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1.  ABSTRACT 
 
 This paper gives an overview of statistical and 
machine learning-based feature selection and pattern 
classification algorithms and their application in molecular 
cancer classification or phenotype prediction. In particular, 
the paper focuses on the use of these computational 
methods for gene and peak selection from microarray and 
mass spectrometry data, respectively. The selected features 
are presented to a classifier for phenotype prediction. 
 
2.  INTRODUCTION 
 
 Molecular cancer classification enables 
automated grouping of samples into pre-specified 
categories (e.g. normal, benign, early-stage malignant, and 
late-stage malignant) on the basis of their molecular 
profiles. Technologies such as microarray and mass 
spectrometry have generated a large amount of data, 
enabling high-throughput molecular profiling for cancer 
classification. Various statistical and machine learning 
methods have been used to analyze the high dimensional 
data generated by these technologies for cancer 
classification. These methods have been shown to have 
statistical and clinical relevance in cancer detection for a 
variety of tumor types. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 Most classification algorithms perform sub-
optimally with thousands of features (genes/proteins). 
Thus, feature selection methods are used to identify 
features that are most predictive of a phenotype. The 
selected genes/proteins are presented to a classifier or a 
prediction model. By reducing the dimensionality of the 
feature space, we can (i) improve classification accuracy, (ii) 
provide a better understanding of the underlying concepts that 
generated the data, and (iii) overcome the risk of data 
overfitting, which arises when the number of features is large 
and the number of training patterns is comparatively small.  
 
 This review paper provides a survey of some 
computational methods that have been applied for 
molecular cancer classification. The paper is organized as 
follows: Sections 3 and 4 introduce pattern classification 
and feature selection methods, respectively. Section 5 
presents methods to evaluate the performance of feature 
selection and pattern classification algorithms. Section 6 
highlights some recent applications of these methods in 
microarray and mass spectrometry data analysis. Section 7 
summarizes the review and discusses future trends in 
computational methods for feature selection and molecular 
cancer classification. 
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Figure 1. Data matrix with rows representing features (e.g., 
genes, mass points, proteins, etc.) and the columns 
representing samples (e.g., cell lines, tissues, subjects, etc.). 
 
3.  PATTERN CLASSIFICATION METHODS 
 

In this section, we describe some computational 
methods that have been applied for molecular cancer 
classification via high-dimensional data. We explain how 
these methods are used during (i) the training phase, where 
the model structure and its parameters are determined using 
training examples and (ii) testing/operation phase, where 
the resulting model is applied for classification of testing 
samples not used for training. Here, we assume that the 
data are preprocessed and training and testing samples are 
predetermined. 
 
 Let the training examples be represented in a 
matrix form shown in Figure 1. The rows in the data matrix 
are features (e.g., genes, mass points, proteins, etc.) and the 
columns are samples (e.g., cell lines, tissues, subjects, etc.). 
Each cell in the data matrix represents an expression level. 
A feature and a sample are represented by an n-dimensional 
vector z

r
 and an m-dimensional vector x

r
, respectively; 

and y
r

 is an n-dimensional vector, whose elements are the 
class labels of all training samples. For example, the ith 
sample, the jth feature, and the class labels are represented 
by the following vectors, respectively: 
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where eji denotes the expression level for the jth feature and 
the ith sample and yi is the class label for the ith sample. 
For binary classification, 1 and 0 or 1 and -1 are commonly 
used as class labels. 
 
 Linear discriminant analysis (LDA) is used to 
find the linear combination of features that best separates 

two or more classes of samples. Consider a set of 
observations { 1x

r
, 2x
r

, …, nx
r

} where each observation has 
a known class y. The classification problem is then to 
create a predictor, so that any sample with observation x

r  
can be grouped to one of the predefined classes. Suppose 
two classes of observations (y = 0 and y = 1) have means 

0µ
r

 and 1µ
r

 and covariances Σ0 and Σ1, respectively. The 
linear combination of features xw

rr
⋅  will have means iw µ

rr
⋅  

and variances ww i
T rr
Σ  for i = 0, 1. Fisher (1936) defined the 

separation between these two distributions as the ratio of 
the variance between the classes to the variance within the 
classes: 
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 This measure is, in some sense, a measure of the 
signal-to-noise ratio (SNR) for the class labeling. It can be 
shown that the maximum separation occurs when 

( ) ( )01
1

10 µµ
rrr

−Σ+Σ= −w . Hence, assuming that the 

probability density functions )1( =yxp
r

 and )0( =yxp
r

 
are both normally distributed, with identical full-rank 
covariances Σ0 = Σ1=Σ, )( 01

1 µµ
rrr

−Σ= −w . Thus, once w
r

 is 
determined through the training examples, the probability 
of an unknown sample x

r
 being in a class y, )( xyp

r
, is 

determined as a function of the linear combination of the 
known observations xw

rr
⋅ , i.e.,  ( )xwfy

rr
⋅= , where f  is 

often a simple threshold function that maps all samples 
above a certain threshold to class 1 and all other samples to 
class 0, or the vice versa. 
 
 Variants of LDA are used for pattern 
classification. For example, diagonal LDA (DLDA) is the 
same as LDA except that the covariance matrices are 
assumed to be diagonal. The quadratic discriminant 
analysis (QDA) method is an extension of LDA that allows 
for the groups of interest to have different population 
covariance matrices for the predictor variables. QDA uses 
quadratic equations, rather than linear equations.  
 
 Logistic regression is a statistical procedure 
subsumed by the generalized linear model that is 
structurally similar to linear regression, except that the 
outcome variable is a categorical variable as opposed to a 
continuous variable. In logistic regression it is assumed that 
the outcome variable follows a binomial distribution and 
that the log odds (or logit) can be described by a linear 
function of the logistic regression coefficients. Logistic 
regression is preferable in unequal grouping conditions. 
The dependent variable in logistic regression can take the 
value 1 with a probability of success θ, or the value 0 with 
probability of failure 1-θ. Logistic regression makes no 
assumption about the distribution of the independent 
variables. Thus, the variables do not have to be normally 
distributed, linearly related or of equal variance within each 
group. The relationship between the features and class 
labels is not a linear function in logistic regression; instead, 

ixr
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the logistic regression function is used, which is the logit 
transformation of θ, 
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where α is the constant of the equation and β’s are 
coefficients. α and β’s  are usually determined by 
maximum likelihood. Since logistic regression calculates 
the probability or success over the probability of failure, the 
results of the analysis are presented in the form of an odds 
ratio, which is defined as the ratio of the probability of 
occurrence of an event to the probability of the event not 
occurring. 
 
 Compound covariate predictor (CCP) is a 
weighted linear combination of expression levels for 
features that are univariately significant at a pre-specified 
significance level (1). The univariate t-statistics for 
comparing two classes are used as weights: 
 

mimiii etetet +++= L2211θ   i=1,..,n 
 
where tj is the two-sample t-statistic for feature j. Once, the 
θi’s are determined for each sample in the training set, the 
class label y of an unknown sample xr  is determined by 
comparing its corresponding θ  with a threshold α, which is 
the midpoint of the means of θi’s for the two classes: 
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where µθ,y=0 and µθ,y=1 are the means of the θi’s with class 
label y=0 and y=1, respectively, in the training data set. 
 
 Nearest Centroid Classifier assumes that the 
target classes correspond to individual (single) clusters and 
uses the cluster means (or centroids) to determine the class 
of a new sample point (2). A prototype pattern for class cj is 
defined as the arithmetic mean: 
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where ixv 's are the labeled training samples; 

jcn is the 

number of training samples labeled as class cj. During 
operation, the class label of an unknown sample x

r
 is 

determined as ),(minarg)( xµdxy
j

j
cc

rrr
= , where d(.) is a 

distance function. For a two-class problem (y=0 or y=1), 
the corresponding s

jc 'µ
r

 are denoted by 0µ
r

 and 1µ
r

, 

respectively. The class label of an unknown sample xv  is 
determined by comparing ),( 1 xµd

rr
 vs. ),( 2 xµd

rr
 (i.e., the 

sample will be assigned to the class with the smaller 
distance). 
 Naïve-Bayes classifier (NBC) relies on the basic 
statistical theory of probabilities and conditional 
probabilities to assign a sample to a pre-specified class. Let 

cj, j =1, 2, 3… c be our list of possible classes and let pci be 
the probability of a pattern belonging to ci (a priori 
knowledge). Given a sample x

r
, the probability of it 

belonging to ci is denoted by )|( xcp i
r

. Now, x
r

 belongs to 
class i, if jicjforxcpxcp ji ≠=> and,...2,1),|()|(

rr
. 

Let )|( icxp
r

 be the probability of obtaining the pattern 

vector x
r

 in each of the possible groups given we know the 
pattern must belong to one of the n groups.  According to 
Bayes’s law: 
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For two classes, c1 and c2, it can be shown that the Bayes 

classification rule is given by: “if 
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belongs to c1, otherwise, assign x
r

 to class c2.” In most 
practical situation, )|( icxp

r
 is estimated by assuming that 

it follows the “normal” distribution. 
 
 Weighted voting (WV) assumes each feature to 
be independent and contributes a weight or vote for a class.  
The class receiving the greatest number of votes is the 
predicted class. The algorithm finds decision boundaries 
half way between the class means.  For two classes (0 and 
1), each feature j casts a vote as )( jjjj beSV −= , where 
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feature j, yj ,µ and yj ,σ  are the mean and standard 
deviation of the values for the jth feature in the class 
labeled with y (0 or 1). The final vote for an unknown 
sample x
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 is determined as 
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 K-nearest neighbor (KNN) is used to predict the 
response of an observation using a nonparametric estimate 
of the response distribution of its k nearest (i.e., in predictor 
space) neighbors. KNN classification is based on the 
assumption that the characteristics of members of the same 
class should be similar and thus, observations located close 
together in covariate (statistical) space are members of the 
same class or at least have the same posterior distributions 
on their respective classes (3). Given a set of training 
samples { 1x

r
, 2x
r

,…, nx
r

} and an unknown sample x
r

, KNN 

finds k training samples closest to xr . Let these samples 
and their corresponding class labels be defined by the sets 
{ mx1

r
, mx2

r
, …, and m

kx
r

} and { my1 , my2 , … m
ky }, 

respectively. KNN classifies x
r

 to the class which has the 
greatest number of representatives in the latter set. In other 
words, the classification is performed by taking the 
majority vote among k nearest neighbors of x

r
. 

 
 Learning vector quantization (LVQ) has a first 
competitive layer and a second linear layer. The 
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competitive layer consists of competitive neurons that learn 
to cluster input vectors. The linear layer transforms the 
competitive layer’s clusters into target classifications 
defined by the user.  
 
 Initially, random weight vectors are generated and a 
group of arbitrarily selected competitive neurons are assigned to 

each class. Then, LVQ picks an input vector ix
r

 at random from 
the input space. In terms of distance between the weight vector of 

the neuron and ix
r

, the closest competitive neuron is identified. 
The weight vector of the winner neuron is moved closer to the 

input vector, if its class label matches with the true class for ix
r

. 
The weight vector will be moved away from the input vector, if 
the class assignment is incorrect.  To achieve this, the 
competitive layer must have enough neurons and each a set 
of competitive neurons must be assigned to each class. Let 

ljwj ,...,2,1, =
r

 be the set of weight vectors; nixi ,...,2,1, =
r

 

represent the set of input vectors; wcc  denote the class that 

cwr  is associated with; and ic  denote the class label of the 
input vector ix

r
. Suppose that cw

r
 is the closest weight 

vector to the input vector ixr . The weight vectors are 
updated as follows: 
 
If wci cc = , then )]([)()1( twxtwtw citcc
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 Note that the other weight vectors are not 
modified and nα  decreases monotonically as the number of 
iteration increases. During operation an unknown sample is 
assigned to the class labels of its closest weight vector. 
 
 Decision trees are rooted, usually binary trees, 
with simple classifiers placed at each internal node and a 
classification at each leaf. In order to evaluate a particular 
tree T with respect to an input xr , each classifier in the tree 
is assigned the argument xr . The outputs of the simple 
classifiers at the nodes determine a unique path from the 
root to a leaf of the decision tree; at each internal node, the 
left edge to a child is taken if the output of the function 
associated with that internal node is +1, and vice versa if it 
is -1. This path is known as the evaluation path. The value 
of the function T( xr ) is the classification associated with 
the leaf reached by the evaluation path. Decision trees are 
generally learned by means of a top down growth 
procedure, which starts from the root node and greedily 
chooses a split of the data that maximizes some cost 
function, usually a measure of the “impurity” of the 
subsamples implicitly defined by the split. After choosing a 
split, the subsamples are then mapped to the two children 
nodes. This procedure is then recursively applied to the 
children, and the tree is grown until some stopping criterion 
is met. The tree is then used as a starting point for a bottom 
up search, performing a pruning of the tree. This eliminates 
nodes that are redundant or are unable to “pay for 
themselves” in terms of the cost function.  

 Random forest (4) is an ensemble of unpruned 
classification or regression trees, induced from bootstrap 
samples of the training data, using random feature selection 
in the tree induction process. It is a classification method 
based on “growing” an ensemble of decision tree 
classifiers. In order to classify a new object, the input is 
analyzed using each of the classification trees in the forest. 
Each tree gives a classification, “voting” for that class. The 
forest chooses the classification having the most votes 
(over all the trees in the forest). A measure of the 
importance of classification variables is also calculated by 
considering the difference between the results from original 
and randomly permuted versions of the data set. Prediction 
is made by aggregating (majority vote for classification or 
averaging for regression) the predictions of the ensemble. 
Random forest generally exhibits a substantial performance 
improvement over the single tree classifier such as 
classification and regression tree (CART). Izmirlian (5) 
discussed how the random forest approach can be 
successfully applied for in proteomics profiling study to 
construct a classifier and discover peak intensities most 
likely responsible for the separation between classes. 
 

Fuzzy classification methods express 
classification rules in qualitative values that humans can 
easily understand. The fuzzy system has the advantage that 
it does not need to be retrained when using measurements 
obtained from a different type of microarray. Also, as 
pointed out by Wang et al. (6), it may be especially 
advantageous to introduce fuzzy sets in cancer 
classification, where frequently unlabeled tumor samples 
may not necessarily be clear members of one class or 
another. Using crisp techniques, an ambiguous sample will 
be assigned to one class only, an assignment that is not 
warranted. On the other hand, fuzzy techniques will specify 
to what degree the object belongs to each class. In addition, 
fuzzy systems allow us to handle imprecise and noisy data 
by dividing the range of variables into intervals, where each 
interval is a fuzzy set defined as “low”, “medium”, or 
“high” instead of crisp values. A fuzzy classifier may have 
four principal units: fuzzification, knowledge base, 
decision-making (inference), and defuzzification. The 
fuzzy system accepts a set of inputs (e1i, e2i, ... emi) as its 
information about the outside world (also referred to as 
crisp data). The fuzzification unit converts these actual 
values into fuzzy sets using membership functions to 
determine the degree of truth for each rule premise. The 
knowledge-base unit contains membership functions 
defining fuzzy sets and a set of fuzzy rules. A fuzzy rule 
has two components, an if part (also referred to as premise) 
and a then part (also referred to as conclusion). Such rules 
can be used to represent knowledge and association, which 
are inexact and imprecise in nature, expressed in qualitative 
values that humans can easily understand. For example, one 
might say, “If gene x1 is up-regulated and gene x2 is down-
regulated, then the probability of disease y is high.” The 
inference unit executes these fuzzy rules. The truth-value 
for the premise of each rule is computed and then applied 
to the conclusion part of each rule. When all the rules are 
executed, a fuzzy region will be created for the output 
variable y. With the process of defuzzification, a crisp 
value of the output will be generated as a solution. 
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 Multilayer perceptrons (MLPs) consist of a 
number of interconnected processing elements (neurons) 
arranged in layers. The inputs to the network are expression 
levels of a sample and the network output is the predicted 
class label. Assuming an MLP with two hidden layers, the 
outputs of the neurons in the first hidden layer, second 
hidden layer, and output layer, respectively can be written 
as: 
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where pk and qk are the outputs of the kth neuron in the first 
and second hidden layers, respectively. θ  is the output of 
the network. f(.), g(.), and h(.) are activation functions 
which transform the activation level of a neuron into an 
output signal. Typically, an activation function could be a 
threshold function, a sigmoid function (an S-shaped, 
symmetric function that is continuous and differentiable), a 
Gaussian function, or a linear function. l and s are the 
number of neurons in the first and second hidden layers, 
respectively. The network size (i.e., l and s) and the 
network weights (i.e., )( p

kjw ’s, )(q
kjw ’s. and )(θ

jw ’s) are 
adjusted or trained to achieve a desired overall behavior of 
the network in terms of predicting the phenotype of 
samples in the training set.  
 
 The back-propagation algorithm (Rumelhart and 
McClelland, 1986) is commonly used to train MLP 
networks. The algorithm consists of two passes, forward 
and backward. During the forward pass, the input signals 
are applied to the network and their effect propagates 
through the different layers and generates the network 
outputs at the output layer. Note that the synaptic weights 
of the network are all kept fixed during the forward pass. 
During the backward pass, the synaptic weights are 
adjusted in accordance with an error correction rule. The 
network outputs are subtracted from the desired outputs to 
produce error signals. The error signals are propagated 
backward through the network against the direction of the 
synaptic connections to determine how the synaptic 
weights should be adjusted in order to decrease a pre-
defined error function. A typical error function is the sum 
of squares of the error signals between the network outputs 
and the desired outputs. Thus, during the backward pass, 
the back-propagation algorithm alters the synaptic weights 
in the direction of the steepest gradient of the error function 
to reduce the error function. The forward and backward 
passes are repeated until a pre-specified stopping criterion 
is achieved or the error function is significantly reduced. A 
number of methods are proposed to improve the 
performance of the steepest gradient method described 
above, which is based on the first derivatives of the error 
function with respect to the synaptic weights. Newton’s 
method is used to speed-up training by using second 
derivatives of the error function with respect to the synaptic 
weights. The Gauss-Newton method is designed to 

approach second order training speed without calculating 
the second derivates. The Levenberg-Marquardt learning 
algorithm speeds up the learning process and produces 
enhanced learning performance by combining the standard 
gradient technique with the Gauss-Newton method. 
 
 It is important to mention that neural learning 
is strictly about minimizing the error between the 
desired output and the network output. Good 
generalization capability of the resulting network is 
often needed to be able to provide reasonable 
approximations given previously unseen data. One of 
the major problems that affect network generalization is 
overfitting, which may be caused by an inappropriate 
number of nodes or when the network is overtrained for 
too many epochs. A commonly used approach to prevent 
the network from overfitting is the early stopping 
method, where a validation data set different from the 
training data set is used to estimate network’s 
performance during training. After each epoch, the 
network is tested using the validation data set. When 
validation error increases for a specified number of 
epochs - indicating that the network is over-fitting the 
training data - the training is stopped and the network 
weights are set to the values found where validation 
error was minimized. Another method that prevents 
overfitting is the use of regularization (weight decay), to 
constrain the magnitude of the weights of the network. 
Regularization keeps the network weights small values 
to make the network less likely to overfit.  
 
 During operation, a vector of an unknown sample 
is presented to the MLP whose network structure (e.g. 
network size) and weights are predetermined via the 
training data set. The output of the network is used to 
predict the phenotype of the unknown sample. A suitable 
threshold α is chosen to convert the numeric network 
output θ  into categorical data (e.g. y = 0 or y = 1). 
 
 Radial basis function (RBF) networks are special 
feedforward networks that have a single hidden layer. The 
activation functions of the neurons in the hidden layer are 
radial basis functions, while the neurons in the output layer 
have simple linear activation functions. Radial basis 
functions are a set of predominantly nonlinear functions 
such as Gaussian functions that are built up into one 
function. Each Gaussian function responds only to a small 
region of the input space where the Gaussian is centered. 
Hence, while an MLP network uses hyperplanes defined by 
weighted sums as arguments to sigmoidal functions, an 
RBF network uses hyperellipsoids to partition the input 
space in which measurements or observations are made. 
Thus, RBF networks find the input to output map using 
local approximators. The key to a successful 
implementation of RBF networks is to find suitable 
centers for the Gaussian functions. Theoretically, the 
centers and width of the Gaussian functions can be 
determined with supervised learning, for example, 
steepest gradient method. They can also be determined 
through unsupervised learning by clustering the training 
data points. Once the centers and width of the Gaussian 
functions are obtained, the weights for the connection 
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between the hidden layer and the output layer are easily 
and quickly determined using methods such as linear 
least squares, as the output neurons are simple linear 
combiners. 
 
 Probabilistic neural network (PNN) uses sums of 
spherical Gaussian function centered at each training vector 
to estimate the class probability density function. As a 
result, it can make a classification decision in accordance 
with the Bayes’ strategies for decision rules and provide 
probability and reliability measures for each classification. 
A single suitable smoothing factor (i.e., a common standard 
deviation) is used for all the Gaussian functions. A 
limitation of PNN is that all training vectors must be stored 
and used to classify new vectors. Hence, it requires large 
memories. An advantage of PNN is that it can follow 
changing on non stationary statistics quickly and simply by 
either adding to or replacing old training samples with new 
samples as they become available.  
 
 Support vector machines (SVMs) are learning 
kernel-based systems that use a hypothesis space of linear 
functions in high dimensional feature spaces. Unlike 
artificial neural networks, which try to define complex 
functions in the input feature space, the kernel methods 
perform a nonlinear mapping of the complex data into high 
dimensional feature spaces and then use simple linear 
function to create linear decision boundaries. Thus, the 
problem of choosing network architecture is replaced here 
by the problem of choosing a suitable kernel for the data 
projection. Parameters of an SVM model are determined 
based on structural risk minimization to search for one 
target known as the optimal hyperplane.  
 
 Given a training set of instance label pairs ( ix

r
, 

yi), i = 1,…,n  where n
i Rx ∈
r

 and ny }1,1{ −∈ , SVMs  
require the solution of the following optimization problem 
(7, 8):  
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where w

r
 and b are the weight vector and bias of the 

hyperplane and iξ ’s are nonnegative scalar variables called 
slack variables that measure the deviation of a data point 
from the ideal condition of pattern separability. Here, 
training vectors ix
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 are mapped into a higher dimensional 
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where γ , r, and d are kernel parameters.  
 
 For a given set of training samples and kernel, 
SVM finds a linear separating hyperplane with the maximal 
margin in this higher dimensional space. C > 0 is the 
penalty parameter of the error term.  
 
 During the operation phase, the optimal 
hyperplane 0=+⋅ bxw

rr
 and the corresponding decision 

function bxwxd +⋅=
rrr

)(  are used to determine the class 
labels for new samples. Here, w

r
 and b  are the optimal 

values obtained by solving the above optimization problem. 
 
 The one-vs.-all (OVA) approach extends the 
functionality of SVM from binary to multi-class 
classification. The OVA constructs a binary classifier for 
each group. Thus, for a k-group classification, k binary 
SVMs are needed. Each binary SVM classifier creates a 
decision boundary that separates the group it represents 
from all other groups. The k binary SVM classifiers 
compete to categorize an unknown spectrum into their 
corresponding group. The SVM with the highest decision 
value (farthest from the decision boundary) “wins” the 
competition, assigning the unknown spectrum to its group. 
 
4.  FEATURE SELECTION 
 
 Biological experiments from laboratory 
technologies like microarray and mass spectrometry 
generate data with a very high number of variables 
(features), in general much larger than the number of 
samples. Feature selection can be viewed as a major 
bottleneck of supervised learning and data mining (9, 10). 
When the number of features significantly outnumbers the 
number of samples, it is highly desirable to discard the 
irrelevant features. Therefore, feature selection provides a 
fundamental step in the analysis of high-dimensional data 
(11). By selecting only a subset of features, the prediction 
accuracy can possibly be improved and more insight into 
the nature of the prediction problem can be gained.  
 
 Feature selection for classification can be 
formalized as a combinatorial optimization problem, 
finding the feature set that maximizes the quality of the 
hypothesis learned from these features. Combinatorial 
search is a computationally intensive alternative to feature 
ranking. To seek an optimum subset of m features or less, 
all combinations of m features or less are tried. The 
combination that yields the best classification performance 
(on a test set or by cross-validation) is selected. Due to its 
computational intractability, the feature selection problem 
has been tackled by means of heuristic algorithms based on 
various machine learning techniques (9).  
 
 One can distinguish three main approaches for 
feature selection: filter, wrapper, and embedded (10). The 
filter approach relies on general characteristics of the 
training data set to select some features without involving 
any learning algorithm. This, it provides generic selection 
of features, not tuned by a given learning algorithm and it is 



Classification algorithms for phenotype prediction in genomics and proteomics 

697 

usually fast and easy to interpret. However, it has the 
following limitations: (1) it selects features based on 
“relevance” criterion, not on their classification capability; 
(2) redundant features can exist; (3) features that have 
strong discriminating power jointly, but are weak 
individually are ignored.  
 
 In the wrapper method, features are selected by 
taking into account their contribution to the performance of 
a given type of classifier. Thus, the wrapper method allows 
selection of features based on the “usefulness” criterion. It 
searches for a combination of useful features from the 
entire set of features. It tends to find features better suited 
to the classifier, but it also tends to be more 
computationally expensive than the filter approach  (12). 
Also, wrapper methods are prone to overfitting unless an 
internal cross-validation method is used during feature 
selection.  
 
 In the embedded approach, feature selection is 
part of the training procedure of a classifier. The 
implementation of this approach depends on the type of the 
classifier. For example, in ANNs and decision trees pruning 
method can lead to a classifier which retains the most 
useful features. 
 
 The performance of the three feature selection 
approaches depends on the application domain. The 
wrapper approach is favored in many works since the 
selection of the features is directly linked to the 
performance of a chosen type of classifier. When the 
number of features becomes very large, the filter model is 
usually chosen due to its computational efficiency. 
 
 In this section we briefly describe filter-based 
methods such as t-statistic, signal-to-noise ratio (13, 14), 
and correlation. Wrapper-based methods such as forward 
addition, backward elimination, and evolutionary and 
swarm-intelligence-based approaches are also discussed. 
Finally, embedded methods such as recursive feature 
elimination (RFE) (15), shrunken centroid, and CART are 
presented.  
 
 T-statistic assesses each feature, whether the 
means of two groups are statistically different from each 
other. The t-statistic for each feature j can be obtained 
using the following equation (16): 
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where n1 and n0 is the number of samples in the group 
labeled as 1 and 0, respectively, µj,1 and µj,0 are the means 
of the classes 1 and 0 for the jth feature. Similarly σj,1 and 
σj,0 are the standard deviations for the two classes for the jth 
feature. The probability (p-value) that the two groups come 
from the same distribution is calculated; p varies from 0 
(not likely) to 1 (certain). The higher the probability, the 
more likely it is that the corresponding feature does not 
distinguish the two groups, and that any differences are just 

due to random chance. The lower the probability, the more 
likely it is that that the feature is relevant. Since the number 
of features to choose from is very large, various methods 
are used to account for multiple testing. For example, false 
discovery rate (FDR) estimates the expected proportion of 
features that are wrongly selected as differentially 
expressed. Benjamin and Hochberg (17) introduced the 
notion of FDR and proposed a method to control FDR by 
adjusting the p-values. Korn et al. (18) proposed a non-
parametric method based on a permutation test to estimate 
FDR. 
  
 Other non-parametric and parametric methods 
have been used as alternatives to the t-test. These include 
the Wilcoxon rank sum test and random variance t-test. The 
Wilcoxon rank sum test is a non-parametric method that 
outperforms the t-test when the data do not follow normal 
distribution. The random-variance t-test is an improvement 
over the standard t-test as it permits sharing information 
among features about within-class variation without 
assuming that all features have the same variance (19). 
 
 Signal-to-noise ratio (SNR) finds the features 
that will help discriminate between two groups by 
calculating a score which gives the highest score to those 
features whose expression levels differ most on average in 
the two groups while favoring those with small deviations 
in scores in the respective classes. The score for each 
feature j is calculated as: 
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where µj,1 and µj,0 are the means of the classes 1 and 0 for 
the jth feature (13, 14). Similarly σj,1 and σj,0 are the 
standard deviations for the two classes for the jth feature. 
Features that give the most positive values are most 
correlated with class 1, and that give the most negative 
values are most correlated with class 0. The features with 
the highest magnitude of Sj scores are then selected as top 
features. 
 
 Correlation-based method ranks features based 
on the Pearson correlation coefficient (R) or the coefficient 

of determination (R2) between each feature jz
r

 and the 
vector for the class label in the training data set. Features 
with high correlation (positive or negative) are considered 
to be relevant. Rather than ranking individual features, a 
correlation-based feature selection machine learning 
method proposed in (20) selects as subset of features by 
removing redundant features. This was accomplished by 
applying a heuristic algorithm that takes into account the 
usefulness of individual features for predicting the class 
along with the level of inter-correlation among them. The 
assumption is that good feature subsets contain features 
highly correlated with the class, yet uncorrelated with each 
other. 
 
 Sequential search methods are used in a wrapper 
setting. Instead of seeking optimal solution through 
exhaustive search methods that can be impractical for very 
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high-dimensional problems, sequential search methods 
such as forward addition and backward elimination look for 
sub-optimal set of features. Forward addition starts with no 
features and adds features based on their contribution to 
prediction. Backward elimination starts by including all the 
features for classification and then eliminating those that do 
not make a significant contribution to prediction. Both 
suffer from the so-called "nesting effect." For example, in 
backward elimination, once features are discarded they can 
not be reselected. In forward addition, once a feature is 
selected it cannot be discarded. 
 
 Individual discriminatory gene (IDG) and jointly 
discriminatory gene (JDG) methods were proposed by 
Xuan et al. (21) based on the weighted Fisher criterion 
(wFC). The algorithm consists of two steps: First, all 
features are ranked on the basis of their individual 
discriminatory power measured by the 1D wFC. A feature 
will be selected as an individually discriminatory gene 
(IDG) if its discriminatory power is above an empirical 
threshold. Second, from the IDG pool, we select jointly 
discriminatory gene (JDG) subsets (with various sizes) 
whose joint discriminatory power is the maximum among 
all sets of the same size. The joint discriminatory power is 
also determined by the multi-dimensional version of wFC. 
Furthermore, the JDG sets are refined by testing on a 
trained MLP, which ultimately determines the ‘optimal’ 
diagnostic gene subset that minimizes the generalization 
error. From the curve of classification rate versus JDG 
subsets, we pick the optimal JDG subset that corresponds to 
the maximal classification rate as the final inputs for the 
MLP. This step boosts the MLP performance, and also 
determines its number of inputs. 
 
 Evolutionary methods such as genetic algorithms 
(GAs) have been used for guiding the selection of a subset 
of features that leads to more accurate prediction. A 
commonly used approach is to combine an evolutionary 
algorithm with a classification algorithm. Examples include 
GA-KNN (22), GA-SOC (23), and GA-SVM (24). In (25), 
a detailed survey is presented on the use of evolutionary 
algorithms for classification of gene expression data. 
 
 Swarm intelligence methods such as particle 
swarm optimization (PSO) and ant colony optimization 
(ACO) have been recently proposed for feature selection 
(26-29). PSO and its recent variants, such as cooperative 
PSO as proposed in (30), require less computation time and 
are more resilient to the curse of dimensionality than GAs. 
ACO methods were inspired by the observation of ant 
colonies, which use pheromone trails to discover the 
shortest paths between food sources and their nest (31). 
ACO can be applied to solve difficult discrete or 
combinatorial optimization problems search as the traveling 
salesman problem, sequential ordering, and vehicle routing. 
Both PSO and ACO are used for feature selection in a 
wrapper setting where they are combined with 
classification algorithms. Examples include PSO-SVM, 
ACO-ANN, etc. In particular, ACO allows the integration 
of wrapper with a filter method. For example, in (26) 
Mutual Information Evaluation Function (MIEF) is 

incorporated into ACO to evaluate local features, i.e. a 
filter approach. Also, the algorithm is used in a wrapper 
setting by using ANN to evaluate the performance of the 
features. 
 
 SVM-recursive feature elimination (SVM-RFE) 
is a special purpose feature selection algorithm for SVMs. 
It recursively removes features based upon the absolute 
magnitude of the hyperplane elements bxwxd +⋅=

rrr
)( . 

SVM-RFE is applied to eliminate elements of wr  that have 
small magnitude, since they do not contribute much in the 
classification function (15). The SVM is trained with all 
features; then for each feature j, jj wS =  is calculated, 

where jw  the value of the jth element of w
r

. Then, the Sj’s 
are sorted from largest to smallest value and the features 
corresponding to the indices that fall in the bottom 10% of 
the sorted list are removed. The SVM is retrained on this 
smaller feature set, and the procedure is repeated until a 
desired number of features is obtained. 
 
 Unified maximum separability analysis (UMSA) 
incorporates data distribution information into structural 
risk minimization learning algorithm of SVMs. It replaces 
the constant C in the optimization problem formulation of 
SVM with an individualized pi for each training sample to 
constrain its maximum influence in the solution. In addition 
to data distribution information, pi can also be used as a 
mechanism to incorporate other information such as sample 
quality or certainty of sample class assignment. The linear 
version of UMSA is applied to identify a direction along 
which two classes of data are best separated. This direction 
is represented as a linear combination of the original 
variables. The weight assigned to each variable in this 
combination measures the contribution of the variable 
toward the separation of the two classes of data. 
 
 Nearest shrunken centroid is a special purpose 
feature selection algorithm for the nearest centroid 
algorithm (32, 33). We illustrate the algorithm here as 
described in (2). The algorithm tries to shrink the class 
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division is done component wise. From this equation, the 
class centroid is calculated as )( jjC dsn
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(.) denotes component wise multiplication. By decreasing dj 
we can move the class centroid towards the overall 
centroid. When a component of the class centroid is equal 
to the corresponding component of the overall mean for all 
cases, the feature no longer plays a part in classification 
and is effectively removed. As id

r
 shrinks progressively 

more features are removed. The shrinkage is called soft 
thresholding that produces '

i
d
r

 as follows: 
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where dj(i) is the ith component of the vector id
r

. The 
shrunken centroid is then computed by replacing id

r
 with 

'
i

d
r

 in )( jjC dsn
j

rrrr
⋅+= µµ . After shrinking the centroids, 

samples are classified by the usual nearest centroid rule, but 
using the shrunken class centroids.  
 
 The nearest shrunken centroid method is used by 
the Prediction Analysis for Microarrays (PAM) software to 
identify subsets of genes that best characterize each class. 
Using the software, one can train the classifier, perform 
cross validation to get an idea of the value to use for 
thresholding, and do predictions. 
 
 Significance analysis of microarrays (SAM) is an 
algorithm developed by Tusher et al. (34) for identifying 
significant genes in microarray data.  It assigns a score to 
each gene on the basis of change in gene expression 
relative to the standard deviation of repeated 
measurements. For genes with scores greater than an 
adjustable threshold, SAM uses permutations of the 
repeated measurements to estimate and control the 
percentage of genes identified by chance, i.e., the false 
discovery rate (FDR). FDR is defined in SAM as the 
median number of false positive genes divided by the 
number of significant genes.   
 
 Classification and regression tree (CART) 
analysis performs a binary recursive partitioning of 
samples. It is binary, because each group of samples, 
represented by a parent node in a decision tree, can only be 
split into two child nodes. The binary partitioning process 
can be applied recursively until a pre-specified criterion is 
reached. As illustrated in (35), CART analysis consists of 
four basic steps: (1) Tree building: a tree is built using 
recursive splitting of nodes. Each resulting node is assigned 
a predicted class, based on the distribution of classes in the 
learning data set which would occur in that node and the 
decision cost matrix. The assignment of a predicted class to 
each node occurs whether or not that node is subsequently 
split into child nodes. (2) Stopping of the tree building 
process: at this point a “maximal” tree has been produced. 
The tree may overfit the information contained within the 
training examples. (3) Pruning: this involves the process of 
creating a sequence of simpler and simpler trees. (4) 
Optimal tree selection: the tree which fits (without 
overfitting) the information in the training examples is 
selected from among the sequence of pruned trees.  
 
5.  EVALUATION OF FEATURE SELECTION AND 
PATTERN CLASSIFICATION METHODS 
 
 An important weakness of many machine 
learning-based classification algorithms is that they are not 
based on a probabilistic model. There is no probability 
level or confidence interval associated with predictions 
derived from using them to classify a new set of data. The 

confidence that an analyst can have in the accuracy of the 
results produced by a given classifier is based purely on its 
historical accuracy—how well it has predicted the desired 
response in other, similar circumstances. Thus, after 
learning is completed, a machine-learned paradigm is 
evaluated for its performance through previously unseen 
testing data set (also known as a blind validation set). The 
purpose of this testing is to prove the adequacy or to detect the 
inadequacy of features or a classifier. Inadequate performance 
could be attributed to insufficient or redundant features, 
inappropriate selection of model structure for the classifier, too 
few or too many model parameters, insufficient training, 
overtraining, error in the program code, or complexity of the 
underlying system such as presence of highly nonlinear 
relationships, noise, and systematic bias. The aim of evaluating 
is a classifier is to insure that it serves as a general model. A 
general model is one whose input-output relationships (derived 
from the training data set) apply equally well to new sets of 
data (previously unseen test data) from the same problem not 
included in the training set. Thus, the main goal of machine 
learning-based modeling is thus the generalization to new data 
of the relationships learned on the training set (36). 
 
 Various methods have been used to test the 
generalization capability of a classifier. These include the 
k-fold cross-validation, bootstrapping, and hold-out 
methods. In k-fold cross-validation, we divide the data into 
k subsets of (approximately) equal size. We train the model 
l times, each time leaving out one of the subsets from 
training, but using only the omitted subset to compute the 
classification error. If k equals the sample size, this is called 
"leave-one-out" cross-validation. In the leave-one-out 
method, one sample is selected as a validation sample and 
feature selection and classifier building are performed 
using the remaining data set. The resulting model is tested 
on the validation sample. The process is repeated until all 
samples appear in the validation set. In the hold-out 
method, only a single subset (also known as validation set) 
is used to estimate the generalization error. Thus, the hold-
out method does not involve crossing. In bootstrapping, a 
sub-sample is randomly selected from the full training data 
set with replacement. Common bootstrapping methods 
include bagging and boosting. Bagging can be used with 
many classification methods and regression methods to 
reduce the variance associated with prediction, and thereby 
improve the prediction process. In bagging, many bootstrap 
samples are drawn from the available data, some prediction 
method is applied to each bootstrap sample, and then the 
results are combined by voting. Boosting can also be used 
to improve the accuracy of classification. Unlike bagging, 
the samples used at each step are not all drawn in the same 
way from the same population, but rather the incorrectly 
predicted cases from a given step are given increased 
weight during the next step. Hence, boosting uses a 
weighted average of results obtained from applying a 
prediction method to various samples. 
 
 Once the features are selected and a pattern 
classifier is built, the performance of the classifier in 
phenotype prediction is estimated via a blind validation 
(independent) data set. If an independent data set is not 
available, the cross-validation method (e.g. leave-one-out
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Table 1. Confusion matrix 
  Predicted 
  Positive Negative 

Positive TP FN Actual Negative FP TN 
 
 
approach) can be used to estimate the performance of a 
classifier. The most common performance measures for 
classifiers are a confusion matrix and a receiver operating 
characteristic (ROC) curve. 
 
 A confusion matrix presents information about 
actual and predicted classifications made by a classifier to 
assess the performance of the classifier. Table 1 shows the 
confusion matrix for a binary classifier, where TP, TN, FP, 
and FN denote the number of true positive, true negative, 
false positive, and false negative samples, respectively. A 
false positive is when the outcome is incorrectly classified 
as “positive”, when it is in fact “negative”. A false negative 
is when the outcome is incorrectly classified as negative 
when it is in fact positive. True positives and true negatives 
are correct classifications. Various performance measures 
are used including the following: 
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 The ROC is a plot of the sensitivity of a classifier 
against 1-specificity for multiple decision thresholds. In 
many cases, a classifier has a threshold that can be adjusted 
to increase sensitivity at the cost of specificity or the vice 
versa. Each threshold setting provides a (1-specificity, 
sensitivity) pair and a series of such pairs can be used to 
plot an ROC curve.  For example, in SVM the distance 
from the optimal hyperplane can be used a threshold to 
generate data for ROC plot. The area under the ROC curve 
(AUROC) is a reflection of how good the classifier is at 
distinguishing between cases and controls. The greater the 
AUROC, the better the classifier is. 
 
6.  RECENT APPLICATIONS IN MOLECULAR 
CANCER CLASSIFICATION 
 
 In this section, we summarize some of the recent 
studies where machine learning and statistical methods 
were used for selection of markers and classification of 
high dimensional DNA microarray and mass spectrometry 
data.  
 
6.1.  DNA microarray 
 Several studies on gene selection for the 
molecular classification of diseases using gene expression 

profiles have been reported. For example, Golub et al. (13) 
constructed the weighted voting method and used it to 
distinguish between two types of human acute leukemias, 
acute lymphoblastic leukemia (ALL) and acute myeloid 
leukemia (AML). The data consisted of expression 
measurements on 6817 genes obtained from Affymetrix 
GeneChip. They selected 50 genes on the basis of SNR in 
38 training samples and applied the weighted voting 
method to predict 34 new samples in the testing data set as 
either AML or ALL.   
 
 Khan et al. (37) used an ANN-classifier approach 
to select a subset of genes for the multiclass prediction of 
small round blue cell tumors (SRBCTs). The data consisted 
of expression measurements on 6,567 genes (2,308 genes 
after filtering for minimal level of expression) obtained 
from glass-slide cDNA microarrays. The tumors are 
classified as Burkitt lymphoma (BL), Ewing sarcoma 
(EWS), neuroblastoma (NB), or rhabdomyosarcoma 
(RMS). A total of 63 training samples and 25 test samples 
were provided, although five of the latter were not 
SRBCTs. The dimensionality of the microarray data was 
reduced by principal component analysis (PCA) and used 
the principal components as an input to ANN. PCA 
replaces redundant or highly correlated features with a 
smaller number of uncorrelated features capturing most of 
the information. A sensitivity analysis of ANN's input-
output relations was applied and identified 96 genes that 
resulted on a test error of 0%. Tibshirani et al. (32) used the 
nearest shrunken centroid method to classify the SRBCTs 
data, where a smaller gene set (43 genes) achieved 
comparable classification performance (37). 
 
 Berrar et al. (38) used PNN for multiclass cancer 
classification using two gene expression data sets, the 
leukemia data set (13) and the NCI60 data set (39). They 
compared the performance of the PNN with two machine 
learning methods, a decision tree and a neural network. To 
evaluate the performance of the classifiers, they used a lift-
based scoring system that allows a fair comparison of 
different models. They reported that PNN outperformed the 
other models. The results demonstrate the successful 
application of the PNN model for multiclass cancer 
classification. 
 
 Dudoit et al. (40) compared the performance of 
various predictors including LDA, CART, and KNN using 
three DNA microarray data sets: the leukemia (ALL/AML) 
data set of Golub et al. (13); the lymphoma data set of 
Alizadeh et al. (41); and the 60 cancer cell line (NCI 60) 
data set of Ross et al. (42). They concluded that the 
rankings of the classifiers were similar across data sets and 
the main conclusion, for these data sets, is that simple 
classifiers such as diagonal LDA and nearest neighbors 
perform remarkably well compared to more sophisticated 
methods such as aggregated classification trees. 
 
 Diaz-Uriarte and Alvarez de Andres (43) 
investigated the use of random forest for classification of 
microarray data (including multi-class problems) and 
proposed a new method of gene selection in classification 
problems based on random forest. To select genes, they 
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iteratively fit random forests, at each iteration building a 
new forest after discarding those variables (genes) with the 
smallest variable importance; the selected set of genes is 
the one that yields the smallest out-of-bag (OOB) error rate. 
Using simulated and nine microarray data sets they show 
that random forest has comparable performance to other 
classification methods, including DLDA, KNN, and SVM, 
and that the new gene selection procedure yields very small 
sets of genes (often smaller than alternative methods) while 
preserving predictive accuracy.  
 
 O'Neill et al. and Wei et al. (44, 45) narrowed the 
number of genes by differentiating a trained ANN to assess 
the relative dependence of the classification output on each 
active input neuron. The differentiation process involves 
slightly perturbing the activation of each active input 
neuron, one at a time, to note the specific change in the 
output value. 
 
 Bicciato et al. (46) performed gene selection and 
cancer classification using auto associative neural 
networks, a specific type of ANN trained to generate an 
identity association in which the network outputs 
approximate the inputs using nonlinear transfer functions. 
By inspecting the network’s weight matrices, they assessed 
the contribution of each gene and selected specific marker 
genes.  
  
 To enhance the classification power of ANN-
based microarray data analysis, Linder et al. (47) proposed 
a cascade of ANNs known as subsequent ANN (SANN), 
where the classification made by the first ANN was used as 
a preselection followed by a final categorization by a 
successive ANN. SANN was used for the multiclass 
classification of microarray data and obtained better 
classification accuracy than a classical ANN. 
 
 SVMs have demonstrated superior performance 
in classifying microarray data. They provide several 
advantages including their flexibility in choosing a 
similarity function, sparseness of solution, ability to handle 
large feature spaces, and their ability to identify outliers 
(48). In particular, they have been used successfully in 
multiclass cancer diagnosis using microarray data (49). 
Furey et al. (50) used SVMs to explore microarray data for 
mislabeled or questionable tissue results. In (15), SVM-
RFE is applied for gene selection yielding improved 
classification performance. 
 
 New variants of SVMs are emerging to improve 
performance in microarray data classification. For example, 
Komura et al. (51) proposed multidimensional SVMs (MD-
SVMs) that generate multiple orthogonal axes based on a 
margin between classes. This extends the classical SVM 
that uses a decision function in a one-dimensional space. 
Statnikov et al. (52) applied multicategory SVM (MC-
SVM) that displayed less sensitivity to the curse of 
dimensionality than MLPs. Zhang et al. (53) developed a 
novel type of regularization in SVMs for simultaneous gene 
selection and cancer classification. This goal was achieved 
by imposing a special nonconvex penalty on the hinge loss 
function in the SVM model. The approach automatically 

eliminates redundant genes and yields a classifier with a 
compact set of genes.  
 
 Duan et al. (16) proposed a new feature selection 
method that uses a backward elimination procedure similar 
to that implemented in SVM-RFE. Unlike the SVM-RFE 
method, at each step, the proposed approach computes the 
feature ranking score from a statistical analysis of weight 
vectors of multiple linear SVMs trained on subsamples of 
the original training data. The method was tested on four 
gene expression data sets for cancer classification. It was 
concluded that this feature selection method selects better 
gene subsets than the original SVM-RFE and improves the 
classification accuracy. 
 
 Fuzzy systems are applied in the classification of 
tumors using microarray data in the studies presented in 
(54) and (55). These fuzzy systems provide short rules that 
are easy to interpret and exhibit classification performances 
that compare favorably with other methods such as logistic 
regression models. Wang et al. (6) used a fuzzy c-means 
(FCM) clustering to obtain a confidence measure for tumor 
classification. First, they used a self-organizing map 
(SOM), where gene expression profiles are summarized 
into two-dimensional SOM with optimally selected map 
units (estimated by stress function). Each component plane 
describes a gene expression structure of a tumor sample or 
a class, and the component plane is displayed by taking 
from each map the value of the component, and depicting 
this as a color on the grid. To estimate the number of SOM 
reference vectors that best fit the data distribution of a high 
dimensional input space, they then used a forward 
searching algorithm with a stress function to detect the 
boundaries of SOM reference vectors. Feature selection is 
performed on the weighted/mean component plane, by 
either automatic feature selection (pair-wise Fisher’s linear 
discriminant) or manual feature selection. In the latter 
method, FCM clustering was applied to the optimally 
selected SOM and its fuzzy membership values used to 
construct a weighted SOM component plane of each tumor 
class. 
 
 Evolutionary algorithms provide global 
optimization methods for improved gene selection and 
phenotypic classification. In (56), GA is applied to search 
for a subset of genes whose expressions can distinguish 
samples from classes. The effectiveness of a subset of 
expressed genes is evaluated in terms of its discrimination 
power by SVMs. The algorithm is run multiple times using 
data selected by the bootstrapping method. Genes that are 
selected more frequently in multiple runs are used for 
cancer classification using SVM. This method is based on 
previous work by Li et al. (57), which combined GA with 
KNN for gene selection and cancer classification using 
microarray data. 
 
6.2.  Protein mass spectrometry 
 Zhu et al. (58) used a statistical algorithm that 
can select a subset of k biomarkers from the marker list that 
could best discriminate between the groups in a training 
data set via the best k-subset discriminant method with high 
sensitivity and specificity. 
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 Lilien et al. (59) developed an algorithm called 
Q5 for probabilistic classification of healthy vs. disease 
whole serum samples using mass spectrometry. The 
algorithm employs PCA followed by LDA on whole 
spectrum surface-enhanced laser desorption/ionization 
time-of-flight (SELDI-TOF) mass spectrometry data, and is 
demonstrated on four real data sets from complete, 
complex SELDI spectra of human blood serum. 
 
 Levner (2) examined the performance of the 
nearest centroid classifier coupled with various feature 
selection algorithms including filter-based feature 
ranking methods (T-statistic, Kolmogorov-Smirnov test, 
and SNR), wrapper approaches (sequential forward 
selection and a modified version of sequential backward 
selection), and embedded approaches (shrunken nearest 
centroid and a boosting based feature selection method). 
In addition, the study tested dimensionality reduction 
approaches such as PCA coupled with LDA. Evaluation 
of these feature selection methods was done using 
stratified cross validation with an internal leave-one-out 
cross-validation loop for automated feature selection. For 
classification the nearest centroid method was used. 
Through five cancer MS data sets, it was shown that 
sequential forward selection and boosted feature 
selection algorithms produce the most consistent results 
across all data sets. 
 
 Rogers et al. (60) trained neural-network models 
based on either presence/absence of peaks or peak intensity 
values from SELDI spectra to distinguish samples from 
patients before undergoing nephrectomy for clear cell renal 
cell carcinoma (RCC), normal volunteers, and outpatients 
attending with benign diseases of the urogenital.  
 
 Wagner et al. (61) used matrix-assisted laser 
desorption/ionization time-of-flight (MALDI-TOF) 
spectra obtained from 41 serum samples (24 diagnosed 
with lung cancer and 17 health individuals). A linear 
SVM exhibited especially robust performance when the 
number of peaks was varied from four to thirteen, and 
when the peaks were selected from the training set alone. 
Experiments with the samples randomly assigned to the 
two classes confirmed that misclassification rates were 
significantly higher in such cases than those observed 
with the true data. Wagner et al. (62) also used a two-
stage linear SVM-based procedure to select a small set of 
peaks from SELDI-TOF spectra that achieved good 
classification accuracy in distinguishing four groups, 
BPH, early (localized) cancer, late (metastasized) cancer 
and controls. 
 
 Vlahou et al. (63) used the biomarker patterns 
software (BPS), which is based on CART to discriminate 
ovarian cancer from benign diseases and healthy controls 
using SELDI spectra. Serum protein mass spectrum 
profiles from 139 patients with ovarian cancer, benign 
pelvic diseases, or healthy women were analyzed. A 
decision tree, using five protein peaks, resulted in an 
accuracy of 81.5% in the cross-validation analysis and 
80% in a blinded set of samples in differentiating the 
ovarian cancer from the control groups.  

 Rajapakse et al. (64) illustrated the importance of 
feature selection in cancer classification by using SVM-
RFE to select informative mass points from two cancer data 
sets, ovarian and lung cancer. They showed that SVM-RFE 
can select a good small subset of peaks with which the 
classifier achieves high prediction accuracy with much 
better performance than with the feature subset selected by 
T-statistics. They found that the best peak subset selected 
by SVM-RFE always have in the top ranked peaks by T-
statistics while it includes some peaks that are ranked low 
by T-statistics. However, these peaks together give much 
better classification performance than the same number of 
most top ranked peaks by T-statistics. They concluded that 
selecting a small subset of peaks not only improves the 
efficiency of the classification algorithms, but also 
improves the cancer classification accuracy, even for 
classification algorithms like SVMs, which are capable of 
handling large number of input. 
 
 Li et al. (65) reported that the UMSA method 
enabled the identification of three discriminatory 
biomarkers that achieved 93% sensitivity and 91% 
specificity in detecting breast cancer patients from the non-
cancer controls. Koopmann et al. (66) also applied UMSA 
to analyze serum samples from patients with and without 
pancreatic cancer using SELDI MS. Using a case-control 
study design, serum samples from 60 patients with 
resectable pancreatic adenocarcinoma were compared with 
samples from 60 age- and sex-matched patients with 
nonmalignant pancreatic diseases, as well as 60 age- and 

sex-matched healthy controls. They showed that SELDI 
profiling of serum is significantly better than the current 
standard serum biomarker CA19–9 at distinguishing 
patients with pancreatic cancer from those with pancreatitis 
and from healthy controls. 
 
 Petricoin et al. (23) applied a combination of GA 
and self-organizing clustering (GA-SOC) for variable 
selection that can distinguish ovarian cancer patients from 
healthy women. The GA-SOC, which is implemented in 
ProteomeQuest software, begins with a random generation 
of a population of many subsets of SELDI-TOF mass 
spectra with precise m/z candidate values. The user 
arbitrarily fixes the number of features (i.e., m/z values) 
that will create the best model. In their study, the number of 
features varies with the biologic state and ranges from 5 to 
20. For the same data set, Lilien et al. (59) applied PCA for 
dimensionality reduction and LDA coupled with a nearest 
centroid classifier for classification.  
 
 Using MALDI TOF data, Wu et al. (67) 
compared features selected via the t-statistic approach with 
those selected by the random forest method. SVM, random 
forests, LDA/QDA, KNN, and bagged/boosted decision 
trees were subsequently used to classify the data. Using 15 
and 25 feature sets, they reported that the latter approach 
improved the classification accuracy in distinguishing 
ovarian cancer patients from healthy individuals. 
 
 Adam et al. (68) identified the most informative 
peaks from SELDI-TOF MS data using ROC curves. The 
selected peaks were used by a decision tree algorithm to 
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differentiate between healthy individuals and those with 
prostate cancer. Qu et al. (69) obtained improved 
performance by using boosting. Specifically, they used the 
ROC curve method to identify relevant features. For 
subsequent feature selection and classification, they used 
decision stumps together with Ada-Boost and its variant, 
boosted decision stump feature selection (BDSFS) method. 
A key difference between the two methods is that BDSFS 
selects features without replacement, whereas boosted 
decision stumps (BDS) allows for selection of the same 
feature multiple times. The former method resulted in much 
smaller feature set than the latter. Using the same data set, 
Wagner et al. (62) applied a filter-based ANOVA F-
statistic to rank the pre-selected peaks. They selected 
relevant features in sets of increasing size. Classification 
was performed with KNN, LDA/QDA, and SVM using 
100-fold randomized cross-validation strategy. Linear SVM 
achieved the best accuracy using just eight peaks. Lilien et 
al. (59) used PCA for dimensionality reduction and LDA 
for classification. Petricoin et al. (23) also applied GA-
SOM for classification of prostate cancer. 
 
 Ressom et al. (70, 71) applied PSO-SVM for 
biomarker selection and sample classification from SELDI-
QqTOF and MALDI-TOF spectra in liver cancer studies, 
with high prediction accuracy. The algorithm combines 
PSO with SVM to identify the optimal features from a set 
of potential features. The algorithm randomly selects N 
number of particles initially from a list of L candidate 
features, where each particle consists of n features. The 
performance of each particle in distinguishing cases from 
controls is then evaluated by building an SVM classifier for 
each particle using the cross-validation method. The 
estimated classification accuracy is then used to select the 
most-fit particles, which contribute to the next generation 
of N candidate particles. Thus, on the average, each 
successive population of candidate particles fits better than 
its predecessor. This process continues until the 
performance of the SVM classifier converges. Recently, 
Ressom et al. (72) used a hybrid ACO-SVM algorithm that 
combines a wrapper-based method with a filter-based 
feature ranking, thereby reducing the computation time. 
Both PSO-SVM and ACO-SVM selected a panel of peaks 
from MALDI-TOF spectra that yielded over 90% 
sensitivity and specificity in detecting hepatocellular 
carcinoma (HCC) patients in a testing data set. 
 
7. DISCUSSION 
 
 This review introduces some statistical and 
machine learning methods and their use in marker selection 
and classification of phenotype samples. As large volume 
and high dimensional data are being generated by the 
rapidly expanding use of microarray and mass 
spectrometric technologies, the number of reported 
applications of genomic and proteomic pattern 
classification algorithms is expected to increase. However, 
with increasing demand comes the need for further 
improvements that can make implementation of these 
algorithms for high dimensional data analysis more 
efficient. Key improvements include: (i) careful study 
design to minimize the effect of factors that may introduce 

bias to the data; (ii) enhanced computational power to 
handle the high dimensionality and large volume data; (iii) 
improved high-throughput technologies with less 
background noise and technical variability; (iv) enhanced 
quality control and protocol development/implementation; 
(v) improved data preprocessing methods to minimize the 
impact of background noise, sample degradation, and 
variability in sample preparation and instrument settings (v) 
improved visualization tools to assess data quality and 
interpret results; (vi) adequate data storage and retrieval 
systems; (vii) advances in statistical and machine learning 
methods to enhance their speed and make them more 
accessible to the user.  
 
 Careful study design is needed to make sure that 
a protocol is in place that enables appropriate 
randomization and replication are needed to avoid bias in 
sample collection and sample preparation (73). Ransohoff 
(74) indicated that bias will increasingly be recognized as 
the most important ‘threat to validity’ that must be 
addressed in the design, conduct and interpretation of such 
research. Bias can occur if the cancer and non-cancer 
groups are handled in systematically different ways, 
introducing an apparent ‘signal’ into one group but not the 
other. Such differences might be introduced at several 
stages, including specimen collection, handling and 
storage, or during data generation. In (75), Diamandis 
questioned why the features and classification performance 
vary so drastically across studies. This concern is based on 
the observations that different SELDI-TOF approaches 
combined with different machine learning techniques for 
pattern recognition produce highly variable results in terms 
of relevant features and classification accuracy. Such 
variation may be attributed to a large number of features 
relevant to the task of discriminating healthy individuals 
from those afflicted with cancer. Baggerly et al. (76) 
indicated the cause for inconsistent result could be the 
chemical/electronic noise and/or bias introduced during the 
acquisition of the MS spectra.  
 
 Zhang (77) noted that systematic biases from pre-
analytical variability, which are attributed to samples could 
be collected under different protocols for different 
purposes, and analytical variability caused by sample 
preparation methods are often specific to institutions (sites). 
Hence, the use of specimens from multiple institutions 
combined with sound study is suggested as a means to 
address such biases. It is also indicated that the typical way 
of pooling multiple data sets together, followed by 
randomly dividing them into training and testing sets may 
still turn out to be overly optimistic with results 
unsustainable in actual “field use.” With the large number 
of simultaneously measured variables, it is possible for a 
complex multivariate model to pick up from a pooled 
dataset the different types of systematic biases that existed 
in the original individual data sets. Hence, unless the 
number of sites is large and diverse enough to form a true 
representative sample of the target population, the “mix-
and-split” use of multi-site samples is not recommended. 
An alternative and more conservative approach is to 
conduct independent discovery sessions using the data sets 
separately, followed by inter-institution validation.  
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 Computational methods described in this review 
and many other supervised methods take advantage of prior 
knowledge in making distinctions between one type of 
phenotype sample and another. However, their success is 
highly dependent on the availability and quality of prior 
knowledge from previous experiments. If inaccurately 
labeled data are used for learning, the classification result 
will be impaired. Note that like other empirical models, 
supervised methods are only as good as the data set to 
which they are applied; hence, the quality of the data 
collected is very important.  Unsupervised methods may be 
used for outlier screening. 
 
 Preprocessing of the raw data is of crucial 
importance and significantly influences the quality of the 
classification results. For example, the problem of detecting 
real peaks in a mass spectrum is a central one that deserves 
careful consideration of various preprocessing steps 
including smoothing, baseline correction, normalization, 
and alignment of spectra. In microarray data analysis, 
preprocessing steps such as image quantification, 
background adjustment, normalization, and in some 
platforms such as Affymetrix summarization of probe-level 
measurements play a significant role in obtaining reliable 
expression measurements. Other data preprocessing steps 
include outlier screening, handling of missing values, and 
elimination of features associated to known factors and 
covariates other than the variable we hope to predict. 
 
 It is important to realize the difference between 
variable selection, feature selection, and dimensionality 
reduction. Both variable and feature selection keep an 
optimum subset of variables/features and discards others. 
The term variable selection is often used to indicate the 
selection is made from the original (measured) variables. 
A feature selection, however, could mean that the 
selection is made out of features that are derived from the 
original variables. On the other hand, a dimensionality 
reduction can be made by mapping a subset or the entire set of 
the variables/features onto a low-dimensional space. This is 
commonly done in exploratory analysis, where the purpose is 
to improve visualization. It can be also used to reduce the 
complexity of a problem and to make the task of building a 
classifier easier. A well-known linear transformation used to 
reduce dimensionality is PCA, which transforms the input 
variables to a new set of variables (features). The new 
variables (also known as principal components) are 
computed as a linear combination of the original 
variables and are orthogonal to each other. PCA reduces 
input dimensionality by providing a subset of the 
principal components that captures most of the 
information in the original data. A classifier with the 
selected principal components as inputs may provide 
better accuracy than a classifier with a large dimension 
of original variables consisting of co-regulated genes. 
Nonlinear PCA such as kernel PCA can also be used for 
dimensionality reduction with the same goal as classical 
PCA, but adding the capability to look for nonlinear 
combinations (78). 
 
 Various software tools for microarray and mass 
spectrometry data analysis are currently available. These 

include Bioconductor, GenePattern, BRB Array Tools, 
CART, ClinProTools, Q5 algorithm, Proteinmarker 
Detection Software, Engene, Genesis, RankGene, 
ProteomeQuest, and Biomarker Pattern Software. It is 
expected that more tools that focus on feature selection 
methods will become available. While classification 
methods with good generalization capability exist (e.g. 
SVM, random forest), the selection of features in high 
dimensional and low-sample size data is still the object 
of vigorous research. Researchers have become aware of 
the need to cross-validate not only the process of 
building a classifier but also the feature selection scheme 
to ensure the generalization capability of the resulting 
feature set and the classifier. Also, better ways of 
estimating prediction accuracy are needed, mainly when 
the number of samples is limited and/or no independent 
samples are available. The trade-off between achieving 
good prediction accuracy versus the parsimoniousness of 
features is an object of discussion, particularly in terms 
of then need for simpler and cheaper diagnostic tests vis-
à-vis the high sensitivity and specificity needed, if the 
markers or classifiers are deployed clinically. 
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