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Abstract 
 

This paper presents the research results of a comparison of three different model based approaches for wind turbine fault 
detection in online SCADA-data, by applying developed models to five real measured faults and anomalies. The regression 
based model as the simplest approach to build a normal behavior model is compared to two artificial neural network based 
approaches. They are a full signal reconstruction and an autoregressive normal behavior model. Based on a real time series 
containing two generator bearing damages the capabilities of identifying the incipient fault prior to the actual failure are 
investigated. The period after the first bearing damage is used to develop the three normal behavior models. The developed or 
trained models are used to investigate how the second damage manifests in the prediction error. Furthermore the full signal 
reconstruction and the autoregressive approach are applied to further real time series containing gearbox bearing damages and 
stator temperature anomalies.  
The comparison revealed all three models being capable of detecting incipient faults. However, they differ in the effort required 
for model development and the remaining operational time after first indication of damage. The general nonlinear neural 
network approaches outperform the regression model. The remaining seasonality in the regression model prediction error makes 
it difficult to detect abnormality and leads to increased alarm levels and thus a shorter remaining operational period. For the 
bearing damages and the stator anomalies under investigation the full signal reconstruction neural network gave the best fault 
visibility and thus lead to the highest confidence level.             
 
 
Keywords: Condition monitoring, Neural networks, SCADA-Data, Fault detection, Health condition, Wind turbine, Online 
monitoring, Normal behavior models, Generator bearing damage, Gearbox bearing damage  

 
1. Introduction 

 
Condition monitoring of wind turbine components 

is of increasing importance. The size of wind turbines 
used nowadays has reached a level where the 
availability of the turbine is very crucial. Downtimes 
are very costly. It is therefore worth increasing the 
effort spent to monitor the turbine condition in order to 
reduce unscheduled downtime and thus costs. 

Condition monitoring (CM) systems can be used to 
aid plant owners in achieving these goals. They aim to 
provide operators with information regarding the 
health of their machines, which in turn, can help them 
improve operational efficiency by allowing more 
informed decisions regarding maintenance [1].  

The available CM systems mostly require high 
level knowledge about the problem domain. However, 
this knowledge is difficult to access and does often not 
exist. Physical models can thus seldom be built.  

On the other hand there is a large amount of 
historical operational data available, which can be used 
to give an indication about the turbine condition. By 
application of advanced signal analysis methods, 

focused on trends of representative signals or 
combination of signals, significant changes in turbine 
behavior can be detected at an early stage [2].  

Another possibility of identifying changes in signal 
behavior are model based approaches. Thereby the 
historical operational data is used to develop models 
capable of predicting a certain output signal, when 
given one or more input signals. For wind turbine 
signals these approaches are well suited, since many 
signals can be found to be correlated to other signals 
simultaneously measured, e.g. the wind speed or the 
power output. 

One advantage of using normal behavior models to 
monitor wind turbine signals lies in the reduction of 
prior knowledge about the signal behavior. Another 
important property is that with normal behavior 
models the possibility of monitoring the signal is 
widely decoupled from the operational mode. In 
practice simpler monitoring approaches such as by 
defining thresholds, are difficult to establish due to the 
various operational modes, which cause signals to 
widely fluctuate. If thresholds are to be defined they 
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must be specified for several operational modes 
individually.       

The normal behavior models are developed at a 
stage, where the turbine components can be considered 
healthy. Afterwards, the model is used to estimate a 
specific signal. The estimation error can give an 
indication of signal behavior changes and thus 
incipient faults.  

There is a number of research activities carried out 
in this field. They mainly deal with artificial 
intelligence approaches. Among the highest developed 
is a system called SIMAP [3] and a multi agent system 
(MAS)[1], [4] currently under development. Both 
systems make use of artificial intelligence techniques 
to set up the normal behavior models of online 
SCADA signals.   

In this article the initial findings of an ongoing 
three year Ph.D. research project are presented. The 
project aim is to develop a condition monitoring 
system that primarily uses ordinary SCADA data 
usually available to wind turbine operators. In the first 
project stage algorithms are to be developed with 
which all wind turbine SCADA data can be monitored 
and anomalies detected. This will be done with normal 
behavior models in a similar manner as it is presented 
here.  

At the present project state normal behavior models 
to monitor the following signals are developed:  

 
• Power output 
• Generator bearing temperature  
• Generator stator temperature 
• Generator slip ring temperature  
• Shaft speed  
• Gearbox oil sump temperature  
• Gearbox bearing temperature  
• Nacelle temperature  

 
Normal behavior models to monitor further SCADA 
data are currently under development.  

In the second project stage anomaly patterns will be 
related to specific faults occurred, laying the basis for 
statements about the component and finally the turbine 
condition. This is likely to be done with neural 
networks (NNs) for pattern recognition.  

The research is based on SCADA data from ten 
different operating offshore turbines of the same type 
in the two MW class at present.     

The intention of this article is to compare two 
artificial intelligence approaches to a regression based 
approach in combination with data smoothing 
techniques. The analysis is based on real measured 
faults.  

In the literature a comparative analysis of 
regression and artificial neural network models is 
described in [5] for power curve estimation. The 
comparison showed a high accuracy and a good 
performance of the NN approach. The estimation error 
achieved was in the range of 2% and the conclusion 

drawn was that NNs can be used to estimate wind 
power generation efficiently as a diagnostic tool[5].  

The main original contribution of this paper is the 
direct comparison of the fault visibility of real 
measured wind turbine faults in the prediction error of 
normal behavior models. The CM systems described in 
literature mainly use autoregressive approaches to 
predict the desired signal. This approach is most 
suitable to slow changing signals such as temperatures. 
Some wind turbine signals have a low autocorrelation, 
e.g. the turbine power output and thus are difficult to 
model with this kind of model. It is thus important to 
see the limits of each of the model type approaches in 
order to indentify the one appropriate for a given 
application or a needed combination. 

In section 2 the time series used for research are 
introduced and the damages or anomalies highlighted. 
Also the sensor positions are illustrated. In section 3 
there is a brief description of how the regression based 
model is set up and how smoothing is applied. In the 
following section 4 it is briefly described how the NN 
is set up and how it is trained to achieve a good 
performance. In section 5 and 6 the trained networks 
are applied to time series described in section 2 and a 
comparative fault investigation for damages and 
anomalies is shown.  

  
     

2. Time series containing anomalies 
 
Before introducing the time series relevant for this 

paper, the relevant sensors are shown in a schematic of 
the wind turbine generators (WTG) under 
investigation.     

 

 
Figure 1: Schematic of sensors in a wind turbine [6] 

1: Nacelle temperature  
2: Gearbox oil sump temperature 
3: Gearbox bearing temperature 
4: High speed shaft revolution speed 
5: Generator bearing temperature 
6: Stator temperature (3 phases) 
7: Power output 
8: Ambient temperature 
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2.1. Generator bearing anomaly  
 
Next to the overall performance of NNs and 

regression based approaches, it is equally important to 
investigate the fault visibility in the estimation error. 
Basis of this analysis is a time series containing two 
catastrophic generator bearing damages of a 2 MW 
offshore wind turbine.  

 

 
Figure 2: Time series containing two generator bearing 
damages measured on WTG A 

The time series shows the bearing temperature 
evolution over the operational time. Both catastrophic 
bearing damages required a bearing replacement. For 
this reason, the time series is particularly well suited 
for the performed analysis, since new bearings have a 
high likelihood to show normal behavior. The specific 
reason for the two bearing damages to occur so close 
to each other is, however, unknown. For the period 
under investigation no other fault is reported for this 
generator.   

For training of the NNs and the regression model 
development the period after the first bearing damage 
is used. 

 

 
Figure 3: Period used for training/ regression model 
development WTG A  

The trained networks and the regression model are 
then applied to the full time series. Hence the fault 
manifestation of the second bearing damage in the 
estimation error can be investigated and the three 
approaches compared. In this paper all basic analysis is 
performed on this time series.  

The following time series are used to achieve a 
more general view on the limitation of the full signal 
reconstruction (FSRC) and autoregressive approach. 

2.2. Gearbox bearing temperature anomaly I 
 
The time series shown in Figure 4 illustrates the 

gearbox high speed shaft bearing temperature 
measured at another turbine.    

 

 
Figure 4: Time series containing a gearbox bearing damage 
measured on WTG B 

Although the time series shows a gradual 
temperature increase over time, identification of 
temperature increase based on thresholds is only 
possible under full load condition and is thus 
dependent on the operational mode. The large power 
output fluctuations cause problems when defining 
thresholds for each individual operational mode (e.g. 
50-100 kW or 200-250 kW power output). The 
difference in autocorrelation between for instance the 
bearing temperature and the power output leads to the 
same temperature level being present in several power 
output bins. Figure 5 shows an example of the power 
fluctuations over time and the related gearbox bearing 
temperature.   

 

 
Figure 5: Exemplary power and gearbox bearing temperature 
fluctuations over time   

For the gearbox under investigation, there is no 
information about an earlier bearing replacement. For 
this reason the first three months of the time series 
available are used for model development as shown in 
Figure 6. 
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Figure 6: Period used for training WTG B 

The damage was recognized by the operator 2.5 
months before the bearing was finally replaced. When 
the incipient fault was recognized the turbine power 
output was restricted to 60% of the nominal power to 
allow a scheduled bearing replacement. There is no 
further information about the type of damage or on the 
exact cause available. This holds for all damages and 
anomalies presented in this paper.  

     
 

2.3. Gearbox bearing temperature anomaly II 
 
In the data supplied by the operator also a further 

gearbox high speed bearing damage is measured on a 
different turbine. The time series is shown in Figure 7.  
 

 
Figure 7: Time series containing a gearbox bearing damage 
measured on WTG C 

The time series shows a trend in maximum 
temperature measured right at the beginning of the 
time series. After 20000 values the maximum 
temperature measured stabilizes. 7000 values prior the 
bearing damage the maximum power output is 
restricted to 50% of the nominal power which lead to a 
drop in maximum temperature level.  

Although the time series shows a trend in the first 
five months of data available, these data are used to 
train the networks. The present trend will have an 
influence on the network performance, but training the 
network after the first 20000 values would not leave 
enough data for fault analysis. Therefore the influence 
on the performance is accepted, due to lag of earlier 
data being accessible. The training period is 
highlighted in Figure 8. 
 

 
Figure 8: Period used for training WTG C 

All data currently available for this research cover a 
period of 14 months recorded after two to three years 
of turbine operation. It is therefore possible that 
training is performed with data indicating signs of 
wear. In this case only relative changes from this status 
are possible to identify.  

     
 
2.4. Generator stator temperature anomaly I 
 

In order to further generalize the comparative 
analysis also other types of faults are investigated in 
this research. Figure 9 shows the stator temperature 
evolution up to the point where a generator exchange 
was required due to generator reconnection problems. 
This is when the turbine is not able to automatically 
connect to the grid, if the turbine & the grid is o.k. and 
the wind speed is above the cut in wind speed. 

  

 
Figure 9: Time series of the stator temperature measured on 
WTG D 

The time series contains no obvious anomaly. Only 
a small seasonality effect is present as a result of the 
annual change in ambient temperature. The first three 
months of data available are used for training. 
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Figure 10: Period used for training WTG D 

Apart from the information about the wind turbine 
status code that highlighted the issue no information 
about the cause is available.   

 
  

2.5. Generator stator temperature anomaly II 
 
The second stator temperature anomaly is a 

consequence of service performed on WTG E. The 
time series showing the anomaly is illustrated in  
Figure 11.   
 

 
Figure 11: Time series of the stator temperature measured on 
WTG E 

The service action had an influence on the stator 
temperature. In the consequence the stator temperature 
dropped by 10 °C. Possible causes can be cleaning of 
the water cooling system during service or insufficient 
volume flux due to low system pressure in the 
expansion tank. If the pressure is increased in the 
expansion tank during service the cooling system has a 
larger volume flux and in the consequence is more 
efficient.  

The time series shows how the service action 
improved the situation by lowering the temperature 
level. If it is possible to detect this anomaly with a 
normal behavior model the opposite - degradation of 
the cooling system efficiency over time - is expected to 
also be detectable. However, this can finally not be 
proved by the data supplied.  

The period for used for training is shown in  
Figure 12.  

 

 
Figure 12: Period used for training WTG E 

 
3. Regression model development 

 
Many wind turbine signals can be found to be 

closely correlated to other simultaneously measured 
signals. By using the linear cross-correlation the 
related signals and their lag to the desired signal can be 
found. The actual lag removal is an important step to 
reduce the scatter and improve the prediction.  

The identified correlated signals can then be used to 
build the regression model.   

  

 
 

Figure 13: Regression model schematic [6] 

Especially the stator temperature was found to be 
highly correlated to the generator bearing temperature 
as it is visible in Figure 14. 

 

 
Figure 14: Correlation between the stator and the bearing 
temperature [6] 

The regression of both signals for the specific 
generator type is well presented by a first order 
polynomial. In the general case, it can however be also 
a higher order polynomial function. Due to the high 
correlation between the stator and the bearing 
temperature the linear model is already accurate. The 
three remaining signals, i.e. the power output, nacelle 
temperature and the shaft speed are used to reduce the 
number of prediction outliers.  

The prediction error for the full regression model is 
illustrated in Figure 15: 
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Figure 15: Estimation error for the full regression model 

Apart from the few outliers, the regression model is 
capable of predicting the bearing temperature in the 
range of ±5 °C accurate. The threshold value is five 
times the standard deviation. The remaining outliers 
are caused by extreme transient situations such as 
turbine run up or shut down. The reason is an 
insufficient description of the cooling or heat transfer 
process and the difference in heat capacity. The stator 
temperature in these situations is no longer a good 
representation of the bearing temperature. In case of 
cooling, the model should be decoupled and natural 
cooling should be simulated for instance by Newton’s 
exponential cooling law. This law states that the 
temperature of a cooling body falls exponentially 
towards the temperature of its sourroundings with a 
rate which is proportional to the area of contact 
between the body and the environment [7]. 

The high ratio of stator heat capacity over power 
loss smoothes out any high frequency fluctuations. In 
this sense normal operational temperature profiles are 
modeled well.  

The problem can be either overcome by 
implementation of separate models for transient 
situations or by simple filtering. Filtering of non-
operational periods is possible, since determination of 
the component condition based on online SCADA data 
is most reasonable if the turbine is operating; e.g. 
determining a bearing temperature if the shaft is not 
rotating is not expected to give information about the 
bearing condition. The same is with the stator 
temperature or the power output.  

When anomalies, such as offsets are detected 
during operation the non-operational data can, 
however, be used to identify purely sensor related 
issues.           

The difference in heat capacity and mass of the 
matter surrounding the temperature sensors also causes 
another phenomenon to occur. Since the stator 
temperature sensor is placed right at the stator coils 
(heat source) the signals shows larger fluctuations as 
the bearing temperature signal. Hence the predicted 
bearing temperature signal also shows higher order 
fluctuations. This effect is emphasized in Figure 16. 

   

 
Figure 16: Estimated and measured bearing temperature [6] 

By use of a smoothing filter the higher order 
variations can be filtered and the prediction error 
reduced. 

When transient situations are filtered and the 
smoothing filter is applied the prediction error in the 
considered time period becomes: 

 

 
Figure 17: Bearing temperature estimation error  

The prediction error is finally down to ±4 °C. The 
final model is now kept fixed and can be applied to the 
full time series in order to see how the bearing damage 
manifests in the prediction error. 

 
 

4. Neural network model setup and training 
 
The regression based model is rather simple to 

handle and it is a trivial task to estimate how the model 
will behave in case of a signal change, since the 
underlying function is known. The characteristic of the 
model deviation can be interpreted in a way that the 
signal deviating from the normal behavior can be 
identified.  

The multilayer perceptron (MLP), on the other 
hand, is a complex model with a nested form of 
nonlinearity designed to preserve the information 
content of the training data. However, it uses a black 
box approach to globally fit a single function, into the 
data, thereby losing insight into the problem [8]. 

There a number of different factors important to 
successfully apply NNs. A large variety of literature is 
available in the field of NNs. The ones referred to in 
the context of this research are: [9],[10],[11] and[12].  
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Generally one of the major concerns is to identify 
the suitable network set up for the given application. 
Important issues are:  

 
• Identification of input signals  
• Network type and transfer/activation function 
• Input data pre-processing and validity check 
• Number of training patterns 
• Network structure (number of layers, number 

of neurons, number of neurons in each layer, 
network connectivity)  

• Training method 
• Weight initialization  

 
The issues will be addressed separately in brief and the 
relevant aspects for this research are mentioned. 

 
4.1.1. Input signals 

 
The input signals used are generally the same as for 

the regression model. There are basically two ways of 
predicting the generator bearing temperature signal. 
The first is to use the regression between the bearing 
temperature and other correlated signals in a way to 
independently reconstruct the signal. The model input 
signals are (see Figure 1): 

 
• El. Power output (t-lag) {pos.7} 
• Nacelle temperature (t-lag) {pos.1} 
• Generator stator temperature (t-lag) {pos.6} 
• Generator speed (t-lag) {pos.4} 

 
The second is to identify changes in the auto-

regression of the bearing temperature. The input 
signals are the same, but are extended with the 
previous bearing temperature.  
 

• Generator bearing temperature (t-1) {pos.5} 
• El. Power output (t-lag) {pos.7} 
• Nacelle temperature (t-lag) {pos.1} 
• Generator stator temperature (t-lag) {pos.6} 
• Generator speed (t-lag) {pos.4} 

 
The autoregressive approach is used by [3] and [1] 

to identify gearbox failures.  
Both kinds of models are compared to the 

regression model.  
 

4.1.2. Network type and transfer/ activation 
function 

 
In this research multi-layer perceptrons in 

combination with Sigmoid transfer function are 
applied. Since the weights are found iteratively the 
curve shape of the transfer function has a strong 
influence on the number of iterations and the stability 
of the process. Functions with high gradients may lead 
to oscillations if the weight modification is not 
sufficiently small enough. 

 
 
4.1.3. Input data pre-processing and validity check 

 
Input data pre-processing is an essential part to 

successfully apply NNs. Although NNs are able to 
handle fuzzy or incomplete data they are sensitive to 
invalid data. Therefore some pre-processing must be 
carried out. This is particular important when training 
a network. The network might not give an optimal 
generalization otherwise. The principal pre-processes 
applied are:    
 

(a)  Validity check  
(b)  Data scaling  
(c) Missing data processing 
(d) Lag removal  
 

(a) Validity check - For a smoother network 
generalization it may sometimes be necessary to 
remove some of the data outliers [10]. A simple 
method of a validity check is a data range check.  For 
example, if oven temperature data has been collected 
in degrees centigrade values in the range 50 to 400 
would be expected. A value of -10 or 900, is clearly 
wrong[12]. However, defining a validity range is not a 
trivial task. Bearing temperatures for instance can 
reach a very high level exceeding 200 °C in the event 
of serious failures. The normal operational range is up 
to 90 °C usually. The range would therefore have to be 
chosen extremely carefully to not classify real 
measured values as invalid.  

Ideally attempts should be made to check that the 
following conditions are met when the data is 
assembled into the input vectors: 

 
• all elements of the vectors are within the 

expected ranges; 
• all elements of the vectors are mutually 

consistent; 
• for a supervised learning application, the target 

vectors are consistent with the input vectors 
[12].     

 
Consistency checks are difficult to put into effect as 

the overall target is to identify abnormal signal 
behavior. Consistency checks therefore have a very 
limited use in this research. It is useful in identifying 
faulty sensors. It is therefore important to monitor the 
amount of data classified as invalid as indication of 
possible problems with the data import, processing or 
the sensor itself. The data used for model development 
in this paper are checked for their ranges and for their 
consistency by filtering extreme outliers and data with 
unexpected high gradients. Furthermore constant rows 
are removed.       

 
(b) Data scaling - In this paper data scaling is 
performed by applying the following equation:    

 



minmax

min

VV
VVS
−
−

=  Equation 1 

  

S… Normalized variable   

V… Variable   
 

(c) Missing data processing - Unknown or missing 
values are particularly harmful during training. If they 
are not classified as NaNs but 999 for instance the 
network might try to fit to these values. This will 
increase the generalization error of the network. Thus 
it is first of all important to clarify how missing values 
are labeled.  
Since there is a large amount of data available, no 
approximation was performed. Instead missing input 
and target values are treated by neglecting the data set.  

 
(e) Lag removal - Wind turbine signals usually do not 
respond immediately to changes of operational 
conditions. The delay is individual to each signal and 
must be removed when setting up a static normal 
behavior model. The lag can be identified by use of the 
cross-correlation of the signals. It was found that 
neglecting the signal lags led to an increase in 
prediction error (broader scatter). The regression based 
model shows that there is a strong linear relation 
between the input and the output variables. Therefore 
the cross-correlation function is used to identify the lag 
in the linear dependency. The input variables are then 
shifted to build a consistent input-output dataset.     

 
4.1.4. Number of training patterns 

 
There are no acceptable generalized rules to 

determine the size of the training data for suitable 
training. The pattern chosen for training must cover 
upper and lower boundaries and a sufficient number of 
samples representing particular features over the entire 
training domain [10]. The number of required training 
patterns thus depends on the complexity of the 
problem. In [1], three months of operational data are 
used for the gearbox bearing temperature. For the 
examples presented in this paper this amount of data is 
sufficient, too. Generally the period of data required 
should be as short as possible, since the components 
are subjected to wear and degrade from the first hour 
of operation.  

 
4.1.5. Network structure 

 
The network structure, i.e. the number of layers, the 

connectivity and the number of neurons can be 
generally chosen arbitrarily. Determining the 
architecture is an iterative process [1]. The process aim 
is to find a network structure that gives the best 
generalization.  

For the purpose of this research a two layer network 
is used for the given application.  

 
(b) Number of Neurons - In [12] it is recommended 
that the optimum number of neurons should be found 
by performing at least 10 runs where only the number 
of neurons is changed. The network architecture which 
gives the best generalization should be chosen. A 
similar method is also recommended by [10] for MLP 
networks. This method reduces the risk of finding 
solutions that do not generalize well. This method is 
therefore used in this research.  

 
(c) Network connectivity – In [1] and [3] a feed 
forward network type is chosen. Due to its simplicity 
this network type is good to start with, unless the 
specific application requires a more sophisticated type. 
For the given application this type proved to be 
sufficient.   

The inputs are connected to each neuron of the 
hidden layer, which in turn is connected to each neuron 
of the output layer.  

The final network architecture for the 
autoregressive generator bearing temperature NN 
model is:  

 
 
 
 
 
 
 
  
 
 
 

  
Figure 18: Network architecture - feed forward network [6]   

The network architecture for the FSRC generator 
bearing temperature model is similar, but has only five 
neurons in the hidden layer.  

 
4.1.6. Training method 

 
Generally there are two different modes of training 

NNs: batch mode and pattern mode (sequential 
learning) [12]. In [10] it is recommended using batch 
mode to begin with. If the behavior of the network to 
unseen data is not satisfactory pattern mode should be 
tried.  

There are also two other training methods available, 
which are a modification of the simple batch mode and 
may reduce the risk of local minima. They are batch 
gradient decent and gradient decent with momentum. 
In the latter mode not only the local gradient of the 
error function is calculated, but also the general trend. 
Thus local minima may be survived and generalization 
improved. For this reason this training method is used 
for the research carried out in this paper.  

bearing temp. 

bearing temp. (t-1) 

stator temp. (t-lag) 

power out. (t-lag) 
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shaft speed (t-lag) 

layer 1 layer 2 
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4.1.7. Weight initialization 

 
When training MLPs with the error back-

propagation algorithm the first step for any training run 
is to initialize the weights in both layers by setting 
each one to a small random number ,typically in the 
range -0.01 to +0.01 [12]. 

The initialization with small weights allows the 
identification of unused input signals. For those signals 
the weights will stay small close to the initial value. 
The inputs can be removed to increase the 
computational efficiency. 

 
 

4.2. FSRC neural network model  
 
The set up network is capable of predicting the 

generator bearing temperature, when given the stator 
and nacelle temperature as well as the shaft speed and 
the power output. It was found that in principle the 
stator temperature and the nacelle temperature are 
sufficient quantities to set up the model. However, 
using the power output and the shaft speed additionally 
reduces some of the outliers.  

The network training is performed with the same 
input data as used for the regression model to produce 
comparable results. In Figure 19 the prediction error 
for the FSRC NN and the simple regression model are 
shown.    

 

 

 
Figure 19: Prediction error for the training data set; FSRC NN 
model (top); Regression model (bottom) 

Although the standard deviation is somewhat 
reduced, the two models give comparable results. Both 
models show large prediction errors for transient 
situations. Here the model complexity has a strong 
influence. When more input signals are given to the 
network and more hidden units (neurons) are used, 
transient situation can be found to be better 

represented. Possible further inputs are for instance the 
statistics of the 10 min periods, i.e. the standard 
deviations. Also the generator slip ring temperature or 
the cooling fan activity may be used to increase the 
model accuracy. For the current research the fan 
activity was not supplied and could therefore not be 
accounted for. The standard deviations and the 
generator slip ring temperature were applied, but 
finally left out in order to simplify the models.  

The more input signals are used the more 
computational time is needed. The overall target for 
the current research is not to develop models that are 
most accurate, but models that are first of all robust in 
order reduce the number of false alarms and ease the 
anomaly interpretation process.     

Fault identification does, however, become more 
difficult when using more input signals. With NNs, the 
identification of the normal behaving signal must be 
determined by fuzzy logic, rather than a direct 
interpretation of the deviation as it is possible for the 
simple regression model. In SIMAP [3] a fuzzy expert 
system is implemented to identify the abnormalities. 
The more input signals are used, the more complex the 
interpreting logic must be. Thus the aim of the model 
implementation procedure is to find model inputs that 
give the best representation of the desired signal, but 
keep the model complexity low.  

To overcome the problem of single predictions 
triggering an alarm a further threshold value is 
introduced by Caselitz and Giebhardt [13]. If more 
than five subsequent values exceed the limit, an alarm 
is triggered [13]. For the developed models in this 
paper, it is sufficient using a threshold of three 
subsequent exceedings to prevent false alarms. 

    
 
4.3. Autoregressive neural network model 

 
Training of the autoregressive model is done in the 

same way as the FSRC model. Again several training 
runs are performed to find an optimal network 
architecture. The figure below shows the prediction 
error for the training data set and a comparison to the 
simple regression model. 
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Figure 20: Prediction error for the training data set; 
Autoregressive NN model (top); Regression model (bottom) 

The autoregressive model gives very accurate 
results. The reason is the high autocorrelation of the 
bearing temperature signal caused by the large amount 
of mass surrounding the bearing.  

The main heat source in the generator is the stator 
loss. The heat emitted is transmitted to the bearing 
through radiation, conduction and convection. 
Bearings on the other hand are very efficient and the 
amount of heat released by friction is order of 
magnitudes smaller. Thus the bearing temperature can 
be well expressed by its previous temperature plus a 
trend coming from the stator temperature sensor, 
illustrated in Figure 1 pos 6.  

The prediction error is in the range of ±1 °C most 
of the time. Transient situations are modeled more 
accurately, but the extreme transients are still not well 
represented. The optimization procedure used does 
optimize the mean squared error on the test data set. 
This data set should contain all situations to be 
modeled. Dominating situations like normal operation 
lead to a best fit in this operation mode. Transient 
situation inaccuracies could thus be reduced when 
using a data set that contains more of these operation 
modes. This will, however, influence the overall 
network generalization. 

 
 

5. Fault identification and comparison 
  

Once the regression model is set up and the NNs 
are trained the models can be used to predict the 
bearing temperature and identify the second fault 
present in the time series shown in Figure 2.   

 

5.1. Regression model 
 
The developed relationship between the signals in 

terms of their polynomial functions and coefficients is 
kept fixed as found during the model development 
phase. Figure 21 shows the evolution of the prediction 
error from the time series exceeding the one used for 
model development until the second bearing damage.   

 

 
Figure 21: Prediction error of the regression model 

The error indicates a growing shift in the error 
mean beginning 83 days prior to the total bearing 
damage. However, identifying this trend with high 
accuracy is not trivial. Here a threshold based 
approach proved practical. The choice of the threshold 
value is a tradeoff between the model sensitivity 
against anomalies and the number of false alarms.      

Since the subsequent number of predictions 
exceeding the alarm limit is set to three, an alarm was 
first triggered 33 h prior the damage.  

Figure 22 shows the one day average values of the 
prediction error for the period under consideration. 

 

 
Figure 22: Averaged prediction error of the regression model 

The averaged signal eases the trend identification. 
On the other hand it is visible, that the trend is first 
increasing before it finally decreases.  

The signal amplitude constantly increases up to the 
point of failure. Also the development of a suitable 
analysis tool for growing amplitudes is aimed to be 
developed at a later stage of the research project.  

The amplitude increase together with the shift in 
mean. This leads to a first alarm limit violation 25 days 
prior to the damage. By this time the confidence level 
of a damage being present is high, since looking at the 

0 2000 4000 6000 8000 10000
-20

-10

0

10

20

Time [10min]

Te
m

pe
ra

tu
re

 [°
C

]

0 2000 4000 6000 8000 10000
-20

-10

0

10

20
  

Time [10min]

Te
m

pe
ra

tu
re

 [°
C

]

1.5 2 2.5 3 3.5

x 10
4

-10

-5

0

5

10
Error Over 10 Minutes

Value [10 min]

Er
ro

r [
°C

]

    

 

 
 

 

   

  

 

120 140 160 180 200 220 240 260
-4

-2

0

2

4
Error Averaged Over One Day

Value [24h]

Av
er

ag
ed

 E
rro

r [
°C

]

damage 



historical values from this point clearly shows the 
trend in the signal.     

Seasonality is a major concern of the developed 
model and the method in general as it complicates the 
anomaly identification. The regression between the 
bearing, nacelle and ambient temperature is weak. 
Also the amount of data used for building the 
polynomial expressions covers only a fraction of the 
annual temperature circle. In order to implement the 
regression with higher accuracy a full cycle is 
required, or more advanced tools need to be applied. 
Figure 23 shows the one week average prediction error 
including the model development period.  
 

 
Figure 23: Averaged prediction error including the model 
development period 

    It is evident that up to six weeks prior to the 
damage, a clear trend cannot be identified due to the 
present seasonal effect.  

 
5.2. FSRC neural network model 

 
Once training is successfully completed the model 

predicts the bearing temperature when given 
previously unseen input signals.  

The prediction strongly depends on the weight 
initialization. The random initialization leads to quite 
different model outputs during the optimization 
procedure. It was found, that not all of them are 
capable of predicting the damage. For the final model 
no alarm is triggered on the basis of 10 min averages. 

Figure 24 shows the prediction error development 
prior to the damage.    

 

 
Figure 24: Prediction error of the full signal reconstruction 
neural network model 

Visually an anomaly can be detected, beginning 
4000 values (≈27 days) prior to the damage.  

Figure 25 shows the one day averages of the 
prediction error.  

 

 
Figure 25: Averaged prediction error of the full signal 
reconstruction neural network model 

In comparison to the regression model, the 
averaged error has reduced amplitude. The model is 
more accurate, leading to reduced alarm limits. An 
alarm is triggered 30 days before the bearing breaks. 
Also for this model an increase in amplitude is visible 
when the final break comes closer. The general 
nonlinear neural network is capable of better 
representing the ambient temperature effect. This 
causes the underlying seasonality to be less 
pronounced. Hence seasonality is not a major concern 
of this type of approach. Figure 26 shows the long 
term prediction error development averaged over one 
week. 

 
 

  
Figure 26: Averaged prediction error of the FSRC neural 
network model including the training period 

The seasonal effect contained in the signal is  
±0.3 °C in comparison to ±0.5 °C in the regression 
model. The one week averages prove useful to detect 
long term signal trends. The current fault situation, 
however, does not contain a long term trend. An 
anomaly in form of a trend can be identified from six 
weeks prior the break. The evidence level of an 
anomaly is low up to the point an alarm is triggered by 
alarm limit violation (ALV). 
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5.3. Autoregressive neural network model 
 
From network training it is known that the 

autoregressive model has a very high accuracy due to 
the large heat capacity. This model is thus capable of 
detecting very small changes in the autoregression of 
the temperature signal. The signal autoregression 
changes, when an internal heat sink or source is added. 
This could be for instance a bearing damage, where the 
bearing internal heat increases. 

  

 
Figure 27: Prediction error of the autoregressive neural 
network model 

On 10 min bases, the prediction accuracy is in the 
range of ±2 °C for most of the time series. 14 days 
prior to the damage the prediction error exceeds 5 °C. 
The alarm limit is violated and an alarm is triggered. 
After this event, the prediction error falls back to its 
normal operational range of ±2 °C.  

Figure 28 shows the averaged prediction error over 
one day.  

 
Figure 28: Averaged prediction error of the autoregressive 
neural network model 

On an averaged basis there are more peaks 
exceeding the alarm limit. The earliest alarm is 
generated 50 days in advance. This is followed by 
further alarms 25 and 20 days prior the damage. By 
this time the evidence level of damage being present is 
high, when considering the fact that the prediction 
error amplitude is increasing. Whether the model 
deviates positively or negatively depends on the 
turbine operational mode and the final weights and 
biases.   

The remaining seasonality in the prediction is 
shown in Figure 29.     

  

 
Figure 29: Averaged prediction error of the autoregressive 
neural network model including the training period 

The seasonality is close to zero. In general the 
ambient temperature comes into effect, as the cooling 
system is more efficient for low ambient temperatures. 
This effect is less pronounced in this model, since the 
bearing temperature is determined by the previous 
value plus a trend given by the other input signals. The 
information about the cooling system efficiency and 
the ambient conditions are contained in the level of the 
previous bearing temperatures recorded.  

When a bearing damage is present, the bearing 
internal heat source more strongly determines the 
bearing temperature. This heat source depends on the 
load and the rotational speed. For speed variable 
machines, the bearing temperature is thus expected to 
show higher fluctuations. The autoregression changes 
and the prediction error increases. This is the main 
difference to the other two models set up, which aim to 
map the relation between the ambient conditions and 
the target signal. 

        
 

5.4. Comparison 
 
All three models are able to identify the second 

bearing damage before the bearing finally fails. There 
are, however, differences in the remaining operation 
time before total failure. The table below summarizes 
the results for the different models based on first ALV 
and the point where the anomaly can be identified with 
higher confidence. This is when the alarm limit is 
violated the second time or a clear trend can be 
identified. 

 
 First 

ALV 
Second ALV/ 

Trend 
Regression 25 days 18 days 
Full signal reconst. NN 30 days 25 days 
Autoregressive NN 50 days 25 days 

 
Table 1: Comparison of the fault visibility between the three 
different normal behavior model type approaches  

The results of the comparison are in principal 
expected to be dependent on the type of damage and 
operational modes prior to the damage.  
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For the considered bearing damage, the 
autoregressive NN model gives the earliest anomaly 
indication. The fault visibility increases for all models, 
when averaging the 10 min values over one day.   

The regression model has the highest alarm limits 
and a large seasonality in the prediction. The fault can, 
however, still be identified. When setting up the NNs 
with the optimization procedure developed, seasonality 
effects are reduced and the alarm limits are lower, 
increasing the fault sensitivity.  

During regression model development, it was found 
that each turbine must be treated as individual. The 
cause can be found to be different component suppliers 
used by turbine manufacturers. The turbines are built 
with components, e.g. generators from different 
manufacturers, even if the turbines are to be erected in 
the same wind farm. It was found to be advantageous 
to first implement the regression with the highest 
correlation to the target signal. Otherwise an optimal 
model cannot be found. This leads to an increased 
effort required when implementing an automatic model 
development procedure to handle a larger fleet of 
turbines. Here the NN training process has the inbuilt 
capability of giving more weight to the signals that 
represent the patterns in the output signal best. Hence 
knowledge about the individual contribution of each 
signal is not required and the training procedure 
attempts iterating to solutions that give the best 
performance. 

Another problem with the regression model is that 
the input signals are correlated between each other. 
Thus implementing the regression of one input signal 
influences the correlation of the prediction error to the 
other input signals. The main challenge is to find a 
model complexity that has implemented the main 
signal correlations and has a low correlation of the 
prediction error to any of the input signals.  

A full nonlinear NN has this optimization process 
built in the training procedure. Here the main 
challenge is to define the right network complexity and 
architecture prior to the training process.  

Comparing the two NN models set up, it becomes 
evident, that the alarm limit of the autoregressive 
model is very close to the normal operational 
fluctuations of the prediction error. This makes it 
difficult to identify normal from abnormal behavior. 
The FSRC model on the other hand has a larger 
distance to the alarm limits when no signs of damage 
are present. Thus it has a reduced risk of producing 
false alarms.  

 
 

6. Further analysis results 
 
The results of the two NN based approaches are 

very close for the generator bearing damage under 
investigation in this paper. In order to further identify 
the differences between these two approaches two 
gearbox bearing damages and two stator temperature 
anomalies are investigated by use of the FSRC and the 

autoregressive NN model only. The corresponding 
time series are shown in Figure 4 to 12.   

 
 

6.1. Gearbox bearing damage I  
 
6.1.1. Model development  

 
The relevant signals to model the gearbox bearing 

temperature are found by using the cross-correlation 
function and by considering the underlying physical 
process. For the FSRC model the model input signals 
are (compare Figure 1):  

 
• Gearbox oil sump temperature (t-lag) {pos.2} 
• High speed shaft revolution speed (t-lag) 

{pos.4} 
• Power output (t-lag) {pos.7} 
• Nacelle temperature (t-lag) {pos.1} 
• Ambient temperature (t-lag) {pos.8} 

  
For the autoregressive model the most relevant 

input signal representing the operational mode of the 
gearbox is the power output. The model inputs are: 

  
• Gearbox bearing temperature (t-2) {pos.3} 
• Gearbox bearing temperature (t-1) {pos.3} 
• Power output (t-lag) {pos.7} 
• Nacelle temperature (t-lag) {pos.1} 
• Ambient temperature (t-lag) {pos.8} 

 
The architecture of the feed forward MLP network 

is similar to the one used for modeling the generator 
bearing temperature, i.e. a two layer network. In 
contrast, Zaher (et al.) [4] use a three layer network 
when analyzing a gearbox damage. Using more than 
two layers was, however, not found to be advantageous 
for the signal constellation used in this paper.   

The number of neurons used in the hidden layer is 
four for the autoregressive NN and five for the FSRC 
NN respectively. The same data pre-processing is 
performed as in the previous example.   

 
6.1.2. FSRC neural network model 

 
The model is trained by using the first three months 

of 10 min. average values of the time series. In  
Figure 30 the model prediction error is shown for the 
entire time series including the training period.  
 



 
Figure 30: Prediction error for the FSRC NN model 

The alarm limits are with 7.2 °C in the same order of 
magnitude as for the generator bearing temperature. 
3000 values after the training period, the prediction 
error starts increasing continuously. The trend 
becomes more obvious when the prediction error is 
averaged over one day, illustrated in Figure 31. 
 

 
Figure 31: Averaged prediction error for the FSRC NN model 

It is visible that a first ALV is present 190 days 
prior to the catastrophic bearing damage. The 
confidence level is, however, low, since the violation 
may be considered as an outlier. After this event the 
prediction error falls back to its normal operational 
range. A second ALV takes place about 184 days 
before the catastrophic bearing damage. Here the 
confidence level increases. The prediction error stays 
on an abnormal level for several days. The mean error 
is 2-3 °C and stays almost constant up to 100 days 
prior the damage, where the model error continuously 
increases. The final model deviation is 7 °C.      
      
6.1.3. Autoregressive neural network model 

 
In contrast to the generator bearing model, the 

autoregressive NN model for the gearbox bearing 
required the past two values rather than just one as 
model input to set up an accurate model. Sanz-Bobi (et 
al.) [3] and Zaher (et al.) [4] also used two previous 
values as model inputs to model gearbox related 
signals. Although it was not necessary for prediction of 
the generator bearing temperature, it is expected to 
give more accurate results generally. This is in 
particular true, when the signal to be modeled has a 
high autocorrelation. For thermal signals related to the 

gearbox this is because of the large system mass and 
heat capacity.  

Figure 32 shows the prediction error for the 
autoregressive NN model including the training period.  

 

 
Figure 32: Prediction error for the autoregressive NN model 

The alarm limit is ±7.1 °C. An ALV is first visible 
12000 values after the training process has been 
completed, i.e. 83 days prior to the damage. By this 
time a shift in mean is already visible. Again the one 
day average can be used to better identify the 
underlying trend and to increase the sensitivity by 
means of reduced alarm limits.  
 

 
Figure 33: Averaged prediction error for the autoregressive 
NN model 

Due to the alarm limits being reduced to 1.3 °C, an 
ALV is raised 185 days prior the damage. Considering 
the low variations prior to this event the probability of 
an anomaly being present is high. The prediction error 
stays on a high level for several days, before it shortly 
falls back. With the damage progressing, the variations 
do drastically increase. This is a clear indicator that the 
model deviation is a function of the operational mode. 
Further analysis will be performed by checking the 
cross-correlation between the prediction error and the 
rotational speed or the power as an alternative 
indicator of anomaly at a later stage of the research. 
For the actual damage it is, however, not necessary 
since pure threshold monitoring in terms of ALV 
highlights the anomaly.        
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6.1.4. Comparison 
 
Both models are capable of identifying the anomaly 

in advance. The overall differences are small. The 
autoregressive NN model does show smaller 
fluctuations during training and thus has a higher 
accuracy. While the accuracy on 10 min average base 
is on the same level as for the FSRC NN model, the 
autoregressive model is more accurate on one day 
average base. In fact this leads to evidence of anomaly 
when the first ALV is observed.  

Another difference is the final model error when 
the bearing breaks. The autoregressive model has an 
average deviation of 5 °C and the FSRC model of  
7 °C. Considering the different alarm limits both 
models do perform equally well, as the final model 
error can be found as 350% of the alarm limit on one 
day average base. The table below summarizes the 
results of the comparison concerning anomaly 
detection.  
 

 First ALV Second 
ALV/ Trend 

Full signal reconst. NN 190 days 184 days 
Autoregressive NN 185 days 186 days 

 
Table 2: Comparison of the fault visibility between the FSRC 
and the autoregressive NN model for the gearbox bearing 
temperature anomaly I   

The first ALV might give a first indication of 
anomaly, but its usefulness is questionable due to the 
possibility of being considered an outlier. Ideally the 
model deviation should lead to a high confidence level 
right from the beginning, as a false alarm might be 
present otherwise. In this sense the autoregressive NN 
model performs somewhat better, although the second 
ALV takes place at almost the same time instant. For 
the generator bearing damage this behavior was found 
to be the other way around.  

 
 
6.2. Gearbox bearing damage II 
 
6.2.1.  Model development  

 
The models are set up analog to section 6.1.1.   

                  
6.2.2. FSRC neural network model 
 
The corresponding time series showing the 
temperature evolution is shown in Figure 7. Below the 
prediction error is illustrated on 10 min average and on 
one day average base.   

 

 
Figure 34: Prediction error for the FSRC NN model 

 
Figure 35: Averaged prediction error for the FSRC NN model 

Like for the earlier shown gearbox bearing damage 
also this damage manifests in the prediction error by a 
trend. The anomaly starts with a steep increase in 
prediction error of 2.5 °C on average. Consequentially 
an ALV occurs 187 days prior the bearing 
replacement. The prediction error stays on a high level. 
The final model deviation is 6 °C.  

The fault pattern is very similar to the one shown in 
section 6.1.2. Although the similar start of anomaly 
(steep increase in prediction error) may lead to the 
conclusion of an exceptional event such as high loads 
experienced by the two turbines, this cannot be proved 
as the 10 min average wind speeds show no unusual 
event in this period.  

 
6.2.3. Autoregressive neural network model 
 

The prediction error for the autoregressive NN 
model is shown in Figure 36 and Figure 37 below.  

  

 
Figure 36: Prediction error for the autoregressive NN model  
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Figure 37: Averaged prediction error for the autoregressive 
NN model 

Also for this type of model the anomaly starts with 
a steep increase in prediction error 187 days prior the 
bearing replacement. The averaged prediction error 
stays above the alarm limit until the bearing is 
replaced.  A second ALV is raised one day later. The 
final model deviation is 2 °C. 

 
6.2.4. Comparison  

 
Due to the type of damage being potentially the 

same as for the presented gearbox bearing damage I, 
the manifestation of the anomaly in the prediction error 
is similar. Comparing the two types of approaches the 
autoregressive NN approach predicts the bearing 
temperature more accurately. With respect to anomaly 
detection of this type of fault this property does not 
lead to earlier or more pronounced model deviations in 
case of fault occurrence.  

The table below summarizes the results gained 
concerning anomaly detection for the two approaches.     
 

 First ALV Second 
ALV/ Trend 

Full signal reconst. NN 187 days 186 days 
Autoregressive NN 187 days 186 days 

 
Table 3: Comparison of the fault visibility between the FSRC 
and the autoregressive NN model for the gearbox bearing 
temperature anomaly II  

Both approaches highlight the anomaly at the same 
time. However, there are differences in the way the 
fault manifests in the prediction error. While the FSRC 
approach leads to a continuously increasing model 
deviation, the autoregressive approach increases only 
100 days and then oscillates around a mean model 
deviation of 2 °C. If the condition of the bearing is to 
be evaluated on defined thresholds of the model 
deviation, the autoregressive approach leads to a 
stagnating condition level. Furthermore the final model 
deviation is 200 % of the initial alarm limit, for the 
autoregressive approach, while it is 300 % of the alarm 
limit for the FSRC model.  

 
 

6.3. Generator stator temperature anomaly I  
 
6.3.1.  Model development  
 

The input signals for the generator stator 
temperature models are found by using the  
cross-correlation function and considering the 
underlying physical process. For the FSRC model the 
model input signals are: (compare Figure 1)  

 
• Power output (t-lag) {pos.7} 
• High speed shaft revolution speed (t-lag) 

{pos.4} 
• Nacelle temperature (t-lag) {pos.1} 
• Ambient temperature (t-lag) {pos.8} 

  
The autoregressive model is set up by using two 

previous values of the stator temperature and the 
power output as indicator for the operational mode of 
the generator. The model inputs are: 

  
• Stator temperature (t-2) {pos.6} 
• Stator temperature (t-1) {pos.6} 
• Power output (t-lag) {pos.7} 
• Nacelle temperature (t-lag) {pos.1} 
• Ambient temperature (t-lag) {pos.8} 

  
6.3.2. FSRC neural network model 

 
The corresponding time series showing the 

generator stator temperature is shown in Figure 9. 
Besides the turbine downtime caused by the generator 
replacement no anomaly is obvious in this time series. 
The prediction error of the normal behavior model 
developed is shown in Figure 38 and Figure 39.    

 

 
Figure 38: Prediction error for the FSRC NN model 
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Figure 39: Averaged prediction error for the FSRC NN model 

The prediction error shows a starting increase in 
amplitude 30 days after training is completed. For the 
current fault this is potentially caused by a degradation 
of the generator stator, i.e. the stator has increased 
losses. 

 The first ALV occurs 81 days before the generator 
cannot be connected to the grid anymore. The 
prediction error stays on a high level for four days, 
leading to a second ALV be raised one day later. After 
further four days the prediction error falls back to the 
normal operational range.  

 Although by this time the ALV might be 
considered as an outlier, five days later the prediction 
error again increases and the error exceeds 10 °C. This 
is 70 days before the generator needs to be replaced. 
The maximum model deviation is 12.1 °C.       

 
6.3.3. Autoregressive neural network model 

 
Below the corresponding prediction error for the 

autoregressive NN model is shown.   
 

 
Figure 40: Prediction error for the autoregressive NN model 

 
Figure 41: Averaged prediction error for the autoregressive 
NN model 

Also the autoregressive NN model shows an 
increase in amplitude starting 30 days after training is 
completed. On one day average base the alarm limits 
are down to the measurement accuracy of ±1 °C. The 
first ALV is present 59 days before the generator 
needed to be replaced. After this violation the 
prediction error falls back below 1 °C and the alarm 
limit is violated a second time 48 days prior the 
generator damage. The maximum model deviation is 
2.6 °C.  

 
6.3.4. Comparison 

 
Both approaches show clear signs of anomalies in 

the prediction error. Differences exist, however, in the 
operational time left after the anomaly is detected and 
the amplitude of model deviation.  

The remaining operational time after the anomaly is 
highlighted is summarized in Table 4.   

 
 First ALV Second 

ALV/ Trend 
Full signal reconst. NN 81 days 70 days 
Autoregressive NN 59 days 48 days 

 
Table 4: Comparison of the fault visibility between the FSRC 
and the autoregressive NN model for the generator stator 
temperature anomaly I  

The FSRC model highlights the anomaly 22 days 
earlier than the autoregressive model.  

The fault pattern in the prediction error for both 
model types is similar so that there is little difference 
in automatically detecting the anomaly. Anomaly 
detection for both model types can be based on 
thresholds. In the current research project the 
amplitude of model deviation is used to classify the 
component condition. For the autoregressive NN 
model the maximum model deviation is 260 % of the 
initial alarm limit, while it is 200 % for the FSRC NN 
model.  

 
 

6.4. Generator stator temperature anomaly II 
 

6.4.1.  Model development  
 
The models are set up analog to section 6.3.1. 
 

6.4.2. FSRC neural network model 
 
The time series illustrating the anomaly in the raw 

temperature data is shown in Figure 11. The prediction 
of the FSRC NN model is shown in the two figures 
below.  
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Figure 42: Prediction error for the FSRC NN model 

 
Figure 43: Averaged prediction error for the FSRC NN model 

The prediction error shows no sign of anomaly 
before the service action begins. During service several 
invalid data points are generated, emphasizing the need 
for excluding the data generated during service from 
the analysis. Here many turbine manufacturers supply 
a digital indicator or the time in the 10 min average 
period where the turbine was under service. For the 
current data set such an indicator was, however, 
unavailable.  

The anomaly in the data becomes obvious right 
after service is finished. From then on, the alarm limit 
is frequently violated due to a shift in mean of 10 °C. 
The amplified amplitude after service indicates a 
change in the dependency between power output and 
the stator temperature. If this type of fault (pressure 
decrease in the water cooling system) happens slowly 
over time, the prediction error will incorporate a trend 
plus an amplitude amplification. The fault pattern is 
likely to look similar to the earlier discussed stator 
temperature anomaly I.  

The uncertainty in diagnosing the exact fault cause 
is not considered a problem at the current state of 
research, as in any case the fault requires service 
personal to access the turbine and further investigate 
the root cause, when the next scheduled visit takes 
place. As more faults and fault patterns are going to be 
investigated during the research project it is expected 
to be possible to distinguish different root causes by 
considering the prediction error fault patterns.  

The maximum peak value of the prediction error is 
19.8 °C.  

 

6.4.3. Autoregressive neural network model 
 
Figure 44 and Figure 45 show the prediction error 

of the autoregressive NN model.  
 

 
Figure 44: Prediction error for the autoregressive NN model 

 
Figure 45: Averaged prediction error for the autoregressive 
NN model 

Also here the invalid data generated during service 
are visible and stress the need to filter the data where 
service personnel is at the turbine in order to reduce 
the number of false alarms. After service the prediction 
error mean shifts by 1.5 °C and the amplitudes of the 
oscillations are increased. The alarm limits are 
frequently violated and the prediction error shows a 
dependency on the operational mode. The maximum 
model deviation during the observed period is 4.5 °C.      

 
6.4.4. Comparison 

 
The main difference of the two approaches for this 

type of anomaly lies in the amplitude height and the 
shift in mean. While the FSRC model shows the shift 
in mean 1:1 with the visual shift in the raw temperature 
data, the autoregressive model has a smaller shift. Like 
for the previously discussed stator temperature 
anomaly the autoregressive model has its advantage in 
having larger amplitudes in case of anomaly in 
comparison to the alarm limits.  

Both model types highlight the present anomaly 
right after service is finished. The autoregressive 
model is more accurate in predicting in the temperature 
under normal conditions, leading to very tight alarm 
limits.       
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7. Conclusion 
 
The comparison for the two types of bearing 

damages and the stator temperature anomalies reveal 
some differences between the three approaches.  

The linear regression model is based on correlation, 
which in general terms is linear analysis. Wind turbine 
signals on the other hand may contain nonlinear 
relationships. In this sense, a regression model may not 
be applicable to all wind turbine signals. Since this 
paper only gives an introduction to possible 
applications, the procedure in favour must be widely 
applicable to monitor all SCADA-data. Although this 
was not tested during the current research, it is 
expected that NNs provide this feature.  

All methods require proper data pre-processing and 
validation in order to allow optimal generalization.  

Due to its simplicity, the simple regression 
approach may be used to monitor for instance the 
individual coil temperatures of the generator stator or 
rotor system by use of sister signals. For the generator 
bearing temperature, it did, however, prove unpractical 
due to the required effort to set up a working model. 
Since each turbine must be treated as individual, a high 
degree of automatization development is required to 
reduce the effort.  

The NN based models used in this research, 
perform better and give an earlier confidence about a 
damage being present. However, they are more 
difficult to interpret. In SIMAP [3] fuzzy logic is 
employed to identify the abnormal behaving signal.  

Apart from a simple alarm limit violation to 
identify abnormal behavior, further analysis tools are 
required to identify anomalies. This research and 
development was done by Sanz-Bobi (et al.) in 2006 
and is employed in their anomalies detection and the 
health condition assessment module as part of SIMAP.  

The three bearing damages and the two stator 
temperature anomalies indicate that the form of 
deviation can be quite different. For the anomalies 
under research the FSRC and the autoregressive NN 
demonstrate a high ability to detect anomalies at 
comparable time instants. An exception was found by 
the generator damage discussed in section 6.3. Here 
the FSRC model highlighted the anomaly considerably 
earlier.  

In case of the bearing damages investigated the 
FSRC models allow easier abnormal behavior 
identification due to larger shifts in mean, once the 
damage or anomaly progresses.   

An autoregressive model therefore does not always 
seem advantageous although Zaher (et al.) and Sanz-
Bobi (et al.) used this approach to identify gearbox 
damages. They were able to detect incipient problems 
6 month (Zaher et al.) and 2 days (Sanz-Bobi et al.) 
before the actual failure [1].  

For reliable fault identification, the confidence level 
is of major importance. False alarms must be 
prevented. The system currently under research will be 
tested in a field test on the data coming from an 

onshore wind farm consisting of 18 turbines in the next 
project stage in order to test the reliability in fault 
detection. For this wind farm also detailed information 
about carried out services and occurred damages will 
be available.  

Reanalyzing data in order to recognize patterns 
after a certain fault has occurred is a rather trivial task. 
The major challenge, however, is to confidently 
identify incipient faults in online data. Here advantages 
of each model type depend on the type of damage.  

Autoregressive models should be used when a 
FSRC model cannot be set up due to lag of correlated 
signals or if the autoregressive behavior is of particular 
interest. Furthermore it is more applicable to high 
inertia systems, i.e. slow changing signals.  

The FSRC models set up in this research worked 
well due to the high correlation to other closely 
correlated signals available. FSRC models also have 
another important property that makes them more 
advantageous to use than autoregressive approaches: 
Since the signal is fully reconstructed, it is independent 
on previous measurements. For this reason, not only 
the relative signal changes can be monitored, but also 
the absolute changes. This statement holds for all types 
of anomalies. The property is expected to allow 
identification of purely sensor related issues and other 
types of faults.  

The drawback is that FSRC models are expected to 
have a higher risk of producing false alarms. This is 
because they may require more input signals.     

The comparison thus showed that FSRC models 
can be favorable to use over autoregressive 
approaches. The regression based models are simple to 
interpret and may be applied to simple problems, but 
are outperformed by the NN approaches in case of the 
anomalies investigated. 

Future research should focus on applying the 
findings to further SCADA signals. Thereby the most 
appropriate NN approach must be identified for each 
signal to be modeled individually. Also more research 
is required to investigate the potential of false alarms 
and the general fault visibility. This will be part of the 
ongoing Ph.D. research project by applying the 
procedure to a larger turbine fleet and long time 
monitoring of the signals behavior.  
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