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Abstract
Background  Respiratory syncytial virus (RSV) is the most common cause of acute lower respiratory infections in 
children worldwide. The highest incidence of severe disease is in the first 6 months of life, with infants born preterm 
at greatest risk for severe RSV infections. The licensure of new RSV therapeutics (a long-acting monoclonal antibody 
and a maternal vaccine) in Europe, USA, UK and most recently in Australia, has driven the need for strategic decision 
making on the implementation of RSV immunisation programs. Data driven approaches, considering the local RSV 
epidemiology, are critical to advise on the optimal use of these therapeutics for effective RSV control.

Methods  We developed a dynamic compartmental model of RSV transmission fitted to individually-linked 
population-based laboratory, perinatal and hospitalisation data for 2000–2012 from metropolitan Western Australia 
(WA), stratified by age and prior exposure. We account for the differential risk of RSV-hospitalisation in full-term and 
preterm infants (defined as < 37 weeks gestation). We formulated a function relating age, RSV exposure history, and 
preterm status to the risk of RSV-hospitalisation given infection.

Results  The age-to-risk function shows that risk of hospitalisation, given RSV infection, declines quickly in the first 12 
months of life for all infants and is 2.6 times higher in preterm compared with term infants. The hospitalisation risk, 
given infection, declines to < 10% of the risk at birth by age 7 months for term infants and by 9 months for preterm 
infants.

Conclusions  The dynamic model, using the age-to-risk function, characterises RSV epidemiology for metropolitan 
WA and can now be extended to predict the impact of prevention measures. The stratification of the model by 
preterm status will enable the comparative assessment of potential strategies in the extended model that target this 
RSV risk group relative to all-population approaches. Furthermore, the age-to-risk function developed in this work has 
wider relevance to the epidemiological characterisation of RSV.
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Background
Respiratory syncytial virus (RSV) is the most common 
cause of acute lower respiratory infections (ALRI) and 
the leading cause of pneumonia in children worldwide 
[1]. Global 2019 estimates show RSV is responsible for 
> 3.6 million hospitalisations and > 101,000 deaths annu-
ally in children < 5 years [2]. RSV infections impact peo-
ple of all ages, and due to imperfect immunity, repeat 
infection can occur throughout life. Almost all children 
will have experienced an RSV infection by the age of two 
years [2]. The highest incidence of severe disease is in 
young infants, with recent global estimates reporting that 
the hospitalisation rate for RSV-associated ALRI peaks 
in children aged 0–3 months, and 39% of RSV-associated 
ALRI hospitalisations occur in the first 6 months of life 
[2]. Of these infants, those born preterm are at greatest 
risk for severe RSV illness and complications [3]. The risk 
of RSV-hospitalisation is 2.9 times higher in infants born 
at 29–34 weeks gestation compared with term births [4]. 
With the proportion of preterm infants increasing world-
wide (∼ 11% of births [5, 6]), and > 2 million infants annu-
ally born very preterm (< 32 weeks [7]), these children 
represent a significant risk group. To date, RSV math-
ematical models have not explicitly modelled the differ-
ential risk of severe RSV illness in preterm infants or any 
other sub-population [8].

In the last two years, the RSV prevention landscape 
has changed dramatically through the inclusion of > 30 
RSV prevention candidates across Phase 1, 2, and 3 trials 
[9], with some products, including a long-acting mono-
clonal antibody, now licensed [10] and in use. With RSV 
immunisation on the horizon, data-driven approaches 
to country- and region-specific vaccine policy design 
and implementation are needed. Mathematical models 
for infectious diseases are key tools for understanding 
transmission, mitigating healthcare system impact, and 
planning the use of new therapeutics and interventions, 
and hence are valuable for the development of effective 
policy. For mathematical models to inform the imple-
mentation of immunisation strategies, highrisk groups 
including those born preterm, need to be considered to 
capture the full cost and impact of immunisation.

One aspect of RSV epidemiology that is not fully 
known is whether the observed reduced severity in older 
children and adults is due to prior exposure to RSV [11, 
12], the development of the immune system with age 
[13–15], or some combination of the two. The epidemi-
ology of RSV throughout the COVID-19 pandemic years 
changed in many countries [16], primarily due to the use 
of non-pharmaceutical interventions. These changes, 
including out-of-season summer peaks and a shift in 
median age of infection from 8.1 months to 16.4 months 
observed in Western Australia (WA) [17], has brought 
the question of RSV severity and its association with age 

and prior exposure to the forefront. This age shift sug-
gests a higher than usual number of RSV-susceptible 
children, presumably due to the lack of RSV activity and 
therefore infection during the winter period, resulting in 
lower levels of population immunity, otherwise known 
as an immunity debt. The higher severity in older chil-
dren, evident by an increase in hospitalisations, is pos-
sibly explained by the delay of the first RSV exposure 
event. Although some increases in viral testing have been 
seen in observational studies, these increases alone can-
not fully explain the out-of-season resurgence and add 
further weight to the immunity debt hypothesis [17, 18]. 
Most deterministic compartmental RSV transmission 
modelling studies published to date have assumed sever-
ity wanes with age [14, 19]. Although some studies have 
modelled prior exposure [20, 21], few have combined 
age and prior exposure in dynamic models of RSV trans-
mission [22–28]. No models have also incorporated the 
differential impact of RSV infection in high-risk groups 
(see [8] for a review of compartmental RSV transmission 
models up to 2022).

In this study, we present a dynamic compartmental 
model of RSV transmission fitted to population-based 
RSV-hospitalisation linked data for 2000–2012 from 
metropolitan WA, stratified by age and prior exposure. 
We account for the differential risk of severe RSV disease 
in full-term and preterm infants. Our main motivation 
is to provide a foundational model that can be extended 
to assess the impact of immunisation strategies; includ-
ing the use of maternal vaccines, monoclonal antibodies 
administered to infants, or a combination of both, with 
the potential to evaluate alternative immunisation strate-
gies for high-risk groups including preterm infants. The 
primary aim of this study is to identify the relationship 
between age, exposure history, and preterm status to the 
risk of RSV-related hospitalisation given infection, a key 
component of RSV models.

Methods
Setting and population-based data
WA covers the western third of Australia and has a popu-
lation of 2.7 million [29]. Approximately 80% of the pop-
ulation resides in the metropolitan region surrounding 
and including Perth, in the state’s south-west [29]. Data 
for this study were sourced from a population-based 
birth cohort study using individually linked adminis-
trative health data to investigate the pathogen-specific 
epidemiology of respiratory infections in children. Full 
details of the study are reported elsewhere [30]. In brief, 
data were extracted from the Hospital Morbidity Data 
Collection, the PathWest Laboratory Database, the Mid-
wives’ Notification System, and the Birth and Death Reg-
istry for a whole-of-population cohort of births in WA 
between 1 January 1996 and 31 December 2012. Data 
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were probabilistically linked using a series of identifiers 
through the WA Department of Health, with resultant 
de-identified linked data provided to the research team.

As per our previous analyses of these data [31], Path-
West testing records for RSV from respiratory specimens 
with a specimen collection date between 1 January 2000 
and 31 December 2012 were extracted and linked. Thus, 
RSV detections in this study reflect the pre-COVID-19 
pandemic seasonality of RSV that exhibited clear winter 
peaks (from June-August) in temperate climates of WA 
(predominantly, the metropolitan region [32]). RSV test-
ing records were merged with hospitalisation records 
if the date of specimen collection was within 48  h of a 
hospital admission to reflect the community infection 
burden of RSV. For this modelling study, we defined an 
RSV-hospitalisation as any hospital admission where 
RSV was tested and found positive through immuno-
fluorescence or polymerase chain reaction (PCR). Using 
information linked through the Midwives’ Notification 
System, we further separated the RSV-hospitalisations 
into those children who were born preterm (defined 
as gestation week at birth less than 37 weeks), or term 
(defined as gestation week at birth 37 weeks or more). We 
created a time series of RSV-hospitalisations by preterm 
and term births between 2000 and 2012 aggregated to a 
month time period.

Base and risk model structure and assumptions
The RSV transmission model is a deterministic com-
partmental mathematical model of the Susceptible-
Exposed-Infectious-Recovered-Susceptible form, as in 
prior work [14, 15, 19]. We extended this model to cap-
ture the progression from first RSV exposure to repeat 
exposures (Fig.  1). The model divides the population 
into 75 age groups: 60 one-month groups for individuals 
younger than 5 years, and five-year age groups thereafter. 
We assumed a constant population size, based on 2011 
Australian Bureau of Statistics (ABS) population data for 
metropolitan Perth (ages 0–79) [33], with the population 
distribution over the five-year age groups consistent with 

ABS data and a uniform population distribution assumed 
for the monthly age groups. We assumed that the birth 
and monthly ageing rate was equal to the initial monthly 
age group population size. In the model, deaths only 
occur in the oldest age group, with the death and birth 
rate assumed to be equal. To simulate the monthly ageing 
between groups we used continuous rather than cohort 
ageing, where individuals are moved instantaneously 
at fixed time points to compartments corresponding to 
older age groups,  as used in previous work [14, 15, 19]. 
We found that continuous ageing, where the ageing 
rates are included in the ordinary differential equations 
(ODEs), produced results close to cohort ageing for this 
model (see Figure S2 in the Supplementary material) and 
hence were adopted due to simplicity and decrease in 
computational time. The seasonal nature of RSV trans-
mission was simulated using a cosine function [19] (see 
Model equations in the Supplementary material). We 
term this the “base model”.

The “risk model” further divides the population into 
those born full-term and those born preterm. Using the 
mean value from our linked dataset of all WA births, the 
risk model assumes that the proportion of births that 
are preterm is 0.0849. The risk model replicates the base 
model structure (see Fig. 1) for preterm and term, allow-
ing a different parameterisation of risk of RSV severity 
for preterm infants. The equations for the base and risk 
models are in the Supplementary Material.

Parameters
Parameterisation of the base and risk compartmental 
models is summarised in Table  1. We assumed a latent 
period of four days [34], an infectious period of 10 days 
for first exposure [35, 36] and 7 days for second and sub-
sequent exposures [35, 36], and that immunity follow-
ing natural infection lasts for 230 days [19]. As in prior 
work [15] and aligning with other modelling studies [8], 
we assumed a reduced susceptibility to RSV infection 
in the first three months of life due to natural maternal 
immunity with susceptibility to infection reduced by 92% 

Fig. 1  Schematic representation of the RSV transmission base model for each age class i, where each state; susceptible, exposed, infectious, and recov-
ered for both naive (superscript 0) and repeat (superscript 1) exposures, represents a proportion of the total population. 𝝀(t) represents the force of infec-
tion, which is driven by the proportion of the population that is infectious and incorporates seasonally-fluctuating transmission
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in the first month of life and 52% in the second and third 
months. Aligning with other studies [34, 35, 37–42], we 
assumed a reduction in infectiousness and susceptibility 
to RSV infection in those who have experienced at least 
one prior RSV infection. We applied a 30% reduction of 
infectiousness [35, 37, 38] and a 23% reduction in suscep-
tibility [34, 39–42] as a scaling parameter to individuals 
that were infected for the second or subsequent time.

A contact matrix representing mixing between age 
groups in metropolitan Perth was generated using the 
R package conmat [43, 44] to normalise the POLYMOD 
[45] study contacts (using the United Kingdom data) to 
the 2011 greater Perth demographic profile (see Figure S3 
in the Supplementary Material). As the early age groups 
are monthly and the contacts in the POLYMOD study are 
in five-year groups, we made the uniform assumption for 
the initial five years divided into monthly groups to match 
the age structure in the model. The daily contact values 
were converted to monthly values as the model produces 
monthly numbers of infections and hospitalisations.

Age-to-risk function
In previous work [15], four scaling parameters were used 
to translate modelled infections to the RSV-hospital-
isation time series data for each of four key age groups 
(0–2 months, 3–5 months, 6–11 months, and 12–23 
months). These values, along with parameter values asso-
ciated with the seasonal forcing function (b0 and b1, see 
Table 1), were estimated through a numerical fitting pro-
cess. To better capture the change in the risk of hospitali-
sation following infection with age, prior RSV exposure, 
or preterm risk group, the four parameters were replaced 

by a simple functional form modelling age-to-risk, with 
scaling parameters to relate baseline risk in individuals 
with no prior infection to the (lower) risk in individuals 
with at least one prior infection, and preterm (higher) 
risk to baseline term risk. We assumed the age-to-risk 
function (for the risk model) to take an exponential decay 
form such that

	 y = (Ae−Bt + C)DE,

where y is the modelled relative probabilistic risk of 
hospitalisation at age t (in months), given an individual 
is infected with RSV, with A the average maximum risk 
increase over the minimum for a term infant (at age 0), 
B the exponential function decay constant, C the average 
minimum risk over all ages for all individuals, D a scaling 
factor (< 1) modifying risk for the prior infection group 
reflecting a lower risk of hospitalisation, and E a scaling 
factor (> 1) modifying risk for those born preterm reflect-
ing a higher risk of hospitalisation. We estimate A, B and 
E by fitting the model to the RSV-hospitalisation time 
series data. Where E scales the risk to above 1, we assume 
probability of hospitalisation is 1. The minimum risk 
parameter C was fixed at 0.015 through exploration of 
values in the fitting process and the prior infection scal-
ing parameter D was set to 0.2, which is consistent with 
recent studies [22, 24].

Model fitting and sensitivity analysis
A Markov-chain Monte Carlo (MCMC) approach using 
the R package lazymcmc [46] was used to fit the model 
to monthly RSV-hospitalisations for five key age groups 

Table 1  Parameter values for base and risk models
Parameter Definition Fixed/Fitted Value(s) Reference
1/ɣ1 Infectious period (days) for first exposure Fixed 10  [35, 36]
1/ɣ2 Infectious period (days) for second (and subsequent) exposures Fixed 7  [35, 36]
ῶ Reduced infectiousness of those who have experienced at least one prior 

infection
Fixed 0.7  [35, 37, 38]

1/δ Latent period (days) Fixed 4  [34]
1/𝜈 Immunity period (days) Fixed 230  [19]
𝜎1, 𝜎2, 𝜎3 Reduced susceptibility due to natural maternal immunity

(first, second and third months)
Fixed 𝜎1 = 0.08, 𝜎2 = 

𝜎3 = 0.45
 [15]

𝜎E Reduced susceptibility due to previous exposure Fixed 0.77  [34, 39–42]
b0 Transmission coefficient Fitted 0.0204 Fitted value
b1 Amplitude of seasonal forcing Fitted 0.3396 Fitted value
A Average maximum risk of hospitalisation of term infants (at age 0) Fitted 0.5144 Fitted value
B Decay constant Fitted 0.3776 Fitted value
C Average minimum risk of hospitalisation across all ages Fixed 0.015 Fixed value
D Scaling factor lowering risk for those with a prior exposure Fixed 0.2  [22, 24]
N Total population of metropolitan Perth for ages 0–79 Fixed 1,669,809 ABS popula-

tion 2011 [33]
𝛂 Proportion of births that are preterm (< 37 weeks) Fixed 0.0849 WA RSV 

linked data
E Scaling factor increasing risk for preterm infants Fitted 2.6329 Fitted value
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(0–2 months, 3–5 months, 6–11 months, 12–23 months 
and 2  – <5 years) simultaneously. The package uses a 
Metropolis-Hastings algorithm to sample the posterior 
multivariate distribution of five parameters in total over 
a two-step process using a log likelihood based on the 
assumption that the monthly RSV-hospitalisations fol-
low a Poisson distribution (see Supplementary Material). 
We first fitted the base model to the time series, estimat-
ing two parameters of the seasonal forcing function: b0 
the transmission coefficient and b1 the amplitude of the 
forcing function, as well as A (the average maximum 
risk increase for all infants at age 0 months), and B (the 
constant exponential decay parameter from the age-to-
risk function). The forcing function phase shift param-
eter, ø, was fixed by the assumption that peak infections 
occurred in July. The posterior samples of model param-
eters were generated from 8 independent chains of the 
Metropolis-Hastings sampler, each run for 5000 itera-
tions after an initial, discarded ‘warm-up’ period of 
1000 iterations per chain during which the sampler step 
size was also tuned. Convergence was assessed by visual 
assessment and diagnostic metrics, ensuring that the 
potential scale reduction factor for all parameters had 
values less than 1.1, and that there were at least 1000 
effective samples across the 8 chains for each parameter 
(see Supplementary Material). The estimated values of b0, 
b1, A and B resulting from fitting the base model to the 
time series were then fixed in the risk model before E, the 
preterm scaling factor, was estimated using the same fit-
ting method as described, with the RSV-hospitalisation 
time series separated into preterm and term births.

We assessed the sensitivity of the model output to the 
two fixed parameters in the age-to-risk function, C the 
average minimum risk of RSV-related hospitalisation for 
term infants and D the scaling of hospitalisation risk for 
the prior infection group. As part of the model validation 
process, we calculated the monthly average age of hospi-
talisation and compared it to observed data.

Results
Model fit
Figure  2 compares model output to the observed RSV-
hospitalisation time series for the five age groups used 
in fitting (see Supplementary material for model fit diag-
nostics and plots). All fitted parameter values are given 
in Table  1, with MCMC distribution point estimates in 
Table S1 in Supplementary Material. The average age 
of hospitalisation was calculated for monthly modelled 
hospitalisations. The overall mean was 13.0 months, 
with slightly higher average ages in the peak season and 
lower in off-peak months (see Figure S5 in Supplemen-
tary Material). These values are consistent with observed 
data that shows average age of RSV-hospitalisations 
during the 3-month peak ranging from 9.8 months to 

13.0 months (see Supplementary Material). The model 
estimates the average age of first RSV infection at 26.1 
months (2.2 years), and the average age of second and 
subsequent infections in children under 5 years old at 
41.1 months (3.4 years).

Age-to-risk fitted parameters
Figure  3 shows the age-to-risk function relating age in 
months to modelled relative risk of hospitalisation in 
children infected with RSV during the first year of life, 
parameterised using the fitted values for A, B and E 
(see Table  1). The fitted function demonstrates that the 
maximum risk of hospitalisation, given RSV infection, 
is in preterm infants in their first month of life and that 
preterm infants are consistently 2.6 times more likely to 
be hospitalised due to RSV infection than term infants 
infected at the same age (the fitted value of E). Figure 3 
indicates that preterm risk of hospitalisation given infec-
tion reaches the equivalent risk of hospitalisation at birth 
for infants born at term, at approximately 2.5 months 
of age. The modelled risk of RSV-hospitalisation decays 
quickly with age in the first year, with term risk decreas-
ing to less than 10% of risk at birth at 7 months of age, 
and preterm risk decreasing to less than 10% of birth 
risk at 9 months of age (see Table S2 in Supplementary 
Material).

Sensitivity analysis
Sensitivity analysis was conducted with respect to the 
two fixed parameters of the age-to-risk function. The 
minimum average risk of hospitalisation for term infants, 
C, was set to 0.015 in the model. Values of 0.005–0.1 in 
0.005 increments were considered in a sensitivity analy-
sis, with all other parameters fixed as in Table 1 and the 
log likelihoods calculated (see Table S3 in Supplementary 
Material). The analysis confirmed our default value of C 
was optimal for the fitted values of transmission and risk 
function parameters.

The parameter D represents the reduced risk of hos-
pitalisation in those who have experienced a prior RSV 
infection. Although this scaling effect is represented in 
Fig. 3, on average this effect will not greatly impact model 
predictions of hospitalisations as the average age of sec-
ond and subsequent infections for under 5-year-olds is 
over 3 years, at which age, risk is already low. The value of 
D was set to 0.2 to be consistent with previous work [22, 
24] but through sensitivity analysis, we explored values 
between 0 and 1, in increments of 0.05 (see Table S4 in 
Supplementary Material). We found that the model was 
not sensitive to the D value, though with a slight pref-
erence for low values. As second and subsequent RSV 
infections for children under 5 years occur when the age-
to-risk curve has decayed to close to minimum level risk, 
there is insufficient data to identify this parameter.
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Conclusions
We developed a dynamic compartmental model of RSV 
transmission, stratified by age, prior exposure, and pre-
term status, and fitted to linked laboratory and hospi-
talisation data for a population cohort in metropolitan 
Western Australia. The model was fitted using an age-
to-risk exponential function that formulates the relation-
ship between age and hospitalisation risk, modified by 
preterm status and RSV exposure history. This age-to-
risk function shows that the risk of hospitalisation given 
infection declines quickly in the first 12 months of life 

with risk declining to less than 10% of the risk at birth by 
age 7 months for term infants.

With both a long-acting monoclonal antibody (mAb) 
and maternal vaccine now licensed and available in 
some jurisdictions, and licensure progressing in oth-
ers, health policymakers need to provide guidance on 
the most appropriate use of each prevention option. To 
date, no RSV dynamic transmission model has included 
stratification by risk group, such as preterm birth [8]. 
However, our study has demonstrated the importance 
of including preterm infants in models that will be used 

Fig. 2  Comparison of the model estimated RSV hospitalisations to the observed time series of the five age groups used to fit the model. The observed 
hospitalisations are shown with dots (red for term, blue for preterm) and the dashed line is the model output representing estimated hospitalisations. See 
Figure S4 in Supplementary material for plot comparison of only preterm model estimates to observed data
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to guide pharmaceutical intervention decisions about 
the administration of a maternal vaccine as an alterna-
tive to, or in combination with, a mAb [47]. In our study, 
we found that for those infants born preterm, the risk of 
hospitalisation given infection was estimated to be 2.6 
times higher than those born at term, with risk decreas-
ing to less than 10% of the risk at birth by the age of 9 
months. Infants born preterm are at higher risk of severe 
RSV infection, most likely due to combinations of an 

immature cellular innate and adaptive immune system at 
birth, and smaller airways at birth, leading to increased 
rates of hospitalisation for acute respiratory infections 
persisting into early childhood [48]. Infants born preterm 
are also less likely to be exposed to maternally-derived 
antibodies. Transplacental transfer of RSV-specific anti-
bodies occurs predominantly in the third trimester of 
pregnancy [49], the likely time for a maternal vaccine to 
be administered. For this reason, infants born preterm 

Fig. 3  The fitted age-to-risk exponential function relating age (in months) to risk of hospitalisation once infected by RSV. The red curves show risk for 
those infants born term and blue show the modified risk for preterm birth. Dashed lines relate to the decreased risk for second and subsequent exposures. 
Fitted values are A = 0.5144, B = 0.3776 and E = 2.6329
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may benefit more from mAbs than a maternal vaccine. 
Mathematical models, such as the one developed and 
fitted in our study, will be important for understanding 
the implications of the timing of transplacental antibody 
transfer, and the timing of a mAb and vaccine delivery 
relative to the RSV season.

Infants born preterm are the largest risk group pre-
disposed to higher rates of severe RSV illness, but other 
groups include First Nations infants (RSV-hospitalisation 
rates approximately double the rate of non-First Nations 
children [50]), those with congenital heart disease, and 
those with chromosomal abnormalities including Tri-
somy 21 (ALRI hospitalisation rates are 3–8 times higher 
than children with no birth defects [51]). Our model 
structure could be extended to include these other risk 
groups if sufficient data are available for parameterisa-
tion, enabling targeted advice to policymakers for high-
risk group specific interventions, for example, the option 
of an additional dose in a high-risk infant’s second RSV 
season.

The data used for model fitting are unique to WA due 
to the availability of longitudinal datasets that can be 
linked on an individual basis in a total-population setting. 
These data represent the time period prior to when RSV 
became a notifiable disease in Australia (from July 2021). 
Thus, interrogation of routinely collected pathology 
data from respiratory pathogen testing, as in this study, 
is the only source of confirmed RSV-hospitalisations. 
We have previously shown that a combination of labo-
ratory and hospital data are needed to accurately deter-
mine RSV infections in children as hospital discharge 
diagnostic coding alone underestimates the burden of 
disease [30]. However, despite this strength, our data-
set used for model fitting is not without limitations. We 
did not include laboratory testing at private pathology 
sites across WA, which is suspected to have increased in 
recent years, although robust data on the proportion of 
viral testing in private vs. public laboratories are lacking. 
Nevertheless, for the years of data used in this study, the 
level of respiratory viral testing for children conducted 
outside PathWest as the sole public pathology provider is 
assumed to be minimal.

Although this model has included the relationship 
between exposure, age, and severity of RSV infection in 
the form of the age-to-risk function, a better understand-
ing of the relationship between severity and exposure, 
in particular, could be gained from further data inter-
rogation that identifies repeat hospitalisations for RSV 
infections in the same child over a period of time, imply-
ing multiple exposures. This is possible with our longi-
tudinal data and currently an area under investigation. 
Including exposure history in the model could be par-
ticularly important when considering the characteristics 
of immunisation candidates in terms of response after 

immunity has waned. The COVID-19-era perhaps indi-
cates how immunisation might affect the age profile of 
hospitalisations, increasing the average age of hospitali-
sation due to a delay in first exposure [28, 52].

In summary, this work provides an epidemiological 
model for RSV which can now be adapted, by includ-
ing additional compartments, to explore the impact of 
maternal vaccination and the delivery of mAbs, with the 
preterm sub-population being represented in analyses. 
We are planning to explore both the individual effects 
of these interventions as well as combined effects, with 
consideration of seasonal timing, and identifying opti-
mal immunisation strategies from targeting a risk group 
such as those born preterm versus a whole-population 
approach. A key strategy to be explored using our model 
structure will be a mAb administered to all infants born 
at the beginning of their first RSV season with a second 
dose for preterm children in their second year, as was 
indicated in the Advisory Committee on Immunisation 
Practices (ACIP) guidelines following the licensure of 
the new single dose long-acting mAb in the USA [53]. A 
similar strategy has recently been implemented in West-
ern Australia, the first Australian state to implement and 
fund a universal mAb program. The first step in model 
refinement will be to calibrate the model to more recent 
population-based data from WA, understanding that 
there may have been a change in RSV dynamics over the 
intervening time, in particular with a change in popula-
tion structure and RSV testing behaviour.
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