# The human papillomavirus vaccine The virus, the diseases and the HPV vaccine This factsheet describes the human papillomavirus (HPV), the diseases that it causes and the vaccine that helps to protect against these diseases. ### What is HPV? HPV is a virus that infects the deepest layer of the skin or genital surfaces (epithelium). There are approximately 100 types of HPV, of which about 40 infect the genital area (McCance, 2004). The majority of all HPV infections resolve on their own and cause no clinical problems. Around 70% of new genital infections clear within one year and approximately 90% clear within two years (Ho *et al.*,1998; Franco *et al.*, 1999). This factsheet focuses on those types of HPV that cause genital infections. ### What diseases can HPV cause? Genital HPVs can cause cancer, genital warts and other rarer anogenital cancers and cancers of the head and neck (Parkin *et al.*, 2006; Stanley, 2007). Genital HPVs are classified as either: - 'high-risk' or oncogenic types which cause cervical cancer and the early changes in the cervix associated with cervical cancer, or - 'low-risk' types, which do not cause cancer but some lead to the development of genital warts. ### Cervical cancer Infection by a high-risk type of HPV is necessary for the development of cervical cancer (see table 1). Over 99% of cervical cancers are caused by HPV infection. There are other cancers that can be caused by HPV but less than half of the total cases are attributed to HPV infection (see table 2). Most cases of high-risk HPV infection do not lead to cervical cancer. In some people, the infection can persist and, though the person is usually symptom-free, the virus can damage the surface of the cervix (the mucosa). Persistent infection can cause abnormalities of the cervix, which, if left undetected and untreated, can lead to cervical cancer. The time span between being infected by a high-risk HPV and the development of cervical cancer is, in most cases, many years (Moscicki *et al.*, 2006). While infection by genital HPV is most common among young adults (aged 18-28) (Koutsky *et al.*, 1997), cases of cervical cancer peak in women in their late 30s. Two high-risk types, HPV 16 and HPV 18, are responsible for over 70% of all cervical cancers in Europe (Smith *et al.*, 2007). Other high-risk HPVs that cause cervical cancer include | HPV type | Percentage<br>of cervical<br>cancer cases<br>caused by<br>HPV type | Cumulative<br>total (%) | |--------------------|--------------------------------------------------------------------|-------------------------| | 16 | 58.1 | 58.1 | | 18 | 15.7 | 73.8 | | 33 | 4.4 | 78.2 | | 31 | 4.0 | 82.2 | | 45 | 2.9 | 85.1 | | 35 | 1.6 | 86.7 | | 58 | 1.2 | 87.9 | | 56 | 1.0 | 88.9 | | 52 | 0.6 | 89.5 | | 39 | 0.2 | 89.7 | | 51 | 0.2 | 89.9 | | 68 | 0.3 | 90.2 | | 59 | 0.1 | 90.3 | | Other | 1.4 | 91.7 | | No type identified | 8.3 | 100.0 | Table 1. Prevalence of the most common HPV types found in cases of cervical cancer in Europe Adapted from Smith et al., 2007 HPV types 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 66 (WHO IARC, 2007), (see table 1). ### Other anogenital cancers The same high-risk HPV types that are associated with cervical cancer can also cause other anogenital cancers. These include cancer of the vagina, vulva, penis and anus. HPV is associated with 80–90% of all anal squamous cell cancers (Munoz *et al.*, 2006): HPV types 16 and 18 are found in most of these cancers (see table 2). Table 2. Types of cancer related to HPV and the percentage of these cases that are caused by HPV infection | Site | Percentage<br>attributable<br>to HPV<br>infection | Percentage<br>of which,<br>HPV16<br>and/or 18 | Reference | |---------------------------------|---------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------| | Cervix<br>Penis<br>Vulva,vagina | >99<br>40<br>40 | >70<br>63<br>80 | Smith <i>et al.</i> , 2007<br>Rubin <i>et al.</i> , 2001<br>Daling <i>et al.</i> , 2002<br>Iwasawa <i>et al.</i> , 1997<br>Trimble <i>et al.</i> , 1996 | | Anus | 90 | 92<br>95 | Daling <i>et al.</i> , 2004<br>Frisch <i>et al.</i> , 1999<br>Kreimer <i>et al.</i> , 2005 | | Oropharynx | 71.7 | 90-95 | Chaturvedi <i>et al</i> ., 2011 | Adapted and updated from Parkin et al., 2006. However, unlike cervical cancer, where over 99% of cases are caused by HPV infection, only around 40% of vaginal and vulval cancers are associated with HPV (Munoz *et al.*, 2006). The development of vaginal and vulval cancers is not well understood. Invasive cancers are usually preceded and accompanied by abnormalities, known as vaginal intraepithelial neoplasias (ValN) or vulval intraepithelial neoplasias (VIN). HPV 16 is the type most commonly associated with VIN lesions. ### **Genital warts** Genital warts are the most common viral sexually transmitted infection in the UK (HPA, 2012). Over 90,000 new cases were reported throughout the UK in 2009 (HPA, 2011). HPV types 6 and 11 cause the majority of cases of genital warts (Lacey *et al.*, 2006). In a survey of the UK population, 4% of adults aged 18 to 44 years reported that they had genital warts at some time in their life (Fenton *et al.*, 2001). Genital warts can be difficult to treat and patients may experience frequent recurrent episodes. Genital warts are not life threatening, but they can cause significant distress to the individual and substantial healthcare costs (Woodhall *et al.*, 2011; Desai *et al.*, 2011). ### **How is HPV infection spread?** Genital HPV infections are spread primarily by sexual contact, particularly through sexual intercourse but also by non-penetrative genital contact. Risk factors for acquiring HPV infection are related to sexual behaviour – risk increases with the introduction of a new sexual partner, the sexual history of the partner and the number of previous sexual partners. Non-sexual routes of HPV transmission include transmission from mother to baby in the period immediately before and after birth, and hand to genital contact may explain some infections in childhood (Cubie *et al.*, 1998). # What are the main factors that cause HPV infection to lead to the development of cervical cancer? Persistent infection by one or more high-risk HPV types is the most important factor for the development of cervical intraepithelial neoplasias (CIN) and cancerous lesions. Several co-factors are likely to be involved in the development of cervical cancer. The incidence of invasive cervical cancer is increased by cigarette smoking, increasing number of full-term pregnancies, and HIV infection (WHO IARC, 2007; Vaccarella *et al.*, 2008). Some other factors, such as the use of the contraceptive pill, have been suggested to increase the likelihood of developing cervical cancer. But, as it is difficult to separate this factor from other linked factors such as sexual behaviour, the findings are inconclusive (Munoz *et al.*, 2006). ### How does HPV infection lead to cancer? HPV can cause changes in infected epithelial cells. In some cases, HPV DNA integrates into host (human) DNA in the cervical epithelial cells at the site of infection. It is this process that is likely to be involved in changes to these cells that can progress to cancer (Woodman *et al.*, 2007). The exact nature of this process and the role of other factors are not fully understood. A description of how CINs can develop into cervical cancer is shown in figure 1 (see pages 10 and 11). Figure 2. Prevalence of high-risk HPV according to age quinquennia. The graph shows that HPV infection is greater in 20- to 29-year-olds and decreases rapidly after age 30. Data taken from Kitchener *et al.*, 2006. ### How common is HPV infection in the UK? In a study conducted in the UK, 40% of the cervical smears from 20- to 24-year-old women were positive for HPV DNA (indicating a current infection); (Kitchener *et al.*, 2006). Fifteen per cent of these women had recently been infected by HPV types 16 or 18. As individuals get older the likelihood of infection by HPV decreases (see figure 2) (Clifford *et al.*, 2003; Kitchener *et al.*, 2006). The Centers for Disease Control and Prevention estimate that at least half of all sexually active women are infected by genital HPV in their lifetimes (CDC,2004). Infection is likely to occur in their late teens and early twenties. A study of antibodies to four types of HPV infection (16,18, 6 and 11) showed that the proportion of females who have been infected by HPV increases rapidly from 14 years of age to 24 years of age (Jit *et al.*, 2007), (see figure 3). Figure 3. The percentage of females aged 10 to 29 years who have antibodies to (a) HPV 6, (b) HPV 11, (c) HPV 16 and (d) HPV 18. The error bars indicate the upper and lower confidence intervals. The presence of antibodies is evidence of past HPV infection. The graphs show that infection by HPV has already occurred in some girls shortly after age 14 years. Data taken from Jit *et al.*, 2007. ### How common are cervical cancer and other anogenital cancers? ### Cervical cancer Cervical cancer is the second most common cancer of women worldwide with approximately 500,000 new cases and 270,000 deaths annually (Parkin *et al.*, 2006; Munoz *et al.*, 2006). In industrialised countries, routine cervical screening programmes and subsequent treatment have prevented many invasive cancers and deaths by detecting and preventing cervical changes at an early stage (Peto *et al.*, 2004). Figure 4. Number of cases of newly diagnosed cervical cancer in England, 2009 (source: National Statistics, 2009) In England, 2747 new cases of invasive cervical cancer were diagnosed in 2009 (National Statistics, 2011). Most cases occur in women in their 30s and there is a second peak amongst women in their 70s to 80s (see figure 4). ### Vaginal and vulval cancer In England, cancer of the vagina accounts for less than 0.1% of all cancer cases (around 220 cases a year) (National Statistics, 2009). Cancer of the vulva affects around 1000 women a year and around 70% of both types occur in women over the age of 60 years. ### Anal cancer In England, there are around 850 cases of anal cancer diagnosed annually (National Statistics, 2009). Nearly two-thirds of anal cancers occur in women. ### How common are genital warts? Genital warts are the most common viral sexually transmitted infection in the UK, with over 90,000 cases of new infection reported from GUM clinics in 2009 (HPA, 2011). ### Can HPV infection be treated? Although HPV infection itself cannot be treated, the diseases it causes can often be treated quite successfully. Cervical, anal, vaginal and vulval abnormalities are treated by removal, or by using cryotherapy, electrocautery and laser therapy. The main type of treatment for cervical cancer (when the cancer is restricted to the cervix) is surgery. Surgery may also be used to treat anal, vaginal and vulval cancers, either alone or in combination with radiotherapy and chemotherapy. In the UK, approximately two-thirds of women diagnosed with cervical cancer are alive five years after diagnosis (National Statistics, 2004). There is a variety of treatments for genital warts. They can be treated using topical agents, cryotherapy and electrocautery, all of which may require repeated applications. None of these approaches treats the infection and treated individuals may continue to be a source of infection to other people, and may suffer recurrence of genital warts. ### Can HPV infection be prevented? Abstinence from any sexual activity greatly reduces the risk of genital HPV infection. For sexually active people, condoms reduce the risk of HPV infection, but they are not 100% effective (Koutsky, 1997). This is because HPV can be transmitted by skin-to-skin contact of genital areas not covered by condoms. ### Can the development of cervical cancer be prevented? The NHS National Cervical Screening Programme has led to a significant fall in the incidence and death rate from cervical cancer. Death rates in 2004 were approximately 60% lower than 30 years before, mainly due to the introduction of systematic screening (Peto *et al.*, 2004). Cervical screening does not prevent HPV infection nor does it prevent the early changes that may indicate the later development of cervical cancer. Some groups of women are less likely to attend for cervical screening, for example ethnic minority groups and women born in a foreign country (Webb *et al.*, 2004; Thomas *et al.*, 2005). ### The HPV vaccine Vaccines are available to protect against the two most common HPV types (16 and 18) that cause cervical cancer and the two most common HPV types that cause genital warts (6 and 11). The national immunisation programme began in 2008 using a vaccine (Cervarix) against HPV 16 and 18. In 2012, the programme changed to use a vaccine (Gardasil) against HPV 6, 11, 16, and 18. ### Why has the vaccine changed? Cervarix was chosen on a three-year contract. When this was reviewed in 2011, Gardasil offered the best value and so was chosen for the next three years. ### How effective is the HPV vaccine in preventing cervical cancer? Both HPV vaccines are over 99% effective in preventing cervical abnormalities associated with HPV types 16 and 18 in women who have not already been infected by these types (Lu *et al.*,2011). The vaccines have not been shown to protect against disease if a woman has an active HPV infection. However, they may protect a woman who has already been exposed to HPV infections and is no longer infected. The vaccines will protect individuals against infection by the HPV vaccine types they have not already contracted. These vaccines do not protect against all HPV types that cause cervical cancer. However, there is evidence of some protection against other types (cross protection). Figure 1. How the human papillomavirus affects the surface of the cervix and produces a cancerous growth. (from Woodman *et al.*, 2007) 10 www.nhs.uk/hpv 11 ### How does the vaccine work? The vaccine is made from the proteins that make up the outer coat of the virus types. These proteins assemble into small spheres that are called virus-like particles (VLPs). The VLPs are not infectious and cannot cause cervical cancer or genital warts. When a person is vaccinated, their immune system mounts a response against these VLPs. If the person is exposed to the real virus infections, the body's immune system reacts quickly to stop the infection. ### Who will receive this vaccine? The vaccine is offered routinely to girls aged 12 to 13 years (school year 8). Older girls under the age of 18 have been offered the vaccine through a catch-up programme that began in September 2008. This programme has finished, but girls under 18 years who have not received the vaccine yet can still receive it free of charge if they ask their doctor. ### How will the vaccine be given? The vaccine will usually be given in the upper arm by intramuscular injection. Three doses of HPV vaccine are given over a period of six months. If any doses are missed or delayed, it is important to complete the course within 12 months. ### How long does protection from HPV vaccination last? Studies suggest that vaccinated people maintain high levels of protection for at least seven years, and it is expected to last many years. The long-term effectiveness of the vaccine will be carefully monitored. ### Is the HPV vaccine safe? Both vaccines are very safe. Safety has been established through rigorous testing in clinical trials (e.g. Paavonen *et al*, 2007; Reisinger *et al*, 2007), followed by use of many millions of doses across the world over the past few years. As with any vaccine, some people may experience a side effect, but these are not long lasting and are far outweighed by the expected benefits of the vaccine. ### What side effects does the vaccine cause? The most common side effect is mild to moderate swelling, redness and pain at the site of injection. Other mild side effects such as raised temperature, sickness, dizziness, diarrhoea and muscle aches were reported in more than one in 100 people. Very rarely, some people have an allergic reaction soon after immunisation. This reaction may be a rash or itching affecting part or all of the body. Even more rarely, some people can have a severe reaction soon after the immunisation which causes breathing difficulties and may cause the person to collapse. This type of reaction (anaphylaxis) is extremely rare and health professionals administering vaccinations are trained to deal with it. Fainting, sometimes accompanied by shaking or stiffening, has also been reported associated with the vaccination procedure. A full list of potential adverse reactions is provided in the patient information leaflet that comes with each vaccine. Suspected side effects should be reported to the Yellow Card Scheme (www.mhra.gov.uk). ### Are there any reasons why individuals should not have this vaccine? There are very few individuals who cannot receive HPV vaccine. Immunisation is contraindicated only in persons who have had: - a confirmed anaphylactic reaction to a previous dose - a confirmed anaphylactic reaction to any part of the vaccine. Minor illnesses without fever or systemic upset are not valid reasons to postpone immunisation. If a person is acutely unwell with a very high temperature, immunisation may be postponed until they have fully recovered. This is to avoid wrongly associating any cause of fever, or its progression, or other symptoms to adverse effects of the vaccine. Allergy to yeast is not a contraindication to immunisation. ### Is HPV vaccine safe if it is given to a pregnant woman? There is no known risk associated with giving HPV vaccine during pregnancy. HPV vaccine is an inactivated vaccine, which means that it does not contain any live organisms, and so cannot cause infection in either the mother or her baby. However, as a matter of precaution, HPV vaccine is not recommended in pregnancy. This is not because of any specific safety concerns with giving HPV vaccine during pregnancy but due to limited information on using the vaccine in pregnant women. Although pregnant women were specifically excluded from the HPV vaccine trials and safeguards were in place during the trials to prevent pregnant women from receiving the vaccine some women were unknowingly pregnant when they were immunised, or were immunised just before becoming pregnant. The women who received HPV vaccine were no more likely to have problems with their pregnancies than women in the trials who did not receive HPV vaccine. There were no increased risks found for the babies born to women who had received the vaccine. ### What should happen if HPV vaccine is given to a pregnant women? If a woman finds out she is pregnant after she has started a course of HPV vaccine, she should discuss this with her GP who can then report this to the HPA register directly by visiting the Health Protection Agency (HPA) website (www.hpa.org.uk) or by telephone (01788 540298 or 0208 327 7471). Additional details on the registry are available on the HPA website. There is no evidence that having the vaccination during pregnancy will harm her or her baby and there is no reason to believe that the pregnancy cannot continue safely. Once the woman has completed her pregnancy, she can finish the three-dose course of HPV vaccine. Due to the relatively limited experience of using HPV vaccine in pregnant women to date, it is important to follow up women who have been given the vaccine during pregnancy. This is to provide further information on the safety of the vaccine when it is given in pregnancy. This follow-up is being conducted by the Immunisation Department of the Health Protection Agency Centre for Infections (www.hpa.org.uk). ### Can the vaccine be given to people who are immunocompromised? Women and girls whose immune systems are compromised, due to either disease or medication, can still receive HPV vaccine. However, the immune response to this vaccination and its effectiveness may be less than that observed among those who are immunocompetent. ### Is HPV vaccination recommended in other countries? HPV vaccination is in use in many European countries, as well as many other countries worldwide, including the US, Australia, Canada and New Zealand. Numerous other countries are considering implementation of HPV vaccine. # What about older girls – are they at risk and will they get the vaccine? All women who are sexually active are at risk of HPV infection. Risk of a new HPV infection decreases quite markedly for most women over the age of 25 years – by this time many women will already have become infected or exchange sexual partners less frequently. For sexually active older women who are already likely to have been infected by HPV, participation in the NHS Cervical Screening Programme (to detect disease caused by existing infection) remains the best way to protect themselves against cervical cancer. ### What about boys – are they at risk and do they need the vaccine? As boys do not suffer from cervical cancer, the benefits of HPV vaccination are less for boys than for girls although the protection against genital warts offered by Gardasil is a benefit for both boys and girls. The vaccination of girls will also reduce the transmission of infections to boys. This should lead to a reduction in the other forms of cancer caused by HPV in both boys and girls. ### References Ault KA and FUTURE II Study Group (2007) Effect of prophylactic human papillomavirus L1 virus-like-particle vaccine on risk of cervical intraepithelial neoplasia grade 2, grade 3, and adenocarcinoma *in situ*: a combined analysis of four randomised clinical trials. *Lancet* **369**(9576): 1861-8. Chaturvedi AK, Engels EA, Pfeiffer RM *et al.* (2011) Human papillomavirus and rising oropharyngeal cancer incidence in the United States. *J Clin Oncol* **29**: 4294-301. CDC (2004) Genital HPV Infection – CDC Fact Sheet. www.cdc.gov/std/HPV/ STDFact-HPV.htm. Accessed on: Feb. 2008. Clifford GM, Smith JS, Aguado T *et al.* (2003) Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. *Br J Cancer* **89**(1): 101-5. Cubie HA, Plumstead M, Zhang W *et al.* (1998) Presence of antibodies to human papillomavirus virus-like particles (VLPs) in 11-13-year-old schoolgirls. *J Med Virol* **56**(3): 210-6. Daling JR, Madeleine MM, Johnson LG et al. (2004) Human papillomavirus, smoking, and sexual practices in the etiology of anal cancer. *Cancer* **101**(2): 270-80. Daling JR, Madeleine MM, Schwartz SM et al. (2002) A population-based study of squamous cell vaginal cancer: HPV and cofactors. *Gynecol Oncol* **84**(2): 263-70. Department of Health (2007) *Cancer Reform Strategy*. www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH081006. Accessed: Feb. 2008. Desai S, Wetten S, Woodhall SC *et al.* (2011) Genital warts and cost of care in England. *Sex Transm Infect* **87**: 464-8. http://sti.bmj.com/site/about/unlocked.xhtml Fenton KA, Korovessis C, Johnson AM *et al.* (2001) Sexual behaviour in Britain: reported sexually transmitted infections and prevalent genital *Chlamydia trachomatis* infection. *Lancet* **358**(9296):1851-4. Fenton KA and Lowndes CM (2004) Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sex Transm Infect **80**(4): 255-63. Franco EL, Villa LL, Sobrinho JP *et al.* (1999) Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. *J Infect Dis* **180**(5): 1415-23. Frisch M, Fenger C, van den Brule AJ *et al.* (1999) Variants of squamous cell carcinoma of the anal canal and perianal skin and their relation to human papillomaviruses. *Cancer Res* **59**(3): 753-7. Harper DM, Franco EL, Wheeler CM *et al.* (2006) Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. *Lancet* **367**(9518): 1247-55. Ho GY, Bierman R, Beardsley L *et al.* (1998) Natural history of cervicovaginal papillomavirus infection in young women. *N Engl J Med* **338**(7): 423-8. Howell-Jones R, Bailey A, Beddows S *et al.* (2010) Multi-site study of HPV type-specific prevalence in women with cervical cancer, intraepithelial neoplasia and normal cytology, in England. *British Journal of Cancer* **103**(2): 209–16. HPA (2007) Testing times – HIV and other sexually transmitted infections in the United Kingdom: 2007. www.hpa.org.uk/webc/HPAwebFile/HPAweb\_C/1203496897276. Accessed:Apr. 2008. HPA (2012) STI annual data tables. www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/STIs/STIsAnnualDataTables/ Iwasawa A, Nieminen P, Lehtinen M *et al.* (1997) Human papillomavirus in squamous cell carcinoma of the vulva by polymerase chain reaction. *Obstet Gynecol* **89**(1): 81-4. Jit M, Vyse A, Borrow R *et al.* (2007) Prevalence of human papillomavirus antibodies in young female subjects in England. *Br J Cancer* **97**(7): 989-91. Kitchener HC, Almonte M, Wheeler P *et al.* (2006) HPV testing in routine cervical screening: cross sectional data from the ARTISTIC trial. *Br J Cancer* **95**(1): 56-61. Koutsky L (1997) Epidemiology of genital human papillomavirus infection. *Am J Med* **102**(5A): 3-8. Kreimer AR, Clifford GM, Boyle P *et al.* (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. *Cancer Epidemiol Biomarkers Prev* **14**(2): 467-75. Lacey CJ, Lowndes CM and Shah KV (2006) Chapter 4: Burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. *Vaccine* **24 S3** S35-41. Lu B et al. (2011) Efficacy and safety of prophylactic vaccines against cervical HPV infection and diseases among women: a systematic review and meta-analysis. BMC Infectious Diseases 11: 13. www.biomedcentral.com/1471-2334/11/13 Moscicki AB, Schiffman M, Kjaer S *et al.* (2006) Chapter 5: Updating the natural history of HPV and anogenital cancer. *Vaccine* **24 S3** S42-51. Munoz N, Castellsague X, de Gonzalez AB et al. (2006) Chapter 1: HPV in the etiology of human cancer. Vaccine 24 S3 S1-S10. National Statistics (2004) *Registrations of cancer diagnosed in 2004, England.* www.statistics.gov.uk/downloads/theme\_health/MB1\_35/MB1\_No%2035\_2004.pdf. Accessed: Feb. 2008. National Statistics (2007) *Cancer registrations in England, 2005.* http://www.statistics.gov.uk/downloads/theme\_health/2005cancerfirstrelease.xls. Accessed: Feb. 2008. National Statistics (2011) *Cancer registrations in England, 2009.* www.ons.gov.uk/ons/rel/vsob1/cancer-registrations-in-england/2009/index.html Paavonen J, Jenkins D, Bosch FX *et al.* (2007) Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. *Lancet* **369**(9580): 2161-70. Parkin DM and Bray F (2006) Chapter 2: The burden of HPV-related cancers. *Vaccine* **24 S3** S11-25. Peto J, Gilham C, Fletcher O *et al.* (2004) The cervical cancer epidemic that screening has prevented in the UK. *Lancet* **364**(9430): 249-56. Reisinger KS, Block SL, Lazcano-Ponce E *et al.* (2007) Safety and persistent immunogenicity of a quadrivalent human papillomavirus types 6, 11, 16, 18 L1 virus-like particle vaccine in preadolescents and adolescents: a randomised controlled trial. *Pediatr Infect Dis J* **26**(3):201-9. Rubin MA, Kleter B, Zhou M *et al.* (2001) Detection and typing of human papillomavirus DNA in penile carcinoma: evidence for multiple independent pathways of penile carcinogenesis. *Am J Pathol* **159**(4): 1211-8. Smith JS, Lindsay L, Hoots B *et al.* (2007) Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. *Int J Cancer* **121**(3): 621-32. Stanley M (2007) Prophylactic HPV vaccines: prospects for eliminating ano-genital cancer. *Br J Cancer* **96**(9): 1320-3. Thomas VN, Saleem T and Abraham R (2005) Barriers to effective uptake of cancer screening among Black and minority ethnic groups. *Int J Palliat Nurs* **11**(11): 562, 564-71. Trimble CL, Hildesheim A, Brinton LA *et al.* (1996) Heterogeneous etiology of squamous carcinoma of the vulva. *Obstet Gynecol* **87**(1): 59-64. Vaccarella S, Herrero R, Snijders PJ *et al.* (2008) Smoking and human papillomavirus infection: pooled analysis of the International Agency for Research on Cancer HPV Prevalence Surveys. *Int J Epidemiol* (in press). Webb R, Richardson J, Esmail A et al. (2004) Uptake for cervical screening by ethnicity and place-of-birth: a population-based cross-sectional study. J Public Health (Oxf) 26(3): 293-6. WHO IARC (2007) Human Papillomaviruses. *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans*. Woodhall SC, Jit M, Soldan K *et al.* (2011) The impact of genital warts: loss of quality of life and cost of treatment in eight sexual health clinics in the UK. *Sex Transm Infect* **87**: 458-63. http://sti.bmj.com/site/about/unlocked.xhtml Woodman CB, Collins SI and Young LS (2007) The natural history of cervical HPV infection: unresolved issues. *Nat Rev Cancer* **7**(1): 11-22. ### **Glossary** **Abstinence** To refrain, to stop doing something **Allergic reaction** A reaction by your immune system to a substance that does not usually affect most people **Anal** Of the anus which is the opening at the end of the digestive system where solid waste leaves the body **Anaphylaxis** An immediate and severe allergic reaction which needs urgent medical attention **Anogenital** Of the genital area including the anus **Antibodies** Proteins produced by the body to neutralise or destroy toxins and disease-carrying organisms **Cancer** A group of diseases in which cells grow unrestrained in an organ or tissue in the body; can spread to tissues around it and destroy them or be transported through blood or lymph pathways to other parts of the body **Cervical cancer** Cancer of the cervix (neck of the womb) ### Cervical intraepithelial neoplasias (CIN) A cervical abnormality that can progress to cancer. CINs are classified as CIN 1, 2 or 3 depending on how much of the epithelium is affected **Cervical screening** Cervical screening is a method of preventing cancer by detecting and treating early abnormalities which, if left untreated, could lead to cancer in a woman's cervix. The first stage in cervical screening is either a smear test or liquid based cytology Cervical screening programme The NHS Cervical Screening Programme was set up in 1988 when the Department of Health instructed all health authorities to introduce computerised call-recall systems and to meet certain quality standards Cervix The lower part of the uterus (womb) separating it from the vagina Chemotherapy The treatment of infections or cancer using drugs that act on disease-producing organisms or **Co-factors** Other factors that may influence an outcome cancerous tissue **Contraindicated** Contraindications are reasons not to use a particular treatment or medication. An aspect of a patient's condition that makes the use of a certain drug or therapy an unwise or even a dangerous decision **Cross-protection** The ability of a vaccine that protects against one strain of a virus to provide protection against other, similar strains **Cryotherapy** A treatment that uses extreme cold to freeze and destroy diseased tissue **DNA Deoxyribonucleic acid** The molecules inside cells that carry genetic information and pass it from one generation to the next Electrocautery The cauterisation of tissue using electric current to generate heat Epithelium The layer of cells that covers the body and lines many organs Fetal/fetus The unborn baby, from the eighth week of pregnancy until birth **Genital tract** The organs that make up the reproductive system **Genital wart** A growth on the skin in or around the vagina, penis, or anus, transmitted by sexual contact. ### **Genito-Urinary Medicine (GUM) clinic** Specialist clinics for the diagnosis and treatment of sexually transmitted diseases **Immune response** The body's response to an immunisation or infection **Immune system** The immune system is one of the body's defence systems, which helps protect it from disease **Immunocompetent** With a well-functioning immune system **Immunocompromised** When the body's immune system does not work properly **Intramuscular** Into the muscle **Laser therapy** The use of a laser (a concentrated beam of light) to perform medical procedures, such as the destruction of tumours **Lesions** A lesion is an abnormal change in an organ or body tissue because of injury or disease. **Oncogenic genes** that, when altered by environmental factors or viruses, can cause abnormal cell growth **Pre-cancerous** Describes a condition from which cancer may develop **Proteins** One of the essential constituents of living organisms **Radiotherapy** Treatment of a disease, such as cancer, using forms of radioactivity that damage or destroy abnormal cells **Thiomersal** A mercury-based preservative used in some vaccines to prevent microbial contamination, or in the process of producing inactivated vaccines. **Treatment** Medical care for an illness or injury **Tumour** An abnormal growth of tissue **Vagina** The muscular passage connecting the uterus to the outside genitals; a component of the female reproductive system ### Vaginal intraepithelial neoplasias (VaIN) A vaginal abnormality that can progress into vaginal cancer. Like cervical intraepithelial neoplasia (CIN) it is classified as VaIN 1,2 or 3 depending on how much of the epithelium is affected **Vulva** The female external genitalia Vulval Of the vulva Vulval intraepithelial neoplasias (VIN) A vulval abnormality that can progress into vulval cancer. Like cervical intraepithelial neoplasia (CIN) it is classified as VIN 1,2 or 3 depending on how much of the epithelium is affected **Warts** Small growths on the skin caused by the human papillomavirus © Crown copyright 2012 408890 1p Mar12 (web only) Produced by COI for the Department of Health First published May 2008 Updated March 2012 The text of this document may be reproduced without formal permission or charge for personal or in-house use. For more information and advice visit: www.nhs.uk/hpv