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Abstract

Long transfer times often add unnecessary inconvenience to journeys in public transport systems. Synchronizing

relevant arrival and departure times through small timetable modifications could reduce excess transfer times, but

may also directly affect the operational costs, as the timetable defines the set of feasible vehicle schedules. Therefore

better results in terms of passenger service, operational costs, or both, could be obtained by solving these problems

simultaneously.

This paper addresses the tactical level of the Integrated Timetabling and Vehicle Scheduling Problem as a bi-

objective mixed integer programming problem that minimizes transfer costs and operational costs. Given an initial

non-cyclical timetable, and time-dependent service times and passenger demand, the weighted sum of transfer time

cost and operational costs is minimized by allowing modifications to the timetable that respect a set of headway

constraints. Timetable modifications consist of shifts in departure time and addition of dwell time at intermediate

stops with transfer opportunities.

A matheuristic is proposed that iteratively solves the mathematical formulation of the Integrated Timetabling

and Vehicle Scheduling Problem allowing timetable modifications for a subset of timetabled trips only, while solving

the full vehicle scheduling problem. We compare different selection strategies for defining the sub-problems. Results

for a realistic case study of the Greater Copenhagen area indicate that the matheuristic is able to find better feasible

solutions faster than a commercial solver and that allowing the addition of dwell time creates a larger potential for

reducing transfer costs.

Keywords: Public Transport, Bus Timetabling, Vehicle Scheduling, Mixed Integer Linear Programming,

Matheuristic

1. Introduction

Transfers add substantial amounts of travel time to journeys in large public transport systems. Reduced transfer

times resulting from a better synchronization of trips in timetables could increase ridership of public transport

and thereby potentially diminish congestion (Ibarra-Rojas and Rios-Solis, 2012). A higher mode share for public

transportation furthermore aids to reduce rising pollution levels. Therefore, the integration of timetabling and
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vehicle scheduling is important because it improves passenger service at limited operating costs (Guihaire and Hao,

2010). This paper addresses this issue in the context of tactical timetable and vehicle schedule design.

Timetables and vehicle schedules are closely related problems, but are traditionally solved sequentially (De-

saulniers and Hickman, 2007). Indeed, a small change in the timetable could render an initial vehicle schedule

infeasible, or could create options for less costly vehicle schedules. Sequentially optimizing these plans can there-

fore result in suboptimal solutions. That there is a benefit in integrating timetabling and vehicle scheduling was

already demonstrated by e.g. Ceder (2001),Van den Heuvel et al. (2008), Petersen et al. (2013), Ibarra-Rojas et al.

(2014) and Laporte et al. (2017), who report savings of up to 20% in transfer waiting times while keeping operational

costs at a similar level.

This paper addresses the tactical level of the Integrated Timetabling and Vehicle Scheduling Problem (IT-VSP)

as a bi-objective mixed integer programming problem that minimizes transfer costs and operational costs. Given

an initial non-cyclical timetable, and time-dependent service times and fixed passenger demand per transfer, the

weighted sum of transfer time cost and operational costs is minimized by allowing modifications to the timetable

that respect a set of headway constraints. Timetable modifications consist of shifts in departure time and addition

of dwell time at intermediate stops with transfer opportunities. Novelty of the current work lies in the far wider

set of allowed timetable modifications in the IT-VSP, the detailed representation of vehicle schedules, and the new

matheuristic that for the first time allows to compare results to a lower bound on the problem.

The contributions of this paper are threefold: (i) we present a mathematical formulation for the IT-VSP that

allows for a far wider set of timetable modifications by allowing both a change in departure time as well as increases

in dwell time under headway constraints; (ii) we propose a matheuristic approach that generates good quality

solutions for real size instances faster than a general purpose commercial solver; and (iii) we apply our methodology

to a real case study for the express bus network in the Greater Copenhagen area. Results of the case study indicate

that the integrated planning of timetables and vehicle schedules can reduce both excess transfer times for passengers

and the operational costs. The solutions of the matheuristic in one hour of computation time are substantially better

than the solutions of a general purpose solver after seven days of computation time.

Timetable T, T
Passengers per transfer r ∈ R
Selection Strategy Strat

Input

Trip Selection
Strat

IT-VSP
optimization

Timetable T
Vehicle Schedules X

Output

subset of timetable trips
T ′ ⊂ T

new timetable
T

Figure 1: Flow diagram of the matheuristic approach

The matheuristic, depicted in Figure 1, selects and solves a sub-problem of the IT-VSP in each iteration. The

input consists of the set of timetabled trips, an initial timetable, a fixed passenger demand per transfer opportunity,

and a selection strategy for defining the subproblem. We propose and compare four selection strategies. The

matheuristic consists of the two blocks in Figure 1, executed iteratively. First a subset of timetable trips is selected

according to the selection strategy. Next the IT-VSP mixed integer programming formulation is solved, rescheduling

timetables for selected trips only while simultaneously optimizing the vehicle schedules. Specific features of the model
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are the dynamic assignment of transferring passengers to transfer-to trips, the allowance of non-cyclic timetables,

pre-defined changes in on- and off-peak travel times of vehicles, and the creation of detailed vehicle schedules for the

planning horizon (e.g. 24 hours). The output defines the new, best known timetable, as well as vehicle schedules

that cover that timetable. The iterations stop when either a maximum time or a maximum number of iterations

have been reached.

The remainder of this paper consists of a problem description (Section 2), a literature review (Section 3), a

formal problem definition including the MIP formulation (Section 4), the matheuristic (Section 5), and a case study

and discussion of results (Sections 6 and 7), as well as conclusions and suggestions for future research (Section 8).

2. The integration of timetabling and vehicle scheduling

Given a set of bus lines and desired frequencies, the Transit Network Timetabling (TNT) problem defines the

departure and arrival times for each stop visited by each trip. The general TNT problem aims at maximizing

passenger service, and may consider schedule synchronization and transfer times. The Multiple Depot Vehicle

Scheduling Problem (MDVSP) has the goal of operating a set of timetabled trips using vehicles from a set of depots

at a minimum cost. When only one depot is available, the problem is referred to as the Single Depot Vehicle

Scheduling Problem (SDVSP), which is solvable in polynomial time. Inputs to the problem are the number of

vehicles available at each depot, a set of timetabled trips to be serviced (which is the output of the TNT), and a

distance matrix between all terminal stops and depots. Vehicles must start and end at the same depot.

The IT-VSP applies modifications to a provided timetable to minimize a weighted sum of passenger costs and

operational costs resulting from the vehicle schedules. Passenger demand is known and fixed, and defined as a

number of passengers that wish to transfer from a specific trip to another line at a specific stop. As an example,

Figure 2 depicts a transfer opportunity between two lines, 300S and 400S, at a Lynby station. Passengers are

assumed to transfer from an arriving trip of a feeder line (e.g. 300S) to the first available trip of their desired

line (e.g. 400S). Operational costs are defined as the costs for vehicles waiting at stops (when stretching), vehicles

performing non-service trips (dead heading), and fixed costs per vehicle schedule.

A transfer opportunity exists at the crossing of two bus or train lines, such as the crossing of bus lines 300S and

400S at Lyngby station in Figure 2. The transfer depicted in Figure 3 requires a minimum time of 4 minutes to

disembark the 300S vehicle, walk to the stop of the 400S line and embark the 400S vehicle at Lyngby Station. In

the current timetable, trip i of the 300S line arrives at 9:30 leaving a 10 minute transfer time to the next departing

400S line trip j3 at 9:40, thus resulting in 6 minutes of excess transfer time.

Timetable modifications that postpone trip j2’s departure time from 9:30 to 9:34 would remove all excess transfer

time for the 300S trip i transfer to line 400S. However, such a change could also influence the departure times of

other trips on this line. Figure 4 depicts the allowed timetable modifications. The scheduled time of each trip

is allowed to vary within half the scheduled headway time (interval of time between two consecutive trips in the

same line) to the next trip, thus allowing trip j2’s departure time to be within 9:26 and 9:35. A shift changes

the departure of a trip from its first stop. A stretch adds dwell time at any of the intermediate stops of a trip,

as represented by the grey nodes and resulting arcs in Figure 4. The addition of stretches could represent the

distribution of buffer time over a trip, in such a way that it enables better transfer opportunities. The enlargement

of arrivals and departures at Lyngby station for line 400S in Figure 4 illustrates that timetable modifications are

limited to respect a minimum headway h−u and maximum headway h+
u from the predecessor trip. The change in

trip j2 to 9:34 would thus require a change in the departure times of trips j1 and j3 to ensure even headways.
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Lyngby St.
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400S

Figure 2: Geographic representation of

two bus lines, 300S and 400S, and a sta-

tion (Lyngby St.), where passengers can

transfer

Lyngby St.
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Figure 3: Example of passenger transfer from trip i of line 300S to

line 400S at Lyngby St. given a minimum transfer time of 4 minutes,

passengers can embark into trip j3 only after waiting 6 minutes

Alternatively, the required shift in the departure time of trip j2 could be limited if the trip i would be changed to

arrive earlier. Such earlier departure could only result from a shift, a change in departure times from the first stop

in a trip, while a later departure can result from both shifts and/or stretches adding additional dwell time.

Space

Time

Lyngby St.

j1 j3

Start s top

j2 j2j1


uh


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Figure 4: Representation of allowed timetable modifications and headway bounds for trip j2 at Lyngby station

Timetable modifications may influence which groups of trips can be serviced together by one vehicle, as shifts

and stretches applied to trips can alter the required arrival time of a vehicle at the start terminal, or change the

arrival time of the selected vehicle at the end terminal of the trip. Trips in Figure 5 are depicted as a short arc

between a start node and an arrival node (i.e., the start and end terminals of the trip). The grey bars represent the

possible shifts forward and backward in time of the trip. The dashed arcs in Figure 5 represent a feasible vehicle

schedule that starting from depot k in O(k) serves trip i− 1, deadheads from i− 1 to serve trip j1, deadheads from

j1 to serve trip j3 and finally returns to the depot in D(k). An earlier departure of trip j1 would make the depicted

vehicle schedule infeasible, while alternative shifts may allow to serve more trips with the same vehicle.

The MIP and the matheuristic we propose in Sections 4 and 5 aim at simultaneously optimizing the timetabling

problem and the vehicle scheduling problem by allowing changes in the input timetables in the form of shifts and

stretches illustrated in Figures 2-5.
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Figure 5: Representation of the vehicle scheduling part of the problem

3. Literature review

In this section, we review previous work on the domains of the MDVSP, public transport timetabling, and

integration of timetabling and vehicle scheduling. We refer to Guihaire and Hao (2008a) for a review on transit

network design and scheduling, who classify and describe over 60 approaches dealing with design, frequency setting,

timetabling and combinations of these problems. For a review on the topics of planning, operation and control of

bus transport systems we refer to Ibarra-Rojas et al. (2015), who present an extensive literature review with two

chapters devoted to timetabling and vehicle scheduling problems.

3.1. Multiple depot vehicle scheduling

The IT-VSP is an extension of the MDVSP, which is a classical problem within operations research and more

specifically in the domain of transport optimization problems. In their book chapter on Time Constrained Routing

and Scheduling, Desrosiers et al. (1995) present a detailed description of the problem and provide a review on the

literature existent at the time. For a vast survey on the MDVSP, we refer the reader to Desaulniers and Hickman

(2007), where also some extensions to the MDVSP are discussed. Real-life MDVSP instances of up to 7000 trips

can be solved to optimality using column generation by Kliewer et al. (2006). The instances in Kliewer et al.

(2006) possess a specific structure that contributes to finding optimal solutions in reasonable time for these large

instances. Hadjar et al. (2006) is able to solve randomly generated instances developed by Carpaneto et al. (1989)

with up to 800 trips only, with an exact branch-and-bound approach. Due to its complexity, the MDVSP is usually

solved using heuristics or metaheuristics. Pepin et al. (2009) compare the performance of five different heuristics

to solve instances of the problem with 500, 1000, and 1500 trips, both with 4 and 8 depots. Their computational

experiments indicate that when enough computational time is available truncated column generation is the best

performing approach, with upper bounds on the average with 0.17% and 0.837% from the optimal solution, and using

up to one hour of computing time. However, if the goal is to obtain good quality solutions in fast computational

times then large neighbourhood search performs best.
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3.2. Transit network timetabling

The TNT determines arrival and departure times at stops visited, meeting a given frequency, and satisfying

demand. The TNT problem is addressed in the literature using different objectives, for example minimization of

excess transfer times (transfer waiting times), maximization of synchronization, or multi-objective approaches. In

this section, we review previous research work on the TNT, and group the contributions according to similarities

in the objectives considered.

Klemt and Stemme (1988) are the first authors to use minimization of excess transfer times as an objective

to the TNT, and proposed a quadratic semi-assignment formulation to model the problem. The authors describe

a constructive heuristic to schedule trips one by one and considering transfer synchronization. Domschke (1989)

propose a branch-and-bound, local search, and simulated annealing algorithms that outperform Klemt and Stemme

(1988) in a simplified example for West Berlin’s subway. Bookbinder and Desilets (1992) minimize transfer costs

(costs associated with excess transfer times) considering stochastic travel times and constant headways for each

line. Their decision variables are defined as the departures of the first trip in each line. They employ a combination

of simulation procedure and the mathematical formulation of Klemt and Stemme (1988). Small example networks

are used for the experimental results, and results are compared for optimizing a single transfer node and multiple

transfer nodes. Daduna and Voß (1995) minimize excess transfer times and modify the quadratic semi-assignment

formulation to restrict transfer opportunities to be within a maximum waiting time. The authors use regret heuristics

and unidirectional improvement procedures to compute initial solutions, which are then improved using simulated

annealing and tabu search procedures. The different approaches are tested in a series of examples of different sizes,

ranging from 14 to 27 lines and from 15 to 38 transfer nodes. Schröder and Solchenbach (2006) start from an original

timetable and allow shifts in the start times of trips to optimize the quality of transfers; they also introduce a new

way to assess transfer quality dependent on the amount of time available for transferring and the perceived quality

by the users. The TNT is modelled as a quadratic semi-assignment problem, and they solve a linearization of the

problem in CPLEX for a small real-life case study. Their results indicate improvements between 0.5% and 5% in

comparison to the original timetables, depending on which shifts are allowed and how many nodes are synchronized.

Wong et al. (2008) also adjust an original timetable to minimize excess transfer times, but formulate the TNT as

a MIP and solve it using Lagrangian heuristics. They allow a wide range of timetable modifications in the form of

headway variation, dispatch times, station dwell times and train run times. Their heuristic showed improvements in

the solutions obtained for a real case study with 4 lines and 16 transfer stops, when comparing with fixed headways

and trip times. Shafahi and Khani (2010) minimize the waiting time at transfer stations and allow the addition

of dwell time to improve the transfers. The effect of the added dwell time on through passengers is considered. A

large case study is solved using a genetic algorithm approach and reductions of 11.5% of transfer waiting times are

reported. Wu et al. (2015) present a timetabling model that minimizes the total waiting time costs for three classes

of passengers: transferring, boarding, and through passengers. They consider stochastic travel times and allow the

addition of slack time to benefit the passenger transfer feasibility. The authors report that the model is especially

effective if the ratio of through-passengers to transfer passengers is below a certain threshold.

Ceder et al. (2001), Liu et al. (2007), and Ibarra-Rojas and Rios-Solis (2012) use maximization of synchronization.

The three studies address similar problems where timetables are constructed using minimum and maximum values

for headways, and allow solutions with headway variations. Ceder et al. (2001) formulate the TNT as a MIP and

develop a heuristic algorithm so solve small examples with up to 4 transfer nodes. Synchronization is defined as

the number of simultaneous bus arrivals at connection nodes of the network. Their solution method is able to find

240 simultaneous bus arrivals for a real-life example with 3 transfer nodes and 14 bus lines, and with approximately

3 hours of operation. Liu et al. (2007) redefine synchronization as a coefficient relating the number of lines with

synchronized arrivals at a transfer stop with the total number of lines visiting that stop. They develop a nested
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Tabu Search procedure to generate feasible solutions to a small example with 8 lines and 3 transfer stops, but

computational times are not reported. Ibarra-Rojas and Rios-Solis (2012) prove that the TNT is NP-hard and

create a pre-processing stage that eliminates variables and constraints, improving the tractability of their MIP

model. Synchronization is defined as the arrival of two trips of different lines within a certain time window, at

a specific stop. The authors propose an Iterated Local Search (ILS) procedure to solve large test instances of

the problem, with up to 200 lines and 40 transfer points, and compare it with a branch-and-bound procedure.

The ILS obtains a gap of 15.55% from the lower bound in under one minute of computational time, while the

branch-and-bound only gets to 22.64% in two hours of computational time.

Kwan and Chang (2008), Hassold and Ceder (2012), Liu and Ceder (2016), and Wu et al. (2016) consider the

TNT as a multi-objective problem. Kwan and Chang (2008) start from an original timetable and allow changes in

frequency, dwell time, layover time, and run time to minimize the cost of transfers and costs caused by deviations

from the initial timetable. They use an upper bound on the number of vehicles available to limit the changes made

to the timetables. The authors implement a genetic algorithm, a multi objective evolutionary algorithm, and a

local search procedure to solve the problem. They report computational experiments on an example with 6 lines

and 5 transfer points. Hassold and Ceder (2012) compare their results with the current timetable and minimize

empty seat penalties and expected passenger waiting times. The authors formulate the TNT as a network flow

bi-objective problem and consider different vehicle types. They use a multi-objective label-correcting algorithm to

solve the problem and computational experiments for a real life case show savings of up to 43% in passenger waiting

times, associated with acceptable passenger loads on all vehicles. Liu and Ceder (2016) present a two-objective

MIP that minimizes the expected total passenger waiting time and variation in vehicle occupancy. The authors

consider fluctuating passenger demand and multiple vehicle types. A decomposition method is used to solve an

example and a real life network. Comparing with the current timetables, their approach obtains solutions that

reduce total passenger waiting times by approximately 70%, while also reducing variation in vehicle occupancy by

approximately 60%. Wu et al. (2016) study a multi-objective re-synchronizing problem for bus timetables, charac-

terized by headway-sensitive passenger demand, uneven headways, service regularity, and flexible synchronization.

The objectives considered are the maximization of the number of passengers benefited by smooth transfers and the

minimization of the deviation from the existing initial timetable. They use a genetic algorithm to solve the problem

and report that high-quality non-dominated solutions are obtained within reasonable CPU time.

For cyclical timetabling problems, a variety of authors apply methodologies using the Periodic Event Scheduling

Problem (PESP), introduced by Serafini and Ukovich (1989). The idea is to schedule the events for a cycle, which is

then repeated throughout the day. PESP-based approaches are not suitable for solving the IT-VSP in our case, since

they impose a periodicity constraint which we want to break apart from. We refer the reader to Nachtigall (1999)

for a strong formulation of the PESP applied to railway timetabling. Also in the railway timetabling field, Liebchen

and Möhring (2007) extend the PESP to include important decisions of network planning, line planning, and vehicle

scheduling into the task of periodic timetabling. A recent state-of-the-art review on cyclic railway timetabling can

be found in Kümmling et al. (2015) and other PESP applications to solve the cyclic railway timetabling problem

can be found in Liebchen and Möhring (2002), Peeters (2003), or Kroon et al. (2007).

3.3. Integrated timetabling and vehicle scheduling

To our best knowledge, Ceder (2001) is the first to study the integration of timetabling and the SDVSP. The

author develop a 4-step sequential approach with a single feedback loop that determines a timetable and vehicle

schedules, obtaining good solutions for both the operator and passengers. The approach is tested in an example

with 3 hours of operations and two lines, with a total of 22 trips. Chakroborty et al. (2001) are the first to include in

the TNT the decision of an “optimal fleet size”, which is the number of buses available for each line. They propose
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a genetic algorithm to solve the problem and present results for a 3-line test instance and total scheduling period

of 4 hours. Liu and Shen (2007) use bi-level programming to integrate the TNT formulation of Liu et al. (2007)

with the MDVSP, where the upper level minimizes the number of vehicles and deadhead costs and the lower level

minimizes the excess transfer time of passengers at intermediate stops. They develop a bi-level nesting tabu search

algorithm to solve the problem and present results for an example network with four lines and 3 connection stops,

with 3 hours of operation, where the algorithm runs in under 3 seconds of computational time.

Van den Heuvel et al. (2008) integrate the TNT and the MDVSP with the objective of minimize operational

costs, and do not include passenger transfer costs in their model. The authors allow shifts in trip starting times. A

Tabu Search algorithm is presented, where timetables are first modified and then the MDVSP problem is optimized.

The proposed approach is applied in a real case study with up to 49 lines and 1862 trips, and indicate operational

cost reductions of up to about 8% when compared to the original timetable. Guihaire and Hao (2008b) include

a weighted objective function considering the number of vehicles, number and quality of transfers, and headway

evenness. The problem is solved using an ILS procedure, where at each iteration trips are shifted and the VSP

problem is solved. The performance of the solution approach is analyzed for an example with 318 trips, and results

show that the number of vehicles is reduced by up to 26%, while the number of feasible transfers increases by up to

44%. Guihaire and Hao (2010) propose a Tabu Search approach that adjusts the timetables by shifts in departure

and arrival times, after the vehicle and driver scheduling is solved, with the purpose of providing better transfer

opportunities. Without changing either the vehicle or the driver schedules, the operational costs remain constant.

Ceder (2011) creates timetables with even headways and balanced vehicle occupancy, considering multiple vehicle

types. The problem is formulated as a cost-flow network problem with NP-hard complexity level, and a heuristic

is developed for solving it. The author demonstrates the application of the algorithm in an example with 8 trips

and three terminals. Petersen et al. (2013) integrate the MDVSP with timetable modifications in the form of a set

of shifts, limiting this set to a pre-defined maximum size, and assume fixed passenger demand. They propose a

large neighbourhood search metaheuristic with the objective to optimize a weighted sum of passenger service and

operational costs. Results for a case study in the Copenhagen area indicate a decrease in excess transfer time of up to

20%, using the same number of vehicles and a small increase in deadhead cost. Ibarra-Rojas et al. (2014) propose

a bi-objective problem that solves the SDVSP and the timetable synchronization problem, assuming passenger

demand is fixed. They limit shifts within given time windows around the departure time in a base timetable. With

the objectives of minimizing fleet size and maximizing the number of passengers benefited by synchronized transfers,

a ε-constraint method is implemented to obtain Pareto optimal solutions. Results on case study instances with up

to 50 lines, up to 5 transfer nodes, and 4 hours of operation show that in some instances increasing the number

of vehicles by one could improve considerably the passenger transfers. Recently, Laporte et al. (2017) integrate

timetabling and vehicle scheduling with special attention to route choice. The timetables are designed taking into

account operational costs, expressed as number of vehicles per line and restricted to a budget. The authors use

a ε-constraint solution approach to obtain the exact Pareto front of solutions. Liu and Ceder (2017) also extend

the integration of timetabling and vehicle scheduling to include passenger assignment. They present a bi-objective,

bi-level IP formulation that optimizes fleet size and user travel and waiting times. An initial vehicle scheduling

is given as input. Their integrated vehicle scheduling component does not allow vehicles to deadhead from one

trip to another, which greatly reduces the complexity of vehicle scheduling, but would lead to unreasonably costly

vehicle schedules for dense networks, like the Copenhagen Network, considered in this paper. Timetabling allows

for shifts in departure time. They use a deficit function based sequential search to solve small examples with up to

4 unidirectional lines, 4 transfer stops, and one hour of operations.

Our main contribution in comparison to the related papers of Petersen et al. (2013), Ibarra-Rojas et al. (2014),

and Laporte et al. (2017), is that we allow a far wider set of timetable modifications in the form of newly defined
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stretches, and further extend the set of shifts by removing constraints on the set size. Moreover, we are able to

quantify the matheuristic solutions for the IT-VSP in relation to the best feasible and best lower bounds derived

from solving the new formulation directly using a general purpose solver for 24 hours. Our results for the case study

indicate that the wider set of timetable modifications result in less excess transfer time, while maintaining the same

level of operational costs.

4. A mathematical model for the IT-VSP

In this section, we formally define the IT-VSP and formulate it as a mixed integer linear program. In our

formulation the assumptions are:

• The number of passengers wishing to transfer at a stop is fixed;

• Passengers transfer to the earliest trip departing after their arrival time plus a minimum time required for

transferring;

• The minimum transfer time is the same for all passengers, and may depend on the transfer stop, the feeder

line, and the receiving transfer line;

• The travel time between two stops is deterministic and may depend on the time of day;

• Passenger demands are fixed and given, described as transfer opportunities as explained in the subsection

“Passenger transfers”. The model assumes that all transfer opportunities passed as input have a feasible

transfer in both the original and final timetables;

• The minimum required transfer time at a transfer node is assumed constant and independent of the individual

passenger.

4.1. Lines and trips

Let S be the set of all stops. We define a direct line l ∈ L as a sequence of stops visited by a vehicle, with L

being the set of all directed lines. Let a timetable be defined by a set T = {1, . . . , n} of all timetabled trips. Each

trip i ∈ T is defined as having an id, a directed line li, a total minimum travel time ti, and a set of visited stops

Si ⊆ S. Notice that, as the travel time is specified for each trip, then two trips i, j ∈ T in the same line can have

different travel times ti, tj , which can depend, for example, on the time of the day the trip is scheduled. We define

sti ∈ Si as the start terminal, eti ∈ Si as the end terminal, and Ji ⊆ Si as the set of all intermediate stops visited

by trip i ∈ T , i.e., Ji = Si \ {sti, eti}. For each directed line l ∈ L, we define Tl ⊆ T as the subset of all trips in the

directed line l - notice that T =
⋃
l∈L Tl and Tl′ ∩ Tl′′ = ∅ for all l′, l′′ ∈ L, l′ 6= l′′. Furthermore, we define the set

T 1 as the set of all trips which are the first in their directed line.

4.2. Timetable modifications

We define minimum and maximum headways, h−is and h+
is respectively, in relation to the timetable’s headways,

for each trip i ∈ T at each stop s ∈ Ji ∪ {sti}. The departure time from sti ∈ Si of any trip i ∈ T can be modified

by a shift within an interval {d−i,sti , d
+
i,sti
} defined in relation to its departure time in the original timetable. A dwell

time extension is allowed for all intermediate stops of trip i. Let w−is be the dwell time in the original timetable of a
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trip i ∈ T at stop s ∈ Ji, and w+
is the maximum allowed dwell time at the same stop. An upper limit w is imposed

on the total added dwell time to all stops of any trip of the set T . For each trip i ∈ T , all timetable modifications

define earliest and latest arrival times {a−is, a
+
is} at all stops s ∈ Ji ∪ {eti}, and earliest and latest departure times

{d−is, d
+
is} from all stops s ∈ Ji ∪ {sti}.

4.3. Passenger transfers

Let R be the set of all transfer opportunities, where a transfer opportunity r ∈ R, defined by a triplet (i, l, s),

represents a transfer request from passengers disembarking trip i ∈ T at stop s ∈ Ji ∪ {eti} with the intent of

embarking a trip j ∈ Tl of line l ∈ L such that l 6= li and s ∈ Jj ∪ {stj}. Let fr be the number of passengers

requesting transfer r ∈ R. Passengers are assumed to transfer to the earliest feasible trip j ∈ Tl. Let er be the

minimum transfer time for transfer r ∈ R. For a transfer r = (i, l, s) ∈ R, transferring to trip j ∈ Tl is feasible when

er is not greater than the difference between the departure time of trip j from stop s and the arrival time of trip

i at stop s. All transfer opportunities in R are feasible in any feasible timetable. That is, for all r = (i, l, s) ∈ R
there is at least one trip j ∈ Tl such that a transfer from trip i to j at stop s is feasible. For example, if trip j3 of

Figure 3 did not exist, transfer opportunity (i, 400S,LyngbySt.) would not be feasible in the original timetable and

thus not be part of R.

4.4. Compatible trips

The minimum and maximum turnaround times are denoted by {q−, q+} respectively, and consist of a buffer

time that guarantees arriving and enough time for physically turnaround the vehicle. As extending dwell times in

the form of stretches redistributes buffer time, the minimum turnaround time can be reduced by the amount of

additional dwell time added to a trip. Two trips i, j ∈ T are compatible in a given timetable if three conditions

hold. First, the distance between eti and stj , Dist(eti, stj), has to be smaller than the maximum deadhead distance

u . Second, the earliest arrival time of trip i to its end terminal (a−i,eti) plus the minimum turnaround time (q−)

plus the driving time between eti and stj , denoted as bij , has to be smaller or equal to the latest departure time of

trip j from its start terminal (d+
j,stj

). And third, the latest arrival time of trip i to its end terminal (a+
i,eti

) plus the

maximum turnaround time (q+) plus bij has to be greater or equal to the earliest departure time of trip j from its

start terminal (d−j,stj ).

4.5. Vehicle scheduling

Let K denote the set of depots, with each depot k ∈ K housing vk vehicles. Each vehicle used in a feasible

solution covers a sequence of compatible trips and must return to the depot from which it departed. Each depot

k ∈ K is associated with a graph Gk = (Vk, Ak). The set of nodes Vk contains a node for each trip i ∈ T , as well

as for depot k ∈ K which is denoted n+ k, thus Vk = T ∪ {n+ k}. The set of arcs Ak defines the deadhead trips

I = {(i, j)|i, j ∈ T : i 6= j,Dist(eti, stj) ≤ u, a−i,eti + q− + bij ≤ d+
j,stj

, a+
i,eti

+ q+ + bij ≥ d−j,stj}, the pull-out trips

{n+ k}× T and the pull-in trips T ×{n+ k}. A deadhead trip exists for any set of pairwise compatible trip nodes

in Vk. Thus, Ak is defined as Ak = I ∪ ({n+ k} × T ) ∪ (T × {n+ k}).

The movement of vehicles is defined using triplets (i, j, k) representing a vehicle from depot k ∈ K covering the

pair of trips (i, j) ∈ Ak. Let Q = QD ∪QO ∪QH be the set of all compatible triplets (i, j, k), where QD is the set of

all deadhead triplets QD = {(i, j, k) : k ∈ K, (i, j) ∈ I}, QO is the set of all pull-out triplets QO = {(n+k, j, k) : k ∈
K, j ∈ T}, and QH is the set of all pull-in triplets QH = {(i, n+k, k) : i ∈ T, k ∈ K}. Let us also define T (Q) as the

set of all pairs of trips i, j ∈ T for which a triplet involving i and j exists, T (Q) = {(i, j)|i, j ∈ T : ∃(i, j, k) ∈ Q}.
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4.6. Passenger and operating costs

The IT-VSP aims at minimizing a weighted sum of operating costs (defined as vehicle driving costs, fixed costs

per schedule, and additional dwell time costs) and passenger costs (defined as excess transfer time costs and travel

cost increase due to additional dwell times).

Vehicle driving costs and fixed costs for schedule creation are captured by costs cijk associated with each triplet

(i, j, k) ∈ Q. The cost cijk of triplet (i, j, k) ∈ Q is equal to the deadhead time bij multiplied by a driving cost

per time unit. The costs for creating new schedules are included in the pull-out trips: if (i, j, k) ∈ QO, so the arc

represents a vehicle leaving the depot, cijk includes a fixed cost for creating a new schedule in addition to the costs

for deadheading to the service trip. The costs for creating a new schedule correspond to the fixed cost for using

a vehicle. The operating costs associated with additional dwell time are captured by costs cDWO
i , affected to each

minute of additional dwell time in trip i ∈ T .

Passenger costs are defined as the sum of excess transfer time per passenger and the increase in in-vehicle travel

time for on-board passenger due to additional dwell times. In the model, the excess transfer time per transfer

opportunity is calculated exactly from the timetable adjustments, and is penalized by a factor cTR per passenger.

The addition of dwell time to a trip is penalized by cDWP
i per minute of additional dwell time. This cost reflects

the travel cost increase from one minute of additional dwell time multiplied by the number of on-board passengers

of trip i ∈ T . Note that since cDWO
i and cDWP

i are constants which depend on trip t ∈ T , they can be joined in a

cost cDWi .

The relative weights assigned to cijk, cTR, cDWi will influence the solution outcome. In the case study, we

have discussed with public transport authority Movia how to select the weights so that they express costs in

monetary units. This calibration allows to directly compare the objectives. In addition, a sensitivity analysis will

be performed.

4.7. Decision variables and mathematical model

The problem is formulated using the following sets of decision variables:

• Binary variables xijk for all (i, j, k) ∈ Q, which take the value 1 if and only if a vehicle from depot k travels

from node i directly to node j, and 0 otherwise;

• Non-negative integer variables τdis indicating the departure time of trip i ∈ T from stop s ∈ Ji ∪ {sti} in

minutes from midnight;

• Non-negative integer variables τais indicating the arrival time of trip i ∈ T at stop s ∈ Ji ∪ {eti} in minutes

from midnight;

• Non-negative real variables γr which store the excess transfer time for passengers using transfer opportunity

r ∈ R in minutes;

• Binary variables αijs which take the value 1 if and only if passengers of transfer opportunity r = (i, lj , s) ∈ R
are embarking trip j ∈ T , and 0 otherwise;

• Non-negative integer variables δi which store the amount of dwell time added to trip i ∈ T in minutes. These

variables are not necessary in our formulation and are only used to simplify the presentation of the model and

improve readability.
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The αijs variables indicating transfer opportunities are created only for each transfer opportunity r = (i, l, s) ∈ R
and for a set W (r) = {(i, j, s)|j ∈ Tl, i 6= j, a−is + er ≤ d+

js, a
+
is + er + 1.5hl ≥ d−js}, where hl is the largest frequency

observed for line l ∈ L throughout the day. Moreover, let W be the set of all triplets for all transfer opportunities

defined as W = ∪r∈RW (r). In this way, the number of αijs variables created is reduced, improving tractability of

the model without imposing any practical constraints, since at least one transfer to a trip in l ∈ L will be available

given the timetable modifications.

A MIP formulation for the IT-VSP is:

min
∑

(i,j,k)∈Q

cijkxijk +
∑
i∈T

cDW
i δi + cTR

∑
r∈R

frγr (1)

s.t.
∑

(i,j,k)∈Q

xijk = 1 i ∈ T (2)

∑
(i,j,k)∈Q

xijk −
∑

(j,i,k)∈Q

xjik = 0 k ∈ K j ∈ Vk (3)

∑
(i,j,k)∈QO

xijk ≤ vk k ∈ K (4)

d−i,sti ≤ τ
d
i,sti ≤ d

+
i,sti

i ∈ T (5)

0 ≤ τdis − τais − w−is ≤ w
+
is i ∈ T s ∈ Ji (6)

δi ≤ w i ∈ T (7)

δi = τai,eti − τ
d
i,sti − ti i ∈ T (8)

h−is ≤ τ
d
is − τdi−1,s ≤ h+

is l ∈ L i ∈ Tl : i 6∈ T 1 s ∈ Ji ∪ {sti} (9)

τai,eti + bij + q− − δi −M(1−
∑

(i,j,k)∈Q

xijk) ≤ τdj,stj (i, j) ∈ T (Q) (10)

∑
(i,j,s)∈W (r)

αijs = 1 r = (i, l, s) ∈ R (11)

τdjs − τais − er ≥M(αijs − 1) r ∈ R (i, j, s) ∈W (r) (12)

M
∑

(i,k,s)∈W (r),
k≤j

αiks ≥ τdjs − τais − er r ∈ R (i, j, s) ∈W (r) (13)

τdjs − τais − er −M(1− αijs) ≤ γr r ∈ R (i, j, s) ∈W (r) (14)

xijk ∈ {0, 1} (i, j, k) ∈ Q (15)

τdis ∈ Z+ i ∈ T s ∈ Ji ∪ {sti} (16)

τais ∈ Z+ i ∈ T s ∈ Ji ∪ {eti} (17)

δi ∈ Z+ i ∈ T (18)

γr ∈ R+ r ∈ R (19)

αijs ∈ {0, 1} (i, j, s) ∈W (20)

The objective function (1) minimizes a weighted sum of operational and passenger costs. The first term accounts

for the deadhead, pull out, and pull in costs for the vehicle movements selected by the model. The second term

penalizes operational and on-board passenger costs incurred when adding dwell times. The third term addresses

the transfer costs. Indeed, the addition of dwell time to trips increases the travel time for on-board passengers, as

well as the in-service time of vehicles.

Constraints (2) - (4) are classical MDVSP constraints. Constraints (2) guarantee that each trip i ∈ T is
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included in exactly one vehicle schedule. Constraints (3) are flow conservation constraints for the trip and depot

nodes, guaranteeing the continuity of the vehicle schedules created. Constraints (4) are capacity constraints that

limit the number of pull-out trips to the maximum number of vehicles available at each depot k ∈ K.

The allowed timetable modifications are modelled in constraints (5) - (9). Constraints (5) force the departure

time from the first stop of each trip to lie within the bounds defined for its lower and upper shifts. Constraints (6)

ensure that the dwell time at each stop of a trip is increased by no more than the maximum dwell time allowed,

with respect to the original timetable. Constraints (7) impose that the total added dwell time to all stops of a trip

does not exceed the maximum allowed w. Constraints (8) set the values of the δi variables to the total added dwell

time in the corresponding trip. The minimum and maximum headways between each trip i ∈ T and its precedent

trip in the same directed line at each stop s ∈ Ji ∪ {sti} are modelled with constraints (9).

The vehicle scheduling and the timetable modification parts of the problem are linked in constraints (10). These

guarantee that if trips i and j are operated consecutively by the same vehicle, then the vehicle has time to deadhead

from eti to stj without violating the minimum turnaround time q−.

Constraints (11) guarantee that passengers from all transfer opportunities r = (i, l, s) ∈ R are able to transfer,

by selecting exactly one transfer to trip j ∈ Tl. The transfer variables αijs are linked with the departure and arrival

times of trips through constraints (12) and (13). Constraints (12) prevent variable αijs from taking value 1 whenever

passengers do not have enough time to transfer from trip i to trip j at stop s, where (i, l(j), s) ∈ R. Constraints

(13) are lifting constraints which ensure that passengers arriving from trip i at stop s transfer to one of the trips

j, such that (i, l(j), s) ∈ R, if the arrival and departure times allow the transfer to take place. Constraints (13) are

in fact not needed for the model to produce feasible solutions, but strengthen the performance of the model. The

excess transfer times are stored in the γr variables by constraints (14), which determine this value for each transfer

opportunity based on the selected transfers. Together, constraints (11)-(14) ensure that passengers transfer to the

first available trip in the desired line. The selected trip depends on the timetable modifications. Finally, the range

of the sets of decision variables used in the model is defined in constraints (15)-(20).

Numerical example of constraints (11)-(14): To illustrate how constraints (11)-(14) influence the feasibility

of the solutions, consider the transfer opportunity r = (i, l, s) ∈ R depicted in Figure 3, where l = 400S and

s = Lyngby St. Let us assume that trip i can arrive between 9:23 and 9:42 and that trips j1, j2 and j3 can shift 5

minutes forward or backward, derived from the headway of line 400S. Input to the model is the set W (r), that in

this example contains two triplets, (i, j2, s) and (i, j3, s). Because timetable modifications do not allow to transfer

from trip i to trip j1, the triplet (i, j1, s) is not part of W (r). Indeed, trip i arrives at s at 9:23 at the earliest, and

trip j1 can depart at 9:25 at the latest, so the minimum transfer time of 4 minutes does not allow passengers to

embark on trip j1. Constraints (11)-(14) ensure that at least one of the transfer options in W (r) is feasible, and

that transfer time is calculated as the minimum transfer time over all feasible options. Specifically, constraint (11)

becomes αi,j2,s +αi,j3,s = 1, modeling that passengers disembarking from trip i have to transfer either to trip j2 or

to trip j3, distinguishing two cases: either a) αi,j2,s = 1, or b) αi,j3,s = 1. Let’s consider case a). Constraints (11)

force αi,j3,s to be equal to zero, since passengers of a transfer opportunity transfer to only one trip. Constraints

(12) become τdj2,s − τ
a
is − er ≥ 0 and τdj3,s − τ

a
is − er ≥ −M respectively for j2 and j3, forcing the transfer from i to

j2 to be feasible. Constraints (13) become M ≥ τdj2s − τ
a
is − er and M ≥ τdj3s − τ

a
is − er. Constraints (14) become

τdj2,s − τ
a
is − er ≤ γr and τdj3,s − τ

a
is − er −M ≤ γr respectively for j2 and j3, which force γr to equal the waiting

time for the transfer i-j2. Case b) is similar to case a), with the inverse order of which constraints must hold.
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5. A matheuristic approach

The matheuristic approach, which is denoted as MHeu, is based on the MIP formulation of Section 4. Real-life

instances of the IT-VSP are intractable when solving the MIP directly with a general solver, so a heuristic approach

is needed.

5.1. Outline

The MHeu is an iterative algorithm where at each iteration timetable modifications are allowed for a subset of

timetabled trips T ′ ⊆ T only. An iteration consists of solving the thus restricted IT-VSP problem, which we denote

as IT-VSP(T ′), where variables τais and τdis for all trips i /∈ T ′ are fixed to their values in the current best solution.

Although timetable changes are only allowed for T ′, the vehicle scheduling part of the IT-VSP is solved for all trips.

Different selection strategies for constructing T ′ are compared and will be explained in Section 5.2.

Algorithm 1 outlines the MHeu in pseudo code. Input consists of a set of original timetabled trips T , an

initial timetable T0, the set of transfer opportunities R, a stopCriterion, a selection strategy Strat, and a set

of Strat dependent parameters ϑ(Strat). The stopCriterion is either the number of iterations or total running

time, depending on Strat. The algorithm starts by solving the MDVSP in Line 1 without allowing timetable

modifications, thus τdis, τ
a
is fixed to T0 for all i ∈ T . This generates an initial solution S∗ composed by vehicle

schedules X0 and the initial timetable T0. The iterative procedure is described in Lines 3 - 7, which runs until the

stopCriterion is met.

Algorithm 1 : MHeu

Input: T , T0, R, stopCriterion, Strat, ϑ(Strat)

Initialization:

1: S∗ =(X0, T0)← solve IT-VSP(1)-(20) with τdis, τ
a
is fixed to T0 for all i ∈ T

2: η = 0

Matheuristic:

3: while stopCriterion not reached do

4: T ′ ← selectTrips(S∗,Strat,ϑ(Strat))

5: S∗ = (Xη, Tη)← solve IT-VSP(1)-(20) with τdis, τ
a
is fixed to Tη−1 for all i ∈ T \ T ′

6: η = η + 1

7: end while

8: return S∗

Each iteration starts in Line 4 by selecting the subset of trips T ′ ⊂ T according to Strat (one of the trip

selection strategies described in Section 5.2), and using the set of parameters ϑ(Strat). These parameters define

how many and which trips are selected, and the maximum running time for each iteration. Timetable modifications

in arrival and departure times are allowed for trips in T ′ only. A new solution is calculated in Line 5 by solving the

restricted IT-VSP(T ′), with τdis, τ
a
is fixed to Tη−1 for all i ∈ T \T ′. The solution obtained is always at least as good

as the current best solution, since the current best solution is always feasible. To ensure that a solution is always

found, each iteration starts from the current best solution, using CPLEX warm-start. The best solution S∗ found is

returned once the stopCriterion is met.
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5.2. Trip selection strategies

A run of the MHeu uses one and only one of the four trip selection strategies defined in this section. A trip

selection strategy consists of a parameter specifying the size of the selected trip set, and a rule for selecting trips

from S∗. Each selection strategy also uses a parameter ψ that defines the maximum running time of each iteration.

We propose the following selection strategies:

• Random (Rand, ϑ(Rand)={ψ, κ}): selects κ trips of S∗, where any trip t ∈ S∗ has an equal probability of

being selected for T ′ at each iteration. The stopping criterion for the Rand strategy is total running time.

• Rolling Horizon (RolH, ϑ(RolH)={ψ,Ω, ξ}): deterministic procedure that defines a set Ω of equally long time

intervals. Each time interval ω ∈ Ω is defined by a time window [sω, eω], where sω is the start time and eω is

the end time of the interval. The strategy runs in |Ω| iterations, each of them referring to one time interval

ω ∈ Ω. At iteration ω, T’ is composed by all trips in S∗ with start time belonging to [sω, eω]. Consecutive

intervals overlap each other by a percentage defined by a parameter ξ. The stopping criterion is the number

of iterations, and these are indirectly constrained by a maximum total running time.

Consider a small example with trips starting between 6:00 and 22:00. Suppose we want to solve the MHeu

with the RolH with |Ω| = 5 and ξ = 25%. We define the 5 equally long intervals: [6:00,10:00], [9:00,13:00],

[12:00,16:00], [15:00,19:00], [18:00,22:00], which overlap each other by 60 minutes (25% of the size of the

interval). If the total computational time allowed is equal to one hour, then ψ = 60
5 = 12 minutes.

• Cost Probability (CostP, ϑ(CostP)={ψ, κ}): selects κ trips of S∗, where the probability of selecting a trip

t ∈ S∗ is calculated as

p(t) =
TrC(S∗, t)∑

i∈T
TrC(S∗, i)

where TrC(S∗, t) are the transfer costs associated with trip t in solution S∗, i.e., transfer costs incurred in S∗

by transferring to or from t. If the number of trips with transfer costs is lower than κ, all trips with transfer

costs are selected and trips without transfer costs are randomly selected until κ is reached. The stopping

criterion for the CostP strategy is total running time.

• Relatedness (Relat, ϑ(Relat)={ψ, κ}): We define a new subset T̂t ⊆ S∗, which contains all trips t̂ related to

a trip t ∈ T , in S∗. A trip t̂ is related to t in S∗ when either t and t̂ belong to the same vehicle schedule in

S∗, or when there exist passenger transfers between trips t and t̂ in S∗. Starting with T ′ = ∅, this selection

strategy iteratively selects a random trip t ∈ S∗, and adds t and all trips t̂ ∈ T̂t to T ′. This process is repeated

until |T ′| = κ. The stopping criterion for the Relat strategy is total running time.

The Rand strategy provides a base scenario. The RolH represents a methodology where start time of trips is

important, selecting for modifications trips that have a higher chance of sharing transfers. The CostP strategy

addresses transfer cost optimization, by selecting trips that in the current solution have high transfer costs. Finally,

the Relat strategy is directly linked to the objectives of minimizing excess transfer time and vehicle schedule costs,

by selecting trips that are related with each other in the current solution, in terms of vehicle schedules or transfers.

6. Case study

In this work, we focus on the 8 bi-directional express-bus lines (S-Bus) in the Greater Copenhagen area, which

provide faster routes than regular bus lines, with fewer stops, and complement the local train service (S-Train) lines
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across and radially. Figure 6 is a geographical representation of the S-Bus and S-Train service. The bus network

in the Greater Copenhagen area acts as a supplement to the S-Train service, which forms the so-called five finger

plan resembling the five fingers of a hand. Movia is the public transport agency responsible for the planning of

buses in the region of Zealand, and provided data for the case study. Shifts and stretches are allowed for S-Bus

lines’ trips, and the S-Train lines operate according to a fixed timetable. The vehicle scheduling component of the

problem includes the bus trips only; the vehicle scheduling of trains is not included.

Central Station

2
0

0S

1
5

0S

Figure 6: Geographic representation of the S-Bus network. The dashed lines represent the S-Train lines.

The IT-VSP data input components are: (i) an initial timetable for the bus lines, which defines the set of all

trips and also bus line frequencies used to calculate minimum and maximum headways in the new solution; (ii) fixed

timetables for train lines; (iii) a distance matrix which includes all distances between trip terminal stops and depots;

(iv) the number of transferring passengers using each transfer opportunity, which can be a bus-bus, bus-train, or

train-bus transfer; (v) costs and parameters, namely minimum and maximum turnaround times, minimum transfer

times at different transfer opportunities, vehicle operational costs, fixed costs per vehicle schedule, value of time

costs for passenger excess transfer time, driving speed for vehicles while deadheading, maximum deadhead distance,

maximum added dwell time per trip and per stop, and depot capacities.

Input components (i) and (ii) are publicly available. Deadhead distances (iii) were obtained using geographical

data. The number of passengers using each transfer opportunity (iv) was estimated based on Movia’s data on the

number of embarking and disembarking passengers at each stop for each bus trip. The set of transfer opportunities

R is input to our model, and is the same from iteration to iteration in the matheuristic. It was defined and provided

by Movia, and the computation of this set is therefore not part of our model. The costs and parameters (v) were

estimated in collaboration with Movia. They provided estimates of operational waiting time, distance, and schedule

costs expressed in monetary units, which together defines the operational costs. Excess waiting time is weighted by

a value of time factor, this weighted sum defining transfer costs. The objective minimizes the sum of operational

costs and transfer costs. Due to lack of data on on-board passengers, our case study assumes a unique cDWi for all

16



trips.

We derive 3 instances of different sizes from the case study, with respectively 3, 5, and 8 S-Bus lines, which are

described in Table 1. The 3-line instance consists of the most central circular bus lines (200S, 300S, and 400S), the

5-line instance adds 2 more rural circular bus lines to the 3-line instance (500S, and 600S), and the 8-line instance

adds 3 additional radial bus lines to the 5-line instance (150S, 250S, and 350S). The first column in Table 1 is

the instance index, and the second column is the number of undirected bus lines considered. The three remaining

columns are the number of transfers for respectively bus-bus, bus-train, and train-bus transfer opportunities.

Instance Bus Lines Trips Bus-Bus Transfers Bus-Train Transfers Train-Bus Transfers

1 3 556 48 375 853

2 5 864 128 554 1150

3 8 1585 360 1109 1644

Table 1: Information on the different instances considered

It can be observed that the instances increase in both number of trips and number of transfer opportunities.

All three instances include 7 train lines with a total of 1308 trips with fixed timetables.

To create vehicle schedules that cover the initial timetables, we solve the MDVSP without allowing timetable

modifications. In the 8 line instance, the vehicle schedules consist of 1585 bus trips assigned to 205 vehicles. Each

schedule starts and ends in the same depot and it is allowed to service trips from different lines in the same schedule,

thus allowing deadheading between consecutive trips in a schedule.

The case study includes time dependent service bus travel times and constant deadhead speeds along the day.

Vehicles can service trips from different bus lines in the same schedule, known at Movia as interlining. The maximum

deadhead distance is 15 kilometres (i.e., u = 15), the minimum turnaround time is 12 minutes (i.e., q− = 12), and

the maximum turnaround time is 30 minutes (i.e., q+ = 30). The dwell time at each stop with transfers can be

increased by up to 3 minutes (i.e., w+
is = 3, i ∈ T, s ∈ Ji), and a maximum of 10 minutes of dwell time can be added

in total to a trip (i.e., w = 10). The additional dwell time is deducted from the buffer in the turnaround time at

the end of the trip. The shifts allowed in each trip departure time were created based on the original timetables

for each bus line. Considering consecutively timetabled trips (i − 1), i, (i + 1) ∈ Tl and with departure time from

the first stop di−1,sti , di,sti , di+1,sti respectively, the lower and upper shift limits for trip i are calculated with the

expressions

d−i,sti = di,sti −
⌊di,sti − di−1,sti − 1

2

⌋

d+i,sti = di,sti +
⌊di+1,sti − di,sti

2

⌋
ensuring that trips can never overtake each other in the timetable. At each stop, trip modifications are also

bounded by the minimum and maximum headways. For each trip i ∈ Tl at each stop s ∈ Ji ∪ {sti}, minimum and

maximum headways, h−is and h+
is, are calculated based on the scheduled headway in the original timetable. Table

2 shows the allowed variations on headways based on the scheduled headways.
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Scheduled headway (minutes)
Minimum and maximum

headway variation (minutes)

≤ 4 +/- 1

≤ 12 +/- 2

≤ 20 +/- 3

≤ 39 +/- 4

≥ 40 +/- 5

Table 2: Allowed headway variations based on scheduled headways

7. Computational experiments

This section evaluates the performance of the MHeu in a set of computational experiments. It consists of a set of

parameter tuning experiments for the selection strategies (Section 7.1), an analysis of computational performance

(Section 7.2), and an analysis of solution quality in terms of transfer cost, operational costs and total cost (Section

7.3). The parameter tuning is based on the 3-line instance allowing the addition of stretches for a total running

time of 30 minutes. Computational performance and solution quality are evaluated and compared for solving the

MHeu with and without allowing stretches for all selection strategies, for all 3 instances (3, 5 and 8 lines) and for

a total running time of 1, 5 and 12 hours, inspired by the running time limits used in Petersen et al. (2013) and

justified by the fact that the problem is addressed at the tactical level. Furthermore, convergence, trade-off between

operational and transfer costs, the quality of resulting vehicle schedules, and the distribution of excess transfer time

are discussed.

The algorithm was implemented in C and the mathematical formulations were solved using CPLEX version

12.6. The experiments were conducted on HPC servers, using Intel Xeon E5-2660 v3 2.60GHz processors, and

1 computation core. Each iteration used CPLEX warm-start to start from the best solution found so far. All

results presented are average results over five runs for each different setting, except for the RolH strategy as it is

deterministic.

The following measures are used to express computational performance and solution quality. The computational

performance of the MHeu algorithm is expressed in relation to solving the IT-VSP(T) directly in CPLEX with a

maximum computation time of 24 hours. Performance is expressed as Gap: the average percentage gap to the best

lower bound obtained in 24 hours; as well as Gap∗: the average percentage gap to the best known upper bound

obtained in 24 hours, e.g. the best obtained integer solution. The formulas to calculate Gap and Gap∗ are:

Gap =
SAV G
MHeu − SLB

IT−VSP

SLB
IT−VSP

, Gap
∗ =
SAV G
MHeu − SUB

IT−VSP

SUB
IT−VSP

where SAVGMHeu is the average objective value over all five runs of an instance and setting of MHeu, SLBIT−VSP is the

best lower bound obtained with CPLEX solving IT-VSP(T) in 24 hours, and SUBIT−VSP is the objective value of the best

integer solution obtained with CPLEX solving IT-VSP(T) in 24 hours. The values SLBIT−VSP and SUBIT−VSP are computed

for each instance and each setting of timetable modifications (with or without stretches) separately. Even when

extending the computation time from 24 hours to 7 days we were not able to identify the optimal solution, and the

decrease in Gap is only between 0.04% to 0.64% over all instances.

The solution quality of SAVGMHeu is expressed in terms of transfer cost (TrC), operational costs (OpC), and total

costs (TC), which are average percentage differences to the optimal base solution SMDVSP of IT-VSP(∅). The SMDVSP

represents the best solution without integration of vehicle scheduling and timetabling, on which we aim to improve

18



in terms of transfer time and operational costs. Let x = {TrC, OpC, TC} and fx(S) denote the x-type cost of a

solution S, then these quality measures are computed as:

x =
fx(SAV G

MHeu )− fx(SMDVSP)
fx(SMDVSP)

× 100%

A negative percentage for x corresponds to a reduction of costs in the MHeu solution in comparison to the non-

integrated SMDVSP base solution.

7.1. Parameter tuning

Table 3 shows the parameter tuning results for the Rand, CostP, and Relat selection strategies. All three strate-

gies require the same set of parameters as input, which consists of the number of trips selected κ for T ′ at each iter-

ation, and the maximum running time of each iteration in minutes ψ. We tested κ = 150, 200, 250, 300, 350, 400, 450

trips and ψ = 0.5, 1, 2, 5, 10 minutes, and report average results over five runs.

κ

Strategy ψ (m) 150 200 250 300 350 400 450

0.5 -2.15% -3.21% -4.36% -5.71% -6.51% -6.32% 5.01%

1 -1.87% -3.74% -4.57% -5.80% -6.02% -6.35% -4.23%

Rand 2 -1.85% -2.90% -4.61% -5.67% -6.23% -6.70% -3.67%

5 -2.13% -2.51% -4.43% -4.90% -6.18% -5.69% -4.74%

10 -2.42% -3.05% -4.36% -5.09% -4.82% -3.41% -3.37%

0.5 -2.36% -2.98% -4.74% -5.25% -5.21% -6.01% 5.01%

1 -1.94% -3.35% -4.73% -5.44% -5.99% -6.16% -4.98%

CostP 2 -2.11% -2.61% -4.52% -5.55% -5.66% -6.00% -3.75%

5 -1.87% -3.54% -4.58% -5.19% -5.43% -6.01% -5.40%

10 -1.96% -2.66% -5.01% -4.93% -5.69% -5.13% -3.89%

0.5 -2.35% -2.80% -4.51% -5.47% -6.06% -4.58% 5.01%

1 -2.42% -3.28% -3.93% -5.17% -6.45% -5.39% 1.78%

Relat 2 -2.69% -3.58% -4.57% -4.97% -6.01% -6.41% -3.20%

5 -2.51% -3.05% -4.04% -4.85% -5.21% -4.94% -4.08%

10 -2.79% -3.76% -4.07% -4.51% -4.63% -3.23% -3.37%

Table 3: Average Gap∗ for the Rand, CostP, and Relat selection strategies, with a total running time of 30 minutes

Table 3 contains the average Gap∗ per selection strategy for all parameters, where minimal average Gap∗ per

selection strategy is marked in bold. The average Gap∗ per selection strategy is smallest for ψ = 2, ψ = 1, and ψ = 1

for Rand, CostP and Relat respectively, thus indicating that running more iterations with a short computational

time may be more beneficial than running less iterations with a long computational time for solving CPLEX in each

iteration. Furthermore, the lowest average Gap∗ is obtained for κ = 400, κ = 400, and κ = 350 for Rand, CostP

and Relat respectively, indicating that a larger sub-problem, with a larger solution space, may provide better

solutions. However, for κ = 450, computation times of 0.5 minutes may be too small: all selection strategies find

worse solutions for this case, and for the Relat this also holds for ψ = 1 minute. For all other parameters the

MHeu improves on the CPLEX solution, with Gap∗ between -1.85% and -6.70%. However differences per strategy for

improved solutions can be up to 4%, while the second-best setting is no more than 0.35% from the best one and in

1 out of 3 cases is obtained with different values for both κ and ψ than the ones for the lowest gap. Furthermore,

Gaps sometimes form an oscillating pattern, for example for Rand κ = 150.

Table 4 contains average Gap∗ for the RolH selection strategy, with the lowest average Gap∗ marked in bold. The

parameters for this selection strategy are the number of time intervals |Ω| and the percentage overlap ξ between

consecutive time intervals. Provided the overall computation time limit of 30 minutes and a fixed number of iteration

for this approach, the time limit per iteration is set to ψ = 30
|Ω| . The values tested for the number of time intervals
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are |Ω| = 2, 4, 6, 8, 10, 12, 14, 16 intervals, and the percentage overlaps tested are ξ = 20, 25, 30, 35, 40. Both RolH

parameters influence how many trips are selected for T ′ at each iteration. For each setting, we report the size of

|Ω| and the maximum number of trips κmax selected in each time interval of Ω between brackets: |Ω|(κmax). Since

this strategy is deterministic, only one run of each setting is conducted.

|Ω|(κmax)

Strategy ξ (%) 16 (75) 14 (82) 12 (95) 10 (117) 8 (134) 6 (167) 4 (220) 2 (413)

20 -2.48% -3.05% -2.26% -2.25% -1.96% -2.74% -1.17% -1.04%

25 -3.03% -2.97% -4.60% -3.49% -4.55% -3.58% -1.40% -1.13%

RolH 30 -3.07% -3.99% -4.27% -4.33% -5.34% -1.43% -2.42% 2.33%

35 -4.14% -3.06% -2.68% -3.46% -5.83% -1.33% -3.31% -1.28%

40 -4.29% -5.28% -3.17% -4.55% -3.37% -2.57% -1.36% -1.11%

Table 4: Average Gap∗ for the RolH selection strategy

The results presented in Table 4 show that contrary to previous selection methods the RolH strategy has the

best performance for a relatively small sub-problem of around 134 trips (|Ω|=8) rather than for larger sub-problems

of around 400 trips (|Ω|=2). The Gap∗ decreases when the number of time intervals increases from 4 to 8. The

overall smallest Gap∗ of -5.83% is obtained for ξ = 35%. Further increasing |Ω| does not improve the results.

The parameter settings resulting from the parameter tuning experiments are summarized in Table 5 per instance.

It was necessary to increase the runtime per iteration for the 8-line instance as its increased size and complexity did

not allow building the model within the specified time. The number of time intervals for the RolH strategy in the 5

and 8 lines instances were selected to resemble the κmax parameter of the 3-line instance at |Ω| = 8 and ξ = 30%.

Instance

Strategy Parameter 3 Lines 5 Lines 8 Lines

Rand κ 400 400 400

ψ (m) 2 2 5

RolH |Ω|(κmax) 8 (134) 14 (141) 24 (149)

ξ(%) 35 35 35

CostP κ 400 400 400

ψ (m) 1 1 5

Relat κ 350 350 350

ψ (m) 1 1 5

Table 5: Parameter values used for each of the 3 instances and each of the selection strategies

7.2. Computational performance

In this section, we analyze the computational performance of the different selection strategies given different

total running time limits for the 3, 5 and 8 lines instances.

7.2.1. Selection Strategies and Running Time

Table 6 contains the (upper bound) Gap∗ and (lower bound) Gap defined in Section 7, which express the perfor-

mance of the MHeu to the performance of a standard solver (CPLEX) for solving the IT-VSP directly within a time

limit of 24 hours.

The MHeu always improves on the CPLEX solution even when running it for only 1 hour, with the only exception

being the RolH selection strategy that requires more than 1 hour to find a better feasible solution. For 12 hours

of total computational time, the Gap∗ to the CPLEX solution is between -4,61% and -8,52% when allowing stretches

and between -2,81% and -6,48% when not allowing stretches. The improvement in Gap∗ for 12 hours compared to 5
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Stretches No Yes

Instance 3 Lines 5 Lines 8 Lines 3 Lines 5 Lines 8 Lines

Running time (h) Strategy Gap∗ Gap Gap∗ Gap Gap∗ Gap Gap∗ Gap Gap∗ Gap Gap∗ Gap

Rand -5.59 2.09 -4.44 4.85 -1.58 10.74 -6.87 4.01 -5.00 6.00 -5.78 13.01

1 RolH -4.89 2.86 -4.79 4.46 5.21 18.38 -3.48 7.79 -3.16 8.06 -0.21 19.68

CostP -5.43 2.27 -5.05 4.18 -0.80 11.61 -6.96 3.91 -5.14 5.84 -5.81 12.97

Relat -5.54 2.15 -4.14 5.17 -0.93 11.46 -6.02 4.96 -4.43 6.64 -5.78 13.01

Rand -5.75 1.92 -5.90 3.24 -2.87 9.29 -7.34 3.48 -5.86 5.04 -8.12 10.20

5 RolH -4.57 3.20 -4.79 4.46 -2.82 9.34 -6.09 4.88 -4.61 6.45 -8.39 9.87

CostP -5.84 1.83 -5.71 3.45 -2.63 9.56 -7.10 3.75 -6.09 4.79 -6.91 11.65

Relat -5.74 1.93 -5.18 4.03 -3.03 9.10 -7.33 3.49 -5.82 5.09 -7.92 10.43

Rand -6.09 1.55 -6.15 2.96 -3.62 8.43 -7.79 2.98 -6.53 4.30 -8.17 10.14

12 RolH -5.13 2.59 -4.79 4.46 -3.63 8.43 -4.83 6.29 -4.61 6.45 -8.26 10.03

CostP -6.00 1.65 -6.48 2.61 -2.81 9.35 -7.26 3.57 -6.83 3.96 -7.87 10.49

Relat -5.76 1.91 -5.70 3.46 -4.39 7.57 -7.05 3.80 -6.18 4.69 -8.52 9.72

Table 6: MHeu results with a run time of 1, 5, and 12 hours, with and without stretches, expressed in Gap∗ and Gap

hours computation time is only between 0.13% and 1.5%, and therefore one could also opt for a shorter computation

time than 12 hours. However, a computation time of one hour seems insufficient especially for larger instances.

This is especially evidenced by the poor performance of the RolH strategy at one hour computation times. Since the

integrated timetabling and vehicle scheduling problem is a tactical level problem, computation times of several hours

are non-prohibitive for using this algorithm in practice. Furthermore, for the sake of comparison, all experiments

in this paper were run using only one computation core. Increasing the computation cores would most likely reduce

the computational times.

As the size of the instance grows, the lower bound Gap increases from around 2% and 4% for the 3-line instance

to around 10% and higher for the 8-line instance. Thus the quality of the lower bounds seems to decrease when

the instance size increases. The lower bound Gap is somewhat higher when allowing stretches, which is intuitively

explained by the wider solution space when allowing stretches.

The gap differences between selection strategies are small for a minimal computation time of five hours: the

difference in upper bound Gap∗ ranges between 0.40% and 1.69% when not allowing stretches, and between 0.65%

and 2.97% when allowing stretches. Moreover, there isn’t one strategy that consistently returns better results than

the others, and all strategies return the best result in at least one of the different combinations of runtime, instances,

and allowing or disallowing stretches for a minimum of five hours computation time. The performance over the five

runs is relatively stable with standard deviation below 0.82% for these instances.

7.2.2. Convergence of the Different Selection Strategies

The convergence of each selection strategy for the 8-line instance, with stretches, and with a total running time

of 5 hours, is depicted in Figure 7. The x-axis reflects the running time and the y-axis represents the total costs,

in terms of transfer and operational costs expressed in Danish crowns (DKK). Each curve represents the best run

of the algorithm for a specific selection strategy. Markers indicate when the strategy finds an improved feasible

solution.

All selection strategies start with a steep decline, which slows down generally after around 100 minutes of

computation time. After 3 hours most strategies have converged, the Relat being the only exception in this specific

case, however similar small improvements have been observed for Rand after this amount of computation time. Only

minor improvements are obtained extending the computation time further than 5 hours, as discussed in Section

7.2.1.
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Figure 7: Total costs convergence analysis with κ = 400 or |Ω| = 8, for the 8-line instance with stretches and a total

running time of 5 hours

The RolH finds the solution with the lowest total costs for this instance, and does so within half of the total

running time limit. The RolH runs shorter when at any of the iterations, the optimal solution for the IT-VSP (T ′)

is found within the running time limit of the iteration.

7.3. Transfers and operational costs

This section expresses the performance of the MHeu in comparison to the base MDVSP solution to discuss the

benefits in terms of passenger service and operational cost in comparison to current practice. Thus, it focusses on

the value that the algorithm may provide public transport agencies, with a specific focus on the allowance to add

dwell time to timetabled trips (stretches).

7.3.1. Value of Stretches

Table 7 contains the transfer cost TrC, operational cost OpC, and total costs TC for the 3, 5 and 8 lines instances,

with and without stretches, for all four selection strategies and a total running time of 5 hours. The values in bold

represent which selection strategy performed best in each category (TrC, OpC, and TC) per instance, for allowing

and disallowing stretches independently.

Instance 3 Lines 5 Lines 8 Lines

Stretches No Yes No Yes No Yes

Running

time (h)
Strategy TrC OpC TC TrC OpC TC TrC OpC TC TrC OpC TC TrC OpC TC TrC OpC TC

Rand -31.08 -7.15 -11.30 -34.86 -6.91 -11.76 -35.09 -6.78 -10.95 -39.36 -5.85 -10.77 -34.67 -3.40 -7.69 -37.23 -3.49 -8.12

5 RolH -30.27 -5.98 -10.19 -34.22 -5.61 -10.57 -32.89 -5.92 -9.89 -36.78 -4.90 -9.58 -29.46 -4.18 -7.64 -36.23 -3.97 -8.39

CostP -30.28 -7.42 -11.38 -36.15 -6.37 -11.53 -35.32 -6.53 -10.76 -38.88 -6.19 -10.99 -35.25 -3.04 -7.46 -35.97 -2.30 -6.91

Relat -31.06 -7.15 -11.29 -35.41 -6.79 -11.75 -36.37 -5.76 -10.26 -39.45 -5.79 -10.74 -35.06 -3.52 -7.84 -37.61 -3.21 -7.92

Table 7: MHeu results with a run time of 5 hours, with and without stretches, expressed in TrC, OpC, and TC

The integration of timetabling and vehicle scheduling can reduce the total costs between 10.19% and 11.76% for

the 3-line instance, between 9.58% and 10.99% for the 5-line instance, and between 6.91% and 8.39% for the 8-line
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instance. The inclusion of stretches in the timetable modifications achieves solutions with total costs comparable

to the solutions with only shifts. In a few cases, the addition of stretches shows a small improvement in the total

costs, ranging from approximately 0.08% to 0.75% points.

The results obtained in terms of transfer costs are comparable for all selection strategies, over all 6 cases (3,

5 and 8 lines instances, with and without stretches). The Relat strategy may be especially suitable to reduce

transfer costs: it provides lowest transfer costs in 3 out of 6 cases, and a close second-least transfer costs in two

more instances, however differences are too small to draw any definitive conclusions.

To illustrate the value of allowing stretches to decrease transfer times, we define a slightly changed IT-VSPB that

minimizes transfer costs within a budget for operational costs, rather than the weighted sum of both. Specifically,

the IT-VSP (1) - (20) is changed by replacing objective (1) with (21) and adding budget constraint 22. Thus

IT-VSPB is defined as

min cTR
∑
r∈R

frγr (21)

∑
(i,j,k)∈Q

cijkxijk + cDW
i

∑
i∈T

δi ≤ ∆ (22)

(2)− (20)

The objective function (21) considers only transfer cost minimization. The operational cost components of (1)

are removed from the objective and an additional constraint is added to the model, (22), where the operational cost

components removed from (1) are kept below or equal to a certain budget ∆. In these experiments, ∆ is defined as

the operational costs in the optimal solution to the IT-VSP(∅) for the respective instance.

Table 8 contains transfer costs, operational costs, and total costs for the 3, 5 and 8 lines instances, with and

without allowing stretches. Experiments were run for 5 hours total computation time and the Rand selection

strategy, as there was no strategy that consistently performed best. Moreover, the increased complexity introduced

by the budget constraint and changed objective in IT-VSPB required to increase run time per iteration of the 8-line

instance to 20 minutes.

Instance 3 Lines 5 Lines 8 Lines

TrC OpC TC TrC OpC TC TrC OpC TC

Stretches No -35.75 0.00 -6.20 -37.81 -0.77 -6.22 -30.61 -0.02 -4.21

Yes -47.19 -0.06 -8.23 -48.81 -0.18 -7.33 -42.03 0.00 -5.76

Table 8: Budget results with a run time of 5 hours, with and without stretches, expressed in TrC, OpC, and TC

The results in Table 8 indicate that indeed adding stretches can reduce transfer costs by approximately 11% in

all instances, without increasing the operational costs. With stretches, transfer costs reductions are increased from

between 30.61% and 37.81% to between 42.03% and 48.81%.

7.3.2. Schedules and Excess Transfer Time

In this section, we compare the vehicle schedules and the excess transfer times in the original timetable MDVSP

solution and in the best solution obtained using our MHeu approach. Results refer to the 8-line instance, allowing
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stretches, and with a total computation time of 5 hours. Figure 8 analyzes the quality of transfers in terms of excess

transfer time, which is represented in the x-axis. The y-axis shows the percentage of passengers that experience

each value of excess transfer time.
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Figure 8: Comparison of transfers in the original solution and in the Relat best solution

In the MHeu solution, less passengers experience high excess transfer times. It can be observed that the number

of passengers with ideal transfer time (experiencing zero minutes excess transfer time) increased by approximately

175%. In the MHeu solution a total of 34% of all passengers experience 0 minutes of excess transfer time, while

only 12.8% of passengers experience 0 minutes excess transfer time in the original timetables. Furthermore, the

average excess transfer time decreased from 4.5 minutes to 2.8 minutes in the MHeu solution, and the worst case

excess transfer time was also reduced.

Figure 9 shows the number and duration of vehicle schedules for the best solution of the MHeu and for the

MDVSP solution resulting from the original timetable. The x-axis contains the duration of schedules in minutes,

while the y-axis indicates the number of schedules with a duration up to x minutes. The schedule durations are

discretized in intervals of 50 minutes, so a value of 2 in the 600 minute duration means that there are two schedules

with duration between 550 and 600 minutes.
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Figure 9: Comparison of schedules in the original solution and in the Relat best solution
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The MHeu solution reduces the number of schedules from 205 to 195, which corresponds to a decrease of

approximately 5%. Furthermore, the average duration of schedules increased by approximately 30 minutes. The

percentage of modified trips in the original timetable, by either shifts, stretches, or both, is approximately 74%.

A total of 78 trips are stretched. On average, circa 1.5 minutes of dwell time are added per stretched trip. This

indicates that the increase in in-vehicle time for on-board passengers will be very limited.

We present further information on the vehicle schedules in Figure 10 and Tables 9 and 10. Figure 10 shows the

number of trips per schedule in the original timetable MDVSP solution and in the best solution obtained with the

MHeu approach. It can be observed that the MHeu generates schedules with a higher number of trips, being the

average number of trips per schedule 8.13, while in the MDVSP solution this average amounts to 7.73.
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Figure 10: Number of trips in schedules in the original solution and in the Relat best solution

Original schedules MHeu schedules

Depot Trips Schedules Trips Schedules

1 616 75 630 75

2 461 55 456 52

3 376 55 356 49

4 132 20 143 19

Table 9: Number of trips and number of sched-

ules assigned to each of the four depots in the

original and in the MHeu schedules

MHeu schedules

Depot 1 2 3 4

1 383 (24.2%) 126 (7.9%) 70 (4.4%) 37 (2.3%)

Original 2 134 (8.5%) 252 (15.9%) 60 (3.8%) 15 (0.9%)

Schedules 3 93 (5.9%) 62 (3.9%) 201 (12.7%) 20 (1.3%)

4 20 (1.3%) 16 (1.0%) 25 (1.6%) 71 (4.5%)

Table 10: Distribution of trips per depot in the original and in the

MHeu schedules

Table 9 shows the number of trips and number of schedules assigned to each depot. In both solutions, depot 1

is at its maximum capacity, from which we conclude it is the depot with most convenient location given the set of

trips to be serviced. Furthermore, the number of trips assigned to this depot in the improved solution increases,

reinforcing the importance of depot 1. Depot 4, although being the depot with lowest number of schedules, also

has an increased number of trips in the MHeu solution. Depots 2 and 3 see a decrease in both number of trips and

number of schedules when comparing to the MDVSP solution.

Table 10 provides information on how trips are assigned to depots, both in absolute value and in percentage

of total number of trips. For example, trips in entry (1,1) are assigned to depot 1 in both the original and in the

MHeu solutions, while trips in entry (1,2) are assigned to depot 1 in the original solution and to depot 2 in the

MHeu solution. While 57.2% of all trips (907 trips, sum of the diagonal values) are assigned to the same depot in

both solutions, 42.8% of all trips shift depots in different solutions, confirming the significant impact that timetable

modifications have on vehicle schedules.

25



7.3.3. Trade-off between Operational Costs and Transfer Costs

In this section, we analyze the trade-off between operational costs and transfer costs by varying the value of time

(VOT) for passengers. The VOT considered in the previous experiments was 100 DKK/hour, which corresponds to

approximately 14 USD/hour. We considered the additional VOTs= {50, 200, 400} DKK/hour, with 50 DKK/hour

representing a very low value of time, 100 DKK/hour a standard value of time for commuters, 200 DKK/hour

representing business travelers, and 400 DKK/hour representing an extreme high value of time. These values

were inspired by value of time studies conducted at the transport modelling center at the Technical University of

Denmark, and are available at their website1. The experiments were run for 5 hours of total running time, for the

8-line instance, allowing stretches, and the Rand strategy. The plots in Figure 11 have different VOTs represented

in the x-axis and the percentage differences in the y-axis.
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Figure 11: Analysis of the influence of Value of Time

The plots show that increasing the VOT leads to lower transfer costs and higher operational costs. However,

the sensitivity of this relation appears to be low. For a value of time of 400 DKK/hour instead of 100 DKK/hour,

the operational costs increase by 3.12% (-0.47 - -3.59) for a decrease of -9.42% (-46.61 - -37.19) in transfer costs.

8. Conclusion

This paper proposed a new model for the integrated timetabling and vehicle scheduling problem. Provided an

initial timetable, it defines a set of timetable modifications and a set of vehicle schedules with the objective of

minimizing passenger excess transfer times and operational costs. Modifications consist of changes in the start time

of a trip (shifts), and addition of dwell time at intermediate stops (stretches). The new idea to include the addition

of stretches could represent the redistribution of buffer time over trips to create better-timed transfers. Results

for a realistic case study for the Greater Copenhagen area indicate that the integration of timetabling and vehicle

scheduling may lead to a potential reduction in both transfer costs and operational costs. Moreover, our findings

suggest that allowing a wider set of timetable modifications in the form or stretches creates a potential for further

reducing transfer costs by up to 10%, without increasing operational costs.

We propose a matheuristic that in each iteration solves the MIP formulation for a sub-problem of the IT-

VSP. The sub-problems restrict timetable modifications to a subset of all timetabled trips, while it solves the full

integrated vehicle scheduling problem. Several methods for constructing sub-problems are proposed and compared.

Results indicate that the matheuristic is able to produce better solutions in terms of transfer time and operational

costs than a general purpose solver in 7 days, and does so faster in 1 to 5 hours of computation time. Solutions

1http://www.modelcenter.transport.dtu.dk/Noegletal/Transportoekonomiske-Enhedspriser
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reduce average excess transfer time in comparison to the current timetable from 4.5 to 2.8 minutes, while increasing

the number of passengers with ideal transfer times by almost 175% and decreasing worst case excess transfer times.

In addition, reductions in operational costs are found in comparison to optimal vehicle schedules for the current

timetable. Results for our case study are therefore promising that also for larger networks gains could be obtained

from the integrated approach.

Several opportunities for future research exist. First, one could aim to include a dynamic passenger route choice

component into the optimization. Indeed, if more favourable transfer connections are provided some passengers

may change their route, thus leading to a change in passenger flows. This would also allow a better analysis of the

trade-off between added dwell time and increase in travel costs for on-board passengers. The modelling of accurate

passenger route choice is a non-trivial task, and therefore left for future research. One could also aim to include crew

scheduling constraints into the model, to ensure that there exist feasible crew schedules for the resulting vehicle

schedules. Finally, it would be interesting to consider the integration of timetabling and vehicle scheduling in a

real-time setting. This would require a focus on increasing computation speed, include new practical constraints

for en-route vehicles and drivers, and evaluation of results in a dynamic setting.
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