is produced by the insufficient discrimina-

tion made in Principia Mathematica between those theorems

which are part of the deductive system and those which are
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directions for and restrictions on the use of symbols in the

deductions. The theory of types belongs to the latter class

and consists essentially of (insufficient) directions for the

unambiguous use of propositional function-symbols ; it is a

device analogous to the creation in mathematics of new

symbols by the attaching of indices to a stock of symbols

insufficient by themselves to represent adequately and

unambiguously the relations of the field investigated. Such

supplementation is necessary only when the conventions of

significance, i.e. the rules according to which the s3nnbols

may be combined, are insufficient to ensure unambiguity

and consistency. Of such conventions, some are necessarily

determined by the choice of symbols (visible or tangible) to

be used, others are implicit in the silent agreement of those

who employ the system of symbols ; while the remainder need

to be explicitly stated. No difference of principle can,

however, be found in the last group and, in theory at least,

the need for stating such conventions can always be avoided

by using new symbols of a higher degree of multiplicity.

Thus, for example, the theory of types could be entirely

eliminated from the logistic system by using instead of

marks wooden rings to represent propositional functions.

The requisite conventions of significance might be of the

following nature : Functions of the same type have equal

radii and the argument to any function is a ring of smaller

radius fitting tightly into it. The theory of types would then

be shown by the fact that no ring could fit into another of

equal or smaller radius.

On applying similar considerations to the axiom of infinity

it appears that the simplest interpretation of the latter is

to regard it as a rule for constructing as many new symbols,

as required. Thus in the system of ring symbols described

the axiom of infinity would be replaced by an understood

convention for constructing an unending series of symbols,
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e.g. by allowing rings of a certain length of radius to have

thickness, one, two, three, . . . units.^ In order to be valid

in the logistic scheme the axiom of reducibility should

analogously be capable of reduction to a statement about the

manner in which symbols could be constructed in that

system.

Axiom 0! Reducibility Equivalent to the Assertion of the

Existence of c Propositional Functions

A mathematical interlude in parenthesis to the main argument.

It has thus been seen to be possible to eliminate both a

theory of types and an axiom of infinity from the logistic

scheme
;

the axiom of reducibility however presents more

formidable difficulties into whose analysis we must now enter.

(1) It is not possible to transform the axiom of reducibility

by choosing an appropriate system of symbols of the requisite

multiplicity. For, just as the function of the axiom of infinity

is to furnish an enumerable or countable infinite and thus to

ensure the existence of the natural numbers, so part of the

function of the axiom of reducibility is to ensure a supply

of propositional functions of cardinal number c, i.e. capable

of being put into one-one correlation with the parts of a

continuum.

Thus it can be shown that if the deduction of Principia

Mathematica ensures the existence of aU the real numbers,

it must postulate the existence of a set of predicative functions,

(i.e. of type one), no two having the same extension and

sufficiently many to be put into one-one correspondence with

the points of the continuum ; or, more concisely, there must

be c predicative functions with different extensions.

^ This interpretation of the axiom would in turn be open to objections,

and is not intended as a final analysis of the nature of infinity.
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For a real number is a class of rationals ; a rational is a

class of couples of cardinal numbers ;
and a cardinal number

is a class of classes whose members can be put into one-one

correspondence. Hence a real number is a class of type four.^

Since all the real numbers are different by hypothesis, there

must be at least c propositional functions of order four, no two

of which have the same extension. But by the axiom of

reducibility each of these functions has a predicative function

which is equivalent to it. Thus there are c predicative

functions with different extensions.

Having thus shown that the statement of the axiom of

reducibility taken in conjunction with the other axioms

alone implies the existence of c predicative propositional

functions it is not easy to see conversely that, without the

axiom of reducibility, it would be impossible either (a) to

obtain the c predicative functions by construction or (6) by

appeal to empirical fact.

For (a) no constant propositional functions are used in the

Principia Mathematica definitions, all the integral numbers

and then by successive stages the rational and real numbers

being defined with the help only of the propositional function

identity which holds between x and y when they satisfy the

same predicative functions. All other functions must be

constructed from the primary one of identity by the use of a

finite number of logical operations (quantification, negation,

etc.). Thus even with the axiom of infinity all that can be

obtained is an enumerable infinity of enumerable infinities,

that is, an enumerable infinity,^ and (^)) no empirical evidence

can be given of the existence of infinitely many different

constant propositional functions.

^ Actually, however, owing to the use of the axiom of reducibility
and to refinements in the defmition, real number as defined in Principia
Mathematica (310.01) is of higher order. This, however, does not
affect the argument.

* A well known result in the theory of cardinals. This leads to the
pretty paradox that even with the axiom of reducibility there will always
be propositional functions which cannot be constructed.
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Yet, the whole of the correctness of the Principia Mathe-

matica construction depends precisely upon the unverifiable

existence of these c predicative functions. Crudely stated

:

if there are fewer than c predicative propositional functions

some of the numbers considered distinct by mathematicians

will really be identical

!

Other Criticisms of the Axiom of Reducibility

The attempts hitherto made to prove the axiom of reducibility a
contingent proposition are fallacious.

Criticism of the axiom has usually been devoted to its lack

of evidence, and a certain amount of work has been done to

investigate whether it is a contingent proposition.

Ramsey’s ^ attempted proof that the axiom is contingent,

and Waismann’s ^ elaboration of that proof are both fallacious.

The method used by them consists in making certain assump-

tions {a) concerning the number of individuals in the universe,

[h) concerning the number of predicative propositional

functions, and (c) the number of predicative propositional

functions which are satisfied by each individual. If, in such

a universe, a non-predicative propositional function can be

constructed and shown to be equivalent to no predicative

propositional function, the axiom of reducibility would be

false in that domain. If this could be proved it is held that

the axiom of reducibility would be an empirical proposition.

The mistake made in the proofs referred to above consisted

in neglecting to observe the necessary conditions which

predicative propositional functions must obey, e.g. if / is a

predicative propositional function so is if / and g are

so is h{x) — f(x).g{x) Df, Thus statements (a), (b), (c) above

must conform to these conditions.

1 F. P. Ramsey, Foundations of Mathematics, p. 57.
* F. Waismann, Die Natnr des Reduzibilitatsaxiom,*' Monatshefte

fur Mathematik und Physik, vol. xxxv, 1928.
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In accordance with our previous discussion, since the axiom

postulates the existence of c predicative functions of various

extensions and the number of constructive operations that

the predicative propositional functions can undergo is finite,

it would appear to be possible, in any case where there are

only enumerably many predicative propositional functions, to

construct a non-predicative function which has no equivalent

predicative function. The discovery of the necessary and

sufiicient conditions for the axiom of reducibility to be true

in a domain of one-vdued predicative functions is however

difficult and has so far not been accomplished.

Before concluding this part of the investigation by a

summary of the criticism against Principia Mathematica,

a few sections will be devoted to reporting on improvements

of that work. The authors considered are (the late) F. P.

Ramsey, Professor H. Weyl, Dr. L. Chwistek, and Dr. L.

Wittgenstein.



F. P. Ramsey

This, and the three sections which follow, are a report on various
attempts to remedy the worst defects of Principia Mathematica.
Ramsey’s principal contribution was the effort to dispense with an
axiom of reducibility by using functions defined in terms of

truth values with a minimum of specific reference to symbols.

The feature of Ramsey's work which is most important for

present purposes is his attempt to eliminate the need for an

axiom of reducibility in the logistic structure. In Principia

Mathematica, as previous discussion has indicated, there is

to be found a prolonged compromise between an early realist

attitude towards classes, and a later theory which regards

them as incomplete symbols and reduces all statements

concerning their existence to the assertion of specified sets

of correspondences between constructed symbols. Either

attitude, consistently elaborated, can culminate in a system

containing no axiom of reducibility. The second, however,

requires meticulously precise indication of the denotation of

the term symbol. For a system of symbols has significance

only in the process of being used by persons and its meaning

is derived from the information which those who use it intend

to express. All such words as variable, symbol, etc., involve

mental dispositions or states in their definition and it is the

ineradicable ambiguity and vagueness of the names for such

states which ultimately necessitates a step by step

constructive definition of terms like function whose reference

to them is apparently most indirect. The latter procedure

leads naturally to a theory such as that developed by Chwistek

or Weyl. Ramsey, on the other hand, in his earlier work at

least,^ adopted a thoroughly realist attitude towards classes,

^ Through the kindness of Mr. R. B. Braithwaite I have had access
to some unpublished work by Ramsey, written shortly before his

death, which indicates that he was developing a view of mathematics
similar to that of Brouwer.
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conceiving them to exist irrespective or independently of the

possibility of their definition. His definition of truth functions

of propositional functions can be most conveniently taken in

stages. First, he says, a propositional function is a symbol

or expression [Foundations of Mathematics, p. 8). An atomic

proposition is one
**
which could not be analysed in terms of

other propositions and could consist of names alone without

logical constants (loc. cit., p. 5), and an atomic fact is the fact

which is expressed by such a proposition if the proposition

is a true one. A truth function of propositions is, in accordance

with our own definition (cf. p. 67), one whose truth or false-

hood depends only on the truth or falsity of the propositions

which are its arguments. But Ramsey asserts that a truth

fimction may have an infinite number of arguments (loc. cit.,

p. 7). A function of individuals is atomic if all its values are

propositional functions. And the definition of truthfunctions of

propositional functions is Suppose we have functions

'9)> ^2 y)» t)y sa3dng that a truth function

p (^, >)) is a certain truth function (e.g. the logical sum)

of the functions pi [x, 5^), p 2 y)» and the propositions

p, q, we mean that any value of p [x, y), say p [a, h), is that

truth function of the corresponding values of p^ (a, 6), p 2 [a, 6),

etc., and the propositions p, q, etc.'’ (p. 38). Finally “ a

predicative ^ function of individuals is one which is any truth

function of arguments which, whether finite or infinite in

number, are all either atomic functions of individuals or

propositions ” (p. 39).

The range of predicative functions thus defined is claimed

to include all those occurring in Principia Mathematica ;

for the turning of real variables into apparent by the applica-

tion of quantifiers is conceived of as either an infinite logical

product or infinite logical sum of certain truth functions of

^ This is, of course, not the sense in which predicative function is used
in Principia Mathematica and in this book. Ramsey replaces that use
of predicative by elementary.
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propositional functions as above defined. Hence all the'

propositional functions of individuals, for example, belong

to the same range, and the second part of the theory of types

is unnecessary.

The following comments may be made on the above scheme :

Ramsey says “ by a propositional function of individuals we

mean a symbol (loc. cit., p. 35) and again '' functions are

s3nnbols How then can a symbol have an infinite number

of arguments ? Yet Ramsey's notion of predicative function

is useless unless an infinite number of arguments are allowed.

His definition, as he himself says, is essentially dependent

on the notion of a truth-function of an infinite number of

arguments
;

''if there could only be a finite number of

arguments our predicative functions would be simply the

elementary ^ functions of Principia " (loc. cit., p. 39).

The only explanation possible is to regard the fact

corresponding to any general or instantial proposition (i.e. a

proposition containing a quantified apparent variable) as

composed of an infinity of atomic facts and to regard these

atomic facts as arguments to the general fact. Ramsey himself

makes very clear that this is his position, thus all our criticisms

of positions which accept the ‘ actual ' infinite will apply

with maximum effect to his exposition.

^ The sense in which symbol is to be understood here is that in

which ‘ symbol ’ is the determinable of which word, phrase, sentence,

etc., are determinates.
* i.e. what are in this book called predicative functions, see footnote on

previous page.



Note on the Thesis ol Eztensionality

A dogma of the Austrian positivists is examined.

It is instructive to compare Ramsey's theory of extensional

function with the thesis of extensionality (Extensionalit§.ts-

these) held by Carnap and others of the Austrian positivistsA

It is asserted, on the basis of a distinction between the ' Sinn
'

and ‘ Bedeutung ' of all symbols, that all functions of pro-

positional functions are extensional, i.e. that any true state-

ment involving a propositional function remains true when

a formally equivalent propositional function is substituted.

The terms employed in making the distinction referred to are

ambiguous ;
sometimes the antithesis of the two aspects

appears to correspond to that between ‘ connotation ’ and

' denotation ', e.g. 4 + 3 and 5 + 2 are said to have different

senses (Sinn) but the same meaning (Bedeutung). For our

purpose however it is unnecessary to analyze the distinction

in detail for, restricting our discussion to the Bedeutungeu

of propositional functions, we may adopt the methods of

the logistic calculus, treat this phrase as an incomplete

symbol, and discover its import by eliminating it from the

contexts in which it occurs.

Cases which seem to disprove the thesis of extensionality

are statements such as x is a man has seven letters which

become false when the formally equivalent function x is a

.featherless biped is substituted for x is a man. The answer

made is that the statement in question is not really about the

propositional fimction x is a man but about the sign by

which it is expressed, and the whole thesis hinges on the

1 Cf. Carnap, Der Logische Aufbau der WeU, p. 62.

X22
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question as to when a statement is really * about ' a

propositional function. The answer supplied by Carnap in

Der Logische Aufhau det Welt can be disentangled as follows :

—

(1) Only extensional statements are about propositional

functions themselves.

(2) Extensional statements are about the ' Bedeutungen

'

of propositional functions.

(3) The Bedeutung of a propositional function is the class

of formally equivalent functions.

Hence no true statement can be made ' about ' any

propositional function which is not equally true of every

equivalent propositional function, i.e. there is no method of

distinguishing formally equivalent propositional functions

;

formally equivalent propositional functions are identical.

The same result can be obtained otherwise
;
a is a pro-

positional function of one variable means a has an argument

place and if any x is substituted in that place a sentence is

obtained. Now the Bedeutung of a sentence (in the indicative

mood) is its truth value so that the identity of two

propositional functions must reduce to the identity either of

the Bedeutungen or else of the Sinne of the corresponding

sentences ; on the first alternative formally equivalent

functions are identical and on the second the thesis of

extensionality is incorrect.^

Thus Carnap's position reduces to the use of Ramsey's

extensionally defined propositional functions and the same

criticisms will apply to both.

1 It may, however, be the case, even if the thesis of extensionality
is incorrect, that Mathematics treats only of extensional statements.



H. Weyl

In sharp contrast to Ramsey, Weyl attempted to systematize the
principles by which symbols, especially propositional functions,
are constructed. His method is summarized and its consequences
noted.

Weyl is now one of the most famous supporters of the

intuitionist philosophy of mathematics, but Das Kontinuum,

one of his earlier works on the nature of mathematics, is a

very ingenious attempt to construct with only a finite number

of principles of construction a continuum of the real numbers

required in mathematical analysis. His results can be

adapted to form part of the logistic construction of mathe-

matics, and are especially important for that purpose because

no axiom of reducibility or equivalent axiom is used.

Weyl was concerned to remove the suspicion of vicious

circularity attaching to the mathematical theory of functions

and sought to attain this by using as propositional functions

only such symbols as can be manufactured by a finite number

of applications to symbols already defined of the principles

described below. Since he restricted his attention to the

definition of real numbers in terms of the natural numbers,

he began his analysis at a stage where it is assumed that

the following symbols have already been introduced either

as undefined, or else defined by means of axioms (p. 47),

or by definitions in use in terms of other symbols previously

introduced as in the logistic scheme :

(i) The natural numbers, which are to function as

* individuals ' in the present account.

(ii) A few constant propositional functions which variables

from (i) can satisfy. These are certain mathematical relations

124
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such as is greater than, is the product of, etc., and identity

(s5nnbolized as a relation).

(iii) The logical operations of conjunction, negation, and

disjunction, together with quantification, the latter to apply only

to variable natural numbers,

(iv) The following two operations which derive propositional

functions having a smaller number of arguments than the

functions from which they are derived
:

(a) the identifica-

tion of variables, as when the function of two arguments

R{x, y) becomes the function of one argument R(x, x), (b)

the substitution of constants for variables, as when the

function of three arguments S(x, y, z) becomes the function

of two arguments S(x, y, a). Only natural numbers may be

substituted in (b),

(v) As in the logistic scheme, classes may be defined as

incomplete symbols with the usual properties
; to every

function F(x) there corresponds a class F

;

the expressions

a has the property F, F{a), or a belongs to the class F have the

same meaning
; two functions F(x), F'(x) define the same

class when and only when every object which satisfies F(x)

also satisfies F\x) and vice versa. Similarly ' two dimensional

sets i.e. classes of ordered couples, are defined.

(vi) Functions can be formed with these new categories of

objects (classes, etc.) as variables
;

hence every function

must indicate the category to which its variable belongs.

So far what has been defined is a * restricted ' calculus of

propositional functions. Next follow some special principles

for constructing new symbols which are easiest to explain

by exemplification.

(vii) R{uv/xyz) is a propositional function with five

arguments of the same category, where x,y, z are distinguished

from the rest by being placed to the right of the stroke and

are called free variables while u, v are called dependent

variables. Then for any given values a, b, c, of x, y, z, there
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is a two-dimensional set consisting of the pairs of values of

u and V which satisfy R{uv/abc), This set, <f>xyx say, is a variable

class depending on the choice of a, b, c and is introduced to take

the place of the mathematicalfunction} For example, suppose

R{uv/x) isu -- V = X, all the variables being positive integers ;

the principle allows the formation of a derived function, A {x)

say, which correlates to each positive integer x the class of

pairs of positive integers whose difference is x.

(viii) A principle of extended substitution : variable classes,

as defined in (vii) may be substituted for variables of appropriate

categories to form new functions, e.g. from two propositional

functions R{uv/xyz), S(xwU) where all the letters except

R and 5 are variable and U is of the category class of ordered

couples, we can successively form pxyx^om R (as in (vii), and

then S(x, w, a function of four arguments.

(ix) A principle of iteration ; first in a narrow form and

immediately extended ; let R{xx'/X) be a propositional

function, where AT is a variable class of couples of entities of

same category as x and x\ Forming the class (f>{x) as before,

and using (viii), the function R 2[xx'/X) = R{xx'/(f>(x)) is

obtained.

Similarly we can proceed to define

R^ixx'/X) {xx'/Pix))

And, in general, for any n

R„^,{xx'/X)=R„(xx'/,f,{x))

The principle of substitution in its narrower form allows

Ri, i?3 , ... to be regarded as propositional functions

arising from a single function

R(n ; xxfX)

by giving the variable natural number n the values 1, 2, 3,

etc. And in all such cases the principle permits the

introduction of the fimction R(n ; xx'/X) ; thus, while (viii)

'allows the suppression of one of the arguments in a function,

' 4> is, in fact, a descriptive function of the kind defined in Principia.
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the principle of iteration permits, in special cases, the forma-

tion of functions with an additional argument
; it does the

work, in this system, of the principle which permits the

quantification of variable functions in the extended calculus

of propositional functions.

The extensions of the principle are (a) that it may be

simultaneously applied to several propositional functions,

e.g. starting from R{xxyXY), S{y/XY) where x, x\ y are

variable individuals, Y a variable class of individuals, and

X a variable class of couples of individuals, we obtain the

classes <I>{XY) and ip(XY) by (viii), and hence two new

functions R{n ; xx'/XY) and S{n ; xx'/XY) can be defined

by the equations

R{1
;
XX'/XY) = R(xx'/XY)

R{n + 1; XX'/XY) = R{n
; xx'/(j>{XY),

S(l)y/XY)^S{y/XY)

S{n + 1 \y/XY) = S(n )y/<l>(XY]

(b) The class which is substituted is permitted to be a

different one at each stage Such a class would be appropriately

symbolized as <f>{X, n) say ; the final form of the principle

then states that from a function R{xx'/X) we can form a

new function R*{xx'/Xn) by means of the equations

R*{xx'/Xl) = R{xx'/X)

R*(xx'/X, n -f 1) = R*(xx'/<I>{X, n + 1), n)

With the help of these principles Weyl is able to construct

a set of real numbers and a corresponding set of points which

possess many of the properties of the Dedekind continuum.

These points are ' everywhere dense ' on the line, that is

every interval of the line, no matter how small, contains

infinitely many of them ; also Cauchy's principle of con-

vergence is satisfied.^ This permits the development of the

^ The form in which the principle is expressed for this purpose is :

A sequence f(n) is said to converge if for each fraction a there is some
number N, such that for all integers p, q > N, f{p) ~f{q) lies between
4- L and — I..
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theory of differentiation and integration and the introduction

of all specific functions such as the trigonometrical, the

exponential, etc., used in the early stages of mathematical

analysis. It furnishes, however, no support for the more

generalized theory of integration developed by Lebesgue

and subsequent workers ; for the ‘ continuum ' thus defined

has many gaps. From the point of view of the pure mathe-

matician who accepts the Dedekind continuum, the points

undefined by WeyTs procedure are themselves ever5rwhere

dense. In particular the two following theorems do not hold

in WeyFs continuum ^ :

—

(i) Dedekind continuity : a Dedekind section of Weyl

points need not necessarily define a Weyl point.

(ii) Theorem of the upper bound : a bounded set of Weyl

real numbers need have neither the upper nor the lower

bound.

^ And most similar theorems containing existential statements
concerning real numbers, which are not explicitly defined by converging
sequences.



L. Wittgenstein

An (unauthorized) report of some of his views on pure mathematics,
which constitute, by implication and explicitly, a thorough repudia-
tion of the logistic thesis.

Dr. Wittgenstein's famous Tractatus Logico-Philosophicus

has had a profound influence upon the logistic views of the

nature of mathematics ; in particular the Austrian positivists

(the so-called Viennese school profess to derive their doctrines

from him. But the epigrammatic style of that work makes

it extremely difficult for the reader to be sure that he has

fully understood the important doctrines which are there

expounded. The following report is confined to those portions

of the Tractatus which have direct bearing on the nature

of mathematics and, in view of the apology contained in the

preceding sentence, must not be regarded as a substitute for

first-hand acquaintance with Dr. Wittgenstein's work ; the

numbers in parentheses always refer to the correspondingly

numbered paragraphs in the Tractatus from which quotations

are made.

Part of the originality of the Tractatus derives from its

concern with questions of the logical structure of language,

i.e. with logical grammar. The answers to these questions

in the Tractatus are of tremendous importance to any

discussion of the nature of mathematics. For it is urged that

many confusions in philosophy (and presumably in practical

affairs) are due to imperfections in, and misapprehension of,

the nature of language ; and, further, the indication of how

certain specific confusions are to be corrected leads to a

1 For a general account of this school, see Die WissenschaftUche
Weltauffassung der Wiener Kreis, 1929.

129 K
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conception of the integral number and of arithmetic radically

different from those of Principia Mathematical

The term language in this connection can be used in an

extended sense to include any set of symbols used in recurrent

combinations for communication between persons ; and all

such languages are constructed of elements, i.e. any features

such as sounds, marks, etc., which can affect the senses and

can combine in various ways to form complex s5nnbols.^

There are two important aspects of the structure of language

to be noted : the presence of structure is partially manifested

by the existence of explicitly formulated or implied rules of

syntax, permitting the insertion of symbols of a certain

kind in any specified context and forbidding the insertion

of symbols of any other kind
;

if such rules are broken

nonsense results. It is possible to define identity of structure

or equality of multiplicity between two sentences in terms of

the reciprocal possibility of substituting corresponding terms

without making nonsense.^ Differences and equality of

multiplicities are manifested by special symbolic devices,

which include the employment of integral numbers as indices ;

and this is the second aspect of structure referred to above.

Mistakes made with regard to the multiplicity of sentences

can lead to the construction of nonsensical statements
; in

particular, numbers must not be regarded as elements in

the same sense as words, nor must arithmetical equations

be confused with ordinary sentences. The basis of the

distinction between the two is the very sharp distinction

drawn by Dr. Wittgenstein between what can be ‘ said

'

i.e. expressed in an ideal language in which all differences

of multiplicity are visibly manifested, and what cannot be

thus expressed but must be ‘ shown What can be expressed

are certain states of affairs or facts, i.e. the existence of

configurations of mutually interlocking objects which may or

' See p. 24 for a detailed account of the structure of language.
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may not occur in the world. A sentence has the same multi-

plicity as the fact to which it corresponds if the statement

it makes is a true one ^
; and what cannot be expressed is

what the proposition and the fact (or the proposition and

another proposition of equal multiplicity) have in common.

If a statement is made asserting the existence of a certain

configuration of objects it may be the case either that the

configuration does as a matter of fact occur (and the state-

ment is then true) or it may be the case that the configuration

in question does not occur (and the statement is then false)

—

both alternatives are possible
; but an arithmetical equation

presents no such alternatives, expresses no state of affairs.

If it is granted that mathematical ' statements ’ are not

a species of statement but different in kind, questions as to

the status of the former are best answered by returning to

the distinction between * saying ' and ' showing '. In the

ordinary senses of these words it must appear paradoxical to

assert the impossibility of stating what two groups of equal

numbers of members have in common ; for the obvious answer

is to name the common number. This apparent refutation

ignores however the difference between two distinct usages

of words, namely primarily to refer to objects which are not

words and again, in a very necessary subsidiary usage, to

refer to symbols themselves ; the habitual use of arabic

numerals (second usage) as abbreviations for roman numerals

or series of strokes (first usage) obscures this distinction. As

an illustration we may consider the attempt to express what

three groups of four days, four weeks, and four points of the

compass have in common ; the word four used in saying that

they are each groups of four can be understood only by

knowing that four or 4 is an abbreviation for
| | |

|. Thus

the symbol four functions by drawing attention to the symbol

^ Multiplicity offacts has not been defined, but it should be sufficiently

clear how this is to be accomplished, by analogy with the multiplicity

of sentences (p. 33).
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I I I I

which in turn shows what there is in common between

the three groups
; the attempted expression tells us nothing

audits function is at most to draw attention to the multiplicity

by using symbols in which the latter is shown more obviously.

Hence symbols such as
| | | j

differ completely from symbols

such as red
; it is the meaning of the latter but the shape of

the former which is important ; and the manner in which

a statement such as A and B have 4 members functions differs

entirely from that of statements expressing states of affairs.

The conclusion deduced from these arguments is that the

natural numbers are indices, i.e. parts of s3mibols, which

serve to make explicit the multiplicity of symbols of which

they form part. It should be added however that Dr. Witt-

genstein nowhere in the Tractatus explains how knowledge

is conveyed by ' showing ' ; nor do other writers, while

acknowledging the importance of the distinctions he makes,

accept the implication that they preclude the possibility of

strict symbolic treatment of the natural numbers in the

form of a ' language \ To instance two very different points

of view, Carnap ^ regards the exhibition of structure as the

only function of language (so that nothing can be ' said
')

while Chwistek ^ uses the conception of a hierarchy of languages

each constituting the subject-matter of the next.

Dr. Wittgenstein is not concerned in the Tractatus with the

fate of pure mathematics, and though it is clear that his

conception of the nature of integers is incompatible with the

method pursued in Principia Mathematica he does not pursue

the analysis of pure mathematics beyond the elementary

equations of arithmetic. An account of his analysis of such

an equation as 2+2=4 will indicate where his theory

^ “ Die physikalische Sprache als Universalsprache," Erkenntnis, 1933.
* L. Chwistek, W. Hetper, and J. Herzberg, “ Les Fondements de la

m^tamath^matique rationelle,” C. R. M. stances de la Classe
des Sc. Math, et Nat., Academie Polonaise des Sciences et des Lettres,

December. 1932.
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needs supplementation and the difficulties which face such

supplementation.

Integers are defined in the Tractatus as the indices of an

operation—sl definition narrower than that given above.

An operation is that which must happen to a proposition in

order to make another out of it, and so negation, implication,

etc., are examples (5.23). An operation is distinguished from

a truth function : the occurrence of an operation does not

characterize the sense of a proposition. For an operation

does not assert anything ; only its result does and this depends

on the bases of the operation (operation and function must

not be confused with one another) (5 . 25)—but this distinction

does not seem to be absolutely necessary. The index of an

operation is part of the symbol of an operation whose altera-

tion changes the operation into a new one. Thus, if is

written Np and ^ (r^ p) as N'p and rs..' (''^ p)) as etc.,

the strokes in N''p constitute an index. One particular

operation is then chosen for the specific definition of integers.

Omitting unnecessary complications, the definition (in the

present notation) reduces to

N^p = p Df, {a)

JSIN^P ==N^ + ip Df, {b)

This is the usual definition by induction and thus contains

no novel elements. With regard to this definition it may be

noted that all attempt is abandoned to deduce the principle

of induction as attempted in Principia ; this is undoubtedly

the correct procedure, and all attempts to prove a principle

of induction are involved in a vicious circle.^ But this is a

point of view which is not universally accepted ; its acceptance

entails the rejection of all attempts to deduce arithmetic

from logic, for the relations of arithmetical equations to logical

tautologies is not that of conclusions to premisses ; rather

are both to be regarded as exhibiting (from diverse standpoints)

1 Cf. H. Poincar^ (quotation, p. 177).
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aspects of the structures of all systems.^ The view of the

nature of pure mathematics inspired by the Tractatus may

perhaps be not altogether inadequately expressed by saying

that pure mathematics is the syntax of all possible systems

of symbols.

^ This view of mathematics is supported by the difficulty of supplying
rigid proofs of even the most elementary theorems of algebra, e.g.

X X y — y X X. One of the latest such attempts, E. Landau, Grundlagen
der Analysis, 1929, uses a system of axioms invented by Peano, but the
account is written in the usual mathematico-realist manner—induction,
and the ideas of existence and collection are used freely. Attempts
to symbolize his proofs completely soon prove that a system of algebraic
theorems based on arithmetical axioms uses a «o«-formal technique.



L. Chwistek

Another attempt, which should be compared with the section on Weyl
above, to obtain a definition of types of functions in terms of
the principles used in their construction.

Chwistek’s work has been devoted to rebuilding Principia

Mathematica ; this is necessary, first because careful examina-

tion of the symbolic conventions used in Principia shows their

vagueness and in some cases inconsistency, and secondly

because as we have seen, the axioms of infinity and reducibility

are unmistakably defects in a scheme which purports to

contain only propositions belonging to pure logic.

After a very careful and detailed examination of the respects

in which Principia falls short of symbolic perfection, Chwistek

proceeds to elaborate a system whose conventions are stated

more explicitly but whose approach to each specific problem

agrees fundamentally with those of Russell and Whitehead.

The chief novelties are (i) only a finite number of different

symbols are used in the system and these are all enumerated,

(ii) different kinds of symbols are described by means of a

long series of * directives The latter are (non-formal)

propositions expressed in words, some of which divide the

initial stock of symbols by specific enumeration into a finite

number of kinds (which may still be called propositions,

individuals, functions, etc.), and others are rules which permit

of the construction of new symbols by the use of the logical

operations and at the same time state what kinds of symbols

are generated by the results of these operations.

The most important of the definitions by induction contained

in the directives are the explicit definitions of " being of the

same type
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(iii) Ambiguities in the Principia definition of the scope of

classes are pointed out and corrected ; no distinction is made

between classes and functions.

(iv) All verbal directions are included in the directives, so

that all the proofs are conducted strictly in symbols. This

is not possible in Principia which needs to use words in some

of its proofs.^

(v) Metaphysical assumptions are banished from the system

wherever possible ; thus individual, function, class, type are

all terms devoid of metaphysical significance and defined

merely for convenience of use in a given system of symbols.

The individual symbols of Chwistek's system are any

simple symbols arbitrarily chosen ;
and symbols of higher

type can be recognized by the fact that they are complex

constructs containing symbols of lower type as parts.

(vi) Many of the definitions adopted in Principia for their

intrinsic philosophic interest can be restricted to serve the

special purpose of deducing mathematics from logic. Thus

to take one instance, the Leibnizian definition of identity is

rejected by Chwistek, for he needs to use identity only between

classes. The definition is such that two classes are identical

if everything which is a member of one is also a member of

the other.

(vii) When quantifiers are applied to variable functions,

the functions referred to include the quantifying symbol

and must be of a definite type, which is shown by writing one

symbol of the same type as a suffix to the quantifier

;

expressions occur of the type {4>)d{x) which is read for all p of

the same type 6 (pc) . .

Finally, the axioms of infinity and reducibility are regarded

as existential hypotheses which do not belong to pure logic.

^ Cf. the Principia definition of the existential quantifier : (Ex) f(x) =
(^) ^f(^)> with Chwistek’s E(x) — (x) The former involves

understanding the meaning of f (x) (== ** any expression containing
X **), whereas the latter is a genuine definition in terms of symbols.
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So fax we have been describing the theory of constructive

types. It is essentially the system of Principia Mathematica

minus all existential propositions, its definitions improved,

and its inconsistencies eliminated. No symbols occur or

need to be referred to which cannot be obtained by a finite

number of operations on a set of initial symbols. This is

therefore a kind of logical machine for expressing mathematical

theorems in correct symbolism. This system will not suffice

to prove more than, e.g., Weyl’s can accomplish.

Lately, however. Dr. Chwistek has elaborated a system of

semantics,^ i.e. a S5nnbolic system in which propositions

about symbols occur and are themselves symbolized. In this

system the axiom of infinity is replaced by the possibility of

constructing new symbols and it becomes possible to extend

the symbolic technique to include the whole of mathematical

analysis and the theory of sets of points.^

Dr. Chwistek’s work is undoubtedly the most thorough

attempt to remedy the technical defects of Principia Mathe-

matica and the best symbolic system for the logically correct

expression of mathematical theorems
; as such it has thrown

considerable light on the function of such mathematical

hypotheses as Zermelo's and the hypothesis of the continuum.

In admiring the monumental scale and admirable attention

to detail of Dr. Chwistek’s work, however, the reader often

feels the desire for some discussion of the philosophic implica-

tions of his work and its bearing upon the underlying

assumptions of the logistic theories. Such an account, which

perhaps only Dr. Chwistek himself could furnish, would put

his extremely technical discoveries in the philosophic setting

their importance imdoubtedly deserves.

^ See f.n., p. 132.
® The aleph numbers, however, cannot be defined. Cf. Chwistek :

“ Une m^thode m^tamath^matique d’analyse,” Comptes rendus du
Premier Ccmgres des Mathdmaticiens des Pays Slaves, Warsaw, 1929.

II est sfir qu’il n’y aura pas des alephs, comme il ne peut y avoir

des ensembles non d^nombrables.*'
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This concludes my account of the logistic theory of Principia

Mathematica and some of the proposed improvements in that

system. It remains only to summarize what appear to be the

most important criticisms and to attempt to formulate some

conclusions.



Conclusions

The arguments against the logistic system of Principia Mathematica
are summarized and a scheme of reconstruction outlined.

The reader who has followed the detailed investigation of

the logistic thesis in the preceding pages will be in a position

to criticize the attitude of mind and method of approach

that have inspired our comments. For it will not have

escaped his attention that our concern has been primarily

with questions of correct symbolization
;

and indeed the

broad generalization, which emerges from a detailed study

of the respect in which the logistic programme falls short of

accomplishment, is that these imperfections can be traced

back to insufficiently precise technique in manipulating

systems of symbols. Paradoxical though it may appear to

accuse a system as complex and meticulous in construction

as Principia Mathematica of lack of precision, the preceding

sections have shown the inadequacies in the notion of

propositional functions, variable, the theory of types, and

analysis itself, all of fundamental importance
;

in fact the

elaboration of Principia Mathematica is a by-product of the

attempt to demonstrate rigorously theorems often verifiable

with the help of less complicated symbols, and is not primarily

an instrument for analyzing the notions involved.

In view of the knowledge we have now obtained, a critical

appraisal cannot be made inside the bounds set by a logistic

philosophy and, to be complete, would involve far-reaching

reconstruction of the general method and Weltanschauung of

the system. Such a programme would have both destructive

and constructive aspects : the preceding sections have perhaps
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laid more than sufficient emphasis on the former in pointing

out the specific deficiencies of the logistic method as hitherto

practised. Such positive suggestions for reform as it has

been possible to make have not been organized into a system

and the completion of that rather formidable task must be

left for another occasion. A constructive attempt of this

kind would need to be preceded by a study of the logical

structure of language, and take account of the technical

researches not only of Russell and Whitehead, valuable as

they are, but also of such writers as Peirce (type-token

ambiguity, etc.), Wittgenstein (multiplicity, nonsense, etc.),

Chwistek (constructive types), Brouwer (reconstructions of

theories involving the continuum, etc.), Bemays (Entschei-

dungsproblem, etc.), Hilbert (axiomatic approach, distinction

between sciences and meta-sciences). These writers have

provided the foundations of a sophisticated technique for

manipulating symbolisms, which would go far to remove the

defects of Principia Mathematica.

Some indication of the modifications in that work produced

by such an approach can be given by formulating in brief

the arguments against the propositional calculus. These

constitute only a part of the specific defects which would

have to be considered in reconstructing Principia Mathe-

matica ;
for the weightiest arguments against that work

(and the logistic opinions in general) fall into two classes :

—

(i) Objections to the definitions of natural number.

(ii) Objections to the effect that the logistic approach does

not clarify the notions of infinity and the continuum.

The criticisms under the first head amount to :

—

{a) A charge of circularity.

(h) A charge of confusing philosophic and systematic logic.

With regard to these it must be said that the Principia

notion of ‘ primitive principles * is now quite discredited

;

for if one is allowed to interpret the marks in the propositional

calculus as principles which may be applied to deduce new
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formulae, the notions of the independence of axioms, or of

the possibility of deducing one formula from another, break

down and cannot be clearly defined. It has already been seen

that a great many more primitive notions are used in the

propositional calculus than agre enumerated in Principia

Mathematica, e.g. rules of significance determining which com-

binations of symbols are to be significant in the system,^ and it

is impossible to limit the number of non-formal concepts

and principles actually used. Again, it was not sufficient

for Russell and Whitehead to show that their theorems

followed from their axioms, especially if “ The method of

Principia Mathematica is not pursued for the sake of proving

m X n — n X m but in order to analyse the nature of the

entities involved, to exhibit their relations in an orderly

manner,’' ^ for it has been shown not only that contradictions

may occur in such systems but that such contradictions do

occur in the system discussed and the presence of one contra-

diction invalidates all proofs of the system. Hence Russell

and Whitehead should have attempted to show the consistency

of the propositional calculus which would in turn have thrown

more light on “ the nature of the entities involved This

is a demand, however, incompatible with an attitude which

believes that selected axioms are obviously true and for that

reason cannot lead to contradictions, and its justness is the

refutation of that attitude.

These arguments sufficiently prove, in the present writer’s

opinion, that the Principia account of the propositional

calculus is unsatisfactory, and that the correct view of such

systems requires a sharp distinction (in all subjects) between

the philosophic and the systematic aspects.^

^ These are as important as axioms, for if combinations like

V were allowed, contradictions could easily be deduced.
* Modern Introduction to Logic, by L. S. Stebbing, p. 177.
3 Cf. Carnap’s two languages, in “ Die Physikalische Sprache als

Universalsprache der Wissenschaft,” Erkenntnis, Band ii. Heft 5-6,

and also the formalist distinction between mathematics and meta-
mathematics (p. 149).
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The first of these is non-formal, concentrates upon the

subject-matter of which the system (language, branch of

knowledge, science) treats, and advances by intuitive insight

into a recognition of the nature of phenomena ; the latter,

presented with a number of s5mibols, proceeds to assort them

systematically, using the symbols themselves as the subject-

matter of its investigation. The systematic aspect of a subject

is the same as the mathematical deduction of the theorems

of that subject.

To these two aspects correspond two distinct uses of

symbols, as words with meaning, and as substitute signs ^

respectively, words being instruments for thinking about the

meanings they express, substitute signs means for not thinking

about the meanings they symbolize.^ If this view is adopted

the resulting exposition of the propositional calculus is very

different from that of Principia Mathematica, No attempt

is made to call some formulae ‘ primitive though the relations

between the formulae of the system might be shown, in part,

by choosing arbitrarily a set of them for ‘ axioms ' in order

to investigate how the rest are then connected with them.

In the case of the propositional calculus, however, the mutual

interrelationships of the formulae can be exhibited much

more clearly by giving a simple criterion for determining by

inspection which formulae belong to the system and which

are excluded from it.®

These modifications involve, when pursued consequentially,

the surrender of the entire logistic notion of ‘ deducing

'

mathematics from logic, but there are compensations. The

argument of circularity against the definitions of natural

^ The terminology derives from Stout, ** Thought and Language,”
Mind, 1891.

• The matter is, in reality, of course, far more complicated than this

account suggests, e.g. thought is always ahead of adequate
symbolization.

® In technical terminology, the Entscheidungsprohlem has been
completely solved for the propositional calculus. Cf. Hilbert and
Ackerman, Crundzuge der Theoretischen Logik.
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number become harmless, for some kind of formal deduction

of the properties of integers is desirable in order to deduce

the more complicated theorems concerning them, and it is

little more than a matter of convenience whether the natural

numbers themselves are taken as given or the propositional

calculus is drawn upon for constructs with the same formal

properties.

The modifications required to deal with the difficulties

associated with the continuum are more radical, for it is

with the introduction of the concepts of infinity and the

continuum which distinguish the subject-matter of what

is conventionally known as pure mathematics from the

mathematical method in general, that the logistic system

has its most serious breakdown. As we have seen the logistic

philosophers are faced with a dilemma between contradictions

based on confusion of types or orders and a theory of types

which resolves the contradictions only by separating functions

into a series of hierarchies which make it impossible to prove

many of the results needed in pure mathematics. This is an

ancient difficulty and a fundamental one, arising from the

fact that a continuum of elements can never be specified by

the enumeration of elements, even though that enumeration

be indefinitely prolonged.

It has been seen that Dedekind's appeal to common agree-

ment with regard to geometrical intuition is unsatisfactory

;

but the Principia appeal to an axiom of reducibility as a

deus ex machina is even more so. For Dedekind appealed

to common sense to accept the existence of points in specified

contexts, and the appeal is at least intelligible ;
but the

axiom of reducibility asserts the existence of propositional

functions, and the existence of a symbol in the sense required

is a notion too vague to appeal to common sense.^ The

^ Existence is never defined in Principia (the existence of

a propositional function must not be confused with that of a class,

though both are represented by similar symbols).
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solution may be that anything said concerning the existence

of a function must be interpreted as a metamathematical

statement to the effect that the addition of a new symbol

to the system will not produce contradiction ; but any

solution must involve the rejection of the naive conception

of propositional functions existing in their own right.

Russell once said/ ** the very close relationship of logic

and mathematics has become obvious to every instructed

student. The proof of this identity is, of course, a matter

of detail
;
starting with premisses which would be universally

admitted to belong to logic and arriving by deduction at

results which obviously belong to mathematics, we find that

there is no point at which a sharp line can be drawn with

logic to the left and mathematics to the right. If there are

still those who do not admit the identity of logic and mathe-

matics we may challenge them to indicate at what point, in

the successive definitions and deductions of Principia Mathe-

matica, they consider that logic ends and mathematics begins. It

will then be obvious that any answer must be quite arbitrary.*'

We may take up the challenge and reply that the place where

the boundary line is to be drawn is outside Principia Mathe-

matica. The relation between mathematics and logic is neither

identity nor that of conclusions to premisses, but consists in

the fact that mathematics must be used in the systematic

development of logic (as of all organized systems) ; and

the similarities between logic and mathematics spring from

the fact that the first, in its * philosophic * aspect, is the

syntax of possible states of affairs, while the second is the

syntax of all organized systems.

We conclude that the logistic thesis is not proven, and that

elaborate reconstruction can save the technical achievements

of the logistic method only at the expense of that method’s

ambitions.

^ Introduction to Mathematical Philosophy, p. 194.
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SUPPLEMENT A: FORMALISM

Pure mathematics as the science of the formal structure of symbols.

This section is intended to outline a type of mathematical

philosophy usually termed the formalist. The popularity

which these opinions have acquired coincides with a general

movement in the natural sciences towards greater abstractness

of formulation, accompanied certainly by increasing exactitude

in the empirical verification of theory but also by apparently

increasing unintelligibility of the concepts used. This can

be attributed to the use of the mathematical method and a

consequent change of attitude among scientists, notably

among physicists, towards the objects of their investigations
;

modem physical theories tend neither to explain the universe

nor to describe it, and instead increasingly to exhibit its

structure by the use of mutually dependent symbols,

unintelligible and meaningless except in specified juxtaposition

to other symbols. This transition towards increasing concern

with structure, towards increasingly formal character of the

concepts used, appears to be connected with the increasing

accuracy of the sciences in which it occurs
;

it is asserted

that different observers can agree or disagree only with

respect to the structure and not with regard to the content

of their beliefs, and that universality of application and

verification of scientific results goes hand in hand with the

construction of a formal language to express its results.^

But it is a mistake to imagine therefore that a scientific

system loses meaning in proportion as it becomes formalized ;

^ For a defence of an extremely formalist view of language and
science vide R. Carnap, Die physikalische Sprache," Erkenntnis^ 1932.
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its symbok still have * meaning ' in conjunction, in a more

complex sense of the word, and it is the attempt to attach

associations to individual symbok apart from context that

creates the false impression that such systems are mysterious,

iminteUigible, or meaningless.

If, however, it must be maintained that, however little

distinct ideas attach to the individual symbok of physics, the

statements of physics still have reference to the world of

experience, are capable of verification, have meaning, similar

considerations applied to pure mathematics seem paradoxically

to rob even the theorems of that science of any determinate

meaning. This is not to assert that no constant ideas attach

to the symbols of pure mathematics, for that would be a

manifestly fake statement ;
many mathematical symbok,

being older than many symbols of physics, are associated

with firmer notions in the minds of those who use them and,

in that sense, have more meaning. That is a sense which

belongs, however, rather to psychology than to our present

considerations and is not intended in the assertion that

mathematics has completely indeterminate meaning or

reference.

Mathematics, as we have seen (p. 37), may refer to any

system of objects and relations whose names can be chosen

to ensure that all the initial axioms of pure mathematics

are formally true of those objects and those relations. Or

expressed otherwise, mathematics is a series of hypothetical

deductions from uninterpreted axioms. Thus mathematical

theorems have meaning only in an extended use of that

ambiguous word ; their meaning consists in exhibiting the

structure of indeterminate systems ; this k the formalist view

in brief.

It is a fair criticism of this view to object that its strength

lies in what it asserts, its weakness in what it leaves unsaid ;

but it must be remembered that * formalism ' has always
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been the working attitude of a group of practising mathe-

maticians rather than a fully explicit philosophy
; of interest

more for its technical discoveries in the field of symbolism

than for the suggestive, but never clearly expounded,

philosophy on which it was based.

Formalist views of the nature of mathematics have been

powerfully influenced by an evolution towards increasing

abstraction exemplified in the history of geometry. Professor

Hilbert, the founder of the movement, was responsible for

important technical discoveries concerning the interrelation

of the theorems and axioms of Euclidean geometry and the

possibilities of constructing non-Euclidean geometries,^ and

the technique developed in the course of these researches has

profoundly influenced the view of the nature of mathematics

held by him and his followers. Formalism is a technique

first, and only secondarily a philosophy : a technique for

the investigation of the logical interrelation of branches

of mathematics and a philosophy to accoimt for the success

of that technique. This school has held a particular form of

formalist theory with respect to the nature of mathematics

in which the whole of mathematics is conceived in the form

of theorems, meticulously symbolized, and deduced from

(partially) uninterpreted axioms ; the validity of these

deductions and these axioms being guaranteed by a second

science of * metamathematics whose subject-matter consists

of the symbols of mathematics proper, and whose aim is to

demonstrate the self-consistency of mathematics proper

with the help of the most elementary and indubitably valid

arithmetical methods. If metamathematics can achieve its

end, mathematics ensures its own validity, and is interpreted

as a formal system of completely indeterminate reference,

exhibiting by the multiplicity and interconnection of its

own symbols the structure of all possible systems ; the set

^ Cf. D. Hilbert, Die Grundlagen der Geometrie,
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of mathematical theorems is, as it were, the crystallized syntax

of all systems of interrelated objects.

There are two chief objections to this highly ingenious

programme
; one of principle and one of execution. In

principle it errs in neglecting to study the nature and limita-

tions of mathematical symbols themselves ; the nature of

the initial axioms and the reasons for choice of those axioms

rather than others is left completely mysterious. Thus the

entire burden of the validity of mathematics is thrown upon

the metamathematical proofs of consistency and, presumably,

once again upon the mysterious mathematical ' intuition

'

which dictated the choice of the initial axioms and discovered

those parts of mathematics selected for post hoc justification.

And this leads to the second objection, the fact that it is

extremely probable that a metamathematical proof of the

consistency of the whole of pure mathematics is impossible.

K. Godel of Vienna seems to have proved^ that a specific

contradiction could be deduced from any proof of the

impossibility of the occurrence of contradictions in mathe-

matics. It seems, in fact, that systems like pure mathematics

cannot be completely symbolized, and have a multiplicity

more complex than any system of s5anbols which can be

devised for the expression of that multiplicity. There is

little prospect therefore of ultimate success for the formalist

programme in the form advocated by Hilbert and his followers.

But in the philosophy of mathematics constructions are not

less valuable for being ultimately unsuccessful and it has

therefore seemed worth while to supplement the foregoing

by an account of

—

(1) the development of geometry and science in general

towards an increasingly formal aspect

;

* “ Ueber formal unentscheidbare Satze der Principia Mathematica
und verwandter Systeme,I,* ** MoneUshafte fur Maihematik u. Physit^
vol. xxxviii, 1931.
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(2) the Hilbertian view of mathematics
;

(3) details of the formalist programme

;

(4) a description of GodeFs proof mentioned above.

The last two of these sections are mainly of technical

interest.



The Development of Geometry

Documentation of the tendency of a science towards increasing
abstraction and concern with structure.

Geometry, at first the practical art of performing calculations

required in surveying fields and measuring solid bodies,

developed as the study of the actual three-dimensional space

in which the Greeks and their followers conceived themselves

immersed, and had attained an extraordinary measure of

perfection by the time that Euclid wrote his Elements. That

synthesis of current geometrical knowledge was to remain

the textbook of geometers for many centuries. It is a plausible

hypotheses that the avidity with which Euclidean geometry

was studied by the educated was determined as much by

aesthetic as by practical considerations. The Greeks were

attracted by the elegance, ingenuity, and clarity of the

methods used in proving geometrical theorems, and, from the

first, Euclid's Elements became a congenial field for logical

pedants and connoisseurs of logic ; emphasis was always

laid upon the necessity for absolute rigour and logical sequence.

Nor did this insistence arise from the difficulty of perceiving

the truth of the theorems, for Euclidean geometry may be

hard to discover but is easy to digest, and the concepts in the

Elements though, it is true, of a considerable degree of

sophistication
—

' lines ' without thickness, * points ' occupying

no space—are nevertheless derived from ‘ actual ' lines

and ‘ actual * points in a fashion quite clear at the non-

critical common-sense level. Every schoolboy knows how to

imagine a line as being infinitely thin.

The reasons underl5dng changes in the character of Euclidean

geometry are not to be understood without explicit reference

152
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to the traditional plan of presentation

—

b. plan now widely

departed from in proportion as its limitations have been

recognized by pedagogues.

The Elements were arranged as follows : First a number of

truths concerning lines, points, space, etc., the subject-matter

of subsequent theorems. These self-evident truths, to be

accepted without proof, are divided into axioms bxiA. postulates}

Secondly, the theorems and constructions. In addition there

are a number of definitions (e.g. a point as that which has no

parts) intended to make clear the nature of the entities

mentioned in the proofs, but not all used in demonstrations.

The careful distinction between theorems and axioms or

postulates is motivated by a desire to deduce the theorems

of geometry, i.e. the truths about actual space, by logical

deduction alone with no appeal to other sources of knowledge.

In particular, diagrams, although in practice indispensable

for representing the entities under discussion in the course of

long and complicated chains of reasoning, could in theory be

entirely dispensed with. Yet the use of diagrams, whether

actually drawn or merely visualized, provided a peculiar source

of weakness ; since they were necessary for facility in

demonstrations, no geometer could be certain of avoiding the

fallacy of assuming to be necessarily present some feature

whose presence was a purely accidental accompaniment of

figures drawn or visualized. The crude distinction between

* accidental * and * necessary ' features can be made clearer

by an explanation of the manner in which geometrical diagrams

are used to promote facility in demonstration.

Diagrams assist the imagination by presenting in succinct

^ The distinction between axioms and postulates in Euclid seems to
be that the first are self-evident, but the second must be assumed
without proof, even although not self-evident. The student who
doubts them must become convinced of their truth in the course of

the development of geometry, e.g. three of Euclid's five postulates
assert the possibility of certain constructions. Cf. Heath, The Thirteen

Books of Euclid’s Elements, pp. 117-151, for a discussion of conflicting

views as to the nature of the distinctions.
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visible fashion what may prove to be relations whose existence

can be independently demonstrated ; and the, at best, crudely

inaccurate drawings of black lead on paper or chalk on slate

succeed in this function despite their deviations from the

ideal ; for although lines drawn on paper cannot be the straight

lines of Euclid the geometer can intuit the properties of * ideal
*

lines by ignoring such features of the lines actually drawn

as their thickness, their deviations from the straight, etc.^

Generalizing from visible figures involves a trivial danger of

mistaking accidental characteristics of the particular figure

for essential ones—^trivial because hardly likely to be repeated

by other geometers—and a serious danger of accepting without

proof essential topological facts common to all visible

diagrams in the physical space to which diagrams belong.

Euclid fell into the latter mistake.® Topological facts

are such as are unaltered by continuous deformation of the

figure, e.g. the fact that a straight line passing through a

point inside a circle will cut the latter when produced. Most

geometrical relations except those dealing with lengths ® (the

so-called ' incidence ' properties in particular) are topological

in the present sense.

Euclid's demonstrations, so long thought to be supreme

examples of logical accuracy, contained unproved premisses

and even fallacious reasoning. The researches which
1 Such intuitive isolation of relevant geometrical properties from

irrelevant is essential to all deduction. Paradoxically enough, the
Greeks thought to do without appeal to a figure, i.e. without intuition,

but the formalists show that intuition is essential to correct proof
(although their diagrams are logical not geometrical ones).

* A glaring example is a proposition implicitly used by him again and
again : Given two circles, and C*, if passes though a point
outside of C, and a point inside of C,, Cj and C, must cut. This seems
obvious enough if circles are drawn on paper but neither follows from
Euclid’s axioms, nor is stated as an axiom.

• These topological features of a diagram are essential to the proof,

e.g. if it be assumed that the interior bisector of an angle A of

a triangle ABC, and the perpendicular bisector of the side BC meet
inside &e triangle (which seems plausible in a rough diagram) it can
be easily proved that the triangle ABC is isosceles (which is not true

in general). The traditional proofs in Euclid often quietly assume that
if two lines meet inside a triangle they must do so.
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ultimately led to the discovery of these flaws were not

inspired by the expectation of finding them but by the

desire for even greater logical elegance
; for, among the

axioms, the famous parallel axiom (given a straight line,

through any point not lying on this line or this line produced

a second straight line can be drawn such that however far

both lines are produced they never meet) seemed far less

' self-evident * than the rest. It is difficult to * imagine ' a

line produced to * infinity ' ^ or, on account of its indefinite

character unshared by more * self-evident * axioms, even to

feel convinced of its truth. As it was a constant aim of

geometers to reduce the number of proved initial axioms to

a minimum it was felt that the parallel axiom might eventually

be deduced from the simpler remaining ones. The * truth

'

of the parallel axiom, however, was never doubted, and the

first who appears to have attempted to deny it was the Italian

geometer Girolamo Saccheri (Euclides ab omni naevo vindicatus,

Mediolani, 1732), and he only as an indirect means of establish-

ing its veracity. Much impressed by the deductive power

of reductio ad ahsurdum he conceived the notion of

attempting to prove the parallel axiom by deducing a contra-

diction from the conjunction of the denial of the parallel axiom

with the other undenied axioms.* And so, unwittingly, he

proved many theorems in what is now termed non-Euclidean

geometry. This is the crux of the whole matter—Euclid's

parallel axiom is neither true nor false. For, in the first place,

it is now known that the parallel axiom is independent of the

other axioms of Euclid, and cannot be deduced from them.

And, further, by denying it (or modifying it) the addition of

1 The parallel axiom is now often enunciated in a form in which
all mention of infinity is omitted.

• Denying the parallel axiom gave Saccheri an extra premiss for his

reasonings and therefore justified him in hoping for more success than
his predecessors had had. Cf. G. Vailati, " Sur une classe remarquable
de raisonnements, etc.” Revue de Mitaphysique et de Morale, 1904,

for a good account of Saccheri's work.
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the new axiom so obtained to the remaining Euclidean axioms

leads to the construction of several self-consistent non-

Euclidean ' geometries These are the famous hyperbolic and

elliptic * geometries * discovered by Bolyai and Lobatschewsky.

The inverted commas round the word geometries in the last

two sentences emphasize that the word is now being used in

a new sense. The Greeks understood the word geometry as

the study of actual space, and could not conceive of a plurality

of geometries. On such a view the parallel axiom must be

either true or false—probably the first, conceivably the

second, but certainly one or the other. The embarrassing,

but unfortunately valid, possibility of the compatibility of

both alternatives destroys the whole basis of this view of

geometry. With the discovery of thenon-Euclideangeometries

and the superfluity of competing geometries, no one geometry

could be regarded as a collection of truths about space. And

could at best be interpreted as a system of hypotheses of the

form If space obeys the axioms of Euclid then it will have the

following properties : (here would follow the theorems). This

view (held by many mathematicians) lays the emphasis on

the deductive connection between the theorems and the axioms.

It is essential in the geometry under consideration that the

theorems follow from the axioms ; it cannot be essential that

the axioms should be ' true for we do not know whether

the axioms are true, and shall be able to consider many

geometries with different sets of axioms. Now there is a

difi&culty about the notion of the axioms being true which

has been slurred over till this point. For, as mentioned

above, the concepts which occur in these axioms are extremely

sophisticated, obtained by abstraction from * real ' lines,

‘ real ' circles, etc. ; the same process of abstraction is likely

to be used again in proofs and to introduce fallacies in the

reasoning. Symbols of whatsoever nature are imderstood only

by a process of abstracting relevance from a tangle of irrelevant
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features, not fundamentally differentfromthe process connected

with the use of geometrical diagrams. If the latter could

lead to inadequate notions of the nature of geometry the

former is also suspect. So two factors converged together

to destroy the view of geometry as being a system of

hypothetical theorems about space—theorems true of space

if the initial axioms are—and to destroy any dogmatic belief

in the unconditional validity of geometrical and other mathe-

matical results. First, the desire to know which set of initial

axioms was the correct one led to a scrutiny of the nature of

the ideal concepts which occur in them
;
secondly, the desire

for accuracy in geometrical proof produced attempts to

eliminate possibilities of error caused by the process of

intuitive abstraction ^ by which the geometrical concepts

were derived.

This question of consistency is of fundamental importance.

Some have held that our concepts of space are self-contra-

dictory, others that the truth of axioms about space is

synonymous with their mutual consistency, i.e. that there

is only one self-consistent geometry and that necessarily the

true one. Formal self-inconsistency is disastrous for a geometry,

for if a formal contradiction can be deduced, i.e. if two theorems

can be proved which contradict one another, then not only

those two but any theorems can be both proved and disproved

in the system.* In such conditions of course the * geometry
'

coUapses. And the question of the independence of the axioms,

which, as we have seen, inspired the earlier geometers, is

closely connected with that of consistency. For suppose that

the second hypothesis mentioned above was correct and that

Euclidean was the only possible geometry ;
for simplicity

^ Intuitive abstraction = the process of ignoring irrelevancies, not
systematicaUy but by a direct mental act.

* This result follows from the truth of the formula (p 8c q
in the propositional calculus : a contradiction implies every propo-
sition ;

therefore if a contradiction can be proved, every proposition

can be proved.
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imagine that Euclidean geometry is self-consistent and all

non-Euclidean ones are self-contradictory. Let P be the

parallel axiom and A represent the conjunction or logical

product of the remaining Euclidean axioms. Then by

hypothesis, not-P (the contradictory of P) and A together

lead to contradiction, hence P follows from A, In other

words, the self-contradiction of all the non-Euclidean

geometries implies that the parallel axiom can be deduced

from the remaining Euclidean axioms. This suggests why

so much of the work of the large school of geometers busy

during the last fifty years with the foundations of geometry

has been devoted to the proof that geometries were free from

contradiction ; the fact that no contradictions occur inside

a formal system is its most important property.

The investigations of the foundations of geometry have

conclusively shown that the non-Euclidean * geometries are

self-consistent and have therefore demonstrated that no

geometry can be uniquely characterized by the property of

being free from contradictions
;
the last reason for restricting

geometry to the study of space has disappeared and the

following view of the nature of geometry is generally accepted :

a geometry does not deal with space but consists of a series of

formulae (a logistician would say propositional functions)

which are deduced from a number of initial formulae (axioms)

;

and any interpretation of the symbols mentioned in the

axioms, which converts the latter into true propositions, is

an interpretation of the geometry.

With this conception of the nature of geometry there is

no reason to distinguish between geometry and algebra or

other branches of mathematics, which are all formal systems

in the sense indicated. If a distinction is required to be

made—as it is in practice since we usually have a special

interpretation of geometry in mind—^it can be made in some

such way as Russell's : Geometry is the study of series of

two or more dimensions " (Principles of Maihematics, p. 372),
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i.e. by restricting the name ' geometry ' to abstract systems

of particular kinds of complexity, but any such division is

arbitrary and conditioned merely by the history and intended

applications of pure mathematics.

This completes my account of the development of the

science of geometry from the study of space to the study of

abstract systems.

What has been said of geometry is true, to a lesser degree,

of other sciences, all of which develop in two distinct ways

—

by rendering the fundamental concepts of the science more

precise (e.g. the transition from ‘ heat ' to ' temperature

from * colour * to ' wavelength *) and by discovering and

formulating laws of ever-increasing generality. These two

processes of growth are interconnected : attempts to classify

the fundamental concepts of a subject lead to the discovery

of new, and the modification of existing, laws (cf. Einstein's

discussion of ‘ simultaneity ') ; formulation of new laws

promotes the clarification of notions involved in the science,

by providing further opportunities for their verification, and

may lead to their replacement. Mutual interaction of this

kind tends to rob words of their original meaning in return

for technical connotations, intelligible only in specified

contexts
;

in extreme cases, the words are regarded as mere

instruments for providing numerical results which can be

compared with experiment.^

The use of the mathematical method, too, often provokes

the invention of symbols determined by questions of mathe-

matical exigency and not by the condition of having meaning

in isolation. We may suitably conclude this section, therefore,

by a very striking example of how mathematical treatment of

^ " The only object of theoretical physics is to calculate results that
can be compared with experiment, and it is quite unnecessary that any
satisfying description of the whole course of the phenomena should be
given " (P. A. M. Dirac, Principles of Quantum Mechanics, p. 7).

This may be coupled with Mach's remark, “ Science itself, therefore,
may be regarded as a minimal problem, consisting of the completest
possible presentment of facts with the least possible expenditure of
thought [Science qf Mechanics, 2nd English edn., p. 490).
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physics led to the formulation of new concepts in the history

of the discovery of Planck’s quantum (see M. Planck, Origin

and Development of the Quantum Theory, Nobel Prize Address,

1922).

Planck describes how the empirical nature of the simple

law connecting the entropy of a resonator and its energy

led to the introduction of an absolute value of entropy—'' what

one measures are only the differences of entropy, and never

entropy itself, and consequently one cannot speak, in a definite

way, of the absolute entropy of a state. But nevertheless the

introduction of an appropriately defined absolute magnitude of

entropy is to he recommended, for the reason that by its help

certain general laws can be formulated with great simplicity ”

—

and to the consequent appearance of an uninterpreted

constant— while this constant was absolutely indispensable

to the attainment of a correct expression of entropy ... it

obstinately withstood all attempts at fitting it, in any suitable

form, into the frame of the classical theory. So long as it

could be regarded as infinitely small, that is to say for large

values of energy or long periods of time, all went well
;
but

in the general case a difficulty arose at some point or other,

which became the more pronounced the weaker and the more

rapid the oscillations. The failure of all attempts to bridge

this gap soon placed one before the dilemma : either the

quantum of action was only a fictitious magnitude and, there-

fore, the theoretic deduction from the radiation lawwas illusory

and a mere juggling with formulae, or there is at bottom of this

method of deriving the radiation law some true physical

concept ”—^whose persistent reappearance in many diverse

fields led to its incorporation as a fundamentad notion
—

" that

the decision [to accept discrete quanta] should come so soon

and so unhesitatingly was due not to the examination of the

law of distribution of heat radiation . . . hut to the steady

progress of the work of those investigators who have applied the

concept of the quantum of action to their researches.**



The Formalist View ot Mathematics

Mathematics, if it exhibits structure, does so in complex fashion with
the help of ‘ ideal elements *.

The last two sections have had an apologetic tendency,

and must be supplemented by one important criticism if

they are not to convey an altogether misleading impression

of the plausibility of the formalist doctrines. For to

characterize mathematics, as the formalists do, as a science

concerned with the exhibition of structure by the employ-

ment of symbols meaningless in isolation, is to suggest

analogies with the manner in which the structure of concrete

systems (families of individuals, portions of a landscape in

their physical relationships) can be represented by diagrams

(family trees, maps) . Such analogies are likely to be misleading

in two respects : for the fashion in which collections of

mathematical theorems image the structure of the subject-

matter to which they may be applied resembles the relation

between a landscape and its map only remotely, the arrange-

ment of the former corresponding to the order of discovery

of theorems, therefore incomplete, and in process of supple-

mentation. That such supplementation is a necessary feature

of any mathematical symbolism is a consequence of the fact

that mathematics treats of infinite systems. Any view based

upon a strict s5mibolizing of mathematics, as is the formalist,

will have to admit among its symbols some incapable of

interpretation either in isolation or in specified contexts.

Thus the comparison between the present state of physics

and the formalist view of mathematics must not be pressed

too far ; the latter is characterized by the presence of the

so-called * ideal elements meaningless symbols (described

l6l M
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in greater detail below) which can never appear in any final

theoretical formulation of physical truths.

Thus, in so far as formalist mathematics contains

unexplained ‘ ideal elements it will require further explana-

tion ;
and the (probable) impossibility of completing the

formalist programme makes such a justification imperative.

So far the easiest explanation has been no explanation,

i.e. the ideal elements have been explained as purely symbolic

devices ^
; but freedom to ignore their interpretations is

limited by the necessity to justify their introduction by

proof of consistency and vanishes when it is found impossible

to produce the latter.

Finally we may sum up the formalist view of mathematics

as follows : the typical mathematical method is the investiga-

tion of structures of systems by the use of systems of symbols

of indeterminate reference, arranged in the form of theorems

deduced from axioms, and containing ' ideal elements '

;

the employment of the latter is essential, and must be

legitimized by proofs of consistency.

The Formalist Programme in Detail

A technical summary, for specialists, of the axioms and symbolic
innovations of the formalist school.

The programme aims at proving successively that one

branch of mathematics after another is free from contradictions.

This is to be accomplished by symbolizing mathematics and

^ An ‘ ideal is a symbol whose addition to a system of formulas,
with appropriate modification of the axioms, extends 5 in such a way
that the new system, S' say, agrees with S in respect of cdl formulae
not involving 7. That a symbol J is an * ideal ’ with respect to a system
S requires proof. 'Ideails' function by exhibiting the structure of
systems S as partiad sections of (often simpler, more uniform)
systems S'. E.g. *the point at infinity’ introduced into Euclidean
geometry exhibits the relationship between the latter and projective
geometry.
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logic simultaneously, i.e. by constructing a formal system

containing symbols for mathematical functions, numbers, etc.,

as well as logical constants, propositions, etc. There are various

novelties of notation which will be described as they arise.

The system ^ begins with a propositional calculus employing

the usual signs and the following axioms :

—

I. Axioms of Implication

1 . 1 . p-D{qOP)
1 . 2 .

1.3. ipD (q^r))D (qO {pz>r))

1.4. lPDg)DarDp):

II. Axioms of or and and

2.1. p&qZip
2 . 2 .

2.3.

2.4. pDp'^q
2.5. qO py q

2.6. ((pDr)&(qD r)) D((p\^q)Dr)

Note : & = and
;
w = or ; &, v bind more tightly than D.

III. Axioms of Negation

Principle of Reduciio ad Absurdum, viz.,

3.1. {pDq&r^q)Dr^p

Axiom of double negation, viz.,

3.2. p p

In addition two rules of manipulation are used, viz. those

of substitution and the syllogism.

Note : The increase in number of these axioms as compared

with those used in the logistic calculus of propositions is due

to the change in the purpose for which the axioms are to be

^ i.e. the system used by Hilbert (see *' Die Grundlagen der Mathe-
matik ”, Abh. des Math. Seminars zu Hamburg, vol. vi, 1928).
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used ; the axioms now under consideration were chosen

principally in order to simplify proofs of consistency, the

question of independence being subsidiary.

IV. The logical € axiom
4.1.

A(x)D A{€A)

The € notation was invented by Hilbert in order to eliminate

use of the quantifiers. If Fx is any propositional function,

cF may be interpreted as denoting any individual, say a,

which is such that F(a) is certainly true if there is some x

for which Fx is true. The following formulae allow (x)Fx

and (Ex)Fx to be defined in terms of the c notation.

(x)Fx s F(€r^F) and (Ex)Fx = FieF)

e.g. let Fx ^ X is corruptible ; eF can then be interpreted

as denoting the most corruptible man (or nobody if nobody

can be bribed). Here if somebody can be bribed we know

that cF can certainly be bribed.

V. Axioms of Equality

5.1. (Za) D (a = a)

5.2. (Za& Zb) D {{a = 6) D {A{a) D ^(6)))

Za means a is an integer (Z for Zahl = number).

VI. Axioms of Number

6.1. (Zx)Z>(x'^o)

Principle of mathematical induction, viz.,

6.2. (Za)D [{^(t>)& (^)(^(A;)D^(;^'))}D^(a)]

In addition to the above, the so-called ' primitive

numbers ' are used, viz. the signs 0, O', 0", etc.

In order to restrict the ranges of the variables occurring

and to distinguish between these variables, Hilbert adopts

the device exemplified in the above four axioms of preceding

all expressions in which the variable occurs by the sign of

implication and an expression typifying the variable. Thus
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Za means a is a natural number. Every variable that occurs

will be associated in this way with a typical function

characterizing it which must appear in all expressions in

which the variable appears, just as Za, Zh appear in the

axioms of the last two groups above. For example, a variable

/ will be needed whose range is that of those functions of

integers whose values are integers. This has the characteristic

function <^ (/) which is an abbreviation for (x)[Zx'3 Z{fx)'\.

These conventions are very convenient as they obviate the

necessity for making those distinctions between different

types of variables which produce such complexity in most

formal systems.

The above completes the list of general axioms required.

The various mathematical operations and functions can now

be introduced into the scheme either (a) by explicit definition

or (6) by induction. In {a) a formula is given which allows

the sign for the function in question to be eliminated in one

step from any expression in which it occurs, e.g. Zx D [fx = x)

would be a definition of the function/ of integers which always

has the same value as its argument. In (6) formulae are

given which allow the sign for the function to be eliminated

in a finite number of steps whenever primitive numbers are

substituted for all the variables, e.g. definition of addition

of integers :

—

0+0 = 0 (1)

0 + 0' = 0'
(2)

0' + 0 = 0'
(3)

(Zx, Zy) D(x' +y +y)') (4)

(Zx, Zy) ^{x+y = (x +yy) (5)

In both (a) and (6) the formulae in question are added to

the preceding axioms and treated as new axioms. In case (6)

this procedure is permitted only when it can be seen that

the definition satisfies the condition mentioned above, viz. that
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any formula in which no variables occur, e.g. O'" + 0"

in the case considered can actually be reduced to a primitive

number. How this is done in this particular case may be

instructive.

We have ZO'" and ZO". Also O'" = (0")'

by substitution in (4) O'" + 0" = (0")' + 0" = (0" + 0")'.

And similarly 0" = (0')'.*.0" +0" = (O')' +0" = (O' +0")'.

And again 0' = (0)' .-. 0' + 0" = (0 + 0")'

Now using (5) in tljie same way we get 0 + 0" = 0 + (O')'

= (0 + 0')'. But 0 + 0' " 0' by (2) .*. by successive

substitution (O'" + 0") = ((((O')')')')' - (((0")')')' = ((0'")')'

= (
0"")' = 0'"".

The € operator defined above is used to obtain the so-called

transfinite mathematical functions whose values, though

theoretically determinate, can only be found in exceptional

cases as their determination involves the performance of

infinitely many operations (e.g. the function / (n) of integers

which takes the value 0 or 1 according as is rational or

irrational).

The effect of cF when F is a propositional function is to

choose a value of the argument of F which makes Fx true.

Similarly, when / is a mathematical function of integers, ef

can be interpreted as follows : if fx is 0 for all x, e'/ = 0 ;

otherwise c'/ denotes the least integer for which fx 0.

Clearly c'/ as so defined is a transfinite function of / for, in

general, there may be no way of finding the least integer.

It can easily be seen that c'/ is equivalent to 6(/ = 0).

We can now proceed to define the real numbers by means

of dyadic decimals, i.e. as a function (l>(x) of integers whose

only values are 0, 1.
<f>

will, of course, need a characteristic

formula asserting this. It, is :

—

(x){Zx.Zy) D {(X) = 1).(^) [Ey) {x + y) = 1))

Let us call this expression R(f), A sequence of real numbers
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can be defined by means of a function <l>(x, y), where Zx,Zy

is true, and such that {y)R<l>(x, y).

Similarly all the functions which occur in the theory of

real functions can be defined. The fact that these definitions

involve no more than the notions defined above shows clearly

that the difficulties associated with the transfinite definitions,

are exactly equivalent to those produced by the use of the

€ notation.

Note on Qodel’s Theorem ^

A mention of the remarkable theorem which purports to demonstrate
the impossibility of proving mathematics to be free from contra-
dictions.

Godel demonstrates that a specified class of systems,

including a restricted ^ calculus of propositional functions

substantially agreeing with that of Principia Mathematical

is characterized by the peculiar fact that each such system

will contain theorems which can be seen to be true but do

not permit of formal demonstration according to the rules

of the system. One such theorem is described, and it is

shown that the formal demonstration of this (true) theorem

in the calculus of propositional functions would lead to a

contradiction. Thus that calculus, and many similar systems,

are incomplete in the sense that some of the true theorems

concerning the subject-matter of their axioms are incapable

of formal deductive demonstration in the systems.

This remarkable result is obtained as the climax of a

mathematical proof, involving forty-six cumulative definitions,

and therefore, perhaps, too complicated to be described in

1 K. Godel, Ueber formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme, I "

; Monatshefte fur Mathe-
matik und Physik, xxxviii, 1931.

* i.e. with quantification restricted to the arguments of propositional

functions and not applicable to functions themselves.
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this place ; but the lines of the proof can be indicated. It

is based on the ingenious notion of replacing the brackets,

logical constants, and all other signs in the propositional

calculus by numerals, a transformation which is, of course,

perfectly permissible. All formulae and, in particular, the

demonstrable theorems of the system are thereby trans-

formed into sequences of integers. Further, statements

concerning these formulae (e.g. such and such a formula

follows from the initial axioms) can be expressed in the

symbolism of the propositional calculus and so, ultimately,

transformed into a sequence of integers. The chain of

definitions, referred to above, performs this process in detail

and is used to produce a formula whose formal proof is shown

to be impossible.

In a later section Godel proves that a contradiction could

be deduced from any proof that the entire calculus of pro-

positional functions could be formalized in the same fashion

as the restricted calculus above. This is a very important

result for, if correct, it seems that the calculus of propositional

functions will not permit of the complete symbolizing required

by formalist proofs of consistency. The reader must be

referred to Godel's paper for further details.^

^ Cf. also P. Bernay’s report, Methoden des Nachweises von
Widerspruchsfreiheit und ihre Grenze,” at the International Congress
of Mathematicians, Zurich, 1932.



SUPPLEMENT B: INTUITIONISM

Static and dynamic attitudes to pure mathematics.

The progress of mathematics is not smooth, nor is the science,

as the layman imagines, a collection of subtle principles and

infallible results, springing mysteriously yet convincingly

into the minds of their inventors. Its discoveries have, in

general, not won immediate or universal acceptance, for

mathematics, like every other system of organized knowledge,

owes its development to the insight of thinkers whose creative

imagination has led them to results which often startled

themselves and their contemporaries ; it is the crystalliza-

tion of an activity more certain of its results than its principles.

Yet, a result once generally accepted by mathematicians is

seldom retracted, and then only with great pangs ;
for this

science has a certainty unchallenged by any other department

of human knowledge. Its practitioners willingly conceive

of it as an unchangeable system of eternal truths, an inter-

related system of theorems which may be extended but not

controverted. This type of attitude is essentially static

;

conceiving of a science as if it were a library, which acquires

new volumes but never destroys the old, and therefore

obviously inappropriate to sciences like physics, where violent

revolutions are still the order of the day, it exercises a great

deal of influence on philosophies of mathematics, on account

of this distinguishing element of certainty in mathematical

theorems which is so hard to explain.

Nevertheless, this static attitude towards mathematics

demands an ideal science which always advances and never

makes mistakes. When it is held by mathematicians, at any

169
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particular sta^e in the history of mathematics, it is an

expression of their hopes rather than of their convictions.

In the static vision mathematics is regarded as a body of

truths whose certainty is unchallengeable. Yet these same

truths are the product of an historical process of development,

in the course of which principles have been freely employed

and theorems accepted as true which were later seen to be

false. So there is good reason to believe that some at least

of the truths and principles now regarded as eternally true

will be rejected by future generations of mathematicians.

Hence the supporter of the static vision, in spite of himself,

is inevitably driven to defend his position by arguments

which will display the principles of growth of his science, or

at least ensure that the theorems he postulates true will not

be controverted.

The philosophies which have been most influenced by a

static attitude have been the formalist and the logistic,

and we have seen how their supporters have attempted to

justify their opinions, the former by reducing mathematics

to logic, the second by proofs of consistency. Strictly speaking

neither of these methods results in a principle, but, if correct,

either would ensure the validity of mathematics and make the

static view a possible one, the assembly of mathematical truths

preserved in the first case being those which can be strictly

deduced from the primitive axioms and in the second case

those which had been safeguarded by proofs of consistency.

Both of these philosophies are dogmatic ; they are a posteriori

justifications of a static attitude towards mathematics, and

sufler from the usual vulnerability of all dogmas in needing

to be invulnerable. Refutation in a single instance destroys

the infallible.

Let us now examine an alternative attitude towards

mathematics which may be called the d5mamic, for want

of a better word. This is a type of attitude in which emphasis
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is on the growth of the science, rather than on its

invulnerability. Mathematics is now regarded above all as

a product of the activity of fallible human minds and, as

such, liable to be affected by all the defects to which our thought

is essentially subject. Thus just as the supporters of static

attitudes will tend to emphasize the external forms of mathe-

matics, its formulae qua physical objects, just because these

are the most permanent and tangible features of mathematical

activity, so also the supporters of dynamic evolutionary

attitudes emphasize mathematical thought just because it is

that element in mathematics which is most intangible,

changing, and capable of development. The dynamic attitude

is consistent with an evolutionary conception of history and

naturally arises from it, since a general progressive movement

in history will account for the certainty of mathematics,

which is seen now as a progressive and approximatory

tendency, a process rather than a characteristic.

The two types of attitude I have sketched occur together

in the minds of most philosophers of mathematics, and the

ways in which the ensuing tension is resolved is characteristic

for each philosophy. According as the static or the dynamic

side of the opposition is given preference, different problems

have to be faced by the resulting philosophy. Thus pre-

dominantly static philosophies of mathematics have to

account for the development of the science, and to explain

the possibility of error, etc., while the predominantly dynamic

philosophies will be called on to face the awkward problems

of the ‘ universality ' and ' certainty ' of mathematics.

For the logisticians part of the problem is to explain

mathematical discovery ; if, as they say, mathematical

theorems are obtained from logical tautologies by means of

logical deduction, how is any advance in mathematical

knowledge possible ? For in one sense logical deductions add

nothing to knowledge since all that is contained in the
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conclusion was already contained in the premisses. The

answer that the logistician must give is to distinguish between

knowledge and the discovery of that knowledge. Mathe-

matical discovery takes place by a process of trial and error.

Having chosen a formula which for some reason or other the

mathematician believes may be true, he experiments with

various true premisses until he finds a combination from

which he can either prove or contradict his theorem. And this

process is needed just because there is no uniform method

for proving all true formulae in the calculus of propositional

functions. We can even see why this is the case. When, in

the course of a deduction, the syllogistic principle is used to

deduce B from the two statements A and ^ D -B, the

symbol for the conclusion is already contained in those of

the premisses. In the converse process, however, B is given

and we must look for such an A that ^ D B is a theorem

already proved, i.e. in the process of mathematical discovery

there is an element of synthesis. In order to prove B we

must first synthesize the formula AO B,

Those who reject this solution, however, and believe that

mathematics cannot be deduced from logic will have to

allow some typically mathematical mode of knowledge, some

principle which is characteristic of mathematics. Now we

shall find the opinions of the philosophers who have been

classed together as intuitionists all agree to the extent that

they assert that mathematics is based upon a fundamental

intuition of some process or principle which is not capable

of deduction from tautologies and is therefore synthetic in

character. And we shall find that most of them agree in

emphasizing mathematical thought and distrusting the

excessive use of s5mibolism.

I may now sum up this introduction. There are two

possible aspects of mathematics, the static and the dynamic,

and according as the one or the other is specially emphasized



INTUITIONISM 173

we get sharply contrasted types of philosophy of a pre-

dominantly static or dynamic character respectively. The

former is S5m[ipathetic for philosophies with realist tendencies,

and the latter for idealist. The intuitionists are inspired

by the second type of attitude.



The Mathematical Predecessors ol the Intnitioiiists

Some account of the opinions of Kronecker and other early intuitionists,

with a digression on the theory of sets of points.

This section is devoted to an account of opinions on

questions of mathematical philosophy which were held by

certain eminent mathematicians during the years which

immediately preceded the full development of intuitionism.

Itwas a period which saw, on the one hand, the arithmetization

of mathematics accomplished as a result of the brilliant

researches of Weierstrass, and, on the other hand, the

development by Cantor of the theory of transfinite numbers

and the modern theory of sets of points. The work of Weier-

strass, with his brilliant contemporaries and successors,

gave the pure mathematician an extremely powerful analytic

apparatus for handling questions in the theory of functions.

Their discoveries revealed the imperfections and fallacies

involved in the work of the pure mathematicians who had

immediately preceded them and set a new standard of

accuracy. The work of this period is characterized by a

continual tendency towards abstraction and generahty.

Once it was realized that the old concept of function concealed

surprising subtleties the way was clear for an extremely

general conception of function which in turn led to generaliza-

tions of such notions as integration, convergence of series, etc.

This tendency was encouraged by the success of Cantor's

theories, which not only appeared to tame the infinite once

and for all, making it amenable to mathematical treatment,

but revealed a veritable mathematical paradise of infinities

upon infinities, each with its own cardinal number to fit into
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a correct place in an unending hierarchy. Its properties

proved capable of immediate application to the growing

theory of functions, where it allowed the subtlest distinctions

to be made concisely and accurately.

Yet, for all this success for the transfinite method, through-

out this period, even before the discovery of the contradictions

in the Cantor theory of cardinal numbers, some of the greatest

mathematicians protested against the prevailing tendency

and tried to persuade their contemporaries, though with

little success, to renounce their methods. Much of their

opposition may no doubt be ascribed to the inevitable

reaction produced by any victorious movement, but never-

theless an examination of the opinions advanced by these

reactionaries demonstrates how the problems, which the

modern intuitionist claims to have solved, arise inside the

very body of mathematics and exercised from the very first

the minds of some of those who contributed most to its

development in modern times.

The most striking of these early forerunners of Brouwer is

perhaps the algebrist, Kronecker (1823-1891), who was a

colleague of Weierstrass at the University of Berlin and a

very famous mathematician. Weierstrass had tried to

demonstrate that all mathematical entities could be developed

as constructions of natural numbers ;
Kronecker went

farther and declared that only the natural numbers were

‘ real and that all mathematical results must actually be

results about the natural numbers. Thus not only were

irrational numbers, fractions, and complex numbers never to

occur in mathematics, but even negative numbers were taboo.

As Kronecker himself said in a striking sentence, which will

perhaps bear repetition once more, God made the natural

numbers ; aU the rest is man’s handiwork.” He appeared

to believe that the extensions of the number concept were

due to the application of pure mathematics to the physical
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sciences, and said ** I also believe"][that we shall succeed

some day in arithmetizing the total context of all these

mathematical disciplines, [i.e. analysis and algebra], that

is in grounding them on the number concept taken in

its narrowest sense, and thus eliminate the modifications and

extensions of this concept which were for the most part

occasioned by applications in geometry and mechanics

(Kronecker, '' Ueber den Zahlbegrifi,'' Journ. filr Reine u,

Angewandte Math., ci, 1887, p. 338). The method adopted to

rid mathematics of these illegitimate numbers was to replace

all equations in which they occurred by appropriate algebraical

congruences. An example will illustrate this better than a

description. The equation 7 — 9=3 — 5 is illegitimate

according to Kronecker on the ground that the expressions

on either side denote nothing, the number — 2 having no

existence. The equation must therefore be transformed into

the congruence

7 -f = 3 + (modulo ^ + 1)

(See Kronecker, ibid., p. 337). In this manner the resulting

expressions obey the same laws of combination as the original

equations, as may be easily verified, so that formally it is

possible to manipulate the congruences in the same way that

equations involving integers would be manipulated. Difficulties

however arise when the congruences which contain a free

variable x, and therefore have no determinate meaning, have

to be determined in such a way as to reproduce results

expressed determinately by the original equations between

integers. This Kronecker does by putting + 1 equal to 0,

for a congruence modulo zero becomes an equation, and an

exact correspondence is obtained between the congruences

so obtained and the original equations. In Kronecker's own

words, “ The congruence transforms directly into the equation

as soon as ^ is regarded no longer as a variable but as a
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' magnitude ' defined by % + 1 = 0 and thus introduces the

‘ negative unity ' (loc. cit, p. 345). The last step of equating

a; + 1 to 0 is however illegimate for this could only be possible

if X could take a negative value which by hypothesis is not

allowed. Hence Kronecker’s constructions for eliminating

negative numbers beg the question. Similar arguments apply

to his attempts to eliminate fractions by means of congruences

modulo several simultaneous bases, and complex numbers

by congruences modulo 1 + His transformations, besides

being logically unsound, completely obscure the relations

between rational and the irrational numbers towards which

they converge, to mention one example out of many possible

ones, and thus are completely impracticable.^

Another figure who eminently deserves attention is Henri

Poincar^ whose outstanding mathematical achievements

earned for him a great reputation among mathematicians,

while the vigorous and witty style of his more popular writings

gave him the ear of a very extensive public. He consistently

attacked the logisticians and the formalists although himself

a formalist in his attitude towards geometry. His arguments

against them, when disentangled from their polemical setting,

amount to the charge of circularity. It is interesting to note,

however, that he charges the formalists also with circularity,

maintaining that they base arithmetic and, eventually, the

rest of mathematics on axioms which include an axiom of

induction. Yet, in the proofs of consistency which alone

justify them in using these axioms, they are compelled to prove

results for all possible proofs, i.e. for formulae which may
contain any number of symbols.

“ Then in order to establish that the postulates do not

involve contradiction, we must picture all the propositions

that can be deduced from these postulates considered as

^ Cf. Couturat, De VInfini Mathematique, pp. 603-616, for a full

discussion and criticism of Kronecker's views.
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premisses and show that among these propositions there are

no two of which one is the contradiction of the other. . . .

If the number of the propositions is infinite ... we must

then have recourse to processes of demonstration, in which

we shall generally be forced to invoke the very principle of

complete induction that we are attempting to verify '' {Science

and Method, English translation, p. 152).

This argument seemed to spring from an incomplete under-

standing of the formalist method but, nevertheless, deserves

attention, for it shows clearly the necessity for the use of a

non-formal principle in the foundations of mathematics.

Poincar^, by asserting that the integers were indefinable

and that the whole of mathematics is based on the principle

of mathematical induction whose validity must be intuitively

recognized, adopted an intuitionist position in effect, and

clearly enunciated doctrines which are still basic parts of the

intuitionist philosophy.

The remaining mathematicians to be considered in this

section form a group consisting of Borel, Baire, and Lebesgue,

sometimes called the Paris School of pure mathematicians,

together with Hadamard, whose position conflicted with

that of the other three. These eminent mathematicians

expressed their opinions in letters to one another,^ occasioned

by the publication of 2^rmelo*s proof that every set could be

well ordered. In order to explain how the controversy arose

a somewhat lengthy digression into the elementary theory

of sets of points will be necessary. The reader who is familiar

with this subject may omit this section.

Digression on the Theory of Sets of Points

The purpose of this section is to sketch the theory of sets

of points, or rather of the theory of cardinal numbers which

1 Subsequently published as ** Cinq lettres sur la th6orie des
ensembles : Bulletin de la Societi Mathdmatique de France, 1905.
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forms part of it, sufficiently far to make the Borel-Baire-

Lebesque-Hadamard discussion about Zermelo's axiom of

choice intelligible to the reader with no previous knowledge

of the subject. The philosophic difficulties which arise will

be the familiar ones of the conditions in which mathematical

entities (in this case sets of points) can be said to exist.

We commence with the idea of sets or classes of objects.

For present purposes this is taken as an undefined primitive

idea. It is convenient to talk as if a class or set were a

collection of its members in the usual mathematico-realist

manner, even when a class has an infinite number of members.

Let capital letters A, B, C, etc. be used to denote classes, and

let typical members of such classes be denoted by the

corresponding small letters a, 6, c, etc. The latter can be

further distinguished by suffixes when necessary. Thus, in

general, a will be a member of the class A, The fact that

a thing, x say, belongs to a class Y, say, is denoted by xeY,

The class whose sole member is a is denoted by (a).

We must now define the addition, product, and similarity

of classes. The sum-class, EA, of a number of classes A,

is the class consisting of all those things which are members

of one or more of the ^'s. This sum-class is supposed to exist

whether the number of ^*s is finite or infinite. If there are a

finite number of ^'s, say Ai, A 2 ,
• . . whose sum-class is

being constructed, it is denoted by A^ + A 2 + . . .

The product-class, 11A

,

of a number of classes A

,

is the class

consisting of those things which belong to every A of the set

considered. Here again the number of ^'s may be finite or

infinite. If the former, and the ^'s considered are denoted

by Ay^, A 2 » • • • Ajc say, the product class is denoted by

AyA2 . . .

Two classes A , B are said to be similar, written A '^B,\i

there is a one-one correspondence between them, i.e. a corre-

spondence in which each member a of ^ has exactly one
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member 6 of J5 corresponding to it, and vice versa. Similarity

is a transitive and symmetrical relation, i.e. if A r^B and

B r^C then A and if A ^B then B A. Two classes

which are similar are said to have the same cardinal number

or the same power. It follows at once from the fact that

similarity between classes is a transitive and symmetrical

relation that, if some particular cardinal number is defined

as the cardinal number of some definite class, A say, the same

cardinal number is obtained when any class similar to A
is substituted in the definition.

Having defined these cardinal numbers we have, if possible,

(i) to define ways of combining them analogous to addition,

multiplication, exponentiation, etc., of ordinary integers,

and (ii) to see how the distinction between finite and infinite

cardinal numbers is made.

First of all we notice that, given a pair of classes A,B,\i is

always possible to construct a pair of exclusive classes A \ B\

with A A' and B r^B\ For let x, y be distinct entities. If

A ' is taken to be the class of ordered pairs a'= (a, x) and B' the

class of ordered pairs b' = (6, y) ; the one-one correspondence

between the members of A and A* is that by which each a!

is made to correspond to the a which occurs in it, and similarly

for the B' and B. A \ B' are exclusive
;
none of the members

of A' can coincide with the members of B', since each of the

former is an ordered pair of things of which the second is x,

and each of the latter is an ordered pair of things of which

the second is y, and x is not the same entity a.s y.

Now to define the addition of two cardinal numbers : Let

i4, B be any two exclusive classes of cardinal number a, j8

respectively. Then the sum of a and jS, written a -f jS, is defined

as the cardinal number of ^ -f B. In order to see that this

definition does not depend on the choice of the particular

exclusive classes of powers a, p respectively, it is sufficient

to see that if A, B ; A \ B' he exclusive pairs of classes with
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A A' and Br^B' then A* -{-B' A + B. This is so

because we can set up a one-one correspondence between the

two classes A' B\ A -f- B in which a member of the first,

if also a member of A\ corresponds to the member of A
(which is also a member of ^ + B) to which it corresponded

in the correspondence by virtue of which A' Ay and, if

a member of B, corresponds to the member of B which was

its partner in the correspondence which made B' ^ B. This

is hard to say but easy to see.

Similar definitions are given for multiplication and

exponentiation of cardinal numbers. The method in each

case is to take any two particular sets B of powers a, j3

(if it is a function of two cardinals that is being defined)

and to define the required function of a and j8 as the cardinal

number of a new set constructed out of A and B by a definite

procedure. And each such definition requires a proof that

which particular A and B are chosen is irrelevant provided

they have the cardinal numbers a and respectively.

Thus a X is defined as the power of the class of all the

ordered couples (a, h) when a is any member of A and h

any member of B.

The null-class is defined as the class which has no members,

i.e. the class A such that x^A is false for all x
;
and the unit-

class as the class which contains some term x and is such that,

if y is a member of it, y = x.

It is now natural to define the relations of “ greater than

and ''
less than '* between cardinal numbers. This is done

as follows :—

a

> jS (or jS > a) if and only if it is true that

(part of A) f^B but it is not true that A ^^B. Now by

analogy with the properties of natural numbers it may be

presumed that a > j8 is incompatible with a < jS, i.e. that

we cannot have (part of A)r^B and (part of B)r^A

unless A By but the proof of this depends on the

so-called Schroeder-Bemstein theorem.
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Let us now take breath for a moment and consider the

structure that has been erected. We have been referring

quite uncritically to classes and entities * existing two

classes were said to be similar “ when there is a one-one

correspondence between them '' and in the last paragraph

we spoke even of (part of A) being similar to another set.

If class is taken to mean what the logisticians mean by the

term, the development of the theory of cardinal numbers as

given above becomes identical with the logisticians’ develop-

ment of the theory of cardinal numbers. Hence the question

as to when a similarity can be said to exist between two

classes is exactly equivalent to the old question as to when

propositional functions can be said to exist. If A, B are

classes with a finite number of members each it can easily

be tested whether a one-one correspondence between them

can exist ; for it is sufficient to look at each of the finite

number of possible correspondences in which each member

of the one has one or more partners in the other in order to

discover whether any of these correspondences are one-one.

In the case of sets with infinitely many members this procedure

is inadmissible, and it is these sets for which the problem

is acute.

Let us consider a concrete difficulty : Ko is defined as the

cardinal number of the class of the finite cardinal numbers

1, 2, 3, . . . Now if a class is known to be infinite it would

seem natural to suppose it must contain at least Kq terms.

There are infinite classes, according to the Cantor theory,

which we have been describing, which contain more than

Ko points, i.e. which cannot be put into one-one corre-

spondence with a class of power Ko- The set of all real

numbers between any two given numbers will serve as an

example. It seems at first obvious that such a set must

contain a subset of Ko members, but ‘ seeing ’ is not the

same as ’ proving How could it be proved that an infinite
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class A contains Kq terms ? The kind of schema which is

behind the intuitive belief that A contains at least Ko members

is somewhat as follows :

—

A has a member
;

select one, x,

A — {Xi), i.e. the set of all members of A except Xi, has a

member ; select one, X
2 ,

etc.

This process can never come to an end, for else the set

would have only a finite number of members, hence the set

must contain Ko members, viz. x-^^, x^, x^, . , .

The difficulty about this argument is that, in general, no

method can be given for making the choices. The Kq terms

have to be chosen by an infinity of successive choices, each

of which is dependent on the previous ones, since it is restricted

to those members which have not been previously selected.

Can the set of members so chosen be said to exist ? If this

can be assumed many striking theorems can be proved
; but

without this assumption the whole system remains very

incomplete.

This was, very crudely, the problem Zermelo had to face

when he tried to prove that every set could be well-ordered

(see Zermelo, Beweis, dass jede Menge wohlgeordnet

Werden kann,'' Mathematische Annalen, vol. lix, pp. 514-16).

He was the first to use explicitly an axiom which allowed

the infinite acts of choice we have mentioned.

The axiom may be put in several equivalent forms. In

the following form : Given any class of mutually exclusive

classes, of which none is null, there is at least one class which

has exactly one term in common with each of the given

classes '' it is often called the multiplicative axiom, since it

has to be used in defining the product of an infinite number

of cardinal numbers.
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The Blathematical Controversy

We may now return to the controversy between the French

mathematicians. Borel inserted a short note into the

Mathematische Annalen, criticizing Zermelo*s use of the

multiplicative axiom, and thus provoked a reply from

Hadamard in the first of the * cinq lettres \

The latter distinguishes between the existence of mathe-

matical correspondences and their description, and asserts

that correspondences or functions may very well exist even

although we have no way of describing them. “ What is

certain, is that M. Zermelo gives no method of effectively

carrying out the operation of which he speaks [i.e. of making

the infinitely many choices] and it remains doubtful

whether anybody could finally indicate such a method.

But the question of effectively giving a function is different

from that of proving its existence—^there is all the fundamental

difference between them which there is between a corre^

spmdencevAxiohcdJi be defined and one which can be described.

Many important mathematical questions would completely

change their sense if one word were to be substituted for the

other.*’ He also makes the point that the notion of a corre-

spondence which can be described is not capable of precision,

and belongs to psychology rather than to mathematics.

In the second letter Baire, writing to Hadamard, does not

accept the latter’s contention that in Zermelo’s proof the

successive choices are after all independent of one another

for this is only accomplished by supposing that every sub-

group of the set which is being well ordered has been made
to correspond to one of its elements. He suggests that the

set of those chosen elements cannot be regarded as ' given
** In speaking of the infinite (even when enumerable . . .)

the conscious or unconscious identification of the set with a

bag of notes which can be given from hand to hand must
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disappear completely and, in my opinion, we are in the

domain of the virtual, i.e. we make conventions which permit

us eventually to make assertions about an object when this

object has been defined hy a new convention,** Thus Baire

explicitly states that it is false to consider the subsets of a

given set as given.

Lebesque, in the third letter, is of the opinion that the

existence of an entity is only proved when it has been defined,

i.e. when a property characteristic of that entity has been

given. He suggests that in vaguer cases of the use of the

word existence, as by Zermelo, all that is meant is freedom

from contradiction of the notions used. In general he supports

Borel and Baire.

Hadamard, in the fourth letter, crystallizes the whole

argument into the question ** Can the existence of a mathe-

matical entity be proved without defining it ? I reply in the

affirmative.'' He shows that the consequence of the opposing

theories is the rejection of the whole Cantorian edifice of

transfinite Alephs.

Borel, in the letter which closes this correspondence,

accepts these drastic consequences and states that the only

value of calculations employing the Aleph numbers is that

they can provide suggestions for ** more serious " demonstra-

tions. Theorems in the Cantor theory of cardinals may, by

analogy, be useful aids to the construction of valid proofs,

but, in themselves, are statements with no precise meaning.

They may, at most, have the status of certain theories in

mathematical physics.



Intoitionism

There are two critically important points in Brouwer*s

doctrines concerning the nature of mathematics : the reduction

of pure mathematics to an ultimate * basal intuition ' and

the notorious ' denial * ^ of the tertium non datur. These

aspects of the intuitionist philosophy are undoubtedly most

difficult for those unfamiliar with this type of thought to

understand and, if once sympathetically comprehended,

remarkably facilitate the understanding of all that remains.

The only contribution that the present writer can offer

towards lightening the difficult effort of intellectual sympathy

required—an effort materially increased by the imprecision

of the terminology used by intuitionist expositors—^is to

point out with regard to the * basal intuition ’ that Brouwer's

views derive from and are a modification of Kant's (with

alteration of terminology) and with regard to the remaining

point that Brouwer denies only a reinterpretation of the

logical principle in question. In fact Brouwer is a neo-

Kantian who has rejected Kant's doctrines concerning space,

while preserving his view of time as a pure intuition given

a priori, and Brouwer's denial of the law of excluded middle

is better interpreted as an emphasis, which can be paralleled

in Kant, on the necessity for the constructibility of mathe-

matical concepts.

The account which follows is divided into three sections

:

(1) a sketch of the relations between Brouwer and Kant

in so far as they bear on the ‘ basal intuition '
;

^
. Brouwer, the leader of what is called the intuitionist school,

whose chief doctrine is the denial of the Law of Excluded Middle, that
every proposition is either true or false.” F. P. Ramsey : Foundations
of Mathematics, p. 65.

i86
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(2) a description of Brouwer's sociological approach to

science and the doctrine of the constructibility of mathe-

matical concepts towards which it leads

;

(3) the elaboration and technical consequences of Brouwer's

doctrines.

Kant and Brouwer

Some striking analogies assist in understanding Brouwer.

The intuitionists bear much the same relation to the

logisticians and formalists who preceded them as Kant's

critical philosophy to the dogmatism which he attacked.

Kant was concerned to rehabilitate philosophy after the

destructive scepticism of Hume ; the intuitionists, by setting

out to explain in detail the anatomy of mathematics and the

principles on which the understanding correctly functions,

attempt to save mathematics from the destructive force of

the mathematical paradoxes.

All the intuitionists agree in this, that they consider

mathematical knowledge to be characterized by the employ-

ment of a specific method for obtaining knowledge, but differ

among themselves as to the nature of the principle employed.

If, however, the views of Brouwer are considered, who is

at once the most influential and the most consistent member

of this school, it will be found that he bases mathematics on

a primitive intuition, a basal intuition of the bare two-

oneness." What this means I shall try to make clear by

examining the corresponding terms as they occur in Kant.

First, a few explanations of Kant's terminology. As is

well known, he makes a distinction between intellectual,

empirical, and pure intuition. By empirical intuition he

means " the immediate apprehension of a content which as

given is due to the action of an independently real object upon

the mind’' (N. K. Smith, Commentary to Kant’s Critique of
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Pure Reason, p. 80), and he terms all cognitive states pure in

which there is nothing belonging to sensation. The following

passage throws some light on the subject. The pure form

of sensible intuitions [apparently using sensible intuitions as

S5monymous with empirical intuition here] in general,

in which all the manifold of intuition is intuited in certain

relations, must be found in the mind a priori. This pure

form of sensibility may also itself be called pure intuition.

If then I take away from the representation of a body that

which the understanding thinks in regard to it, substance,

force, divisibility, etc., and likewise what belongs to sensation,

impenetrability, hardness, colour, etc., something still remains

over from this empirical intuition, namely extension and

figure. These belong to pure intuition, which, even without

any action of the senses or of sensation, exists in the mind

a priori as a mere form of sensibility.’' {Critique of Pure

Reason, p. 66). We need not linger over the somewhat

misleading terminology here involved ;
it is important for

our purpose to recall that for Kant, space and time are pure

intuitions and therefore given a priori.

For him “ space is not a discursive or, as we say, general

concept of relations of things in general, but a pure intuition.

For, in the first place, we can represent to ourselves only one

space ; and, if we speak of diverse spaces, we mean thereby

only parts of one and the same unique space ” (ibid., p. 69).

This doctrine of space and the corresponding conception

of geometry as a science which determines the proportions

of space synthetically and yet a priori ” has now become

obsolete by the discovery of non-Euclidean geometries, but

the doctrine that time is a pure intuition is preserved by

Brouwer. Thus he says However weak the position of

intuitionism seemed to be after this period of mathematical

development it has recovered by abandoning Kant’s apriority

of space, but adhering the more resolutely to the apriority of
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time. This neo-intuitionism considers the falling apart

of moments of life into qualitatively different parts, to be

reunited only while remaining separated by time, as the

fundamental phenomenon of the human intellect, passing

by abstracting from its emotional content into the funda-

mental phenomenon of mathematical thinking, the intuition

of the bare two-oneness. This intuition of two-oneness, the

basal intuition of mathematics, creates not only the numbers

one and two, but also all finite ordinal numbers inasmuch

as one of the elements of the two-oneness may be thought

as a new two-oneness, which process may be repeated

indefinitely (** Intuitionism and Formalism,*' Inaugural

address at the University of Amsterdam, 1912).

The primary intuition of intervals of time as falling apart

into sub-intervals, which may be resynthesized together to

form the whole interval, is the basis of Brouwer's theory of

the natural number. Brouwer's ' Urintuition ', the primitive

intuition, approximates more to Kant's * schema '. “ If five

points be set alongside one another thus I have an

image of the number five. But if, on the other hand, this

thought is rather the representation of a method whereby a

multiplicity, for instance a thousand, may he represented in an

image in conformity with a certain concept, than the image itself,

this representation of a universal procedure of imagination

in providing an image for a concept, I entitle the schema

of this concept," [ibid., p. 182, my italics]. Thus the funda-

mental phenomenon on which Brouwer bases pure mathe-

matics resembles what Kant called a schema, and their

difference of nomenclature cannot obscure the profound

similarities in their position. For Brouwer, as for Kant,

the judgment of mathematicians are synthetic and a

priori.

But Brouwer's improvements on the doctrine of Kant

are seen in the former's insistence on the constructibility of
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mathematical entities. Kant sees the essence of philosophical

knowledge in that its concepts are constructible. He says

:

** Philosophical knowledge is the knowledge gained by reason

from the construction of concepts. To construct a concept

means to exhibit a priori the intuition, which corresponds to

the concept.** {Critique of Pure Reason, p. 577), and again :

“ I construct a triangle by representing the object which

corresponds to this concept either by imagination alone,

in pure intuition—or in accordance therewith also on paper,

in empirical intuition—^in both cases completely a priori

without having borrowed the pattern from any experience
**

(ibid.), and again :
“ mathematics can achieve nothing by

concepts alone but hastens at once to intuition, in which it

considers the concept in concreto, though not empirically, but

only in an intuition which it presents a priori, that is, which

it has constructed, and in which whatever follows from the

universal conditions of the construction must be universally

valid of the object of the concept then constructed ** (ibid.,

p. 578). This is altogether too vague to be regarded as a

satisfactory account of the role of intuition in mathematics,

but if we recall the part assigned to intuition in the formalist

scheme we shall see how closely that view of mathematics

also is related to the Kantian view of mathematical knowledge.

For the formalist, too, the mathematical method is

distinguished by the use of intuition but with this difference

that the intuition can only function when the concepts have

been embodied in concrete symbols. Thus the content of the

formalist *s intuitions is the relations between symbols, while

the content of the mathematician*s intuition, on Kant*s

view, consists of relations between concepts obtained from

empiric intuitions of sense-data embod5dng those concepts.

For Kant, then, geometrical results are to be obtained by

intuitions derived from looking at triangles, circles, etc.,

drawn on paper. This view is obviously inadequate for
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modern geometry when such figures are quite unnecessary,

and often physically impossible to represent.

Brouwer, however, arithmetizes the entire process and

confines his ‘ basal intuition * to the form of the conceived

multiplicity of the intervals of time. This process, according

to him, is sufficient to generate the natural numbers, a series

from which all other mathematical entities must be derived

by modifications and repeated application of the same method.

The Sociological Basis of Mathematics

Brouwer's theory of the evolution of pure mathematics regards the
laws of logic as the historical product of man’s attempt to organize
sets of object finite in number. On examination the same laws
are found to apply also, with one exception, to the infinite subject

matter of pure mathematics. That exception is the law of the
excluded middle.

Brouwer bases his criticisms of certain logical and mathe-

matical methods on historical and sociological grounds. In

the present writer's opinion, questions of origin are irrelevant

to the correctness of such methods and, though they may

furnish presumptive evidence of the existence of errors, must

always be supplemented by arguments concerned with the

context, and not the history, of the criticized theories. Since,

however, Brouwer himself considers arguments from origin

of importance, it is as well to present his doctrines in the

framework he has chosen. His sociological views are

interesting on their own account, and undoubtedly reveal

the surrounding atmosphere of his opinions.^

In his inaugural address at the University of Amsterdam

(1912) Brouwer said : To understand the development of

^ Cf. especially, L. E. J. Brouwer, “ Intuitionism and Formalism "

(Inaugural address at the University of Amsterdam, 1912), reprinted

iii Bulletin of the American Mathematical Society, vol. xx, 1913, and
“ Mathematik, Wissenschaft und Sprache," Monatshefte fur Mathematik
und Physik, vol. xxxi, 1929. p, 153.
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the opposing theories in this field [i.e. in the foundations of

mathematics] one must first gain a clear understanding

of the concept ' science *
; for it is -os a part of science that

mathematics originally took its place in human thought/'

Science he conceives to be the systematic cataloguing as

laws of nature of causal sequences of phenomena, especially

such as are important in social relations. Mathematics, in

particular, is a branch of scientific thought concerned with

the structure of phenomena. A mathematical attitude

towards phenomena arises as an act of will of the individual

produced by an urge towards self-preservation, and the choice

of structures for consideration is therefore determined by the

exigencies of the individual in his relation to society. The

earliest kinds of structure which men are forced to recognize

are the forms of organization of the groups of persons with

whom they live, the structure of society and the family
;

speech then arises as a medium for social activity, for the

transference of wishes from individual to individual. A
specifically scientific attitude arises in two stages, as a

causal outlook and as a temporal outlook. In the first, men

choose to consider phenomena in the aspect of identical self-

repetition, a useful point of view because steadily improving

catalogues of causal sequences of phenomena enables desired

phenomena to be produced, knowledge of causes giving

control over effects. Man not only discovers order in nature

in this fashion but creates it by isolating causal sequences of

phenomena, i.e. by experiment and construction. By his

own ordered activity, he supplements the natural phenomena

and widens the applicability of his laws. This is notably

the case with counting and measuring, which are the activities

par excellence by which man introduces order into nature.

Mathematics, however, requires further explanation, for the

causal laws so far described are essentially approximations

and are not proof against sufficient refinement of measuring
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tools, in contrast to the unchangeable exactness of

mathematics.

The origin of this exactness is the fact that mathematics

arises out of the temporal outlook in which visual perceptions

are regarded as separating into two parts (in the relation of

before and after). From this is obtained the intuition of the

primitive ‘ two-oneness the whole as capable of division into

two parts, in turn capable of division into two parts, and so

on. The judgments of mathematics are synthetic and a priori,

i.e. judgments independent of experience and not capable of

analytic demonstration . This explains their apodictic exactness.

All this is plausible without being startling
;
and one may

agree that mathematical activity has its roots in sociological

activity while disagreeing profoundly with the intuitionist.

The question where mathematical exactness exists, is

answered differently by the two sides ; the intuitionist says :

in the human intellect, the formalist says: on paper'" (ibid.).

For the formalist the fact that mathematical theorems are

expressed in a symbolism is essential to the understanding

of mathematical method ; this is not the case with Brouwer.

Language for him is necessarily uncertain and inexact.

He asserts, moreover, that the use of language preceded in

point of time the development of the scientific and mathe-

matical outlooks. It was a natural consequence that, although

the growth of mathematics demanded the invention of a new

language of symbols to allow individuals to communicate

with one another the results obtained, this new language

adopted forms of grammatical convention of the old language

of everyday activity.

The laws of logic developed at a time in man's evolution

when he had a good language for dealing with finite groups

of phenomena. The so-called logical principles, therefore,

arose as expressions of the structural interrelationships of

sentences in the language, and later were found to work when
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applied to the universe, e.g. the law of the excluded middle

was originally an hypothesis and when used in grounding such

sciences as palaeontology, etc., the practical impossibility

of finding examples to disagree with the laws, replaced the

' logical impossibility ' of the earlier laws of language. The

reliability of logical principles, in practice, rests upon the fact

that a large part of the universe of experience exhibits far

more order and harmony [Treue und Zufriedenheit] in its

finite organization than mankind itself Mathematik,

Wissenschaft u. Sprache,” Monats. fur Math, u. Phys,,

vol. xxxi, 1929, p. 159).

On this somewhat dubious history is founded a distrust of

the laws of logic. Formalism, from this point of view, appears

to lay exaggerated emphasis on language, culminating in

mistaken attempts to eliminate contradictions, without critical

consideration of the particular concepts to which the laws

of logic are being applied.

The forms of language are, however, mutable with its

subject-matter, and the laws of logic amenable to critical

investigation when applied to mathematical objects. In

Brouwer's own works the result is favourable for the laws

of identity, contradiction, and the syllogism, but unfavourable

for the law of the excluded middle !

This then is the novelty of the whole position, but it must

be considered in conjunction with the contention that only

such mathematical entities ‘ exist ' as can be constructed

by means of the basal intuition.

From the present point of view of intuitionism therefore

all mathematical sets of units which are entitled to that

name can be developed out of basal intuition, and this can

only be done by combining a finite number of times the two

operations :
* to create a finite ordinal number, and to

create the infinite ordinal number here it is to be

^ ctf is the ordinal number of the series 1, 2, 3, . . .
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understood that for the latter purpose any previously

constructed set or any previously performed constructive

operation may be taken as a unit

So, to summarize this account, Brouwer grounds intuition

on an account of the historical development of the sciences.

Science in general is characterized by two ways of classifying

phenomena
; first, by arranging them into causal sequences,

secondly, by dividing them into parts which are in the

temporal relations of immediately before and after
; mathe-

matics, in particular, arises out of the second process.

Abstracting from the specific nature of the phenomena in

any one such process of division in time gives the general

scheme of ordinal succession out of which arises the basal

intuition of the natural numbers. Logic, on the other hand,

developed historically as the expression of the relationships

between propositions, referring only to groups of phenomena

finite in number. Hence its laws must not be assumed to

hold for the infinite subject-matter of mathematics without

further examination. The result of this examination shows

that all the logical laws are valid except the law of the

excluded middle.

The Denial of the Law of the Excluded IVfiddle

In ‘ denying ’ the law Brouwer is emphatically asserting existence of

mathematical entities to be synonymous with the possibility of

their construction.

If the law is stated in the form that a proposition is either

true or false its truth appears so obvious that it is incompre-

hensible that anybody should disbelieve it. But the apparent

^ Consequently, the intuitionist recognizes only the existence of

denumerable sets, i.e. sets whose elements may be brought into

one-one correspondence either with the elements of a finite ordinal

number or with those of the infinite ordinal number co. And in the

construction of those sets neither ordinary language nor any symbolic
language can have any other part than that of serving as a non-
mathematical auxiliary, to assist the mathematical memory or to

enable different individuals to build up the same set." " Intuitionism

and Formalism," p. 86. See also p. 209 below.
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simplicity of enunciation conceals the difficulties implicit in

the notion of * truth a notion which those who most

confidently believe in the law often find hardest to explain.

In mathematics the question of the truth of mathematical

theorems coincides with the question of the existence of

mathematical entities ;
if the conditions of validity of

mathematical theorems were known the conditions for the

‘ existence * of mathematical entities would be known and

vice versa. So the dispute between Brouwer and more

orthodox philosophers with respect to the validity of the

tertium non datur is seen to be one as to the nature of mathe-

matical existence rather than as to the validity of the logical

principle. This interpretation gives body to the dispute and

removes the air of paradox which surrounds Brouwer's

philosophy. Brouwer, indeed, is not denying the tertium

non datur in the generally accepted interpretation of that

logical principle, but rather emphasizing that existence in

mathematics is synonymous with constructibility, and that

the truth, and indeed significance, of mathematical theorems

is conditional on the possibility of constructing the entities

which occur in their formulation. In order to understand

his position fully it is therefore necessary to elucidate the

notion of constructibility ; this can be done by giving an

account of Brouwer’s treatment of the continuum.

The Intuitionist Contmuum

' Points ’ in the continuum are obtained by using free-choice sequences
constructed by arbitrary choices of integers at each stage

;

significant statements concerning such infinite sequences must
contain an implicit or explicit indication of the method for testing

their truth in a finite number of steps. This is the correct inter-

pretation of the rejection of the law of the excluded middle.

We commence by describing a well known method for

defining the points of a mathematical continuum by means

of * nests of intervals '. A ‘ nest ' is a sequence of intervals
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each lying inside the previous one and contracting indefinitely

in length ; and each such nest picks out a real number from

the continuum. If our continuum is a line we can for example

divide it into the intervals — 1, — n),

(— n, — n + 1), . . . (— 1, 0), (0, 1), (1, 2), . .
.

{n, n + 1),

. . . and then divide each of these into half, these new

intervals again into half, and so on.

This process corresponds to the actual process of approxima-

tion in measurement. If we use instruments which measure

with an outside error say of *5 cm. we will be able to locate

the position of any desired point inside an interval 1cm. in

length. Using more accurate instruments, say with an

outside error of *25 cm., we can now locate any desired

point inside an interval *5 cm. in length. Providing the

outside error of our instruments ultimately becomes smaller

than every length however small as we make them more and

more accurate, we shall be able to specify any point by

specifying a nest of these measurement intervals. In order

to make the abstract scheme correspond better to this process

of measurement the intervals at each end-stage must be

made to overlap. Thus for the first stage we take the intervals

. . . (~ 1, 0), (- i + J), (0, 1), . . .
(n - i n + i), . . .

and can now be sure that each point lies inside an interval

of length of 1. With similar modifications at each end-stage

we shall have a geometrical schema of the continuum.

To get the corresponding arithmetical schema we need

only consider a geometrical schema in which there are a finite

number of intervals at each stage, since this will supply

arithmetical names for all the points in a finite stretch of the

line, and we can set up a one-one correspondence between

this stretch and the whole line, thus obtaining the names for

all the points of the line.

These preliminaries accomplished, a point can be specified

in the following way : at each stage of the geometrical schennia
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we number off the finite set of intervals which have been

constructed, and now specify a real number by stating the

number of an interval which contains it at the first stage,

the number of a smaller interval which contains it at the

second stage, and so on. So each number is given by an

infinite sequence of integers. This, of course, exactly

corresponds to the specification of a point by means of a

non-terminating decimal in the usual decimal representation.

All questions dealing with the existence of points on a

line or the existence of real numbers may therefore be reduced

to the existence of infinite sequences of integers, such

sequences being constructed by arbitrary choices of integers

at the first place, the second place, the third place, and

so on. These are the ‘ Wahlfolge Brouwer's ' arbitrary-

choice sequences and the continuum is the concept whose

denotation includes all such sequences. The continuum can,

however, in no sense be said to be a complete totality, for

though it can be more and more completely specified as our

knowledge increases this brings us no nearer to exhausting

it ; it is a ' medium of free becoming

With respect to an infinite sequence of integers, generated

by a succession of arbitrary choices, the intuitionists maintain

that only those propositions are significant which can be

verified in a finite number of operations. Any proposition

which, for its verification, would necessarily involve the

successive scrutiny of all the digits of the infinite sequence of

digits is senseless just because the sequence is never finished.

This excludes all general statements about the totality of

integers in the sequence.

The theory can be illustrated by considering the slightly

different case of a sequence whose successive digits are given

by some kind of law, e.g. (i) the sequence of the digits

in the decimal expansion of tt, or (ii) the sequence of the

^ Cf. infra, p. 203.
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prime numbers in order of magnitude. In these cases it

will be possible to make some general propositions, e.g. in

(ii) we can say that all the places after the second are filled

by odd numbers, but this is a sensible proposition only

because the method of constructing the sequence allows us

to verify the proposition in question in a finite number of

steps. So, in general, it will not be permissible to make general

statements about infinite sequences unless means are given

of verifying them (or disproving them) in a finite number

of steps, and a fortiori it will be impossible to make general

statements about the continuum.

This I take to be the correct interpretation of the basis

of the intuitionists’ denial of the law of the excluded middle

when applied to infinite sequences. How that denial follows

from their peculiar view of the nature of general mathematical

propositions it is easy to see. A general (or existential)

proposition about the integers composing an infinite sequence

can only be said to be true when a construction has been

found which shows how to verify it in a finite number of steps.

The corollary with respect to falsity of such propositions is

equally important ; they can be said to be false only when

the assumption of their truth leads to a contradiction. If

the * truth * and ' falsity * of general mathematical proposi-

tions is interpreted in this way there is no reason to suppose

that these two alternatives exclude all others, e.g. it may be

impossible to prove Fermat's theorem and yet the assumption

of its truth may lead to no contradictions. If this were the

case we should have an example of a proposition neither false

not true. From this point of view the intuitionist position

is based on the possibility of the existence of mathematical

theorems which can neither be proved nor disproved, and

has lately been strengthened by the discovery of the

incompleteness of the calculus of propositional functions.

It follows that for the intuitionist the truth of a proposition
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/> is not, in general, equivalent to the falsity of its contradictory.

Take, for instance, a proposition like {A)\
“
there is a prime

number of the form »* + 1 ” whose contradictory is, (B)

:

“ there is no prime number of the form ** + !”• The

intuitionists will say that neither A nor B have sense until

constructions are known for testing them. In this particular

case we may, e.g., form {A')

:

" there is a prime number of

the form ** + 1 and less than 18 ” whose verification is the

simple one of testing whether any of the prime numbers

which are less than 18 are of the form a;* + 1. Similarly

we might be able to form a B'. It does not follow that A'

and B' will be contradictories in the orthodox sense.

I have set the matter out in this way in order to show

that the conflict between Brouwer and supporters of traditional

logic is one rather as to the correct criteria for the stating

of mathematical propositions rather than any differences as

to the validity of the tertium non iatur. But there is a real

difference of opinion between the intuitionists and those

who take an extensional view of propositions existing in their

own right.

In brief then, Brouwer’s criterion of constructibilityamounts

to the statement that all genuine general propositions in

mathematics must contain some method for verifying them

in a finite number of steps ; and the rejection of all forms

of words which do not satisfy this condition leads to apparent

denial of the law of the excluded middle. Consistent accept-

ance of this attitude demands reformulation of orthodox logic

and of much orthodox mathematics, and this has been to

a great extent accomplished with amazing energy and

ingenuity by Brouwer and his disciples.



Supplementary Note on the Intnitionist Calculus of Propositions

This section and the next are of mainly technical interest
;
they include

the complicated intuitionist definition of sets (classes).

A. Heyting has recently produced a calculus of intuitionist

logic (" Die formalen Regeln der intuitionistichen Logik,”

Sitzungsberichte der preussischen Akademie der Wissenschaften,

Phys.-Math. Kl., 1930, pp. 42-71, 158-169) and this account

of the details of the intuitionist constructions is based partly

on his paper and partly on the published work of Brouwer

and Weyl.

It may be said at the outset that from the intuitionist point

of view a calculus is useful merely as a means for understanding

the ideas expressed by it and hence no particular emphasis

is laid upon the semantic or meta-systematic concepts, involved

in the study of the system qua object of investigation, which

are all-important in the corresponding formalist structures.

Heyting uses four primitive concepts in the propositional

calculus, viz. '' a implies b
** a and b aovb '' not a

none of which can be defined in terms of the others. The

sign '' not a ” or ^ a may be better rendered perhaps as

a is impossible for the calculus we are describing is meant

to apply only to mathematical propositions. The chief

difference between this calculus and the Russellian is that

the formula ayr^a is not true. On the other hand

{ay a) is a true formula. This is the so-called

theorem of the absurdity of the absurdity of the law of the

excluded middle.^

^ The sign actually used by Heyting has been replaced here by
^ for typographical reasons.

* It has been shown by V. Ghvenko [Bull. I. de Belgique, 1929)
that if a can be proved in ordinary logic, ^ a is a correct formula
in the intuitionist logic, and that if ^ a can be proved by ordinary
logic, ^ a is true in the intuitionist.

201
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Heyting shows incidentally that the eleven axioms of

the propositional calculus which he uses are independent

of one another and that the tertium non datur, i.e.

the formula ^ a, cannot be proved from his

axioms.

The intuitionist calculus of propositional functions contains

some novel features. In particular, three different signs of

equality or identity are used: {i) p m q, p is the same

object as q*\ (ii) the sign ==, for equality of numbers, etc.,

(iii) the sign s
, used for mathematical identity (as

distinct from equality) and defined afresh for each kind of

mathematical object.

The formula p ^ p does not hold for all signs p, but is

used to characterize those signs which stand for axioms
;

e.g. the axiom 6.1 reads 1=1, translated '1 is an

object ' {sic).

The chief divergences of this calculus from that of the

logisticians ^ are (i) the fact that neither of the signs {x) or {Ex)

can be defined in terms of the other, (ii) the introduction of

the sign (J)a which may be translated as ‘‘ the expression

obtained from a when x, wherever it occurs in a, is replaced

by the sign p In terms of the sign (J) and = it is

possible to define the expression g {x) which may be translated

as **
g does not contain x”. This makes it possible to

distinguish between functional and propositional variables

without using different kinds of letters for the two as in

Principia Mathematica.

The properties of natural numbers are deduced from Peano's

axioms, the following concepts being taken as primitive

:

€,
{** is a *')

; x‘p = (*' the x of p ”) N (*‘ natural number ”)

seq (“ successor of).

^ Cf,, e.g., Hilbert-Ackermann, Grundgesetze der Logik.
• The use of this sign seems to have been first intr^uced by Von

Neumann (** Zur Hilbertschen Beweistheorie **
: Mathematische

Zsitschrift, vol. xxvi, 1927).
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We now come to the intuitionist definition of sets.^ The

definition of these, as of all mathematical entities in the

intuitionist scheme, is based upon the basal intuition which

supplies the infinite sequence of the natural numbers.

Thus it is fundamental for the intuitionist definition of sets

that we should be given an unending sequence of signs,

defined by specifying the first member of the sequence and a

law for deducing any member from the one which immediately

precedes it . It is convenient to use for this purpose the

sequence ^ of integers : 1, 2, 3, . . . It is the members of this

sequence that Brouwer calls ' Nummern ' in his definition

of sets, and it is to them that reference will be made when

speaking of * integers ' in what follows.

We have to consider infinite sequences of integers chosen

at random, with repetitions permitted. In such sequences the

members will in general obey no regular law of formation,

and the sequence can be considered as constructed by

successive arbitrary choices of an integer, each such choice

being completely independent of the previous choices. Such

an infinite sequence will be called a choice-sequence (Brouwer :

‘ Wahlfolge ’).

A set is a law which correlates groups of signs in the

^ The definition as given by Brouwer is very obscure and is therefore

reproduced here to guard against possible misinterpretation :
“ Eine

Menge ist ein Gesetz, auf Grund dessen, wenn immer wieder eine

willkiirliche Nummer gewahlt wird, jede dieser Wahlen entweder eine

bestimmte Zeichenreihe mit oder ohne Beendigung des Prozesses
erzeugt, oder aber die Hemmung des Prozesses mitsamt der definitiven

Vernichtung seines Resultates herbeifiihrt, wobei fiir jedes n > \,

nach jeder unbeendigten und ungehemmten Folge von w - 1 Wahlen,
wenigstens eine Nummer angegeben werden kann, die, wenn sie als

M-te Nummer gew^hlt wird, nicht die Hemmung des Prozesses
herbeifiihrt. Jede in dieser Weise von einer unbegrenzten Wahlfolge
erzeugte Folge von Zeichenreihen inklusive des charakters ihrer

Forts^tzbarkeitsfreiheit, welche sich nach jeder Wahl beliebig {eventuell

bis zur vblligen Bestimmtheit, jedenfalls aber einem Mengengesetze
entsprechend) verengem kann (welche also im allgemein nicht fertig

darstellbar ist), heisst ein Element der Menge, Die gemeinsame
Entstehungsart der Elemente einer Menge M werden wir kurz ebenfalls

als die Menge M bezeichnen." {Mathematische Annalen, vol. Ixxiii,

p. 245.)
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following fashion to some of all the possible arbitrary choice-

sequences which can be obtained from the members of J : for

any given specific arbitrary choice-sequence the law may

(i) correlate some combination of signs to the first integer in

the choice-sequence
;

this group of signs may be called the

first stage in the element corresponding to that sequence.

Or (ii) the law may specify that there is no group of signs

correlated to the first integer.

If there is a first stage for the particular choice-sequence

considered, the law may specify that the process ends at

that stage, which is then the final stage for that sequence.

If this is not the case we proceed to the second integer of the

choice-sequence, for which the law may again correlate either

(i) nothing, or (ii) a second stage which is final, or (iii) a non-

final stage. If case (iii) arises we proceed to the third integer

of the choice sequence, and so on. If, at any point of this

procedure, case (i) arises then there is said to be no element

corresponding to that particular sequence. Thus for any

choice-sequence for which case (i) never arises at any stage

we shall obtain a sequence of successive groups of signs

correlated to the successive integers of the choice-sequence.

If case (ii) arises at any stage the sequence of signs so obtained

has a finite number of members ; while if case (iii) always

arises the sequence obtained has an infinite number of

members. There is, however, one restriction on the above

process which the law in question must conform to, viz. for

each n > 1, if there is a choice-sequence, A say, for which

there is a non-final « — 1 th stage then there is some choice-

sequence B which has the same first w — 1 integers as A
and has some wth (final or non-final) stage correlated to it.

The sequences of signs which are constructed in the above

fashion are called elements of the set It is a direct consequence

of the method of defining a set that we can never completely

specify all the elements of the set and may not be able to
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say, in general, whether some particular sequence of signs

is an element of the set or not. Sometimes it is convenient

to abstract from the particular choice-sequences to which

the elements of a set correspond and to think of the set as

the process which generates its elements. Thus in the first

use of the term set we have in view the law by which the

elements of the set can be constructed from choice-sequences ;

in the second use we emphasize rather what it is that these

elements have in common, i.e. the manner in which all these

elements can be obtained irrespective of the particular choice-

sequences to which they are correlated.

Examples of such sets are (i) the set A whose elements

are the integers of This set can be generated by the

following simple law :
“ Every choice-sequence has a first

stage which is final and is for each such sequence the integer

which comes first in that sequence.*' (ii) C is the set of infinite

sequences of integers, repetitions allowed. This could be

generated by the following law. For each choice-sequence

the «th stage in the corresponding element is the nth integer

of that choice-sequence, no stages being final."

In order to complete this account of what the intuitionists

mean by set we must make precise what is meant by two

elements of the same or different sets being identical and

what is meant by two sets being identical.

Two elements of sets are said to be identical when we

know that, for every n, the nth stages of both are the same

combination of signs. Two sets are said to be identical when

for each element of the one set an identical element of the

other set can be given. Sets and elements of sets are called

mathematical entities.

In addition to sets, the intuitionists have a hierarchy of

species (Brouwer : spezies). The word species is roughly

synonymous with property and is used in the following

contexts : If ^ is a set iix, the set species of x is the property
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which all those elements of sets possess which are identical

with members of x. Thus being a set-species is the property

which all x'% possess which are members of some set y. Being

a species of order zero is the property of being either an

element of a set or a set-species. Being a species of order one

is a property of all those properties which {a) can only be

predicated of species of order zero and (6) if they hold for

a species of order zero hold for all species of order zero which

are identical with it.^ Similarly species of order x may be

defined. Species take the place in intuitionist mathematics

of classes in the formalist and logistic developments of the

subject.

The peculiar feature of the above definition of sets is our

inevitable partial ignorance as to which signs axe elements

of the set. We shall know that some signs are definitely

elements of the set and that other signs are definitely not

elements of the set but there may be intermediate cases for

which it is impossible to decide. This leads to much complexity.

In the case of the mutual relationship of two sets, for instance,

whereas in the classical theory of sets four cases arise according

as whether the two sets do or do not, partially or wholly,

include members of each other, the corresponding cases in

intuitionist mathematics may be many more in number.

It may be noticed first that two elements of a set are called

different (Brouwen : verschieden) when it is impossible for

them to be identical, i.e. when we are certain that it will

never be possible, in the course of their development as

sequences, to prove their equality. So for two sets M, N the

following important cases may arise. (1) It may be impossible

for M, N to be identical—we say M , N are different ; (2) M
projects (herausragt) out of N when N has an element which

is different from all elements of M
; (3) Af , N are congruent

^ The above definition of species differs from the one given by
Brouwer in Mathematische Annalen, vol. xciii, p. 245, but is the simplified
account given by Heyting (loc. cit., p. 167).
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when neither can project out of the other, i.e. when every

property which cannot possibly apply to the elements of the one

cannot possibly apply to the elements of the other
; (4) M, N

may be said to be exterior to one another {elementenfremd) if

they are different and it is impossible for an element of M
to be identical with an element of N, There are exactly

corresponding relations for species.

This complexity is even more apparent at later stages.

Thus, owing to the complexity of the possible relationships

between sets, when the intuitionist comes to define cardinal

numbers as the common property of sets or species which can

be put into one-one correspondence with one another, instead

of the simple group of relationships >,<,== which may

hold between cardinal numbers as usually defined in mathe-

matical textbooks, four such groups of relations appear,

i.e. four different kinds of equality, etc. Fortunately these

four groups have many of their properties in common.

Intuitionist Theory of Cardinal Numbers

In order to show clearly the divergences between the

intuitionist view as to the validity of mathematical theorems

and the more conventional ones it will be convenient to start

with the classical theory of sets of points, for it is here that

the Cantor theory of transfinite ordinals arises. It will

incidentally become clear how the contradictions disappear

for the intuitionist.

First to deal with Burali Forties paradox of the greatest

ordinal number. Some definitions are necessary. In what

follows, we shall be meaning by * set ' what is meant by

this word in the ordinary mathematical use of it, and not

the special intuitionist meaning.

A set is said to be ordered if there is a serial relation R,

such that it, or its converse, holds between every two elements
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of the set, R being such that aRb and bRc implies aRc, A
well-ordered set is one for which every subset has a first member,

i.e. which is a relatum with respect to R for no member of

that subset. Two well-ordered sets, which can be brought

into one-one correspondence in such a way that, if R is the

ordering relation of the one set and R' of the other, and a, b

any two elements of the one set and a', b' the corresponding

elements of the other set, then a'R'b' is true when and only

when aRb is true, are said to have the same ordinal number.

This account will be accepted in substance by the formalist,

who will obtain a>, the ordinal number of the (well-ordered)

series ^ (see p. 203), as his first infinite ordinal number.

To continue with the usual account of the matter, if two

ordinal numbers A and B are not equal one is greater than

the other, say B is greater than A, This means that A can

be brought into a one-one correspondence (satisfying the

conditions of the last paragraph) with a well-ordered subset

oi B. It follows quite simply from the above definitions

that every subset of a well-ordered set is a well-ordered

set whose ordinal number is less than, or equal to, that of the

original set ; also that if a new element is added to a well-

ordered set in such a way that it is ' after * all the elements

of the original set, the new set is well-ordered and has an

ordinal number greater than that of the previous set. The

last construction of course can easily be made precise.

Now on the classical view of the theory of sets, a set is

well-defined if for every mathematical object it is determined

whether it belongs to the set or not, from which we get the

axiom that **
if for any mathematical object it is determined

whether a certain property applies to it or not, then there exists

a set containing nothing hut those objects for which the property

does hold This may be called the axiom of inclusion,

Burali-Forti's paradox now arises in the following way

:

consider the set S composed of all the ordinal numbers
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arranged in order of magnitude. This set, by the above axiom

of inclusion, exists and can easily be shown to be well-ordered

(by the ordering relation greater than). Hence it has an

ordinal number which cannot be exceeded in magnitude by

any other ordinal number. On the other hand, since not

all mathematical objects are ordinal numbers, we may choose

one, a say, which is not an ordinal number, and construct

a well-ordered set S' by putting a at the end of S. S' will

have a subset S and therefore an ordinal number greater than

that of S. So the mathematician is faced with a blank

contradiction.

This contradiction, however, cannot arise for the intuitionist

who does not recognize the validity of the axiom of inclusion

but builds up all his sets on the plan we have already described.

The formalist, too, is forced to modify this axiom in order

to avoid the paradox of the greatest ordinal. Thus 2^rmelo ^

replaces it by " If for all elements of a set it is determined

whether a certain property is valid for them or not, then the

set contains a subset containing nothing but those elements

for which the property does hold " but can give no justifica-

tion for so modifying it except that doing so will avoid this

contradiction.

On the other hand, if the intuitionist is correct, nearly the

whole of Cantor’s theory of ordinal numbers is invalid. For

example, on the classicalview setswhich have the same cardinal

number as a set whose ordinal number is co is called enumerably

infinite and its cardinal number is called Ko- Consider all

those ordinal numbers of sets whose cardinal number is So>

and let us call these ordinal numbers the " denumerably

infinite ordinal numbers This is a concept which the

intuitionist will allow as being clear and well defined. But, in

the usual theory, it is shown that (a) sets with cardinal number

Ko can be ordered in different ways to have various ordinal

^ Mathematische Annalen, vol. Ivi, p. 263.
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numbers and (5) that for every denumerably infinite set of

such ordinal numbers it is possible to assign a new

denumerably infinite ordinal number not belonging to

the set, from whence it is concluded that the set of denumerably

infinite ordinal numbers has a cardinal number greater

than Ko- This cardinal is called Ki and the process is

continued to obtain a whole series of cardinal numbers K 2 »

iia> • • • Koi* • • • corresponding to different sets of ordinal

numbers. The intuitionist, however, while accepting proposi-

tions (a) and (b) says that the proposition Ki is greater than

Ko'' is without meaning. For the intuitionist indeed there

is no infinite cardinal number except Ke-

lt follows from the above that the famous problem of the

continuum, viz. the question whether c, the cardinal number

of the number of points in a line or the number of real numbers

in an interval, coincides with Ki or with one of the other of

the K cardinals mentioned above, has no sense for the

intuitionist.

Thus, if intuitionism is a correct theory, radical alterations

are needed in pure mathematics, but it is unlikely that such

a revolution will be accepted by practising experts until

some agreement has been reached between logisticians,

formalists, and intuitionists. And of such concord there is

at present little sign. Our investigation may therefore suitably

close with a question mark.

P
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96 n. ; in geometrical space,
89. Intuitions of : analyzed,
87-9

;
believed to exist, 87 ;

seldom described, 86. See
also ' Extended infinite

’

Continuum : its notion involves
contradictions, 21

;
problem

of, senseless for intuitionism,

210. The intuitionist inter-

pretation of, 196-200, and
Weyl, 86 n.

Contradictions: in developing
sciences, 3 ;

in mathematics,
4 ;

produced by postulated
infinite divisibility of space,

90 ; logistico-mathematical,
classified, 97 ;

examples, 98-

100 ; solution of, 100
Convention for scope of the x

satisfying <j>x, 74

Das Kontinuum, 124
Dedekind, R., 17 : bases

analyses of continuity on
intuitions, 87 ; definition of

real number, 94-6 ; defects,

109 ; arguments in favour
discussed, 110-11 ; Russell's

modifications. 111
Dedekind section. Definition of, 95
Definition in use : explained, 74 ;

how limited, 73
Definition of : aleph nought, or Nq

,

182 ; argument of a function,

57 (a) ; cardinal number, 180

;

class (simplified), 75 ; com-
plete symbol, 77 ; Dedekind
section, 95 ;

‘ definitions in

use,’ 74 ; equivalence be-
tween propositions, 44 ;

extensional propositional
functions, 68 ;

field of varia-

tion of a variable, 50

;

formal implication, 67

;

‘ ideal element,’ 162 n.

;

implies, 43 ;
incomplete

symbol, 77 ; internal relation,

42 ; logical analysis, 34 ;

logical level, 32 ; logically

misleading symbol, 35

;

logical multiplicity, 33

;

logical type, 32 ; mathe-
matical function, 53,

extensional, 55, intensional,

57 ; mathematical variable,

50 ;
‘ Metamathematics,’

149 ; ordinal number, 208 ;

propositional calculus, 42

;

propositional function
(Russell), 48-9 ; contrasted

with intensional definition,

60 ;
propositional function of

functions, 67
;

quantifiers,

63 ; real number, 95 ;

restricted calculus of pro-
positional functions, 64

;

scope of quantifiers, 65

;

stretch, 91 n. ; tautologies,

45 ; the x which satisfies

<l>x (in use), 74 ; the x’s

satisfying <j>x (in use), 75

;

truth functions, 60 ; truth
value, 63 ; upper bound,
108 ; usages of variables,

51-3, apparent, 52-3,
determinative, 52, formal,

52, illustrative, 51 ;
vague-

ness, 100 ;
values of a

function, 56 {c)
;

values
of a variable, 50

Definitions, how symbolized, 44
De Morgan, A., 16
Descriptions, how analyzed, 70 ;

plural, 71

Dirac, P. A. M., on meaningless-
ness of physics, 159 n.

Emphasis, an element of form in

sentences, 28-9
€-notation of Hilbert, 164
Euclid guilty of fallacious

reasoning, 154
Eudoxus, his treatment of in-

commensurables : incon-
clusive, 93-4

;
generalized

by Dedekind, 95
Excluded Middle, Law of, 186,

195-6, 199
Existence of mathematical

entities, 184
‘ Extended infinite,* 104-5

;

based on confusion of types,

106
Extensionality, Thesis of, 122-3

Form, see Structure
Formalism : a working attitude

rather than a philosophy,

149 ; its interpretation of

mathematics, 148 ; its re-

lation to the logistic and
intuitionist theses, 11-12;
its thesis, 8 ; the programme
of, criticized, 150, 177 ; the
role of intuition in, and
Kant, 190

Foundations of Mathematics, 103,

120
Frege, G., his works, 8, 17
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Function. Mathematical:
Argument of, defined, 57 (a) ;

definition of, 53 ; adapted to
propOvSitional calculus, 60

;

intensional definition of, 57 ;

in the extensional conception,
54 ; its alleged derivation
from propositional descrip-
tions, 69

;
pure mathe-

maticians’ view of, 56 n.

Propositional : Existence of,

inte^reted, 144 ; ex-
tensional, defined, 67 ; how
many, 115; intensional
definition avoids use of orders,

104
;

its definition derived
from that of mathematical
function, 60 ; necessary
restrictions on existence of,

117 ;
Russell’s definition, 48-9

Functions, Propositional functions
of, defined, 67

Functional calculus, see Calculus
of propositional functions

Galileo, 92 n.

Generality, how symbolized, 63
General statements have meaning

only if verifiable, 10, 198
Geometry : Current interpreta-

tion of nature of, 158; how
distinguished from other
branches of mathematics,
158 ; nature of early,

152 ;
non-Euclidean, 156 ;

traditional plan of presenta-
tion, 153

Glivenko, V., on relation be-
tween Aristotelian and in-

tuitionist logic, 201 n.

GdDEL, K., proof that proofs of
the consistency of mathe-
matics lead to contradictions,
150, 167

Hadamand : contra Borel, 184 ;

examines consequences of in-

tuitionism. 185
Heyting, a., his formal calculus

of intuitionist logic, 201-2
Hilbert, D. : axiom system,

163-7
;

geometrical dis-

coveries, 149 ; restrictions on
propositional calculus, 83

;

use of ‘ Vollstandigkeit
96 n.

Hobson, E. W., his conception of
mathematical function, 56 n.

Hypotheses distinguished from
principles, 2

‘ Ideal elements * defined, 162 n.

Identity incorrectly symbolized
in Principia Mathematica,
70-1

Implication : defined, 43 ; how
symbolized, 43 ; not an in-

ternal relation, 43
Implication, Formal, 67
Incommensurables : discovered by

Greeks, 92 ; Eudoxus’ treat-

ment, 93
Incomplete symbol : defined, 77 ;

Moore’s definition, 77 n.

Induction, * Intuitive,' 81
Induction, Mathematical, 82, 177
Infinity, Axiom of, 112 ;

replaced
by a convention, 114-15

Internal relations defined, 42
“ Intuition,” how used by Kant,

187
Intuitionism : and theory of

ordinal numbers, 195 n.,

209-210
;

its notion of

mathematics introduces com-
plexity, 11 ;

propositional

calculus of, 201-7 ;
regards

the continuum problem as

meaningless, 210 ;
relation

to formalist and logistic

theses, 11-12
; theory of

cardinal numbers, 207 ;
thesis

of, 9
' Intuitive,' how used in text, 86

Johnson, W. E., his ' characteriz-

ing tie ', 70

Kronecker : declares only natural
numbers real, 175 ;

reduction
of negative numbers to

algebraic congruences, 176

Lebesgue, identifies existence

and freedom from con-
tradiction, 185

Leibniz, researches in symbolism,
16, 17

Lewis, C. I., his use of ‘ logistic ',

15
Logic: distinction between

systematic and philosophic,

140-2
;
post-Aristotelian view

of its nature, 41

Logical construction, 35
Logical form, described, 41 ;

Russell's definition, 49 n.
" Logistic,' how used in text, 15

Logistic school : its construction of

cardinal numbers, 182 ;
its

programme, 7 ; relation to
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formalism and intuitionism,
11-12

Logistic thesis, The : criticized by
Poincar^, 177 ; opposed by
Wittgenstein, 132-3 ; re-

jected in text, 142, 144
Logistic views of mathematics,

their history, 15-19.

Mach, E., his view of science,

159 n.

Manipulation, Rules of, 46
Mathematical discovery in-

volves a process of synthesis,

172
Mathematics, a : social activity,

10 ;
Static and dynamic

attitudes towards, 170
Mathematics, Pure : a branch of

logic, 8 ;
a series of hypo-

thetical deductions from un-
interpreted axioms, 37, 148 ;

its formal character, 37-40
Matrices, 102
Measurement, how introduced

into pure geometry, 91
" Metamathematics ' defined, 149
Moore, G. E., 20 n.

;
and gw-

tailing relation, 43 n. ; his

analysis of existential pro-
positions an example of

logical analysis, 34 ;
his

definition of incomplete
symbol, 77

Multiplicative, or Zermelo^s,
axiom, 183 ; criticized by
Borel, 184

Multiplicity, Logical, and logical

form, 42 n. ; defined, 33

Number, Cardinal, defined, 180
Number, Ordinal : Contradiction

associated with, 99 ;
defined,

208
Number, Real (Note : Technical

use of * real ’), 85

:

Dedekind’s definition, 94-5
;

mathematical consequences,
96 ;

regarded as provisional

by himself, 96-7

Orders : methods for avoiding use
of, 103 ;

Principia definitions

of, 102-3

Paradoxes, Logistico-mathe-
matical, 97. See also Con-
tradictions

Peano, G., 8 : his researches, 18

Peirce, C. S., 17
Philosophy, its function as

critic, 1

Planck, M., describes invention
of the quantum, 160

PoiNCAR^;, H. : accused logisticians

of circularity, 177 ; sup-
ported an intuitionist

position, 178
Positivists, The Austrian, 122, 128
’ Primitive propositions,’ 45
Principia Mathematica : and

identity, 70-1
;

conventions
of scope, 74 ; insufficiently

precise, 49, 139 ; its ‘ cap ’

notation for functions, 53 n. ;

its distinction between com-
plete and incomplete symbols
criticized, 76 ;

‘ primitive
propositions ’, 45 ; its

principles of manipulation,
46 ; its use of bracket dots,

44
;

purpose of, 18 ; sub-
sequent attempts at improve-
ment, 19 ;

the culminating
achievement of the logis-

ticians, 8 ;
use of orders

criticized, 103 ;
various

criticisms, 140
Principles, distinguished from

hypotheses, 2
Propositional calculus, 41-7 : a

specimen proof, 46-7

;

definition, 42 ;
incomplete-

ness of, 167 ; its advantages,
45 ; Principia account un-
satisfactory, 141

Quantifiers : definition of, 63 ;

order of, needs consideration,

65 ;
scope of, defined, 65

Ramsey, F. P., 119-121 :

definition of truth functions
of propositional functions,

120 ;
extensional notion of

propositional function, 56 n.

;

fallacious proof that axiom
of reducibility contingent,

117; his account of

formalism criticized, 20 n. ;

his method for avoiding intro-

duction of orders, 103 ; on
the intuitionist school, 186 n.

Reducibility, Axiom of: arguments
for, 112 ; as a dogma, 5

;

Chwistek’s interpretation,

136; criticized, 117;
described. 111 ;

implies
existence of c propositional
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functions, 115; involved in

Principia definition of

identity, 71 ;
neutralizes

theory of types, 113; rule for

constructing symbols, 114

Relations, Internal, defined, 42

Russell, B. A. W. : contradictions

invented by, 98-9
;
definition

of form, 49 n.
;

definition of

propositional function, 48-9
;

definition of pure mathe-
matics, 7 ;

modification of

Dedekind’s definition of

real number. 111 ;
on

Achilles and the Tortoise,

90 n.
;

on classes, 80 n‘ ;

views concerning the forms of

propositions criticized, 61

Saccheri, G., tries to prove the

parallel axiom, 155
SchrOder, E., 16

Science : Brouwer’s conception,

192 ;
how it develops, 159 ;

increasing concern with
structure, 147

Scope, of quantifiers, defined, 65
Semantics, 137. See also Meta-

mathematics
Sets, Intuitionist definition of, 203

Sets of points, Theory of, 178-183
‘ Species ’ or property, Intuitionist

definition of, 205
Structure : of symbols, sup-

pressed, 27 ;
of systems,

described, 24-5
Symbol, its logical type, 50
Symbol, Logically misleading,

definition of, 35
Symbolizing, method for : all, 63

and, 43 ;
brackets, 44

classes, 73 ;
definitions, 44

descriptions, 70 ;
equiva-

lence, 44 ;
implies, 43 ;

not-

p, 43 ; or, 43 ;
successive

quantifiers of same kind,

65 ; there is a, 63 ;
the x

which satisfies <l>x, 72 ;
the

x's satisfying <j>x, 73
Symbols, Incomplete : defined in

text, 77 ;
how defined in

Principia Mathematica, 76

;

Moore's definition, 77 n. ;

ontological status, 79 ; their

importance, 78
'

Systems, compared with
languages, 24

Tautologies defined, 45
Tractatus Logico-Philosophicus

,

19 ; and multiplicity, 42
Type, Logical, of symbols de-

fined, 32
Types : Confusion of, in notion of

the ‘ extended infinite ’, 106,

in theorem of upper bound,
107 ; how treated in

Principia Mathematica, 111
Types, Theory of : first part, 101 ;

neutralized by axiom of

reducibility, 113; supple-
mented by hierarchy of

orders, 101 ; to restrict use of

class symbols, 83
Truth function defined, 60
Truth value defined, 63

‘ Urintuition,' see Basal intuition

Vagueness, 100
Values, of a mathematical

function, defined, 56 (c)

Values, of a variable, defined, 50
Variables : definition, 50 ;

de-

finition of field of variation,

50 ;
how occurring in de-

ductive systems, 39 ;
their

usages, 51-3, apparent, 53,

determinative, 52, formal,

52, illustrative, 51

‘ Wahlfolge,’ see ‘ Arbitrary choice

sequences

'

Waismann, F., fallacious proof of

contingency of axiom of

reducibility, 117

Weierstrass : researches in the

theory of functions, 174 ;

tried to reduce all mathe-
matical entities to natural

numbers, 175
Weyl, H., 124-8 : his con-

tradiction, 98 ;
solved, 101 ;

on Brouwer’s continuum,
86 n.

Whitehead, A. N., 8
Wittgenstein, L., 129-134 : In-

debtedness of author to,

36 n.
;

rejects identity, 71 n.

Word order, 28

Zeno, his paradox of Achilles and
the Tortoise, 90

Zermelo, his axiom, 183 ; sub-

stitute for axiom of in-

clusion, 209
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Supplementary Essays by Professor B. Malinowski and F. G.

Crookshank, M.D., Third edition, 12s. 6d. net.

* The authors attack the problem from a more fundamental point of view
than that from which others have dealt with it. The importance of their

work is obvious. It is a book for educationists, ethnologists, grammarians,
logicians, and, above all, psychologists. The book is written with admirable
clarity and a strong sense of humour.’

—

New Statesman.

Scientific Method. By A. D. Ritchie, Fellow of Trinity College,

Cambridge. los. 6d. net.

‘ The fresh and bright style of Mr. Ritchie's volume, not without a salt of

humour, makes it an interesting and pleasant book for the general reader.

Taken as a whole it is able, comprehensive, and right in its main argument.

'

—British Medical Journal. ‘ His brilliant book.'

—

Daily News.

The Psychology of Reasoning. By Eugenio Rignano, Pro-

fessor of Philosophy in the University of Milan. 14s. net.

‘ The theory is that reasoning is simply imaginative experimenting. Such
a theo^ offers an easy explanation of error, and Professor Rignano draws
it out in a very convincing manner.'

—

Times Literary Supplement.

Chance, Love and Logic : Philosophical Essays. By Charles

S. Peirce. Edited with an Introduction by Morris R. Cohen.

Supplementary Essay by John Dewey. 12s. 6d. net.

It is impossible to read Peirce without recognizing the presence of a superior

mind. He was something of a genius.’—F. C. S. Schiller, in Spectator.
*

It is here that one sees what a brilliant mind he had and how independently
he could think.'

—

Nation.
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The Nature of Laughter. By J. C. Gregory. los. 6d. net.

* Mr. Gregory, in this fresh and stimulating study, joins issue with all his

predecessors. In our judgment he has made a distinct advance in the study
of laughter ; and his remarks on wit, humour, and comedy, are most dis-

criminating.’

—

Journal of EduccUion.

The Philosophy of Music. By William Pole, F.R.S,
,
Mus. Doc,

Edited with an Introduction by Professor E, J. Dent and a
Supplementary Essay by Dr. Hamilton Hartridge. los. 6d. net.

‘ This is an excellent book and its re-issue should be welcomed by all who
take more than a superficial interest in music. Dr. Pole possessed not only a
wide knowledge of these matters, but also an attractive style, and this

combination has enabled him to set forth clearly and sufficiently completely
to give the general reader a fair all-round grasp of his subject.'

—

Discovery.

Individual Psychology. By Alfred Adler. Second edition,

i8s. net.
* He makes a valuable contribution to psychology. His thesis is extremely
simple and comprehensive : mental phenomena when correctly understood
may be regarded as leading up to an end which consists in establishing the
subj ect's superiority. '

—

Discovery.

The Philosophy of ‘ As If*. By Hans Vaihinger. 25s. net.

* The most important contribution to philosophical literature in a quarter
of a century. Briefly, Vaihinger amasses evidence to prove that we can
arrive at theories which work pretty well by “ consciously false assump-
tions ”. We know that these fictions in no way reflect reality, but we treat
them as if they did. Among such fictions are : the average man, freedom,
God, empty space, matter, the atom, infinity.'

—

Spectator.

Speculations : Essays on Humanism and the Philosophy of Art.

By T, E, Hulme. Edited by Herbert Read. Frontispiece and
Foreword by Jacob Epstein, los. 6d. net.

‘ With its pecuUar merits, this book is most unlikely to meet with the
slightest comprehension from the usual reviewer. Hulme was known as a
brilliant talker, a brilliant amateur of metaphysics, and the author of two
or three of the most beautiful short poems in the language. In this volume
he appears as the forerunner of a new attitude of mind.’

—

Criterion.

The Nature of Intelligence* By L. L. Thurstone, Professor

of Psychology in the University of Chicago. los. 6d. net.

* Prof. Thurstone distinguishes three views of the nature of intelligence,

the Academic, the Psycho-analytic, the Behaviourist. Against these
views, he expounds his thesis that consciousness is unfinished action. His
book is of the first importance. All who make use of mental tests will do
well to come to terms with his theory.’

—

Times Literary Supplement.

Telepathy and Clairvoyance. By Rudolf Tischner, Preface

by E. J, Dingwall, With 20 illustrations, los. 6d. net.

* Such investigations may now expect to receive the grave attention of

modern readers. They will find the material here collected of great value
and interest. The chief interest of the book lies in the experiments it

records, and we think that these will persuade any reader free from violent
prepossessions that the present state of the evidence necessitates at least

an open mind regarding their possibility.’

—

Times Literary Supplement,
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The Growth ofthe Mind : an Introduction to Child Psycholo^.
By K, Koffka, Professor in the University of Giessen. Fifth

edition, revised and reset, 15s. net.

‘ His book is extremely interesting, and it is to be hoped that it will be
widely read.’

—

Times Literary Supplement. Leonard Woolf, reviewing this

book and the following one in the Nation, writes :
' Every serious student

of psychology ought to read it {The Apes'], and he should supplement it by
reading The Growth ofthe Mind, for Professor Koffka joins up the results of

Kbhler’s observations with the results of the study of child-psychology.'

The Mentality of Apes. By Professor W. Koehler, of Berlin

University. Third edition, with 28 illustrations, los. 6d. net.

‘ May fairly be said to mark a turning-point in the history of psychology.
The book is both in substance and form an altogether admirable piece of

work. It is of absorbing interest to the psychologist, and hardly less to the
layman. His work will always be regarded as a classic in its kind and a

model for future studies.’

—

Times Literary Supplement.

The Psychology of Religious Mysticism. By Professor James
H, Leuba. Second edition, 15s. net.

‘ Based upon solid research.’

—

Times Literary Supplement. ‘ The book is

fascinating and stimulating even to those who do not agree with it, and it

is scholarly as well as scientific.'

—

Review of Reviews. ‘ The most success-

ful attempt in the English language to penetrate to the heart of

mysticism.’

—

New York Nation.

The Psychology of a Musical Prodigy. By G. Revesz, Director

of the Psychological Laboratory, Amsterdam. los. 6d. net.

‘ For the first time we have a scientific report on the development of a
musical genius. Instead of being dependent on the vaguely marvellous
report of adoring relatives, we enter the more satisfying atmosphere of

precise tests. That Erwin is a musical genius, nobody who reads this

book will doubt.'

—

Times Literary Supplement.

Principles of Literary Criticism. By /. ^ . Richards, Fellow of

Magdalene College, Cambridge, and Professor of English at

Peking University. Fourth edition, los. 6d. net.

‘ An important contribution to the rehabilitation of English criticism

—

perhaps because of its sustained scientific nature, the most important
contribution yet made. Mr. Richards begins with an account of the present
chaos of critical theories and follows with an analysis of the fallacy in

modern aesthetics. '

—

Criterion

.

The Metaphysical Foundations of Modern Science. By
Professor Edwin A . Burtt. 14s. net.

‘ This book deals with a profoundly interesting subject . The critical portion
is admirable.’—Bertrand Russell, in Nation. ‘A history of the origin and
development of what was, until recently, the metaphysic generally asso-

ciated with the scientific outlook. . . .
quite admirably done.’

—

Times Literary Supplement.

The Psychology of Time. By Mary Sturt, M.A. 7s. 6d. net.

' An interesting book, typical of the work of the younger psychologists of

to-day. The clear, concise style of writing adds greatly to the pleasure
of the reader.’

—

Journal of Education.
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Physique and Character. By E. Kretschmer, Professor in the

University of Marburg. With 31 plates, 15s. net.
‘ His contributions to psychiatry are practically unknown in this country,
and we therefore welcome a tra^lation of his notable work. The problem
considered is the relation between human form and human nature.

Such researches must be regarded as of fundamental importance. We
thoroughly recommend this volume.’

—

British Medical Journal.

The P^chology of Emotion : Morbid and Normal. By
John i . MacCurdy, M.D. 25s. net.

‘ There are two reasons in particular for welcoming this book. First, it is

by a psychiatrist who takes general psychology seriously. Secondly, the
author presents his evidence as well as his conclusions. This is distinctly

a book which should be read by all interested in psychology. Its subject

is important and the treatment interesting.’

—

Manchester Guardian.

Problems of Personality : Essays in honour of Morton Prince,

Edited by A, A, Robach, Ph.D, Second edition, i8s. net.

‘ Here we have collected together samples of the work of a great many of

the leading thinkers on the subjects which may be expected to throw light

on the problem of Personality. Some such survey is always a tremendous
help in the study of any subject. Taken all together, the book is full of

interest.’

—

New Statesman.

The Mind and its Place in Nature. By C. D. Broad, Litt.D.,

Lecturer in Philosophy at Trinity College, Cambridge. Second
impression. i6s. net.

‘ Quite the best book that Dr. Broad has yet given us, and one of the most
important contributions to philosophy made in recent times.’

—

Times
Literary Supplement. '

Full of accurate thought and useful distinctions

and on this ground it deserves to be read by all serious students.'—Bertrand
Russell, in Nation.

Colour-Blindness. By Mary CoUins, M.A., Ph.D. Introduc-

tion by Dr. James Drever. With a coloured plate, 12s. 6d. net.

‘ Her book is worthy of high praise as a painstaking, honest, well-written
endeavour, based upon extensive reading and close original investigation,

to deal with colour-vision, mainly from the point of view of the psychologist.

We believe that the book will commend itself to everyone interested in

the subject.’

—

Times Literary Supplement.

The History of Materialism. By F. .4 . Lange. New edition in

one volume, with an Introduction by Bertrand Russell, F.R.S.

15s. net.
‘ An immense and valuable work.'

—

Spectator. ' A monumental work of

the highest value to all who wish to know what has been said by advocates
of Materialism, and why philosophers have in the main remained uncon-
vinced.’—From the Introduction.

Psyche : the Cult of Souls and the Belief in Immortality among
the Greeks. By Erwin Rohde. 25s. net.

' The production of an admirably exact and unusually readable translation

of Rohde’s great book is an event on which all concerned are to be con-

gratulated. It is in the truest sense a classic, to which all future scholars

must turn if they would learn how to see the inward significance of primitive
cults.’

—

Daily News.
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Educational Psychology. By Charles Fox, Lecturer on
Education in the University of Cambridge. Third edition,

los. 6d. net.
‘ A worthy addition to a series of outstanding merit.'

—

Lancet. ' Certainly

one of the best books of its kind.’

—

Observer. * An extremely able book,
not only useful, but original.*

—

Journal of Education.

Emotion and Insanity. By S. Thalbitzer, Chief of the Medical

Staff, Copenhagen Asylum. Preface by Professor H, Hoffding.

7s. 6d. net.
' Whatever the view taken of this fascinating explanation, there is one plea

in this book which must be whole-heartedly endorsed, that psychiatric

research should receive much more consideration in the effort to determine
the nature of normal mental processes.'

—

Nature.

Personality. By R, G. Gordon, M.D,, DSc. Second impres-

sion. los. 6d. net.
‘ The book is, in short, a very useful critical discussion of the most important
modern work bearing on the mind-body problem, the whole knit together

by a philosophy at least as promising as any of those now current.’

—

Times
Literary Supplement. ‘ A significant contribution to the study of

personality.'

—

British Medical Journal.

Biological Memory. By Eugenio Rignano, Professor of

Philosophy in the University of Milan. los. 6d. net.
' Professor Rignano’s book may prove to have an important bearing on the

whole mechanist-vitalist controversy. He has endeavoured to give meaning
to the special property of “ livingness.” The author works out his theory

with great vigour and ingenuity, and the book deserves the earnest atten-

tion of students of biology.’

—

Spectator.

Comparative Philosophy. By Paul Masson-OurseL Intro-

duction by F. G. Crookshank, M.D., F.R.C.P, los. 6d. net.

‘ He is an authority on Indian and Chinese philosophy, and in this book
he develops the idea that philosophy should be studied as a series of natural

events by means of a comparison of its development in various countries

and environments.'

—

Times Literary Supplement.

The Language and Thought of the Child. By Jean Piaget,

Professor at the University of Geneva. Preface by Professor

E. Claparkde, los. 6d. net.
‘ A very interesting book. Everyone interested in psychology, education,

or the art of thought should read it. The results are surprising, but perhaps

the most surprising thing is how extraordinarily little was previously known
of the way in which children think.'

—

Nation.

Crime and Custom in Savage Society. By B, Malinowski,

Professor of Anthropology in the University of London.

With 6 plates, 5s. net.
‘ A book of great interest to any intelligent reader.'

—

Sunday Times.
‘ This stimulating essay on primitive

j
urisprudence. '

—

Nature

.

' In bringing

out the fact that tact, adaptability, and intelligent self-interest are not

confined to the civilized races, the author of this interesting study has

rondered a useful service to the humanizing of the science of man.'

—

New
Statesman.
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Psychology and Ethnology. By W. H, R. Rivers, M,D., LiU,D.,

F.RS. Freisice hy G, Elliot Smith, F,RS, 15s.net.
* This notice in no way exhausts the treasures that are to be found in this

volume, which really requires long and detailed study. We congratulate
the editor on producing it. It is a worthy monument to a great man.*

—

Saturday Review. ‘ Everything he has written concerning anthropology is

of interest to serious students.*

—

Times Literary Supplement.

Theoretical Biology. By J. von Uexkiill. i8s. net.

‘ It is not easy to give a critical account of this important book. Partly
because of its ambitious scope, that of re-setting biological formulations
in a new synthesis, partly because there is an abundant use of new terms.
Thirdly, the author's arguments are so radically important that they cannot
justly be dealt with in brief compass. No one can read the book without
feeling the thrill of an unusually acute mind.'—J. Arthur Thomson, in

Journal of Philosophical Studies.

Thought and the Brain. By Henri Pieron, Professor at the

College de France. 12s. 6d. net.

' A very valuable summary of recent investigations into the structure and
working of the nervous system. He is prodigal of facts, but sparing of

theories. His book can be warmly lecommended as giving the reader a
vivid idea of the intricacy and subtlety of the mechanism by which the
human animal co-ordinates its impressions of the outside world.'

—

Times
Literary Supplement.

Sex and Repression in Savage Society. By B. Malinowski,

Professor of Anthropology in the University of London,
los. 6d. net.

' This work is a most important contribution to anthropology and
psychology, and it will be long before our text-books are brought up to the
standard which is henceforth indispensable.'

—

Saturday Review.

Social Life in the Animal World. By F. Alverdes, Professor

of Zoology in the University of Marburg. los. 6d. net.

' Most interesting and useful. He has collected a wealth of evidence on group
psychology.'

—

Manchester Guardian. ‘ Can legitimately be compared with
Kohler’s Mentality of Apes.*—Nation. ‘ We have learnt a great deal from
his lucid analysis of the springs of animal behaviour.’

—

Saturday Review.

The Psychology of Character. By. A, A. Roback, Ph.D.
Third edition, 21s. net.

‘ He gives a most complete and admirable historical survey of the study of

character, with an account of all the methods of approach and schools of

thought. Its comprehensiveness is little short of a miracle ; but Dr.
Roback writes clearly and well ; his book is as interesting as it is erudite.’

—

New Statesman.

The Social Basis of Consciousness. By Trigant Burrow,
M.D,, Ph.D. I2S. 6d. net.

' A most important book. He is not merely revolting against the schema-
tism of Freud and his pupils. He brings something of very great hope for

the solution of human incompatibilities. Psycho-analysis already attacks
problems of culture, religion, politics. But Dr. Burrow’s book seems to
promise a wider outlook upon our common life.'

—

New Statesman.
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The Effects of Music. Edited by Max Schoen. 15s. net.

‘ The results of such studies as this confirm the observations of experience,

and enable us to hold with much greater confidence views about such things

as the durability of good music compared with bad.'

—

Times Literary

Supplement.
* The facts marshalled are of interest to all music-lovers, and

particularly so to musicians.*

—

Musical Mirror.

The Analysis of Matter, By Bertrand Russell, F.R.S. 21s.

net.

‘ Of the first importance not only for philosophers and physicists but for

the general reader too. The first of its three parts supplies a statement
and interpretation of the doctrine of relativity and of the quantum theory,

done with his habitual uncanny lucidity (and humour), as is indeed the

rest of the book.’

—

Manchester Guardian. * His present brilliant book is

candid and stimulating and, for both its subject and its treatment, one of

the best that Mr. Russell has given us.’

—

Times Literary Supplement.

Political Pluralism : a Study in Modem Political Theory. By
K, C. Hsiao. los. 6d. net.

‘ He deals with the whole of the literature, considers Gierke, Duguit,

Krabbe, Cole, the Webbs, and Laski, and reviews the relation of pluralistic

thought to representative government, philosophy, law, and international

relations. There is no doubt that he has a grasp of his subject and breadth

of view.'

—

Yorkshire Post.
*

This is a very interesting book.'

—

Mind.

The Neurotic Personality. By R. G. Gordon, M.D., D.Sc.,

F.R.C.P.Ed. los. 6d. net.

‘ Such knowledge as we have on the subject, coupled with well-founded

speculation and presented with clarity and judgment, is offered to the

reader in this interesting book.’

—

Times Literary Supplement. ‘ A most
excellent book, in which he pleads strongly for a rational viewpoint towards

the psychoneuroses.'

—

Nature.

Problems in Psychopathology. By T. W. Mitchell, M.D.
9s. net.

‘ A masterly and reasoned summary of Freud's contribution to psychology.

He writes temperately on a controversial subject.'

—

Birmingham Post.

' When Dr. Mitchell writes anything we expect a brilliant effort, and we are

not disappointed in this series of lectures.'

—

Nature.

Religious Conversion. By Sante de Sanctis, Professor of

Psychology in the University of Rome. 12s. 6d. net.

‘ He writes purely as a psychologist, excluding all religious and metaphysical

assumptions. This being clearly understood, his astonishingly well-

documented book will be found of great value alike by those who do, and
those who do not, share his view of the psychic factors at work in conversion.

'

Daily News.

Judgment and Reasoning in the Child. By Jean Piaget,

Professor at the University of Geneva. los. 6d. net.

‘ His new book is further evidence of his cautious and interesting work.

We recommend it to every student of child mentality.’

—

Spectator. ‘ A
minute investigation of the mental processes of early childhood. Dr. Piaget

seems to us to underrate the importance of his investigations. He makes
some original contributions to logic.’

—

Times Literary Supplement.
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The Art of Interrogation. By E, R, Hamilton, MA., BSc,,
Lecturer in Education, University College of North Wales.

Introduction by Professor C. Spearman, F.RS, 7s. 6d, net.

' His practical advice is of the utmost possible value, and his book is to

be recommended not only to teachers but to all parents who take any
interest in the education of their children. It sets out first principles with
lucidity and fairness, and is stimulating.'

—

Saturday Review.

The Growth of Reason: a Study of Verbal Activity. By
Frank Lorimer, Lecturer in Social Theory, Wellesley College,

los. 6d. net.

* A valuable book in which the relation of social to organic factors in thought
development is traced, the argument being that while animals may live

well by instinct, and primitive communities by culture patterns, civiliza-

tion can live well only by symbols and logic.'

—

Lancet.

The Trauma of Birth. By Otto Rank. los. 6d. net.
‘ His thesis asserts that the neurotic patient is still shrinking from the pain
of his own birth . This motive of the birth trauma Dr. Rank follows in many
aspects, psychological, medical, and cultural. He sees it as the root of
religion, art, and philosophy. There can be no doubt of the illumination
which Dr. Rank’s thesis can cast on the neurotic psyche.'

—

Times Literary

Supplement.

Biological Principles. By J. H. Woodger, B.Sc., Reader in

Biology in the University of London. 21s. net.
* The task Mr. Woodger has undertaken must have been very difficult and
laborious, but he may be congratulated on the result.'

—

Manchester Guardian.
' No biologist who really wi^es to face fundamental problems should omit
to read it.’

—

Nature.

Principles of Experimental Psychology. By H. Pieron,

Professor at the College de France. los. 6d. net.
' Treating psychology as the science of reactions, Professor Pi6ron ranges
over tlic whole field in a masterly r6sum4. We do not know of any general
work on the subject which is so completely modem in its outlook. As an
introduction to the whole subject his book appears to us very valuable.'

Times Literary Supplement,

The Statistical Method in Economics and Political Science.

By P. Sargant Florence, M A., Ph.D., Professor of Commerce
in the University of Birmingham. 25s. net.

' It sums up the work of all the best authorities, but most of it is the author's
own, is fresh, original, stimulating, and written in that lucid style that one
has been led to expect from him. Its breadth and thoroughness are
remarkable, for it is very much more than a mere text-book on statistical

method.'

—

Nature.

Human Speech. By Sir Richard Paget, Bt., FJnsLP. With
numerous illustrations. 25s. net.

‘ There is a unique fascination about a really original piece of research. The
process of detecting one of Nature's secrets constitutes an adventure of the
mind almost as thrilling to read as to experience. It is such an adventure
that Sir Richard Paget describes. The gist of the theory is that speech
is a gesture of the mouth, and more especially of the tongue. We feel that
we can hardly praise it too highly.'

—

Times Literary Supplement.
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The Foundations of Geometry and Induction. By Jean
Nicod. Introduction by Bertrand Russell, F,RS, i6s. net.

' Anyone on first reading these two essays might be tempted to underrate
them, but further study would show him his mistake, and convince him that
the death of their author at the age of thirty has bron a most serious loss

to modem philosophy.’

—

Journal of Philosophical Studies.

Pleasure and Instinct : a Study in the Psychology of Human
Action. By A. H, B. Allen. 12s. 6d. net.

’ An eminently clear and readable monograph on the much-discussed
problem of the nature of pleasure and unpleasure. Since this work
amplifies some of the most important aspects of general psychology, the
student will find it useful to read in conjunction with his text-book.’

—

British Medical Journal.

History of Chinese Political Thought, during the early Tsin

Period. By Liang Chi-Chao. With 2 portraits, los. 6d. net.

* For all his wide knowledge of non-Chinese political systems and the breadth
of his own opinions, he remained at heart a Confucianist. Amidst the

dmms and trumpets of the professional politicians, this great scholar's

exposition of the political foundations of the oldest civilization in the world
comes like the deep note of some ancient temple bell.’

—

Times Literary

Supplement.

Five Types of Ethical Theory. By C. D. Broad, Litt.D.,

Lecturer at Trinity College, Cambridge. i6s. net.

* A book on ethics by Dr. Broad is bound to be welcome to all lovers of clear

thought. There is no branch of philosophical study which stands more in

need of the special gifts which mark all his writings, great analytical acumen,
eminent lucidity of thought and statement, serene detachment from
irrelevant prejudices.'

—

Mind.

The Nature of Life. By Eugenio Rignano, Professor of

Philosophy in the University of Milan. 7s. 6d. net.

’ In this learned and arresting study he has elaborated the arguments of

those biologists who have seen in the activities of the simplest organisms
purposive movements inspired by trial and error and foreshadowing the

reasoning powers of the higher animals and man. It is this purposiveness

of life which distinguishes it from all the inorganic processes.’

—

New
Statesman.

The Mental Development of the Child. By Karl Buhler,

Professor in the University of Vienna. 8s. 6d. net.

‘ He summarizes in a masterly way all that we have really learned so far

about the mental development of the child. Few psychologists show a
judgment so cool and so free from the bias of preconceived theories. He
takes us with penetrating commentsthrough the silly age, the chimpanzee
age, the age of the grabber, the toddler, the babbler.'

—

Times Literary

Supplement.

The Child’s Conception of Physical Causality. By Jean
Piaget, Professor at the University of Geneva. 12s. 6d. net.

' Develops further his valuable work. Here he endeavours to arrive at

some idea of the child's notions of the reasons behind movement, and hence
to consider its primitive system of physics. His results are likely to prove
useful in the study of the psychological historv of the human race, and in

the understanding of primitive peoples, as well as that of the child. His
method is admirable.’

—

Saturday Review.
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The Social Life of Monkeys and Apes. By S. Zuckerman,
DSc,, M.R,C.S. With 24 plates, 15s. net.

‘ A graphic and frank account of the amazing doings of the baboons he
watched. It is no exaggeration to claim that the book marks the beginning
of a new epoch in the study of a subject which is the essential foundation of

the biological approach to sociology.'

—

Sunday Times.

The Development of the Sexual Impulses. By R, E. Money-
Kyrle, author of The Meaning of Sacrifice. los. 6d. net.

* Dr. Money-K5rrle has developed his theme with exceptional insight and
sense of proportion. Students who wish to know what psycho-analysis
really implies could hardly find a more stimulating introduction.'

—

Times
Literary Supplement.

Constitution-Types in Delinquency. By W. A. Willemse.

With 32 plates, 15s. net.
* A valuable book which students of delinquency cannot afford to ignore.'

—Times Literary Supplement. ‘ A great deal of valuable material for the
criminologist. '

—

Brain .

Mencius on the Mind. By /. A. Richards, author of

Principles of Literary Criticism. los. 6d. net.

* His very interesting and suggestive book. He takes certain passages
from Mencius and attempts a literal rendering, as an introduction to his

general theme, the difficulty of translation.'

—

i^ew Statesman.

The Sciences of Man in the Making. By Professor E. A.
Kirkpatrick. 15s. net.

‘ Introduces the reader to scientific method and to the points of view of

anthropology and ethnology, of physiology and hygiene, of eugenics and
euthenics, of economic and political science, of sociology and education,

of religion and ethics.'

—

Journal of Education.

The Psychology of Consciousness. By C. Daly King.

Introduction by Dr. W. M. Marston. 12s. 6d. net.

‘ He has a light touch, but before bringing forward his own thesis he discusses

the various schools of thought, including the psychonic theory. He argues
that what they study is really a branch of physiology. The only real

psychology is to investigate consciousness.'

—

Birmingham Post.

The Psychology of Animals, in Relation toHuman Psychology.

By F. Alverdes, Professor at Marburg University. 9s. net.
‘ May be thoroughly recommended as a clear and simple introduction to

the study of animal behaviour from the psychological point of view.'

—Science Progress.

The Gestalt Theory, and the Problem of Configuration. By
Bruno Petermann. Illustrated, 15s. net.

‘ In the book before us Dr. Petermann has set himself to examine practically

the whole gestalt literature, and has produced what is not only an exceeding-

ly useful summary but an acute critique.'

—

Times Literary Supplement.

The Theory of Fictions. By Jeremy Bentham. Edited, with

an Introduction and Notes, by C. if. Ogden, 12s. 6d. net.

‘ A thorough study of it will prove it to be a mine of information. Mr,
Ogden has done a real service to philosophy by pubUshing this book, which
will be considered by many as a revelation.'

—

Nature.
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Ethical Relativity. 'ByE.A.Westermarck, Ph.D,, Hon.LL.D.,
author of A History of Human Marriage, 12s. 6d. net.

' This very important work. . . . It is of great advantage to have his

theoretical doctrine in this separate and considered form. In these days it

is a refreshment to have a writer who attempts to throw light on right and
wrong by tracing them back to their origin.'

—

Manchester Guardian.

The Spirit of Language in Civilization. By K, Vossler.

I2S. od. net.
‘ Even if this chapter [on language communities] stood alone the book
would be well worth reading. The remainder discusses the relation of
language and religion, of language and science, and of language and poetry.
His work is full of fine things.’

—

Manchester Guardian.

The Moral Judgment ofthe Child. By Jean Piaget, Professor

at the University of Geneva. 12s. 6d. net.
‘ In this, the most brilliant and persuasive of Professor Piaget’s studies of

the child’s mind, we are led from a consideration of the game of marbles
and its rules to a new psychology and a new pedagogy.'

—

New Statesman.

The Nature of Learning. By Professor George Humphrey, M.A.,
Ph.D. 15s. net.

‘ A stimulating review of recent investigation into the physiology of psycho-
logy.'

—

New Statesman. ‘ A deeply interesting book.'

—

Mind.

The Dynamics of Education. By Hilda Taha. Introduction

by W. H. Kilpatrick, Professor at Columbia University. los. 6d.

net.
‘ Where she emphasizes the importance of group action, the book is of

exceptional value. The sphere of conduct is treated with the same dis-

passionate comprehension.'

—

Sunday Times.

The Individual and the Community. By Wen Kwei Liao,

M.A., Ph.D. 15s.net.
‘ His subject is the contrast of legalism and moralism. . . . Particularly

valuable is the account given of Sun Yat-Sen. The book is noticeable,

not merely as a piece of philosophy, but as a clue to the present mind of

China.'

—

Manchester Guardian.

Crime, Law, and Social Science. By Jerome Michael,

Professor of Law in Columbia University, and MortimerJ. Adler.

15s. net.
‘ The book is important, not only on account of its erudition, but because
of its general conclusions which are highly controversial. They assert

that there is no science of criminology . .
.'

—

Listener.

Dynamic Social Research. By John J. Hader dcnd Eduard C.

Lindeman. 12s. 6d. net.

Speech Disorders: a Psychological Study. By Sara Stinchfield,

Ph.D. With 8 plates, 15s. net.

The Nature of Mathematics : a Critical Survey. By Max
Black. los. 6d. net.
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