
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Sep 08, 2024

A nested recursive logit model for route choice analysis

Mai, Tien; Frejinger, Emma; Fosgerau, Mogens

Published in:
Transportation Research Part B: Methodological

Link to article, DOI:
10.1016/j.trb.2015.03.015

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Mai, T., Frejinger, E., & Fosgerau, M. (2015). A nested recursive logit model for route choice analysis.
Transportation Research Part B: Methodological, 75, 100-112. https://doi.org/10.1016/j.trb.2015.03.015

https://doi.org/10.1016/j.trb.2015.03.015
https://orbit.dtu.dk/en/publications/5f8ecf5b-3f98-48e6-ab37-ef870a5dc7dd
https://doi.org/10.1016/j.trb.2015.03.015


A nested recursive logit model for
route choice analysis

Tien Mai ∗ Mogens Fosgerau† Emma Frejinger ∗

March 22, 2015

Abstract

We propose a route choice model that relaxes the independence
from irrelevant alternatives property of the logit model by allowing
scale parameters to be link specific. Similar to the the recursive logit
(RL) model proposed by Fosgerau et al. (2013), the choice of path
is modelled as a sequence of link choices and the model does not
require any sampling of choice sets. Furthermore, the model can be
consistently estimated and efficiently used for prediction.

A key challenge lies in the computation of the value functions, i.e.
the expected maximum utility from any position in the network to
a destination. The value functions are the solution to a system of
non-linear equations. We propose an iterative method with dynamic
accuracy that allows to efficiently solve these systems.

We report estimation results and a cross-validation study for a
real network. The results show that the NRL model yields sensible
parameter estimates and the fit is significantly better than the RL
model. Moreover, the NRL model outperforms the RL model in terms
of prediction.

Keywords: route choice modelling; nested recursive logit; substitution pat-
terns; value iterations; maximum likelihood estimation; cross-validation.

∗Department of Computer Science and Operational Research, Université de Montréal
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1 Introduction

Discrete choice models are generally used for analyzing path choices in real
networks based on revealed preference (RP) data. There are two main mod-
elling issues associated with (i) estimating such models consistently and (ii)
subsequently using them for prediction. First, choice sets of paths are un-
known to the analyst and the set of all feasible paths for a given origin-
destination pair cannot be enumerated. Second, path utilities may be cor-
related, for instance, due to physical overlap in the network. As we explain
below, there is currently no path choice model that can be consistently esti-
mated and used for prediction, while avoiding the specification of choice sets
and allowing for correlation due to path overlap. The nested recursive logit
(NRL) model, proposed in this paper, fills this gap.

Most of the existing path choice models are based on choice sets of paths
that need to be sampled before estimating or applying the model. Many dif-
ferent algorithms exist for sampling choice sets (for reviews, see e.g. Frejinger
et al., 2009, Prato, 2009) and they all correspond to importance sampling
protocols where paths have non-equal probabilities of being sampled. Fre-
jinger et al. (2009) show that utilities need to be corrected for the sampling
of alternatives, which implies that only algorithms that allow computation
of the path sampling probabilities can be used. Frejinger et al. (2009) use
the logit (MNL) model but recently Guevara and Ben-Akiva (2013a) and
Guevara and Ben-Akiva (2013b) have derived results for generalized extreme
value (GEV) and mixed logit models, respectively. The sampling approach
can be used to consistently estimate a path choice model, but it is still un-
known how to use that model for prediction.

A three path example network is often used to illustrate why it is impor-
tant to allow for correlated utilities (we present this example in more detail
in Section 3). At the origin one can take right or left. Going right there are
two paths that share one link except for a short distance close to destination
where they separate. If all three paths have the same deterministic utility, a
logit model assigns the probability 1/3 to each although one would expect a
probability 1/2 going left and 1/2 going right. A number of models in the
literature allow to model the correlation structure of path utilities. Examples
are the link-nested logit (Vovsha and Bekhor, 1998), mixed logit with error
components (Bekhor et al., 2001, Frejinger and Bierlaire, 2007) and paired
combinatorial logit (Chu, 1989). These models are based on sampled choice
sets without correcting the utilities for the sampling protocol. Hence, the
parameter estimates are conditional on the choice sets and may have signif-
icantly different values if some paths are added or removed from the choice
sets. This is problematic since the true choice sets are unknown. As men-
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tioned earlier, the MEV models (e.g. link-nested logit) or the mixed logit
models can be corrected. Lai and Bierlaire (2014) estimate a link-nested logit
model using the results by Guevara and Ben-Akiva (2013a).

Recently, Fosgerau et al. (2013) proposed the recursive logit (RL) model
where path choice is modelled as a sequence of link choices using a dynamic
discrete choice framework. The RL model can be consistently estimated and
used for prediction without sampling choice sets of paths. It is however
equivalent to a MNL model over the set of all feasible paths. A correction
attribute called link size was proposed that achieves an effect similar to the
path size attribute in path choice models (Ben-Akiva and Bierlaire, 1999).
These attributes correct the utilities for correlation but the models retain
the independence of irrelevant alternatives (IIA) property, unless the path
size/link size attributes are updated as utilities change (e.g. changes in link
travel times).

In this paper we propose an extension of the RL model that allows path
utilities to be correlated in a fashion similar to nested logit (Ben-Akiva, 1973,
McFadden, 1978) and where links can have different scale parameters. The
key challenge with this extension lies in the computation of the expected
maximum utility from a current position in the network until the destination
(value functions). A computational advantage of the RL model is that the
value functions can be computed by solving a system of linear equations,
which is fast and easy to do. In the case of the NRL, the value functions are
a solution to a system of non-linear equations which is substantially more
difficult to deal with. We propose an iterative method with dynamic accuracy
to efficiently solve this equation system.

This paper makes a number of contributions. First we propose a model
that can be consistently estimated and used for prediction without sampling
choice sets while allowing the random terms to be correlated. Second, we
provide illustrative examples and discuss substitution patterns in order to
build an intuition on the properties of the model. Third, we propose an
iterative method to solve for the value functions and we derive the analyt-
ical gradient of the log-likelihood function for the case that the scales are
functions of model parameters so that the NRL model can be efficiently esti-
mated. Fourth, we provide estimation and cross-validation results for a real
network using simulated and real observations. Finally, the estimation code
is implemented in MATLAB and is freely available upon request.

The paper is structured as follows. Section 2 presents the NRL model.
Section 3 discusses substitution patterns by illustrative examples and Section
4 provide a method to compute the value functions. Section 5 derives an
analytical formula for the first order derivative of the log-likelihood function.
Specifications, estimation and prediction results are presented in Section 6
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and finally Section 7 concludes.

2 The nested recursive logit model

In the RL model (Fosgerau et al., 2013) the path choice problem is formu-
lated as a sequence of link choices and modelled in a dynamic discrete choice
framework. At each node the decision maker chooses the utility-maximizing
outgoing link with link utilities given by the instantaneous utility and the
expected maximum utility to the destination. The random terms of the
instantaneous utilities are independently and identically distributed (i.i.d.)
extreme value type I so that the model is equivalent to MNL. In this section
we present the NRL model which relaxes the IIA property of MNL by assum-
ing that the scales of random terms are non-equal across links. We derive
the NRL model using the same notation as Fosgerau et al. (2013) (we refer
the reader to that paper for a more detailed presentation of the notation).
Even though the derivation of NRL is similar to the RL one, the resulting ex-
pressions of the value functions and path choice probabilities have important
differences.

A directed connected graph (not assumed acyclic) G = (A,V) is consid-
ered, where A and V are the sets of links and nodes, respectively. For each
link k ∈ A, we denote the set of outgoing links from the sink node of k by
A(k). Moreover we associate an absorbing state with each destination by
extending the network with dummy links d (see Figure 1). This is a link
without successors so a trip stops once this state is reached. The set of all
links is Ã = A∪{d} and the corresponding deterministic utility is v(d|k) = 0
for all k that have destination d as sink node. Given two links a, k ∈ Ã, the
following instantaneous utility is associated with action a ∈ A(k) of individ-
ual n

un(a|k; β) = vn(a|k; β) + µkε(a) (1)

where β is a vector of parameters, ε(a) are i.i.d extreme value type I and
µk is a strictly positive scale parameter. We ensure that ε(a) have zero
mean by subtracting Euler’s constant. The deterministic term vn(a|k; β) is
assumed negative for all links except the dummy link d. We emphasize the
difference with the original RL model where scale parameters are assumed
equal (µk = µ ∀k ∈ A). For notational simplicity, we omit an index for
individual n but note that the utilities can be individual specific.

The expected maximum utility from the sink node of k to the destination
is the value function V d(k; β). The superscript d indicates that the value
functions are destination specific and they also depend on parameters β.
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V d(a1)

··
· A(k)

Figure 1: Illustration of notation

V d(k; β) is recursively defined by Bellman’s equation

V d(k; β) = E
[

max
a∈A(k)

(
v(a|k; β) + V d(a; β) + µkε(a)

)]
∀k ∈ A (2)

or equivalently

1

µk
V d(k; β) = E

[
max
a∈A(k)

( 1

µk
(v(a|k; β) + V d(a; β)) + ε(a)

)]
∀k ∈ A. (3)

For notational simplicity we omit from now on β from the value functions
V (.) and the utilities v(.).

Given these assumptions the probability of choosing link a given state k
is given by the MNL model

P d(a|k) = δ(a|k)
e

1
µk

(v(a|k)+V d(a))∑
a′∈A(k) e

1
µk

(v(a′|k)+V d(a′))

= δ(a|k)e
1
µk

(v(a|k)+V d(a)−V d(k)) ∀k, a ∈ Ã.

(4)

Note that we include δ(a|k) that equals one if a ∈ A(k) and zero otherwise so
that the probability is defined for all a, k ∈ Ã (we recall that Ã = A ∪ {d}).
Since we assume that the random terms in (1) are distributed i.i.d. EV type
I, the value functions (2) are given recursively by the logsum

1

µk
V d(k) = ln

( ∑
a∈A(k)

e
1
µk

(v(a|k)+V d(a))
)
∀k ∈ A (5)

and V d(d) = 0 by assumption. Similar to Fosgerau et al. (2013) we can write
(5) as

e
1
µk
V d(k)

=

{∑
a∈A δ(a|k)e

(v(a|k)+V d(a))
µk ∀k ∈ A

1 k = d
(6)
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and define a matrix Md(|Ã| × |Ã|) and a vector zd(|Ã| × 1) with entries

Md
ka = δ(a|k)e

v(a|k)
µk , zdk = e

V (k)
µk , k, a ∈ Ã. (7)

The key issue here compared to the RL model is that we do not end
up with a system of linear equations. Indeed, the value functions are the
solutions to the following system of non-linear equations

zdk =

{∑
a∈AM

d
ka(z

d
a)
µa/µk ∀k ∈ A

1 k = d,
(8)

where the non-linearity arises due to the scale parameters µk not being equal.
The probability of a path σ defined by a sequence of links σ = [k0, k1, . . . , kI ]

is

P (σ) =
I−1∏
i=0

e
1
µki

(v(ki+1|ki)+V d(ki+1)−V d(ki))
. (9)

Unlike the RL model, the link specific value functions do not cancel out due
to the scale parameters. This implies that the path choice probabilities are
computationally more costly to evaluate.

We note that if the network contains cycles, the RL and NRL model allow
for paths to contain loops (Akamatsu, 1996, Fosgerau et al., 2013, discuss this
in more detail). The probability of paths with loops depend on the data and
network structure. For the data used in this paper, Fosgerau et al. (2013)
report that paths with loops have a very small probability.

Finally we note that the IIA property does not hold in the NRL model.
Consider the ratio of the choice probabilities of two paths σ1 = [k1, . . . , kI1 ]
and σ2 = [h1, . . . , hI2 ] connecting just one origin-destination pair

P (σ1)

P (σ2)
=

∏I1−1
i=1 e

1
µki

(v(ki+1|ki)+V d(ki+1)−V d(ki))∏I2−1
i=1 e

1
µhi

(v(hi+1|hi)+V d(hi+1)−V d(hi))
. (10)

When the scales µk = µ ∀k ∈ A, the value function terms cancel out and the
ratio (10) then only depends on the utilities of two considered paths. For
the NRL model, the ratio (10) depends on several values functions, which
are evaluated based on the whole network and therefore the IIA property
does not hold. In the following section we discuss the resulting substitution
pattern in more depth using several illustrative examples.
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3 Illustrative examples and substitution pat-

terns

Similar to several studies in the literature (e.g. Ben-Akiva and Bierlaire,
1999), we use a simple three path network shown in 2 to illustrate why it
is important to allow for correlated utilities. There are three paths from o
to d (link o is the origin and link d is the destination dummy link): [o, a, d],
[o, b, e, d], [o, b, f, d]. We number these paths 1,2 and 3 and the corresponding
path probabilities are P1, P2 and P3, respectively. The only attribute in the
instantaneous utility is link length and the values are given in the parentheses
on each arc. In order to compute path probabilities we choose a length
parameter β̃ = −1.

When the scales of random terms are equal over links µk = µ, the model
corresponds the RL and P1 = P2 = P3 = 1/3. When the network has
a perfect nested structure as this one (each path in the network belongs
to exactly one nest when defined by physical overlap), the NRL model is
equivalent to a nested logit model. We can illustrate this by fixing all the
scale parameters to 1 except µb that we vary over the interval (0, 1]. The
path probabilities are plotted in the graph on the right hand side in Figure
2.

O

C

D

a(4)

b(3)

e(1)

f(1)

d(0)o(1)

µb

P

0 0.2 0.4 0.6 0.8 1.0

1/3

1/2

1/4 P2 = P3

P1

Figure 2: Classic three paths example network

In order to build intuition on the substitution patterns implied by the
NRL model, we provide three more examples. The first is shown in Figure
3 which also has a simple nested structure. There are 4 nodes A,B,C,D
and 9 links. Moreover, there are 6 possible paths from o to d: [o, a, a1, d],
[o, a, a2, d], [o, a, a3, d], [o, b, b1, d], [o, b, b2, d] and [o, b, b3, d] and we number
these paths as 1, 2, 3, 4, 5 and 6, respectively.

For the RL model the IIA property holds, meaning that, if we remove
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any link in the network, the probabilities of the remaining feasible paths
will increase by the same proportion (for example if we remove link a2, the
probabilities of path [o, a, a3, d] and path [o, b, b3, d] increase but they are
still equal). For the NRL model, the scales of random terms are assigned
different values. We assign a scale of 0.5 for links a, a scale of 0.8 for links b
and a scale of 1.0 for the others. Similar to an example in Train (2003), we
illustrate substitution patterns by removing in turn links a1, a2, b1, b2 and
present changes in probabilities in Table 1.

A

B

C

D

a(1)

b(2)

a1(1)

a2(2)

a3(3)

b1(2)

b2(1.5)

b3(1)

d(0)o(1) N1 N2

1 2 3 4 5 6

paths

nests

Figure 3: Example network with perfect nested structure

Probabilities with link removed
Paths Original a1 a2 b1 b2
1 : [o, a, a1, d] 0.54 - 0.65(+20%) 0.55(+1%) 0.56(+4%)
2 : [o, a, a2, d] 0.15 0.38(+151%) - 0.16(+1%) 0.16(+4%)
3 : [o, a, a3, d] 0.04 0.11(+151%) 0.05(+20%) 0.05(+1%) 0.05(+4%)
4 : [o, b, b1, d] 0.02 0.05(+93%) 0.03(+15%) - 0.03(+19%)
5 : [o, b, b2, d] 0.06 0.12(+93%) 0.07(+15%) 0.17(+6%) -
6 : [o, b, b3, d] 0.17 0.33(+93%) 0.20(+15%) 0.18(+6%) 0.21(+19%)

Table 1: Change in probability when link is removed (example network with
perfect nested structure)

We note that the probabilities for paths [o, a, a1, d], [o, a, a2, d], [o, a, a3, d]
rise by the same proportions whenever one link is removed from the network.
This is also the case for the three paths [o, b, b1, d], [o, b, b2, d] and [o, b, b2, d].
As expected, the IIA property holds between paths within the same nest but
not for paths in different nests. For example, when link a1 is removed, the
probabilities of the paths in the first nest rise by 151% while the paths in the
second nest rise by 93%.

We also consider the case when a link from node B to C is added to
the network in Figure 3. This change adds three more paths to nest N1.
In Table 2 we report the change in probabilities for the same six paths as
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A

B

C

DE

a(1)

b(2)

a1(1)

a2(2)

a3(2)

f(2)

b1(1)

b2(1.5)

b3(1)

e(1)
d(0)o(1) N1 N2

1 2 3 4 5 6

paths

nests

Figure 4: Example network with cross-nested structure

before. We note that the absolute values of choice probabilities change but
the substitution pattern remains proportional.

Probabilities with link removed
Paths Original a1 a2 b1 b2
1 : [o, a, a1, d] 0.487 - 0.572(17.52%) 0.504(3.48%) 0.522(7.27%)
2 : [o, a, a2, d] 0.140 0.298(113.38%) - 0.144(3.48%) 0.150(7.27%)
3 : [o, a, a3, d] 0.040 0.085(113.38%) 0.047(17.52%) 0.041(3.48%) 0.043(7.27%)
4 : [o, b, b1, d] 0.022 0.038(73.88%) 0.024(12.84%) - 0.026(22.29%)
5 : [o, b, b2, d] 0.059 0.102(73.88%) 0.066(12.84%) 0.063(7.86%) -
6 : [o, b, b3, d] 0.160 0.278(73.88%) 0.180(12.84%) 0.172(7.86%) 0.195(22.29%)

Table 2: Change in probability when link is removed (example network with
perfect nested structure with link from B to C)

The network in Figure 3 is designed so that the paths can naturally
be divided into separate nests. In the next example shown in Figure 4 we
slightly modify the network so that paths have a cross-nested structure. More
precisely, we add a node E that splits links a3 and b1 into two links. The
lengths of the paths in the new network do not change but the structure of
the network is different since apart from the origin and destination, two paths
[o, a, a3, e, d] and [o, a, b1, e, d] share link e. Furthermore, there is a new link
f going (backward) from node E to node A so that the expected maximum
utilities from link a3 and b1 depend on the whole network.

We report probabilities for the 6 paths without loops: [o, a, a1, d], [o, a, a2, d],
[o, a, a3, e, d], [o, b, b1, e, d], [o, b, b2, d], [o, b, b3, d], which are numbered as 1, 2,
3, 4, 5 and 6, respectively. We keep the same scales as in the first example
(i.e. µa = 0.5, µb = 0.8 and the other scale parameters are equal to one).
The changes in probabilities of the six paths when we remove in turn links
a3, b1 and f are reported in Table 3. We note that the substitution patterns
are different than in the previous example since the probabilities of paths 3
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and 4 no longer change by the same proportion as the other paths in their
respective nest.

Probabilities with link removed
Paths Original a1 b3 f
1 : [o, a, a1, d] 0.54 - 0.60(+12%) 0.54(+0.7%)
2 : [o, a, a2, d] 0.15 0.38(+150%) 0.17(+12%) 0.15(+0.7%)
3 : [o, a, a3, e, d] 0.05 0.11(+148%) 0.05(+11%) 0.04(-1.3%)
4 : [o, b, b1, e, d] 0.03 0.05(+86%) 0.05(+90%) 0.02(-6.7%)
5 : [o, b, b2, d] 0.06 0.12(+93%) 0.12(+91%) 0.06(+1.4%)
6 : [o, b, b3, d] 0.17 0.33(+93%) - 0.17(+1.4%)

Table 3: Change in probability when link is removed (example network with
cross-nested structure)

In order to compare the results with path based models we report prob-
abilities given by the nested logit and link-nested logit (Vovsha and Bekhor,
1998) models in Table 4. The correlation structure given by the link-nested
logit model is shown in Figure 5. For the nested models, the nesting param-
eters take the same values as in the NRL mode, namely 0.8 for nest N1 and
0.5 for nest N2. The results show that for these examples, the probabilities
of the nested model are identical to the NRL model and probabilities of the
link-nested logit are slightly different from NRL. We note that the sums of
the path probabilities for RL and NRL in the second example are slightly
smaller than one, due to the cycle in the network.

In summary, the IIA property can be relaxed by assuming different scales.
The resulting substitution pattern depends on the network structure. If the
network has a perfect nested structure (e.g Figure 3) the NRL and nested
logit models yield the same results.

ba a1 a2 a3 b1 b2 b3 e

1 2 3 4 5 6

links

paths

Figure 5: Cross-nested structure from the Link-nested logit model
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Example 1 Example 2
Paths MNL NRL Nested MNL NRL Link

logit nested logit
1 0.449 0.541 0.541 0.443 0.537 0.501
2 0.165 0.155 0.155 0.163 0.154 0.150
3 0.061 0.044 0.044 0.060 0.045 0.051
4 0.061 0.023 0.023 0.060 0.025 0.043
5 0.100 0.064 0.064 0.099 0.063 0.085
6 0.165 0.173 0.173 0.163 0.170 0.171

Table 4: Path probabilities comparison

4 Computation of the value functions

The main challenge associated with the NRL model is to efficiently solve the
large-scale system of system of non-linear equations (6). In the following
we describe a value iteration approach that is efficient thanks to (i) a good
initial solution and (ii) dynamic accuracy.

We define a matrix X(z) with entries

X(z)ka = zµa/µka ∀k, a ∈ Ã (11)

so that the Bellman equation (8) can be written as

z = [M ◦X(z)]e+ b. (12)

b is a vector of size (|Ã| × 1) with zero values for all states except for the
destination that equals 1, e is a vector of size (|Ã| × 1) with value one for all
states and ◦ is the element-by-element product.

Value iterations are based on Equation (12). We start with an initial
vector z0 and then for each iteration i we compute a new vector

zi+1 ← [M ◦X(zi)]e+ b. (13)

and iterate until a fixed point is found using ||zi+1 − zi||2 < γ for a given
threshold γ > 0 as stopping criteria.1 It can be shown that if the Bellman
equation has a solution, this method converges after a finite number of it-
erations (see for instance Rust, 1987, 1988). The choice of initial vector is
however important for the rate of convergence. We use the solution of the
system of linear equations corresponding to the RL model (µk = µ ∀k ∈ A)
which is fast to compute.

1The value functions can also be used in the stopping criteria i.e. the iteration stops
when

∑
k∈Ã(V i+1(k)−V i(k))2 < γ′. The value functions have however larger magnitudes

than z.
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The proofs in the literature establishing the existence and uniqueness of
a solution to Bellman’s equation use a discount factor less than one. In
our case we do not discount future utilities and these proofs do not apply.
Fosgerau et al. (2013) discuss this issue in more detail for the RL model.
In essence, the existence of a solution depends on the balance between the
number of paths connecting the nodes in the network and the size of the
scaled instantaneous utilities. It is easy to find a feasible solution by using
large enough magnitude of the β parameters.

Since the value functions depend on the parameter values, they need to
be solved repeatedly when searching over the parameter space (maximum
likelihood estimation). In order to decrease the computational time we use
dynamic accuracy. More precisely, we update the threshold γ in the iterations
of the non-linear optimization algorithm so that higher accuracy is required
close to optimum (γ decreases as the number of iterations of the non-linear
optimization algorithm increases).

Before discussing the maximum likelihood estimation in more detail, we
note that (12) can be written as F (z) = 0, where F (z) = z−[M◦X(z)]e+b. A
standard solver can be used e.g. fsolver in MATLAB or the Newton-GMRES
method (for instance Kelley, 1995). We have tested these methods but found
that they are not efficient for our application and that our approach works
better.

5 Maximum likelihood estimation

There are several different ways of estimating a dynamic discrete choice model
(Aguirregabiria and Mira, 2010), we adopt the nested fixed point algorithm
of Rust (1987). This algorithm combines an outer iterative non-linear op-
timization algorithm for searching over the parameter space with an inner
algorithm for solving the value functions.2 The latter was the focus of the
previous section and we now turn our attention to the definition of the log-
likelihood (LL) function and the derivation of its gradient which allows us to
use classic Hessian approximation such as BHHH and BFGS (see for instance
Berndt et al., 1974, Nocedal and Wright, 2006).

The path probabilities are defined by (9) and contain scale parameters

2Another option is the algorithm proposed by Aguirregabiria and Mira (2002). The idea
is to swap the order of the outer and inner algorithms so that the outer algorithm solves
the value functions and the inner algorithm maximizes the pseudo-likelihood function.
This is very useful if the value functions are costly to evaluate. In the case of the NRL
model, it is more costly to maximize the log-likelihood function than solving the value
functions.
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µk ∀k ∈ A as well as the parameters β associated with the attributes of the
instantaneous utilities. Clearly, it is not possible to estimate all link-specific
scale parameters for a real network and therefore we assume that they are a
function of parameters β to be estimated µk(β). (We refer the reader to the
numerical results, Section 6, for an example.)

The LL function defined over the set of path observations n = 1, . . . , N
is

LL(β) =
N∑
n=1

lnP (σn, β) =
N∑
n=1

In∑
t=0

1

µkt
(vn(kt+1|kt) + V n(kt+1)− V n(kt))

(14)
and is very similar to the LL function of the RL model except that the value
functions for the states along a path do not cancel out. Assuming a linear-
in-parameters formulation of the instantaneous utilities, the gradient with
respect to a given parameter βi is

∂LL(β)

βi
=

1

N

N∑
n=1

In−1∑
t=1

1

µkt

(
∂vn(kt+1|kt)

∂βi
+
∂V n(kt+1)

∂βi
− ∂V n(kt)

∂βi

)
− ∂µkt
µ2
kt
∂βi

(vn(kt+1|kt) + V n(kt+1) + V n(kt))

and hence requires the first derivative of the value functions V n(k), ∀k ∈ Ã
with respect to βi. We define φka = µa/µk and take the derivative of a
given value function zk as defined by (8) (without using the superscript for
destination d) and obtain

∂zk
∂βi

=
∑
a∈A

(
∂Mka

∂βi
zφkaa +Mkaz

φka
a

(
φka
za

∂za
∂βi

+
∂φka
∂βi

ln za

))
=
∑
a∈A

(
∂Mka

∂βi
zφkaa +Mkaz

φka
a

∂φka
∂βi

ln za

)
+
∑
a∈A

(
Mkaz

φka
a

φka
za

∂za
∂βi

)
.

(15)
We note that when the scales µk contain some model parameters, the deriva-
tive of each element of matrix M(β) with respect to a given parameter βi
is

∂Mka

∂βi
= δ(a|k)e

v(a|k)
µk

(
∂v(a|k)

µk∂βi
− v(a|k)

∂µk
µ2
k∂βi

)
, k, a ∈ Ã.

We introduce two matrices, Gi and K of size |Ã| × |Ã|, which have the two
sums of (15) as entries

Gi
ka =

∂Mka

∂βi
zφkaa +Mkaz

φka
a

∂φka
∂βi

ln za
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Kka = Mkaz
φka
a

φka
za
, ∀k, a ∈ Ã. (16)

This allows us to define the Jacobian of vector z as a system of linear equa-
tions

∂z

∂βi
= Gie+K

∂z

∂βi
⇒ ∂z

∂βi
= (I −K)−1Gie, (17)

which in theory, can be solved very efficiently. Nevertheless, it is possible
to use the fact that V (k) = µk ln zk ∀k ∈ Ã and derive the Jacobian of V
instead of z. In this case the gradient of V (k) with respect to a given βi is

∂V (k)

∂βi
=
∂µk
∂βi

ln zk +
µk
zk

∂zk
∂βi

. (18)

Using (15) we get

∂V (k)

∂βi
=
∑
a∈A

Sika +
∑
a∈A

Hka
∂V (a)

∂βi
+ hk (19)

where

Sika = µk
∂Mka

∂βi

zφkaa

zk
+ µkMka ln(za)

zφkaa

zk

∂φka
∂βi

−Mka ln(za)
zφkaa

zk

∂µa
∂βi

and

Hka = Mka
zφkaa

zk
and hk =

∂µk
∂βi

ln zk.

We denote Si, H be two matrices of size |Ã|× |Ã| and h, V be two vectors of
size |Ã|× 1 with entries Sika, Hka, hk, V (k) for all k, a ∈ Ã, respectively. The
Jacobian of vector V can then be written as a system of linear equations

∂V

∂βi
= (I −H)−1(Sie+ h). (20)

Although theoretically equivalent, we now discuss the numerical differ-
ences between the two formulas (17) and (20) for computing the gradient of
the value functions. We consider the definitions of the matrix K and H. za,
a ∈ Ã are exponential functions of the value functions which are negative by
assumption. The value of za may therefore be very close to zero. Since the
elements of matrix K can be written as Kka = φkaMkaz

φka−1
a (∀k, a ∈ Ã) if

φka < 1, the value of Kka can be very large, and if φka > 1, Kka can be very
close to zero. These wide range of values in the elements of matrix K (and
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also in matrix I −K) can lead to numerical issues when solving the system
(17). Based on equation (8), each element of matrix H can be written as

Hka =
Mkaz

φka
a∑

a′∈A(k)Mka′z
φka′
a′

=
1

1 +
∑

a′∈A(k),a′ 6=a
Mka′z

φka′
a′

Mkaz
φka
a

∀k, a ∈ Ã, a ∈ A(k)

so that 0 < Hka < 1, meaning that the elements of matrix H are closer in
value, compared to matrix K. Therefore, using (20) to compute the gradient
of LL function is better than (17) for numerical reasons. In summary, the
analytical gradient of the LL function has a complicated form but can be
efficiently computed by solving systems of linear equations.

6 Numerical results

In this section we present estimation and prediction results for four different
models: the RL model with and without link size (LS) attribute and the
NRL model, also with and without LS attribute. We use the same data
as Fosgerau et al. (2013) (also used in Frejinger and Bierlaire, 2007, Mai
et al., 2014) which has been collected in Borlänge, Sweden. The network is
composed of 3077 nodes and 7459 links and is uncongested so travel times
can be assumed static and deterministic. The sample consists of 1832 trips
corresponding to simple paths with a minimum of five links. Moreover, there
are 466 destinations, 1420 different origin-destination (OD) pairs and more
than 37,000 link choices in this sample.

6.1 Model specifications

The same five attributes as Fosgerau et al. (2013) are used in the instanta-
neous utilities. First, link travel time TT (a) of action a. Second, a left turn
dummy LT (a|k) that equals one if the turn angle from k to a is larger than
40 degrees and less than 177 degrees. Third, a u-turn dummy UT (a|k) that
equals one if the turn angle is larger than 177. Fourth, a link constant LC(a).
The fifth attribute is LS(a) (for a detailed description see Fosgerau et al.,
2013) and it has been computed using a linear-in-parameters formulation of
the aforementioned four attributes using parameters β̃TT = −2.5, β̃LT = −1,
β̃LC = 0.4, β̃UT = −4.
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Even in this fairly small network there are more than 7000 links, so it
is not possible to estimate link specific parameters. We therefore impose a
constraint on the scale parameters µk > 0 by defining them as a function
of link attributes. More precisely, µk = eλk where λk = ωxk, ω is a vector
of parameters and xk a vector of attributes associated with link k. This
assumption ensures that (i) the estimation problem is unconstrained and (ii)
we can use the analytical gradient (18). Note that if all the parameters in
λk are zero, the scales are equal to one for all links k ∈ Ã, meaning that the
NRL model becomes the RL model. As much as data allows, it is possible
to elaborate on the specification of the scale parameters. For example, by
including different attributes in the exponential function or by estimating
link specific scales parameters for some links in the network.

For the numerical results presented in this paper we use three link specific
attributes: travel time, LS and the number of outgoing links OL(k) = |A(k)|.
Accordingly, λk is

λk = ωTTTT (k) + ωLSLS(k) + ωOLOL(k). (21)

We do not use a link constant since it has the same value for all links, the
rationale behind using it in the instantaneous utilities is to penalize paths
with many crossings (links). Note that this is not a regression model, it is
simply a specification of the scale parameters µk that enter the instantaneous
utility functions.

To summarize, the deterministic utilities for four different model specifi-
cations with respect to link a given link k are

vRL(a|k; β) = vNRL(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+βUTUT (a|k)

vRL-LS(a|k; β) = vNRL-LS(a|k; β) = βTTTT (a) + βLTLT (a|k) + βLCLC(a)

+βUTUT (a|k) + βLSLS(a)

and the instantaneous utilities are

uRL(a|k; β) = vRL(a|k; β) + µε(a)

uRL-LS(a|k; β) = vRL-LS(a|k; β) + µε(a)

uNRL(a|k; β, ω) = vNRL(a|k; β) + eλkε(a)

uNRL-LS(a|k; β, ω) = vNRL-LS(a|k; β) + eλkε(a).

6.2 Estimation results

We report the estimation results for the four specifications in Table 5. The
results are comparable to those previously published using the same data.

16



The β estimates have their expected signs and are highly significant. ω̂LS and
ω̂OL are significant and negative while ω̂TT is not significantly different from
zero when the LS attribute is included in the instantaneous utilities. The LS
attribute corresponds to expected normalized flows and takes positive values
but is numerically close to zero for a majority of the links in the network.
ω̂LS and ω̂OL indicate that the scales are inversely related to flow and number
of outgoing links; links with more flow and more outgoing links have smaller
variance of the error terms than links with less flow and fewer outgoing links.

It is not straightforward to analyze the resulting scale parameters based
on ω̂. We therefore provide two histograms in Figure 6 showing the distri-
bution of µk and lnφka = ln µa

µk
over the links in the network for the NRL-LS

model. The graph on the left shows that the values of µk vary over the links
in the network which ensures that IIA does not hold (the average value of
µk is 0.78). The peaks in the distribution are due to the attribute number of
outgoing links OL(k) which take discrete values. We note that a few links
have values larger than one: this is consistent with utility maximization and
does not imply counter intuitive path probabilities. The graph on the right
shows the distribution of lnφka which is quite symmetric around 0 (the av-
erage value of φka is 1.03). The symmetry can be explained by the attribute
OL(k). Consider the u-turn link a′ of link a ∈ A(k). Since link k and a′ have
the same sink node we have OL(k) = OL(a′). For our data this results in
values of µk numerically close to µa′ and thus

φkaφaa′ =
µa
µk

µa′

µa
≈ 1

or equivalently
lnφka + lnφaa′ ≈ 0.

The LS attribute was designed to correct the utilities of overlapping paths
in a way similar to the path size attribute. Moreover, if the values of these
attributes are updated in case of a change in any attribute in the network,
they relax the IIA property. Several studies in the literature (e.g. Bekhor
et al., 2001, Frejinger and Bierlaire, 2007) report a better model fit and
prediction results if these attributes are included in the deterministic utilities
in addition to correlated random terms. It is also the case in this study: we
observe a significant improvement in final log-likelihood values when we add
the LS attribute (the likelihood ratio test are reported in Table 6, when
applicable). The best model in terms of in-sample fit is NRL-LS. Since the
scale parameters and the link size parameter are estimated off the same
variation in the data, it is important to note that an identification issue may
occur. It is however not the case for this data set.
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Figure 6: Histogram of µk and lnφka for NRL-LS

Before comparing prediction results in the following section we make some
remarks concerning the estimation. We use a basic trust region algorithm
with the BHHH method for approximating the Hessian and the code is im-
plemented in MATLAB (and available upon request). We use the iterative
method with dynamic accuracy for the computation of the value functions
(see Section 4). We note that if we use an initial vector as a solution of the
system of linear equations, about 100 iterations is enough for a high precision
(γ′ = 10−8) but we need about 200 iterations for the same precision when the
initial vector is the unit vector (all the elements are equal to one). Moreover,
using only 50 iterations in the beginning of the optimization (corresponding
to a precision γ′ ∈ [1, 10]) and switching to the high precision γ′ = 10−8 when
the norm of the gradient of the log-likelihood function is less than 10−3 we
were able to double the speed of the estimation.

6.3 Prediction results

In this section we focus on comparing the prediction performance of the
different models. We use a cross validation approach where the sample of
observations is divided into two sets by drawing observations at random with
a fixed probability: one set is used for estimation (80% of the observations)
and the other is used as holdout (20% of the observations) to evaluate the
predicted probabilities by applying the estimated model. We generate 40
holdout samples of the same size by reshuffling the real sample. The log-
likelihood loss is used as the loss function to evaluate the prediction perfor-
mance. More precisely, for each holdout sample i, 0 ≤ i ≤ 40 we estimate
the parameters β̂i off the corresponding training sample and this vector of
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Figure 7: Average of the test error values over holdout samples

parameters is used to compute the test errors erri

erri = − 1

|PSi|
∑

σj∈PSi
lnP (σj, β̂i)

where PSi is the size of prediction sample i. Then erri is a random variable
that depends on the holdout sample i. In order to have unconditional test
error values we compute the average of erri values over samples as follows

errp =
1

p

p∑
i=1

erri ∀1 ≤ p ≤ 40. (22)

The values of errp, 1 ≤ p ≤ 40 are plotted in Figure 7 and Table 7 reports
the average of the test error values over 40 samples given by the RL, RL-
LS, NRL, NRL-LS models. For each model the value of errp becomes more
stable as p increases. The prediction results show that models including
the LS attribute perform better than those without. The NRL-LS model
has a significantly better fit and also a better prediction performance than
RL-LS. We note that the differences between the models’ test error values
are quite constant over the holdout samples. This is due to the fact that
(i) the same holdout sample is used across models, and (ii) the number of
observations used for estimation and the size of the holdout samples are large,
so the parameter estimates are stable and so are the predicted log-likelihood
values.
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7 Conclusion

This paper has presented the NRL model which avoids the IIA property of
the RL model by allowing scale parameters to be link specific while keeping
the advantages of the RL model. We have proposed an efficient approach
to estimate the model, solving the value functions using an iterative method
with dynamic accuracy. Moreover, we have derived the gradient of the log-
likelihood function which can be computed by solving systems of linear equa-
tions.

We have provided numerical results using real data. The parameter esti-
mates are sensible and the NRL model has significantly better fit than the
RL model. The LS attribute plays an important role and the best models in-
cluding this attribute have significantly better model fit than those without.
We have also provided a cross-validation study suggesting that NRL-LS and
NRL are better than the RL-LS and RL model, respectively.

In future research we plan to investigate further the importance of the LS
attribute and its definition. Moreover, there are only few attributes available
in the data set used in this paper. We would like to test the model on other
data sets that allows us to test other possible functional forms of the scale
parameters.

In this paper we use a unimodal network and observations of trips made
by car. We emphasize that the model is not restricted to this type of network.
More precisely, by adapting the state space, the model can be used in e.g.
dynamic networks (state is time and location) and multi-modal networks
(state is location and mode) as long as link attributes are deterministic. The
dynamic network is suitable for modeling congested networks, the RL model
has been used for this purpose by Ramos et al. (2012). The challenge lies in
the size of the state space, which is considerably larger than a static network
since it is the number of links multiplied by the number of time intervals.

As a final remark we note that since the RL and NRL models are based
on the universal choice set (including all path even those with loops), they
avoid having to consider choice set formation. They can therefore be seen as
alternatives to the approach proposed by Manski (1977). The RL and NRL
may be relevant to other contexts than route choice where there is an issue
associated with large choice sets.
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Parameters RL NRL RL-LS NRL-LS

β̂TT -2.494 -1.854 -3.060 -2.139
Rob. Std. Err. 0.098 0.132 0.103 0.145
Rob. t-test(0) -25.45 -14.05 - 27.709 -14.75

β̂LT -0.933 -0.679 -1.057 -0.748
Rob. Std. Err. 0.030 0.043 0.029 0.047
Rob. t-test(0) -31.10 -15.79 -36.448 -15.91

β̂LC -0.411 -0.258 -0.353 -0.224
Rob. Std. Err. 0.013 0.016 0.011 0.015
Rob. t-test(0) -31.62 -16.13 -32.091 -14.93

β̂UT -4.459 -3.340 -4.531 -3.301
Rob. Std. Err. 0.114 0.200 0.126 0.207
Rob. t-test(0) -39.11 -16.7 - 35.960 -15.95

β̂LS - - -0.227 -0.155
Rob. Std. Err. - - 0.013 0.013
Rob. t-test(0) - - -17.462 -11.92

ω̂TT - 0.515 - 0.341
Rob. Std. Err. - 0.255 - 0.288
Rob. t-test(0) - 2.02 - 1.18

ω̂LS - -0.674 - -0.581
Rob. Std. Err. - 0.093 - 0.090
Rob. t-test(0) - -7.25 - -6.46

ω̂OL - -0.086 - -0.092
Rob. Std. Err. - 0.015 - 0.016
Rob. t-test(0) - -5.73 - -5.75

LL(β̂) -6303.9 -6187.9 -6045.6 -5952.0

Table 5: Estimation results

Models χ2 p-value
RL & NRL 232 5.11e-50

RL-LS & NRL-LS 187.2 2.46e-40
NRL & NRL-LS 471.8 1.30e-104

Table 6: Likelihood ratio test results

RL NRL RL-LS NRL-LS
3.392 3.336 3.252 3.204

Table 7: Average of test error values over 40 holdout samples
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