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A B S T R A C T

The edible flowers are widely used, but there is still a lot to be done in relation to its bioactive potential and its
correlation with the presence of phenolic compounds. The aim of this study was determined the individual
phenolic profile in the hydromethanolic extracts and infusion preparations of four different flower samples
(Dahlia mignon, Rosa damascena ‘Alexandria’ and R. gallica ‘Francesa’ draft in R. canina, Calendula officinalis L.,
and Centaurea cyanus L.) and their bioactive potential (antioxidant, antiproliferative, and antibacterial capacity).
All the studied flowers presented different profiles regarding their phenolic composition and revealed biological
potential. The bioactive potential of the studied flowers was moderate, the hydromethanolic extracts of rose
petals showed the best results for antioxidant and antibacterial assays, while the antiproliferative properties
were only present in some of the tested cell lines, for the hydromethanolic extracts, in which dahlia and rose
showed the best results. These results demonstrate that edible flowers can be used as a source of phenolic
compounds with bioactive potential, which can be applied in the food sector, as foods and as sources natural
ingredients.

1. Introduction

Chefs around the world strive to go beyond the ordinary as they
prepare new recipes, garnishing their dishes with flowers or using them
as ingredients in salads, soups, entrees, desserts, and drinks (Kou,
Turner, & Luo, 2012). Edible flowers add a fresh and exotic aroma,
delicate flavour and a visual appeal that makes them increasingly used
in gourmet cuisine. Dahlia mignon, Rosa damascena ‘Alexandria’ and R.
gallica ‘Francesa’ draft in R. canina, Calendula officinalis L., and Cen-
taurea cyanus L. are among the most popular edible flowers (Fernandes,
Casal, Pereira, Saraiva, & Ramalhosa, 2017). The consumption of var-
ious types of edible flowers provides health benefits to the consumer,
since they are a good source of phytochemicals, including phenolic
compounds (Fernandes et al., 2017). These compounds have been re-
lated to the prevention of chronic degenerative diseases, such as dia-
betes, cognitive decline, and cardiovascular disease, as well as different
types of cancer through the inhibition of their initiation and progression
by modulating genes involved in key regulation processes
(Anantharaju, Gowda, Vimalambike, & Madhunapantula, 2016;
Gutiérrez-Grijalva et al., 2016). The flowers may contain a variety of
these natural antioxidants such as phenolic acids and flavonoids, being

their presence strongly related to their colour either directly (e.g., an-
thocyanins and other flavonoid pigments) or indirectly through the
copigmentation processes (Brouillard, 1988; Kaisoon, Siriamornpun,
Weerapreeyakul, & Meeso, 2011).

Several plants and their products have been used in foods as a mode
of natural preservative, flavoring agent as well as a remedy to treat
some of the common illness in humans. This property of curing is at-
tributed mainly to their antimicrobial activities. Use of natural plant
derived antimicrobials can be highly effective in reducing the depen-
dence on antibiotics, minimize the chances of antibiotic resistance in
food borne pathogenic microorganisms as well as help in controlling
cross-contaminations by food-borne pathogens (Mak, Chuah, Ahmad, &
Bhat, 2013).

The phenolic profile characterization, as also antioxidant and anti-
tumor activities of calendula samples have been previously studied by
(Miguel et al., 2016). As for rose samples (R. canina), there are some
previous studies on the total phenolic composition (Kuś, Jerković,
Tuberoso, Marijanović, & Congiu, 2014), individual phenolic profile
(Demir, Yildiz, Alpaslan, & Hayaloglu, 2014; Guimarães et al., 2013),
and antioxidant activity of fruits and flowers (Barros, Carvalho, &
Ferreira, 2011; Barros, Dueñas, Carvalho, et al., 2012; Hvattum, 2002),
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but there is no report regarding Rosa damascena ‘Alexandria’ and R.
gallica ‘Francesa’ draft in R. canina. Regarding centaurea, only total
phenolic composition has been studied (Kuś et al., 2014), while for
dahlia, to the author's best knowledge, there are no previous reports on
its phenolic composition or bioactive properties.

The main goal of the present study was to establish the phenolic
profiles in hydromethanolic extracts and infusion preparations of four
different flower samples (Dahlia mignon, Rosa damascena ‘Alexandria’
and R. gallica ‘Francesa’ draft in R. canina, Calendula officinalis L., and
Centaurea cyanus L.), and to evaluate their bioactive potential, including
antioxidant, antiproliferative, and antibacterial capacity.

2. Materials and methods

2.1. Standards and reagents

Acetonitrile (99.9%) was of HPLC grade from Fisher Scientific
(Lisbon, Portugal). Phenolic standards (apigenin-7-O-glucoside, caffeic
acid, chlorogenic acid, hesperetin, isoliquiritigenin, isorhamnetin-3-O-
glucoside, kaempferol-3-O-rutioside, naringenin, p-coumaric acid,
quercetin-3-O-glucoside, quercetin-3-O-rutinoside) were from
Extrasynthèse (Genay, France). Lipopolysaccharide (LPS), dex-
amethasone, sulforhodamine B, trypan blue, trichloroacetic acid (TCA),
tris(hydroxymethyl)aminomethane (Tris), Trolox (6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid) and formic acid were purchased
from Sigma-Aldrich (St. Louis, MO, USA). RAW 264.7 cells were from
the ECACC (“European Collection of Animal Cell Culture”) (Salisbury,
UK), and DMEM from Hyclone (Logan, Utah, US). The Griess Reagent
System Kit was purchased from Promega (Madison, WI, USA).
Dulbecco's modified Eagle's medium (DMEM), hank's balanced salt so-
lution (HBSS), fetal bovine serum (FBS), L-glutamine, trypsin-EDTA,
penicillin/streptomycin solution (100 U/mL and 100 mg/mL, respec-
tively) were purchased from Hyclone (Logan, Utah, USA). 2,2-
Diphenyl-1-picrylhydrazyl (DPPH) was obtained from Alfa Aesar (Ward
Hill, MA, USA), p-Iodonitrotetrazolium chloride (INT) from Panreac
Applichem (Barcelona, Spain), Tryptic Soy Broth (TSB) and Mueller-
Hinton (MH) from Biolab® (Hungary). All other general laboratory re-
agents were purchased from Panreac Química S.L.U. (Barcelona, Spain).
Water was treated in a Milli-Q water purification system (TGI Pure
Water Systems, USA).

2.2. Samples and preparation of hydromethanolic extracts and infusions

The flower samples were supplied by the company RBR Foods, from
Castro Daire (Portugal), as dry material to be used directly or for pre-
paration of infusions. Petals of four different species were used in the
present study: Dahlia mignon (commercial seeds mixture), Rosa da-
mascena ‘Alexandria’ and R. gallica ‘Francesa’ draft in R. canina,
Calendula officinalis L., and Centaurea cyanus L. These samples are de-
signated throughout the manuscript by their common names: dahlia,
rose, calendula, and centaurea, respectively. All the samples were re-
duced to a fine powder (20 mesh) and mixed to obtain homogenate
samples. The authors previously studied their nutritional composition
(Pires, Dias, Barros, & Ferreira, 2017).

To prepare the hydromethanolic extracts, 1 g of each sample was
submitted to extraction with a methanol:water mixture (80:20, v/v;
30 mL) at 25 °C and 150 rpm during 1 h, followed by filtration through
a Whatman filter paper No. 4. Afterwards, the residue was extracted
with one additional portion of the hydromethanolic mixture and the
combined extracts were evaporated under reduced pressure (rotary
evaporator Büchi R-210, Flawil, Switzerland).

To prepare the infusions, boiling distilled water (100 mL, pH 6.6) at
100 °C was added to each sample (1 g) and left to stand at room tem-
perature for 5 min, Afterwards, the infusions were filtered (0.22 μm).

Both preparations were frozen and then lyophilized in order to
perform all the assays described below.

2.3. Analysis of phenolic compounds

The phenolic profile was determined in the lyophilized hydro-
methanolic extracts and infusions, which were re-dissolved at a con-
centration of 5 mg/mL in methanol:water (80:20, v/v) and water, re-
spectively. The analysis was performed using a LC-DAD-ESI/MSn
(Dionex Ultimate 3000 UPLC, Thermo Scientific, San Jose, CA, USA) as
previously described by Bessada, Barreira, Barros, Ferreira, and
Oliveira (2016). Double online detection was performed using 280, 330
and 370 nm as preferred wavelengths for DAD and in a mass spectro-
meter (MS). The MS detection was performed in negative mode, using a
Linear Ion Trap LTQ XL mass spectrometer (Thermo Finnigan, San Jose,
CA, USA) equipped with an ESI source. The identification of the phe-
nolic compounds was performed based on their chromatographic be-
haviour, UV–vis and mass spectra by comparison with standard com-
pounds, when available, and by using data reported in the literature.
For quantitative analysis, a calibration curve for each available phe-
nolic standard was constructed based on the UV signal. For the iden-
tified phenolic compounds for which a commercial standard was not
available, the quantification was performed through the calibration
curve of the most similar available standard. The peaks were quantified
based on the area of the peak by using a manual quantification
methods, which is permitted by the software used. To integrate peaks a
perpendicular line was drawn from the valley between the peaks to the
baseline extended between the normal baseline before and after the
group of peaks. The results were expressed as mg/g of dry weight (dw).

2.4. Evaluation of the bioactivities

2.4.1. Antioxidant activity
The lyophilized hydromethanolic extracts and infusions were re-

dissolved in methanol:water (80:20, v/v) and water, respectively, to
obtain stock solutions of 2.5 mg/mL and 20 mg/mL, which were further
diluted to obtain a range of concentrations (10 mg/mL to 0.07 mg/mL)
for antioxidant evaluation by DPPH radical-scavenging (Hatano,
Kagawa, Yasuhara, & Okuda, 1988), reducing power (Oyaizu, 1986)
and inhibition of β-carotene bleaching assays (Shon, 2003). The final
results were expressed as EC50 values (μg/mL), sample concentration
providing 50% of antioxidant activity (for DPPH assay 50% of radical
scavenge, 0.5 of absorbance in the reducing power assay and for β-
carotene assay 50% of β-carotene bleaching inhibition). Trolox was
used as positive control.

2.4.2. Antibacterial activity
The antibacterial activity was determined in the lyophilized hy-

dromethanolic extracts and infusions, being re-dissolved in water in
order to obtain a stock solution of 100 mg/mL, and then submitted to
further dilutions. The microorganisms used were clinical isolates from
patients hospitalized in various departments of the Local Health Unit of
Bragança and Hospital Center of Trás-os-Montes and Alto-Douro Vila
Real, Northeast of Portugal. Seven Gram-negative bacteria (Escherichia
coli, E. coli ESBL (extended spectrum of beta-lactamase), Klebsiella
pneumoniae, K. pneumoniae ESBL, Morganella morganii, Pseudomonas
aeruginosa, and Acinetobacter baumannii, isolated from urine and ex-
pectoration) and five Gram-positive bacteria (MRSA- methicillin-re-
sistant Staphylococcus aureus, MSSA- methicillin-susceptible
Staphylococcus aureus, Staphylococcus aureus, Listeria monocytogenes, and
Enterococcus faecalis) were used to screen the antibacterial activity
Minimum Inhibitory Concentrations (MIC) determinations were per-
formed by the microdilution method and the rapid p-iodonitrote-
trazolium chloride (INT) colorimetric assay following the methodology
proposed by Kuete, Ango, et al. (2011) and Kuete, Kamga, et al. (2011)
with some modifications. MIC was defined as the lowest concentration
that inhibits the visible bacterial growth. Three negative controls were
prepared (one with Mueller-Hinton Broth (MHB)/Tryptic Soy Broth
(TSB), another one with the extract, and the third with medium and
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antibiotic). One positive control was prepared with MHB and each in-
oculum. For the Gram-negative bacteria, antibiotics, such as amikacin,
tobramycin, amoxicillin/clavulanic acid, and gentamicin were used.
For the Gram-positive bacteria, ampicillin and vancomycin were se-
lected. The antibiotic susceptibility profile of Gram-negative and Gram-
positive bacteria has been already described by (Dias et al., 2016) and is
provided in supplementary materials (Table A1).

2.4.3. Antiproliferative activity
The lyophilized hydromethanolic extracts and the infusions were re-

dissolved in water to obtain stock solutions of 4 mg/mL, and then
submitted to further dilutions. Four human tumor cell lines were tested:
MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung
cancer), HeLa (cervical carcinoma), and HepG2 (hepatocellular carci-
noma) from DSMZ (Leibniz-Institut DSMZ-Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH). Sulforhodamine B assay
was performed according to a procedure previously described by the
authors (Barros et al., 2013).

Each of the cell lines were plated in a 96-well plate, at an appro-
priate density (1.0 × 104 cells/well) and allowed to attach for 24 h.
The cells were then incubated in the presence of different extract
concentrations during 48 h. Afterwards, cold trichloroacetic acid (TCA
10%, 100 μL) was added in order to bind the adherent cells and further
incubated for 60 min at 4 °C. After the incubation period, the plates
were washed with deionized water, dried, sulforhodamine B solution
(SRB 0.1% in 1% acetic acid, 100 μL) was incorporated to each plate
well, and incubated for 30 min at room temperature. The plates were
washed with acetic acid (1%) in order to remove the unbound SRB and
air dried, the bounded SRB was solubilised with Tris (10 mM, 200 μL)
and the absorbance was measured at 540 nm using an ELX800 micro-
plate reader (Bio-Tek Instruments, Inc.; Winooski, VT, USA) (Guimarães
et al., 2013).

For evaluation of the hepatotoxicity in non-tumor cells, a cell cul-
ture (named as PLP2) was prepared from a freshly harvested porcine
liver obtained from a local slaughterhouse, according to a procedure
established by the authors (Abreu et al., 2011). The liver tissues were
rinsed in Hank's balanced salt solution containing penicillin (100 U/
mL) and streptomycin (100 μg/mL), and divided into 1 × 1 mm3 ex-
plants. A few of these explants were transferred to tissue flasks (25 cm2)

containing DMEM medium supplemented with fetal bovine serum (FBS,
10%), nonessential amino acids (2 mM), penicillin (100 U/mL), and
streptomycin (100 mg/mL) and incubated at 37 °C with a humidified
atmosphere (5% CO2). The medium was changed every two days and
the cell cultivation was continuously monitored using a phase contrast
microscope. When confluence was reached, the cells were sub-cultured
and plated in 96-well plate (density of 1.0 × 104 cells/well) containing
DMEM medium supplemented with FBS (10%), penicillin (100 U/mL),
and streptomycin (100 μg/mL). Ellipticine was used as positive control
and the results were expressed in GI50 values (concentration that in-
hibited 50% of the net cell growth).

2.5. Statistical analysis

Three samples were used for each species and all the assays were
carried out in triplicate. The results were expressed as mean values and
standard deviation (SD) and analysed using one-way analysis of var-
iance (ANOVA) followed by Tukey's HSD Test with p = 0.05. When
necessary, a Student's t-test was used to determine the significant dif-
ference between two different samples, with p = 0.05. These analyses
were carried out using IBM SPSS Statistics for Windows, Version 23.0.
(IBM Corp., Armonk, NY, USA).

3. Results and discussion

3.1. Individual phenolic profile of the hydromethanolic extracts and
infusions of the flower samples

The extraction yields obtained for the hydromethanolic extract
were, 47% for dahlia, 39% for rose, 25% for calendula, and 24% for
centaurea, while the infusion presented the following extraction yields
37% for dahlia, 34% for rose, 27% for calendula, and 22% for cen-
taurea. Dahlia hydromethanolic extract and infusions showed the most
promising yield.

Tables 1–4 presents the compounds characteristic separated using
HPLC methodology described above (retention time, λmax in the visible
region, mass spectral data), tentative identification and quantification
of the phenolic compounds present in the hydromethanolic extracts and
infusions prepared from dahlia, rose, centaurea, and calendula petals.

Table 2
Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, tentative identification and quantification (mg/g dw) of the phenolic compounds
present in rose dry petals.

Peak Rt (min) λmax
(nm)

[M-H]− (m/
z)

MS2 (m/z) Tentative identification Reference used for identification Hydromethanolic extracts Infusions

Phenolic compounds
1r 18.2 348 477 301(100) Quercetin-glucuronideB Guimarães et al. (2013) 0.79 ± 0.03⁎ 0.49 ± 0.01⁎

2r 18.6 355 463 301(100) Quercetin-hexosideB Guimarães et al. (2013) 1.37 ± 0.04 0.73 ± 0.01
3r 19.0 355 463 301(100) Quercetin-3-O-glucosideB DAD/MS; commercial standard 2.87 ± 0.07⁎ 1.31 ± 0.01⁎

4r 21.1 348 593 285(100) Kaempferol-3-O-rutinosideA DAD/MS; commercial standard tr tr
5r 21.6 353 433 301(100) Quercetin-pentosideB Guimarães et al. (2013) 0.66 ± 0.01⁎ 0.47 ± 0.01⁎

6r 22.0 348 461 285(100) Kaempferol-glucuronideA Guimarães et al. (2013) tr tr
7r 22.5 348 447 285(100) Kaempferol-3-O-glucosideA DAD/MS; commercial standard 2.74 ± 0.06⁎ 0.88 ± 0.01⁎

8r 25.1 348 417 285(100) Kaempferol-pentosideA Barros, Dueñas, Ferreira, et al.
(2011)

tr tr

9r 25.9 347 417 285(100) Kaempferol-pentosideA Barros, Dueñas, Ferreira, et al.
(2011)

tr nd

10r 27.2 348 431 285(100) Kaempferol-rhamnosideA Barros, Dueñas, Ferreira, et al.
(2011)

0.29 ± 0.02 tr

11r 30.1 314 609 463(100),301(12) Quercetin-(p-coumaroyl)
hexosideB

Barros et al. (2013) 0.46 ± 0.01⁎ 0.37 ± 0.00⁎

12r 33.1 314 593 447(9),285(100) Kaempferol-(p-coumaroyl)
hexosideA

Guimarães et al. (2013) tr tr

Sum of phenolic compounds (flavonoids) 9.18 ± 0.23⁎ 4.24 ± 0.01⁎

Standard calibration curves: A - kaempferol-3-O-rutinoside (y= 41843x+ 220,192, R2 = 0.998); B - quercetin-3-O-glucoside (y= 34843x− 160,173, R2 = 0.998). nq - not quantified;
tr-traces.

⁎ t-Students test p-value < 0.001.
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Exemplificative phenolic profiles of all the plants are shown in Fig. A1
in supplementary material. One phenolic acid derivative (chlorogenic
acid), twenty flavonoids (eryodictiol, kaempferol, quercetin, apigenin,
naringenin, hesperetin, butein, and isoliquiritigenin glycoside deriva-
tives) and two unknown compounds were detected in dahlia samples.
Rose petals showed twelve flavonoids, all of them derived from
kaempferol and quercetin, and did not reveal any phenolic acid deri-
vative. Three caffeic acid derivatives and ten flavonoids (kaempferol,
quercetin, and isorhamnetin glycoside derivatives) were identified in
calendula samples. Finally, centaurea samples presented five phenolic
acid derivatives (derived from caffeic and p-coumaric acids), nine fla-
vonoids (quercetin, kaempferol, apigenin, luteolin, and taxifolin gly-
coside derivatives) and one unknown compound. Due to the complexity
of the discussion, letters were attributed to the peak numbers to identify
the plant in which they were found: dahlia (d), rose (r), calendula (c),
and centaurea (ce). Table A2 in supplementary material shows the main
compounds identified in each sample and type of extract.

3.1.1. Flavonoids
3.1.1.1. Flavonols. Quercetin derivatives were detected in the four
flower samples. Quercetin-3-O-glucoside (peak 3r) and quercetin-3-O-
rutinoside (peaks 8c and 12d) were identified according to their UV
spectra, elution order, and fragmentation pattern in comparison to the
commercial standard. Compounds 3r and 8c were previously identified
in rose fruits by Guimarães et al. (2013), and in calendula flowers by
Miguel et al. (2016), respectively. Peaks 4c and 10c were identified as
quercetin-3-O-rhamnosylrutinoside and quercetin-3-O-(6″-acetyl)-
glucoside, respectively, which were also previously reported in C.
officinalis (Miguel et al., 2016). Peak 12ce corresponded to the same
compound as peak 10c. Peak 7ce ([M-H]− at m/z 667) with three MS2

fragments at m/z 505 (−162 u, loss of a hexosyl moiety), m/z 463
(−42 u, loss of an acetyl moiety), and m/z 301 (−162 u, loss of a
hexosyl moiety) was tentatively identified as quercetin-hexoside-
acetylhexoside. Peaks 1r and 5r were tentatively assigned as
quercetin-glucuronide and quercetin-pentoside, respectively, being
also previously reported by Guimarães et al. (2013) in R. canina
fruits. Peak 2r presented the same pseudomolecular ion and
fragmentation pattern as peak 3r (quercetin-3-O-glucoside), but a
lower retention time, therefore it was tentatively assigned as a
quercetin-hexoside. Similarly, peak 5c showed the same spectral
characteristics as peak 8c (quercetin-3-O-rutinoside), but different
retention time so it could not be identified as the pattern, being for
that manner tentatively identified as a quercetin-
deoxyhexosylhexoside. Peak 11r ([M-H]− at m/z 609) also presented
the same pseudomolecular ion as 8c, but different UV spectra,
fragmentation pattern and retention time. The observation in its MS2

spectrum of a product ion at m/z 463, from the loss of 146 u and the UV
maximum at 314 nm, as well as its late elution, were coherent with the
presence of a coumaroyl residue. Therefore, this molecule was
tentatively assigned as quercetin-(p-coumaroyl)hexoside.

Kaempferol derivatives were also observed in the four studied
flowers, being especially relevant in the rose sample. Peaks 4r and 7r
were identified according to their UV spectra, elution order, fragmen-
tation pattern, and commercial standards, as kaempferol-3-O-rutinoside
and kaempferol-3-O-glucoside, respectively. The remaining compounds
detected in rose flowers (i.e., peaks 6r, 8r, 9r, 10r, and 12r) were as-
signed following similar reasoning as for quercetin derivatives. Dahlia
samples presented two kaempferol derivatives (peaks 9d and 19d) with
pseudomolecular ions [M-H]− at m/z 771 and m/z 563, both releasing
a unique MS2 fragment at m/z 285, being associated to kaempferol-
pentosyl-rhamnosyl-hexoside and kaempferol-pentosyl-rhamnoside,
respectively. Centaurea and calendula samples presented one kaemp-
ferol derivative each (peaks 14ce and 6c) that were tentatively identi-
fied according to their mass spectral characteristics as kaempferol-
acetylhexoside and kaempferol-rhamnosyl-rutinoside, respectively.
This latter compound has already been reported in C. officinalis flowersTa
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by our group (Miguel et al., 2016).
Isorhamnetin derivatives were only detected in the calendula sam-

ples (peaks 7c, 9c, 11c, 12c, and 13c), being identified as isorhametin-3-
O-rhamnosylrutinoside ([M-H]− at m/z 769), isorhametin-3-O-neohe-
speridoside ([M-H]− at m/z 623), isorhametin-3-O-rutinoside ([M-H]−

at m/z 623), isorhametin-3-O-glucoside ([M-H]− at m/z 477) and iso-
rhametin-3-O-(6″-acetyl)-glucoside ([M-H]− at m/z 519), respectively,
all of them previously reported in C. officinalis flowers by Miguel et al.
(2016).

3.1.1.2. Flavones. Peaks 13d ([M-H]− at m/z 431) and 13ce ([M-H]−

at m/z 445), presented a unique MS2 fragment at m/z 269 (associated to
apigenin), corresponding to the loss of hexosyl (−162 u) and
glucuronyl (−176 u) moieties, so that they were tentatively
identified as apigenin-hexoside and apigenin-glucuronide,
respectively. An identity of peak 13d as apigenin-7-O-glucoside was
discarded by comparison with a standard. Peak 10ce ([M-H]− at m/z
649) released two MS2 fragments at m/z 473 (176 u, loss of a
glucuronyl moiety) and m/z 269 (162 + 42 u, further loss of an
acetylhexosyl residue), being tentatively identified as an apigenin-
glucuronide-acetylhexoside. Peak 11ce, with a pseudomolecular ion
[M-H]− at m/z 461 releasing a unique MS2 fragment at m/z 285 (loss of
176 u, corresponding to a glucuronyl moiety), was tentatively identified
as a luteolin-glucuronide.

3.1.1.3. Flavanones. They were only detected in dahlia samples. Peaks
1d ([M-H]− at m/z 653), 3d and 4d ([M-H]− at m/z 611), 6d ([M-H]−

at m/z 653), 8d ([M-H]− at m/z 595), and 10d ([M-H]− at m/z 449]),
presenting characteristic UV spectra with λmax around 274 nm and an
MS2 product ion at m/z 287, were associated as eriodictyol derivatives.
According to their pseudomolecular ions they were tentatively
identified as eriodictyol-acetyldihexoside (1d and 6d), eriodictyol-
dihexoside (4d), eriodictyol-deoxyhexosyl-hexoside (8d), and

eriodictyol-hexoside (10d). Peak 15d ([M-H]− at m/z 433) was
identified as naringenin-3-O-glucoside based on its LC-MS
characteristics in comparison with data available in our compound
library. Peak14d ([M-H]− at m/z 637) showing an MS2 fragmentation
pattern at m/z 475 ([M-H-162]−) and 271 (further loss of 162 + 42 u)
was tentatively assigned as naringenin-hexoside-acetylhexoside. Peak
17d ([M-H]− at m/z 579) presented a unique MS2 fragment at m/z 301
(−132–146 u, loss of pentosyl rhamnosyl moieties) was tentatively
identified as hesperetin-pentosyl-rhamnoside.

Peaks 5d and 7d presented a pseudomolecular ion [M-H]− at m/z
465 that is coherent with a pentahydroxyflavanone structure, also the
UV spectra presented by this compounds at λmax 270 nm with a
shoulder at 320 nm is also characteristic with dihydroflavonoids, being
tentatively assigned as pentahydroxyflavanone-dihexoside (5d) and
pentahydroxyflavanone-acetylhexoside-hexoside (7d).

3.1.1.4. Dihydroflavonols. Peaks 1ce, 8ce, and 9ce, all of them showing
the same pseudomolecular ion [M-H]− at m/z 627, detected in
centaurea samples, were associated to taxifolin (i.e.,
dihydroquercetin) with hexose and caffeic acid residues (both with
162 mu). This could be explained by the characteristic UV spectra shape
with a shoulder over 320 nm and also by the low abundance of the m/z
303 fragment. The m/z 465 fragment would correspond to the loss of
one hexoside moiety ([M-162]−), whereas the loss of the caffeic moiety
could be justify the low abundance of the m/z 303 fragment.

3.1.1.5. Chalcones. Seven compounds detected in dahlia samples were
identified as chalcones.

Peaks 11d and 16d presented an aglycone with m/z at 255 that fits
both the flavanone liquiritigenin and its corresponding chalcone iso-
liquiritigenin. However, the flavanone nature was discarded based on
their UV spectra showing λmax around 360 nm, characteristic of chal-
cones, as also checked by comparison with a commercial standard of

Table 4
Retention time (Rt), wavelengths of maximum absorption in the visible region (λmax), mass spectral data, tentative identification and quantification (mg/g dw) of the phenolic compounds
present in centaurea dry petals.

Peak Rt (min) λmax (nm) [M-H]−

(m/z)
MS2 (m/z) Tentative identification Reference used for

identification
Hydromethanolic
extracts

Infusions

Phenolic compounds
1ce 5.2 294,320sh 627 465(100), 303(3), 285(3) Taxifolin derivativesE DAD/MS 0.93 ± 0.02⁎ 0.31 ± 0.00⁎

2ce 5.7 263 341 179(100), 161(1), 135(1) Caffeic acid hexosideB Miguel et al. (2016) 0.25 ± 0.01 tr
3ce 7.3 326 353 191(100), 179(80),

173(24), 161(5), 135(10)
cis-5-O-Caffeoylquinic acidC DAD/MS; Barros, Dueñas,

Carvalho, et al. (2012)
1.50 ± 0.18⁎ 0.17 ± 0.01⁎

4ce 7.4 326 353 191(100), 179(80),
173(42), 161(5), 135(12)

trans-5-O-Caffeoylquinic
acidC

DAD/MS; commercial
standard

1.40 ± 0.06⁎ 0.24 ± 0.02⁎

5ce 7.8 346 325 163(100) p-Coumaric hexosideF Barros, Dueñas, Pinela et al.
(2012)

0.93 ± 0.01⁎ 0.09 ± 0.01⁎

6ce 8.2 312 325 163(100) p-Coumaric hexosideF Barros, Dueñas, Pinela, et al.
(2012)

0.44 ± 0.06⁎ 0.04 ± 0.00⁎

7ce 13.0 350 667 505(100), 463(43),
301(14)

Quercetin-hexoside-
acetylhexosideE

Barros, Dueñas, Carvalho,
et al. (2012)

0.78 ± 0.00⁎ 0.26 ± 0.00⁎

8ce 13.4 274,317sh 627 465(100), 303(3), 285(4) Taxifolin derivativesE DAD/MS 1.08 ± 0.04⁎ 0.28 ± 0.01⁎

9ce 13.7 276,316sh 627 465(100), 303(1), 285(3) Taxifolin derivativesE DAD/MS 1.11 ± 0.12⁎ 0.25 ± 0.01⁎

10ce 17.8 320 649 473(100), 269(8) Apigenin-glucuronide-
acetylhexosideA

DAD/MS 1.25 ± 0.00⁎ 0.46 ± 0.01⁎

11ce 18.9 346 461 285(100) Luteolin-glucuronideE Miguel et al. (2016) 0.83 ± 0.01⁎ 0.26 ± 0.00⁎

12ce 20.4 353 505 463(23), 301(100) Quercetin-3-O-(6″-acetyl)-
glucosideE

Barros, Dueñas, Carvalho,
et al. (2012)

0.83 ± 0.01⁎ 0.25 ± 0.00⁎

13ce 23.9 337 445 269(100) Apigenin-glucuronideA Guimarães et al. (2013) 12.22 ± 0.09⁎ 1.52 ± 0.13⁎

14ce 24.8 330 489 285(100) Kaempferol-
acetylhexosideD

Barros, Dueñas, Carvalho,
et al. (2012)

tr tr

Sum of phenolic acid derivatives 4.52 ± 0.17⁎ 0.55 ± 0.02⁎

Sum of flavonoids 19.03 ± 0.06⁎ 3.59 ± 0.03⁎

Sum of phenolic compounds 23.55 ± 0.11⁎ 4.14 ± 0.05⁎

Standard calibration curves: A - apigenin-7-O-glucoside (y= 10683x− 45,794, R2 = 0.991); B - caffeic acid (y= 388345x + 406,369, R2 = 0.994); chlorogenic acid
(y= 168823x − 161,172, R2 = 0.9999); D - kaempferol-3-O-rutinoside (y= 41843x+ 220,192, R2 = 0.998); E - quercetin-3-O-glucoside (y= 34843x− 160,173, R2 = 0.998); F - p-
coumaric acid (y= 301950x + 6966.7, R2 = 0.9999). nq - not quantified; tr - traces.

⁎ t-Students test p-value < 0.001.
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isoliquiritigenin. According to their pseudomolecular ions and MS2

fragmentation patterns, they were tentatively identified as iso-
liquiritigenin-dihexoside and isoliquiritigenin-hexoside-acetylhexoside.

Peaks 18d, 20d, and 21d showed similar spectra shapes as the
previous ones with λmax around 370–380 nm, and a common MS2

product ion at m/z at 271 that matched the chalcone butein. The
pseudomolecular ion ([M-H]− at m/z 433) of peak 18d was coherent
with butein hexosides, being the first of them (the majority one) as-
signed as coreopsin (butein-4′-glucoside), described as a main flavonoid
in other species of the Asteraceae family, such as Coreopsis tinctoria
(Chen et al., 2016a; Yang et al., 2016). Peak 20d, possessing a mole-
cular weight 42 u higher that peak 18d, was tentatively assigned as
acetylcoreopsin, also reported in Coreopsis tinctoria (Yang et al., 2016).
Peak 23d should correspond to a coreopsin derivative, although no
definite identity could be assigned to it.

The most abundant flavonoids in dahlia (except dahlia's infusions),
rose, calendula, and centaurea were naringenin-3-O-glucoside, quer-
cetin-3-O-glucoside, isorhamnetin-3-O-rutinoside, and apigenin-glu-
curonide, respectively. Calendula hydromethanolic extracts and infu-
sions presented the highest concentration of flavonoids (11.15 and
7.37 mg/g, respectively) and total phenolic compounds (11.31 and
7.47 mg/g, respectively) from all the studied samples. It also showed
higher concentration of these compounds when compared to the ones
reported by Miguel et al. (2016) in C. officinalis samples. This difference
could be related to the type of treatment that were given to the sample
(e.g. drying process), as well as the geographic origin of the samples.

3.1.2. Phenolic acids
Phenolic acid derivatives represent the second major class found in

the four flower samples, but in rose flowers this kind of compounds
were not detected. Caffeic acid (peaks 3c) and 5-O-caffeoylquinic acid
(chlorogenic acid; peaks 2d, 2c, and 4ce) were positively identified
according to their retention, mass, and UV–vis characteristics by com-
parison with commercial standards. Peak 3ce was assigned as the cis
form of 5-O-caffeoylquinic acid, since the cis hydroxycinnamoyl deri-
vatives would be expected to elute before the corresponding trans ones
(Barros, Dueñas, Carvalho, et al., 2012). Peaks 1c and 2ce ([M-H]− at
m/z 341) were tentatively identified as caffeic acid hexoside. The pre-
sence of caffeic acid hexoside and 5-O-caffeoylquinic acid was already
reported in C. officinalis by our group (Miguel et al., 2016). Finally,
peaks 5ce and 6ce were tentatively identified as p-coumaric hexoside
based on their pseudomolecular ion ([M-H]− at m/z 325) and the MS2

fragment at m/z 163 ([coumaric acid-H]−, −162 u, loss of a hexosyl
moiety). The observation of two compounds could be explained by a
different location of the sugar residue on the coumaric acid or the ex-
istence of cis/trans isomers.

The hydromethanolic extract from centaurea samples presented the
highest concentration in phenolic acids; while for the infusions the
highest concentration of phenolic acids was found in centaurea sample.
Chlorogenic acid was the most abundant phenolic acid present in all
samples, which may be very interesting since this compound has been
correlated with various biological effects, including antioxidant, anti-
obesity, antiapoptosis, and antitumor activities (Kamiyama, Moon,
Jang, & Shibamoto, 2015; Rakshit et al., 2010).

3.2. Bioactivities of the hydromethanolic extracts and infusions of the
flower samples

Data regarding antioxidant, antiproliferative, and antibacterial ac-
tivities of the hydromethanolic extracts and infusions of the four stu-
died flowers are presented in Table 5. The hydromethanolic extracts
and the infusions of rose petals were able to inhibit lipid peroxidation
and to prevent oxidative damage, as well as, promote free radicals
scavenging according to the results obtained for the DPPH radical
scavenging assay (0.18 and 0.82 mg/mL, respectively), reducing power
(1.29 and 0.64 mg/mL, respectively) and β-carotene bleaching

inhibition (0.38 and 1.12 mg/mL, respectively) These results were in
accordance with those obtained by Barros et al. (2011) for petals of
Rosa canina L. Researches revealed that phytochemicals such as an-
thocyanins, flavonoids, phenolic acids, alkaloids, and glycosides in
edible flowers exerted high anti-oxidant activities (Lu, Li, & Yin, 2016).

The hydromethanolic extracts of calendula showed lower EC50 va-
lues (higher antioxidant activity) in the DPPH and β-carotene bleaching
inhibition assays than the ones reported by Miguel et al. (2016). These
differences may be related to the presence of total flavonoids present in
the samples as described by Lu et al., 2016.

Regarding antiproliferative activity, not all the samples studied in-
hibit the growth of the studied tumor cell lines. Dahlia hydromethanolic
extracts and infusion gave the lowest GI50 values against HeLa
(223.65 μg/mL) and MCF-7 (361.99 μg/mL, 303.27 μg/mL respec-
tively) cell lines. The presence of flavanones only detected in dahlia
samples, may have contributed to antiproliferative activity against
more cell line (Manthey and Guthrie, 2002). Rose hydromethanolic
extract also presented the capacity to inhibit the growth of tumor cell
lines, such cervical and hepatocellular carcinoma. Similar results were
also described by Nadpal et al. (2016) for rose sample using a cervical
carcinoma cell line (308.5 μg/mL). Centaurea and calendula hydro-
methanolic extracts and infusions showed hardly or no antiproliferative
activity, with GI50 values higher than 400 μg/mL in all the tested cells.
None of the extracts or infusions presented hepatoxicity toward the
non-tumor liver primary culture (PLP2).

The obtained data for antimicrobial activity were presented in
Table 5. Our results showed that samples were active against all the
microorganisms used, however in most cases, the samples were found
to be more active against Gram-positive bacteria with MICs ranging
from 0.625 to 10 mg/mL. These results were in accordance with results
presented by Nowak et al. (2014). For Gram-positive bacteria, the in-
fusions of rose samples showed the best results for Staphylococcus aureus
(0.625 mg/mL), MRSA (0.625 mg/mL), and MSSA (1.25 mg/mL). The
hydromethanolic extracts of rose sample also showed the best anti-
bacterial activity against Gram-negative bacteria, E. coli and Morganella
morganii (1.25 mg/mL, for both). To obtain this beneficial effect with
the consumption of this plant, and considering the mentioned MICs, a
portion of 3.9 mg of rose plant/mL (e.g. 0.78 g per cup of infusion)
would be necessary. For the remaining plants the necessary portions
would be 2.4, 5 and 4.8 mg of dahlia, calendula and centaurea, re-
spectively per mL. Extended-spectrum beta-lactamase-producing (ESBL
2) Escherichia coli was not affected by any infusions studied.

Overall, this is an innovative study on the phenolic profile, anti-
oxidant, antiproliferative, and antibacterial activities of dahlia, rose
and centaurea petals. Meanwhile, for calendula petals the mentioned
bioactivities were previously reported Miguel et al. (2016). Flavonoids
were the predominant compounds in all the studied samples, although
each of them presented different phenolic profiles, both in terms of
phenolic families and contents. The highest concentration of total
phenolic compounds was found in calendula, with relevant amounts of
isorhamnetin derivatives. The hydromethanolic extracts and infusions
of rose petals showed the greatest antioxidant activity, which could be
due to the presence of quercetin and kaempferol derivatives.

Flavonoids are also considered safe compounds with low potential
to induce organic toxicity (Middleton Jr. et al., 2000). However, they
can exhibit prooxidant activity explaining some mutagenic and cyto-
toxic effect (Galati & O'Brien, 2004). The prooxidant and antioxidant
properties of flavonoids such as quercetin and kaempferol derivatives,
depend on the environment in which they are inserted as also their
chemical structure and concentration (Carocho & Ferreira, 2013).

The hydromethanolic extracts of rose petals showed the best results
for the antibacterial activity, and dahlia hydromethanolic extracts for
the antiproliferative activity against almost all the tumor cell lines
tested, with the exception of NCI-H460. Antiproliferative and anti-
bacterial activities were also highly related with phenolic compounds.

These results support the potential of edible flowers as sources of
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phenolic compounds with bioactive potential, having a high phyto-
chemical interest for the food industry.
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