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INTRODUCTION 

 

Maritime shipping is considered the most fuel efficient mode of transport with the lowest 

contribution in CO2 emissions. However, the sector has seen increasing pressure to improve its 

environmental performance, particularly when it comes to SOx, NOx, and PM emission 

pollutants. The majority of academic literature is focusing on the full journey environmental 

aspects of maritime transport, and less attention is given to ports. Davarzani et al. (2016) 

conduct a literature review on greening ports in order to identify research areas for further 

investigation (1).  

Cold ironing is the process of providing shorepower to cover the energy demands of vessels 

calling at ports. In California six ports are included to the At-Berth regulation that constitutes 

mandatory the use of the technology for ocean going  vessels (70% of total vessel calls, up to 

80% by 2020). The EU regulation on at-berth emissions is targeting only SO2 emissions, the 

reduction of which is also the objective of Emission Control Ares (ECAs). Therefore, a ship 

can switch to ultra-low sulfur fuel while at berth or within ECAs, or alternatively use scrubber 

systems to comply with the regulation (2). The scrubber solution reduces PM emissions as well, 

but has a limited effect on NOx. A paradox is evident; between 2005 and 2015 (the sulfur limit 

was 1% within ECA, 0.1% at berth) a vessel calling at EU ports would have a higher incentive 

to invest in cold ironing as it would replace the use of ultra-low sulfur fuel at the port. 

 

 The objective of the paper is to start a discussion on the future prospects of cold ironing as a 

viable option to reduce in port emissions, as well as to present a quantitative framework that 

can be useful to stakeholders deciding on whether to invest in this technology or not. 

 

METHODOLOGY  

 

The fuel consumption FCB,k (tons) at berth (B) of a ship k  can be given through equation 1.  

𝐹𝐶𝐵,𝑘(𝑡𝑜𝑛) = 10−6 ∙ (𝑆𝐹𝑂𝐶𝑎,𝑘 ∙ 𝐸𝐿𝑎,𝑘 ∙ 𝐸𝑃𝑎,𝑘 + 𝑆𝐹𝑂𝐶𝑏,𝑘 ∙ 𝐸𝐿𝑏,𝑘 ∙ 𝐸𝑃𝑏,𝑘) ∙ 𝑡𝐵,𝑘       (1) 

Where SFOC(g/kWh) is the specific fuel oil consumption, EL(%) the fractional load of the 

nominal power EP(kW) of the auxiliary engines (α) and boilers (b), and tB,k is the duration of 

berth. Bottom-up emissions methodologies are retrieving emissions generation εi,j,k (kg of 

pollutant) through multiplication of fuel consumption FCi,j,k (kg) of each engine i on board 

vessel k, during activity phase j with appropriate emission factors EFi,j,k (kg pollutant / kg 

fuel) as in equation 2.  

𝜀𝑖,𝑗,𝑘=𝐹𝐶𝑖,𝑗,𝑘×𝐸𝐹𝑖,𝑗,𝑘                                                       (2) 

 

This study used the emission factors as suggested in the literature (3, 4). Through the use of 

cold ironing there are always local environmental benefits since the auxiliary engines of 

participating ships are turned off for a large part (or even throughout) of the berthing time. 

However, there are induced emissions at the source of energy generation that now powers to 

the vessel at berth.  

To quantify these emissions, it is vital to know the energy mixture powering the port, and the 

relevant grid emission. A typical SFOC (g/kWh) for an auxiliary engine is 220 to 230 g/kWh 

which if multiplied with the CO2 emission factor for MGO results in a range of 678 to 709 

grams of CO2 per kWh. In comparison, a coal factory has a CO2 emissions factor of around 

940g/kWh. Figure 1 shows a comparison of the global emissions balance when using cold 

ironing, as a function of grid emission factors for four pollutant species.  

 



 

3 

 

 

Figure 1: Balance of Global Emissions when using Cold Ironing, as a Function of Grid 

Emission Factors. Source (5) 

The point where each line intersects the x-axis is essentially the point where the grid 

emissions factor considering conversion and transmission losses is equal to the emissions factor 

of the auxiliary engine.   

The shipowner may have to retrofit the vessel to be able to receive shorepower with significant 

capital required CR,k. During each year, the economic balance (cost or benefit) of ship k calling 

Nc,k times at ports with cold ironing capability (c) and receiving shore power is found by 

equation 3. 

𝛥𝐶𝐴𝑀𝑃,𝑘 =
𝐶𝑅,𝑘−𝑆𝑅,𝑘

(1+𝑟𝑘)𝑦 + 𝑁𝑐,𝑘 ∙ (𝑡𝐿,𝐴𝑀𝑃,𝑘 ∙ 𝐶𝑡,𝑘 + 𝑃𝐴𝑀𝑃 ∙ 𝐸𝐴𝑀𝑃,𝑘 − 𝐹𝐶𝑎,𝐵,𝑘 ∙ 𝑃𝑓,𝑎 − 𝑅𝐴𝑀𝑃,𝑃,𝑘)      (3) 

Where SR,k is a potential subsidy provided by a port towards retrofit costs and the first term 

(fraction) is the present value of the initial retrofit costs y years after the retrofit assuming an 

interest rate rk. The term tL,AMP,k is the time lost during each call for plugging and unplugging 

the vessel with a value of time Ct,k. Finally, RAMP,P,k is any incentive provided per call from the 

port authority P to the vessel. The annual costs depend on: 

 the number of berths NB able to provide shorepower,  

 the annual operating costs CAMP,O,P(including maintenance, staff costs)  

 the number n of vessels k using AMP at their calls,  

 the price Pgrid per kWh sold by the grid,  

 the price PAMP,k per kWh sold to the calling vessel k,  

 monetary incentives RAMP,k provided to a ship and finally  

 potential subsidies SR,k provided to a ship towards retrofitting costs  

 the discount rate rP 
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The previous are summarized as annual costs through equation 4. 

𝐶𝐴𝑀𝑃,𝑃 = 𝑁𝐵 ∙
𝐶𝐴𝑀𝑃,𝐼,𝑃+𝐶𝐴𝑀𝑃,𝑂,𝑃

(1+𝑟𝑃)𝑡 + ∑ (
𝑆𝑅,𝑘

(1+𝑟𝑃)𝑡 + 𝑅𝐴𝑀𝑃,𝑘 + 𝑃𝑔𝑟𝑖𝑑 ∙ 𝐸𝑔𝑟𝑖𝑑,𝑘 − 𝑃𝐴𝑀𝑃,𝑘 ∙ 𝐸𝐴𝑀𝑃,𝑘)𝑛
𝑘=1         (4) 

With the exception of California where cold ironing is heavily promoted and complemented 

by local regulations, it can be expected that a vessel would only use it, if financially beneficial. 

The economics of cold ironing has been a recurring theme in technical and academic literature 

with most studies emphasizing the importance of prices per kWh (6, 7). 

FINDINGS 
 

This section considers the perspective of a ship owner and a port operator that opt to 

invest in cold ironing, for a few illustrative case studies. 

The first case study considers the perspective of a ship operator that invests in retrofitting the 

vessel to be able of receiving shorepower. A typical investment (CAPEX) of $0.4 million is 

assumed (8) for the investment to retrofit a small Ro-Ro vessel with an auxiliary power of 

6000kW and an engine load at berth of 30%. Assuming that the electricity cost (AMPkWh) was 

0.12$/kWh in 2013 and 0.09$/kWh in 2015, the payback period N of the investment can be 

estimated using equation 6, for the N that NPV becomes equal to zero: 

𝑁𝑃𝑉 = 𝐶𝐴𝑃𝐸𝑋 + ∑
𝑃𝑓𝑢𝑒𝑙∙𝐹𝐶𝑎𝑢𝑥−𝐴𝑀𝑃𝑘𝑊ℎ

(1+𝑟)𝑡
𝑁
𝑡=0 = 0          (5) 

where FCaux (tons) is the fuel consumption  of the auxiliary engine, and Pfuel the fuel price 

($/ton) at berth. The Ro-Ro vessel is sailing four times a week between two ports A and B, 

with average berth duration of 8 hours at each port and a sailing time of 34 hours. The resulting 

payback period is shown in Table 1 assuming the fuel prices of 2013 (very high) and 2015 

(very low) for different policy combinations. 

TABLE 1: Payback Period for Ro-Ro Vessel AMP Retrofit (years) 

Case Study Payback period of retrofitting vessel with AMP 

capability 

2013 fuel prices 2015 fuel prices 

1 port has AMP, both outside SECA 56 

NA 2 ports have AMP, both outside 

SECA 
18 

1 port has AMP, both in SECA 8.6 71 

2 ports have AMP, both in SECA 4.1 19.6 

 

The results show that it is critical for the investment to be successful that both ports have AMP 

capability, and that it is a better option for vessels calling at ports with low sulfur requirements, 

or operating at times of high fuel prices. Due to the currently low number of ports that offer 

cold ironing, from the ship operators’ perspective it may be better for Ro-Ro vessels in 

comparison to containerships that call into multiple terminals per year, and as a result will have 

less time using the AMP infrastructure. 

The second case study considers the perspective of a port authority that seeks to maximize the 

emissions reductions of a specific pollutant from vessel activity in its proximity. The problem 

is essentially how to spend a given budget to minimize CO2 emissions in the port, with the 

available options being the installation of 1or more cold ironing units in the berths, or providing 
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a monetary incentive so that ships reduce speed in the port proximity (similar to a Vessel Sped 

Reduction Programme; VSRP).  

The case study considers a typical container terminal of a 1.3 million TEU annual 

throughput, with 1700 vessel calls per year. A 2-week cycle is assumed for the terminal that 

has 3 discrete berths. The VSRP is considered for a 40NM radius around the port, with a 

reduction at 12 knots (as in POLA and POLB), and a monetary refund of 30% towards the port 

fees of the first day of dockage. The total costs for a full participation (all 1700 vessels) is 

estimated at $2.6 million per year. Berth costs are assumed at $1.5 million to build, which 

translates in an annual cost of $105000 assuming an interest rate of 6% in a 30 year investment 

plan. Under the assumption that 10% of the visiting vessels are able of using cold ironing, the 

following cost per ton of abated CO2 is estimated in Table 2. 

TABLE 2: Cost per abated ton of CO2 using AMP and VSRP 

Available Budget ($ 

million) 

Max CO2 reduction 

(tons/2weeks) 

Cost per ton of 

CO2 

4 4478 34.36 

3 3608 31.98 

2.6 3388 29.52 

2.2 2753 30.74 

1.8 2150 32.2 

1.4 1580 34.1 

1 1040 37.02 
0.6 530 43.6 

 

The analysis considered that the port is charging 0.11$/kWh and is not making profit 

(essentially sells power at the price it buys power). The results show that for tighter budgets 

only cold ironing is used, and as the budget allocation is increasing a VSRP is offered to the 

larger vessels. 

CONCLUSIONS 

The methodological framework constructed in this work can be useful to terminal operators 

and shipowners in deciding whether to invest in AMP applications. The analysis showed that 

some of the environmental regulation can have a positive impact on the further development 

of AMP as a technological solution. However, at the same time regulation that affects the whole 

journey of a ship (e.g. SECAs) may result in ship operators in investing in universal solutions 

such as scrubbers. From the port’s perspective, a vessel using cold ironing is preferable to one 

having a scrubber or using MGO at berth. In addition, cold ironing is shown to offer a better 

cost value to the port authority than a VSRP, despite the currently low penetration rates of the 

technology on ship operators. It is probable that cold ironing will play a bigger role as a 

technological solution to improve the environmental performance of ports. Interesting research 

questions include the impact of a potential induction of the maritime sector in emissions trading 

systems (ETS) that the European Commission is contemplating, and the integration of berth 

scheduling problems in the presence of cold ironing berths.  
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