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Abstract

Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing
approach to mapping the brain’s intrinsic functional organization. Blood oxygen
level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI
approaches to assess alterations in brain networks associated with individual
differences, behaviour and psychopathology. While the BOLD signal is stronger with
a higher temporal resolution, ASL provides quantitative, direct measures of the
physiology and metabolism of specific networks. This study systematically
investigated the similarity and reliability of resting brain networks (RBNs) in BOLD
and ASL. A 2x2x2 factorial design was employed where each subject underwent
repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners
respectively. Both independent and joint FC analyses revealed common RBNs in ASL
and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice
Similarity Coefficients. Test-retest analyses indicated more reliable spatial network
patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905+0.033
between-sessions; 0.885+0.052 between-scanners) than ASL (0.545+0.048;
0.575%£0.059). Nevertheless, ASL provided highly reproducible (0.955+0.021;
0.970+0.011) network-specific CBF measurements. Moreover, we observed positive
correlations between regional CBF and FC in core areas of all RBNs indicating a
relationship between network connectivity and its baseline metabolism. Taken
together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for
characterizing the spatiotemporal and quantitative properties of RBNs. These
findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical

populations that are carried out across time and scanners.
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INTRODUCTION

Since the seminal work by Biswal et al. in 1995 (Biswal et al., 1995), the study of
resting brain networks (RBN) based on functional connectivity (FC) in resting state
fMRI (rs-fcMRI) has experienced an upsurge from basic to clinical neuroscience. The
majority of rs-fcMRI studies have used blood oxygen level dependent (BOLD)
contrast due to its technical simplicity, high sensitivity and temporal resolution.
Recently, a growing number of rs-fcMRI studies have employed arterial spin labeled
(ASL) perfusion MRI (Chuang et al., 2008; Dai et al., 2013; Jann et al., 2013; Liang et
al,, 2011; Liang et al,, 2012; Zou et al., 2009), which measures cerebral blood flow
(CBF) using magnetically labeled arterial blood water as an endogenous tracer
(Detre et al., 1992). Compared to BOLD, perfusion-based FC analysis provides more
direct and quantitative measures of the physiology and metabolism of specific
networks (Buxton et al., 2004). The inherently quantitative nature of ASL allows for
the assignment of biologically meaningful values to the networks, thus may

complement BOLD by providing a more interpretable biomarker.

To date, however, the application of perfusion-based rs-fcMRI in clinical
neuroscience has been hampered by the relatively low sensitivity and temporal
resolution of ASL compared to BOLD. The recent development of pseudo-continuous
ASL (pCASL) with background suppressed (BS) 3D acquisitions (e.g. GRASE - a
hybrid of spin and gradient echo and Stack-of-Spirals) has dramatically improved
the sensitivity and temporal SNR of perfusion imaging series (Alsop DC et al., 2014;

Fernandez-Seara et al., 2008), allowing the detection of CBF based RBNs while



minimizing potential BOLD contaminations (Du et al, 2012; Liang et al., 2012).
Another appealing feature of perfusion based rs-fMRI using pCASL with 3D BS
GRASE or Stack-of-Spirals is the improved visualization of RBNs involving brain
regions affected by susceptibility artifacts at the tissue-air interfaces (Fernandez-

Seara et al,, 2005).

Given the complementary nature of BOLD and perfusion rs-fcMRI - higher sampling
rate/temporal resolution in BOLD and absolute CBF quantification in ASL, the
combination of the two contrasts may offer a powerful tool for rs-fcMRI studies to
fully characterize the spatiotemporal and quantitative properties of RBNs. The
primary purpose of this study was to present a framework for independent and
joint FC analyses of BOLD and perfusion based rs-fcMRI data to identify common
and modality specific RBNs, using rigorous statistical approaches. For future
applications of BOLD and perfusion-based functional connectivity analyses in
clinical studies, it is critical to establish the reliability of RBNs across time (Meindl et
al., 2010; Shehzad et al,, 2009; Zuo et al., 2010), scanner platforms (Van Dijk et al,,
2010) and modalities as well as their dependencies on imaging parameters (Birn et
al, 2013; Patriat et al., 2013; Van Dijk et al., 2010)). For this purpose, a 2x2x2
factorial design was employed in the present study using repeated BOLD and ASL
rs-fcMRI scans on two occasions on two MRI scanners respectively. We
hypothesized that BOLD and ASL rs-fcMRI should show common RBNs that are
reproducible across time and scanners. The overall FC in BOLD RBNs is stronger

than that of ASL RBNs, yet ASL networks show higher FC in specific brain regions



(e.g. orbitofrontal cortex). Finally, network specific quantitative CBF measured by
ASL may indicate the baseline metabolic activity and may be associated with (or
underlie) the strength of functional connectivity of the corresponding network

(Aslan et al,, 2011; Liang et al., 2013; Tomasi et al., 2013).

MATERIALS and METHODS

Participants and data acquisition

Ten healthy volunteers (6f / 4m; Age [mean * std] = 22 * 3 years) underwent
repeated MRI scans on two 3T Siemens TIM Trio MR systems using the standard 12-
channel head coils and identical pulse sequences. A 2x2x2 factorial design was
employed, i.e., 2 repeated scans on 2 scanners using 2 modalities (ASL and BOLD).
On the first day they participated in two sessions approximately one hour apart on
one of the two scanners, and on the second day (2.1 + 1.3 days apart) the protocol
was repeated on the other scanner (scanner order was counterbalanced across
participants). Each session included resting state (rs-) BOLD imaging with 2D EPI
readout and the following parameters: Volumes=240, Matrix=64 x 64, Slice
Thickness=4 mm with 1mm gap, 30 slices, Repetition Time/Echo Time (TR/TE)=
2000/30ms, Flip Angle=77° Pixel Bandwidth=2298Hz, Field of View=220 mm;
resting state pseudo-continuous ASL (rs-pCASL) with single-shot 3D background
suppressed GRASE readout and the following parameters: Volumes=120 (60
label/control pairs), Matrix=64 x 64, Slice Thickness = 5 mm, 26 slices, Repetition
Time/Echo  Time/Label Time/Post Label Delay (TR/TE/t/PLD) =

4000/22/1200/1000ms, Pixel Bandwidth=2003Hz, Field of View = 220 mm,



labeling offset=9cm, 2 global inversion pulses were applied during the PLD for
background suppression (the first BS pulse was applied immediately after the
labeling pulses, the second BS pulse 700ms after the labeling pulses. Overall these
two BS pulses achieved ~85% suppression for grey and white matter signals. The
residual image intensity was necessary for motion correction as well as to avoid
zero crossing signals for subtraction between label and control images) (Kilroy et
al,, 2013; St Lawrence et al., 2012). For CBF quantification an additional volume (Mo,
equilibrium magnetization image) with the same parameters as described for pCASL
but with a long PLD of 4000ms and without BS was acquired. Finally, a T1 weighted,
high resolution, anatomical scan was performed (MP-RAGE, 192 sagittal slices with
1mm isotropic voxels, TR/TE/TI1=2170/4.33/1100ms). Resting state was defined as

lying still with eyes open while fixating a white cross at the center of a dark screen.

Data processing

Analysis of the MRI data was performed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/) and in-house Matlab (The MathWorks, Natick,
USA) routines. Statistical analyses were performed using Matlab Statistics Toolbox,
R Programming Project (http://www.r-project.org/) and IBM SPSS Statistics

(Version 19).

CBF quantification
Raw pCASL GRASE images were motion corrected separately for control and label

images (Wang et al.,, 2008) before perfusion-weighted time series were created by



sinc-subtraction of label and control images (AM). Notably, sinc-subtraction has
been demonstrated to efficiently minimize spurious BOLD contaminations within
the ASL signal (Aguirre et al.,, 2002; Chuang et al., 2008; Liu and Wong, 2005). The
computation of the quantitative CBF signal was based on a single compartment
kinetic model (Chen et al, 2011; Wang et al, 2003; Wang et al, 2005). After
quantification, the CBF images were co-registered to the individuals’ anatomical
scans, normalized into MNI standard space (thereby resampled into 2x2x2mm voxel
resolution) and spatially smoothed with an 8 mm full-width at half maximum

(FWHM) Gaussian Kernel.

BOLD images were first slice-time and motion corrected followed by coregistration,
normalization and spatial smoothing identical to the CBF images. Anatomical images
were normalized into standard MNI space and segmented into gray matter, white
matter and cerebrospinal fluid (GM/WM/CSF) using the algorithms provided by
SPM8. The individual GM images were averaged and thresholded at 0.3, providing a

binary mask representing gray matter voxels only (GM mask).

Network decomposition using ICA

Networks were identified by means of the Group ICA of fMRI Toolbox (GIFT) using a
concatenated group level ICA approach (Calhoun et al.,, 2001; Calhoun et al., 2004).
First, separate group ICAs for BOLD and ASL data were performed. The individual
time series were zero-meaned and the GM mask was applied for the ICA infomax

algorithm (Bell and Sejnowski, 1995). The ICA model order was estimated using the



AIC/MDL criterion, which yielded an optimal number of components for each
individual dataset with a median of 36 for BOLD and 20 components for ASL
datasets. Group- and subject- specific maps (as back-reconstructed by the GICA
procedure) were stored as z-maps. RBNs were identified by means of conjoint
template correlation (GIFT) and visual inspection of the component maps according
to the spatial distribution given in the literature (Beckmann et al., 2005; Franco et

al, 2009).

Since different ICA model orders can lead to unequal decompositions thus splitting
components into subnetworks or merging of networks (Abou-Elseoud et al., 2010;
Calhoun et al., 2009), matching and ordering of components across ICA runs is not a
straightforward procedure from a mathematical point of view. To address this issue
on drawing inferences about, and comparisons between subject cohorts, group
approaches and joint ICA approaches have been suggested (Calhoun et al.,, 2001;
Calhoun et al., 2009), which perform the unmixing on the temporally concatenated
dataset. These approaches assure that subject or modality specific components are
based on the same group component hence enabling comparative statistics for
BOLD and ASL derived networks without bias of separate decompositions.
Accordingly we employed a joint-ICA where the BOLD and CBF datasets were
assigned to 8 (i.e., 2x2x2) sessions per subject and temporally concatenated. The
same ICA parameters were used for this approach with subsequent back-
reconstruction for sessions and modalities. The MDL criterion for the joint dataset

yielded a median of 16 components for the aggregated group dataset.



Statistics

Spatial similarity and overlap of BOLD and ASL based RBNs were assessed by Dice
Similarity Coefficients (DSC), while test-retest repeatability of ASL and BOLD based
RBNs was estimated using Intraclass Correlation Coefficients (ICCs). Statistical
analyses were performed on the network as well as on a voxel-wise level. Repeated-
measures ANOVAs and post-hoc t-tests were computed to identify differences
between modalities, scanners and sessions, as well as possible interaction effects. A

schematic overview of analyses is given in Figure 1.

Statistical maps were corrected for multiple comparisons (type I errors) using
AlphaSim (Ward, 2000). This procedure estimates the distribution of random
cluster sizes given a statistical map and threshold taking into consideration the
spatial smoothness of the data (Bennett et al, 2009; Forman et al, 1995).

Accordingly, it provides the minimal cluster size required for clusters to be at a level



above random clustering at a chosen correction level. We performed 1000 iterations

and selected the correction level at alpha < 0.05.

o Dice Similarity Coefficients (DSC) of RBNs
To quantify the degree of similarity and spatial overlap of RBNs, we computed the
Dice’s Similarity Coefficient (DSC) (Dice, 1945; Zhu et al.,, 2013) according to the

formula:

2|ANB|
|A+B|

DSC = (1)

where, A and B represent sets of voxels within two given RBNs (thresholded at z>2)
and the parallel brackets denote the number of voxels in the set within the brackets.
o Network based CBF
Mean network perfusion was defined as the spatially and temporally averaged CBF
values across all voxels within the group RBN map where z>2, here dubbed as
RBNcgr. The resulting four RBNcgr metrics (one for each of the four ASL scans) per
subject were subjected to a 2x2 repeated measures ANOVA with within-subject
factors of site (1; 2) and session (1; 2) to test for the consistency of CBF
quantification for each network respectively.
o Network Amplitudes of Low Frequency Fluctuations (ALFF)
In addition to RBN-CBF we also computed the Amplitudes of Low Frequency
Fluctuations (ALFF) (Zang et al. 2007), which provides a measure of regional
spontaneous activity fluctuations. Using dynamic CBF to compute ALFFs instead of

relative BOLD signal fluctuations, the ALFFs have a direct physiological meaning and



a quantitative unit (i.e. ml/100g/min). Accordingly we computed the CBF-ALFF for
each session in each subject respectively, and extracted the corresponding mean

ALFF in each network. ALFF differences across networks and subjects were then

tested using an ANOVA. Additionally, we normalized the ALFF values with regard to

* Intraclass Correlation Coefficient (ICCs)
o Voxel wise maps for FC and regional CBF
The ICC estimation was based on a repeated-measures mixed effects ANOVA model
with absolute agreement of values (A-k) (Landis and Koch, 1977; McGraw and
Wong, 1996; Shrout and Fleiss, 1979). The ICC measures the proportion of total
variance that is accounted for by the variation between subjects against the variance
associated with either between-site or within-site effects. Hence, ICC over 0.5
indicates that scanner or session variation is lower than between-subjects variance.

ICC was calculated by

MSw—MSe
Icc = MSw+(MSb—MSe)/n

(2)
where MSw and MSb are the within- and between-subject errors respectively, MSe is
the mean residual error and n is sample size.

Voxel-wise maps of ICC for either FC or CBF were computed for within-site

(averaging z-/CBF-maps across sites) and between-site (averaging z-/CBF-maps

across sessions) variance. Further, to facilitate interpretation, we calculated a single



ICC value for each network (using only voxels within a given RBN where z>2) by
taking the mode of the ICC value distribution histogram between 0 and 1 (Zuo et al.,

2010). The mode of a histogram distribution represents the most prevalent value in

the distribution. Besides the modal-ICC we also computed the percentage of voxels

* ANOVA
o Voxel-wise maps for FC

As separate ICAs can result in unequal decompositions of networks as outlined in
Methods, the statistical comparison of RBNs was performed using single-subject
maps resulting from the joint ICA. This assured that different model orders,
component unmixing, network splitting/merging or component matching across
ICA runs does not bias possible network differences.

We performed voxel-wise 2x2x2 repeated measures ANOVAs on the single subject
z-maps with within-subject factors of modality (BOLD; CBF), site (1; 2) and session
(1; 2) for each RBN. Statistical thresholds for main and interaction effects were set
at p<0.01 (F (1,9) = 10.56). Maps with significant effects were further subjected to

two-sample two-sided post-hoc t-tests (significance level p<0.001).

* Correlation between RBNcgr and network z-scores
To assess the potential relationships between individual network connectivity and

baseline network perfusion, we computed the voxel-wise Pearson correlation



between the RBNs z-scores and the respective regional (voxel-level) CBF from the
same scan session. In addition, we compared the network connectivities between
the two modalities by correlating the average z-scores of all joint BOLD-RBNs (10
subjects across 4 sessions) to those of the corresponding ASL-RBNs. Using ICA as
compared to Seed Based Approaches (SBA) where a direct correlation between any
two specified brain areas is computed and considered as FC strength, the FC
strength used here (ICA z-scores) represents the degree to which a given voxel is

integrated within a given network component, i.e. its relative connectivity strength

to all other voxels in the specific network. [0 provide an estimate of how prevalent



RESULTS

Common RBNs in BOLD and ASL rs-fMRI

The three different ICA decompositions (i.e., ASL-only, BOLD-only and joint
ASL/BOLD) revealed five common RBNs: the Default Mode Network (DMN,
correlation of ICA group component to template networks for: BOLD-only ICA
R=0.37, ASL only ICA R=0.37, joint ICA R=0.28), the two lateralized Executive
Control Networks (ECNs) (RECN; Rpop=0.36, Ras.=0.22, Rjoint=0.28 / LECN;
ReoLp=0.33, Ras.=0.24, Rjoint=0.24) the Occipital Visual Network (OVN; RpoLp=0.34,
Rast=0.28, Rjoint=0.35) and the Auditory Network (AUN; RgoLp=0.32, Rjoint =0.18).
The spatial pattern of the 5 networks is depicted in Figure2 for separate ICAs and
Figure3 for joint ICA (multi-slice views of RBNs displayed in Figure S1) respectively.
The results consistently showed similar RBNs in each modality and assessment of
spatial similarity using DSC demonstrated a moderate to high level of overlap for all

RBNs across ICA runs (Table 1, Figure S6).

Between BOLD-only and ASL-only RBNs, the left and right ECN (DSC=0.42/0.56) and
the DMN (0.35) showed a moderate to high level of overlap, whereas the OVN and
AUN appeared as a single component in ASL-only ICA and a direct quantitative
comparison was thus inappropriate (Figure3). Comparing the RBNs detected by
separate ICA to the joint-ICA networks revealed a high level of agreement between
BOLD-only and joint RBNs (average DSC across networks [mean * SD]=0.58 * 0.05),

while for ASL-only ICA the two ECNs reached the same high degree of similarity



(R/L-ECN=0.65/0.60) but the DMN (0.30) and OVN (0.45) had reduced spatial
overlap with the corresponding networks in joint ICA. Finally, RBNs from joint-ICA
for BOLD and ASL showed the highest agreement to the common group component
(DSC range 0.76-0.94) as well as between each other (DSC range 0.59-0.71).
Although this high agreement is somewhat expected as the RBNs were derived from
the same concatenated ICA decomposition, it is required to compare networks
across modalities while ruling out effects of different I[CA model orders and

decompositions.

Repeatability of RBNs across time and scanner

Test-retest repeatability of ASL and BOLD based RBNs was estimated using ICCs on
a voxel-wise basis. The spatial distribution of ICC values overlapped with the
pattern of z-maps for the respective networks (Figures 2 & 3 and Figures S2 & S3).
Higher ICCs were found in areas with high FC. Separate ICA for BOLD and ASL
demonstrated good to excellent ICCs in BOLD (average meodal ICCs across RBNs:
between sessions 0.800+0.094; between scanners 0.735+0.074), while ASL yielded
lower but still fairly reliable ICC values (0.619+0.080 / 0.506+0.109) (Table 2). For
joint-ICA based RBNs reliability was higher for BOLD RBNs showing average modal
ICCs of 0.905+0.033 between sessions and 0.885+0.052 between scanners, and
modal ICCs for ASL RBNs were similar to ASL-only for reliability between sessions
(0.545%0.048) and between scanners (0.575+0.059) (Table 2). Voxel-wise display of

ICC maps showed reliable test-retest repeatability between sessions and scanners



(ICC>0.6, threshold in Figures 2 & 3) for all networks within their core areas [(Table

3a).

Analysis of quantitative CBF within RBNs

Quantitative CBF values were obtained within masks of the gray matter
(GMcpr=62.1+13.1 ml/100g/min) and the identified RBNs (RBNcgr) by joint ICA
respectively (DMN 71.1+3.0 ml/100g/min; LECN 62.2+2.83 ml/100g/min; RECN
61.7+3.6 ml/100g/min; OVN 61.7+4.4 ml/100g/min; AUN 71.6+5.9 ml/100g/min;
see Figure 4).

The 2x2 repeated measures ANOVAs of global mean GMcgr as well as GM-adjusted
RBNcgr values for the DMN, the L-ECN and the AUN did not show a statistically
significant effect of scanner or session. The R-ECN showed an interaction effect of
scanner*session (Fscanner=9.13, p=0.01/ Fsession=2.33, p=0.16/ Fscanner*session=10.88,
p=0.01) while the OVN showed an effect of session only (Fscanner=2.04, p=0.19/
Fsession=5.29, p=0.05/ Fscannertsession=0.18, p=0.68). Furthermore, a main effect of
network on RBNcgr values was observed (F(4,36)=14.97, p<0.001) indicating that
mean baseline perfusion varies significantly across brain networks, with the DMN
and the AUN exhibiting higher CBF than the other 3 RBNs.

Repeatability of RBNcgr values across time and scanner were further evaluated by
ICC and showed highly reproducible global mean GMcgr (modal ICC=0.915 between

sessions and 0.914 between scanners, voxel-wise maps of CBF ICCs can be found in



Figure S7). Average - ICC values across RBNcer were 0.955+0.021 between

sessions and 0.970+0.011 between scanners (see Table 2 bottom right).

Analysis of CBF based ALFF

The ALFF analysis (Figure 5.) revealed significant differences across networks
(ANOVA F-statistic F=5.69, p<0.001) and post-hoc t-tests (Tukey-Kramer) revealed
that R/L-ECNs were significantly different from OVN and AUN at p<0.05 level,
whereas DMN did not show differences to any other network. Furthermore, RBN-

ALFF was significantly different across subjects (F=4.37, p<0.0005). _

Differences in RBNs between BOLD and ASL

Analyses of the variations of the FC strength (or z values) of the detected joint-ICA
based RBNs (between modalities, scanners and sessions, as well as associated
interaction effects) were performed on a voxel-wise level, using repeated-measures
ANOVAs and post-hoc t-tests. These analyses indicated a significant main effect of
modality (BOLD vs. ASL) in all networks. The majority of the differences between
BOLD and ASL RBNs were observed within the brain areas constituting the

corresponding networks. In general, BOLD networks showed a stronger overall level



of FC, with the exception of higher FC in several specific regions of CBF networks
(Figure 3 & Figure S4):
* The DMN showed higher FC for BOLD in the posterior areas (Precuneus and
bilateral angular gyrus) but higher FC in orbital-medial frontal cortex in ASL.
* The two ECNs displayed higher FC in BOLD within network areas on the
respective hemisphere (inferior and superior frontal gyri as well as temporal
gyrus), but increased FC on the contralateral homotopic areas in ASL.
* The AUN showed a difference in areas of the DMN (Precuneus and medial
frontal gyrus) where ASL showed higher FC.
* The OVN showed significantly stronger FC for BOLD in the primary visual
cortex.
The coordinates and cluster sizes of detected significant FC differences are reported

in Table 4.

Relationship between regional CBF and FC (z-scores)

Correlation between the network average z-scores for BOLD and ASL RBNs revealed
a significant correlation (r=0.2; p<0.005). The voxel-wise correlations between RBN
z-scores and the corresponding regional CBF of the same sessions resulted in
significant correlations within the network specific nodes of each RBN from
separate as well as joint ICA for both ASL and BOLD modalities (r>0.4; p<0.05)
(Figures 2, 3 & S5). It is worth noting the correlation between regional CBF and FC
was more pronounced in ASL than in BOLD RBNs, and specifically the correlation

was more prevalent within the DMN, OVN and LECN (Table 3b).



DISCUSSION

ASL perfusion MRI has received considerable attention in clinical neuroscience due
to its quantitative and non-invasive nature. Absolute CBF values obtained using ASL
in the whole brain and specific brain regions have been shown to be reproducible
across time scales of minutes, hours to days (Chen et al., 2011; Jain et al., 2012; Jann
et al, 2013; Wu et al,, 2011). There is a good correlation between ASL CBF and the
gold standard of 1>0-PET in both resting state and activation studies (Feng et al.,
2004; Kilroy et al.,, 2013; Ye et al.,, 2000). Besides providing a robust mean CBF
averaged across a few minute scan, it has been shown to be feasible to perform
dynamic FC analysis of the ASL perfusion image series (Chuang et al., 2008; Dai et
al., 2013; Jann et al.,, 2013; Liang et al., 2012; Zou et al., 2009), similar to BOLD FC
analysis. To date, however, very few studies have systematically addressed the
similarity of RBNs detected using BOLD and ASL contrasts, as well as their reliability
across sessions and scanners. The present study attempted to fill in this gap using
the state-of-the-art pCASL with single-shot 3D BS GRASE pulse sequence as well as
rigorous statistical approaches to evaluate the similarity and repeatability of RBNs

in BOLD and ASL rs-fcMRI.

Spatial similarity and repeatability of RBNs
The five RBNs analysed in this study represented the DMN, left and right ECNs, OVN
and AUN. Their spatial pattern was consistent with commonly reported networks in

literature (Beckmann et al., 2005). Specifically, these five networks were identified



objectively by spatial correlation of the ICA results to reference networks (Shirer et
al,, 2012). Regarding the spatial similarity between BOLD and ASL RBNs, we found a
moderate to high level of concordance between ASL and BOLD RBNs using both
independent and joint ICA. DSC values indicated substantial overlap between RBNs
of BOLD-only and joint-ICA. For ASL-only ICA, however, while ECNs presented
similar spatial patterns to the remaining ICA runs, DMN, OVN, and AUN revealed
differences. Specifically, the DMN showed more widespread involvement of anterior
areas whereas AUN and OVN did not separate in ASL-only ICA but were represented
as a single component. This represents a well known problem in ICA where different
model orders can lead to splitting networks into subnetworks or merging them into
one component (Abou-Elseoud et al, 2010; Calhoun et al, 2001; Calhoun et al,
2009; Kiviniemi et al., 2009). These differences in ICA decompositions resulting in
heterogeneous RBNs pose a problem when matching RBNs from different ICA runs
and consequentially can bias further statistical analyses. Hence, to avoid such a bias
for statistical comparison of ASL and BOLD RBNs, single subject maps for both
modalities have to be computed within the same framework. This can be achieved
using identical seeds (Viviani et al,, 2011) or by integrating both modalities into a
common I[CA. The joint group ICA computed all networks simultaneously across
modalities, which substantially improved their spatial concordance (i.e. DSCs). Thus,
while separate and joint analyses demonstrated that ASL-based FC analysis is
feasible and yields group RBNs consistent with known BOLD-RBNs, only joint-ICA
provided an unbiased decomposition necessary for performing a proper statistical

comparison. The voxel-wise ANOVA comparing the RBNs of individual subjects



computed by the joint-ICA revealed a significant main effect of modality in all
studied networks that was attributed to generally lower FC (z-scores) in ASL as
revealed by the post-hoc t-test, while scanner and session effects were negligible.
Lower FC in ASL has been previously observed in seed-based network analyses
(Viviani et al., 2011) and thought to be related to lower SNR or fewer volumes, as
discussed below.

The test-retest repeatability of BOLD-RBNs was found to be high, both between
sessions and scanners (short (hours) and long (days) term reliability; Figures 3 & 4
and Table 1). This finding was consistent with earlier studies showing that RBNs can
be reliably identified across time (Shehzad et al., 2009) and resting conditions (i.e.,
eyes open, closed or fixating on a cross) (Patriat et al., 2013) using BOLD rs-fcMRL
Moreover, BOLD-RBNs showed higher reliability than components related to
physiological noise and imaging artifacts (Zuo et al., 2010). These findings further
established/corroborated the reliability of ICA-based FC analyses in BOLD rs-fcMRI
data. In the present study, RBNs from ASL-only ICA exhibited relatively smaller yet
still adequate test-retest repeatability across sessions and scanners. Joint-ICA
showed generally slightly increased medal ICCs for both BOLD and ASL, but
markedly reduced the standard deviation of ICC values within a network. These
findings herald the potential of performing rs-fcMRI studies in individual subjects
using BOLD and ASL contrasts, although to a lesser degree with the latter.
Furthermore, since ASL showed stronger FC in medial prefrontal regions of the

DMN compared to BOLD due to reduced sensitivity to susceptibility artefacts



(Fernandez-Seara et al., 2005; Liang et al., 2012), it may be particularly valuable in
studying psychiatric disorders involving the orbitofrontal cortex.

To make a note of caution, functional connectivity analyses present a coarse
measure of brain organization while the true organization of brain networks is still
unknown. Moreover, since BOLD and ASL measure different contrasts of
neurovascular coupling but are physiologically related and reflect hemodynamic
fluctuations, it is reasonable to assume that they share common RBNs. It is likely
that both resting state BOLD and ASL data will be acquired in future neuroimaging
studies. The proposed joint ICA may offer an appealing approach to identify more
reliable findings in terms of network connectivity, since the findings need to be
replicated in both BOLD and ASL data, compared to performing ICA on each

modality separately.

Reliable network-specific CBF quantification

While the spatial pattern of RBNs appears more reliable using BOLD, ASL provides
network specific CBF measurements, a physiologically meaningful parameter
inaccessible by BOLD. We found that both global and network CBF can be reliably
assessed between sessions and scanners (medal ICCs above 0.9). This high modal
ICC might be due to the fact that global CBF differences contribute to a large inter-
individual variance compared to intra-subject variance thus increasing voxel-level
ICCs. This finding has implications for rs-fcMRI studies in clinical populations.
Specifically, the capability for reliable CBF quantification becomes crucial in patient

studies where pathophysiology (Alsop et al., 2010; Detre et al., 2012; Detre et al,,



2009; Grieder et al., 2013) or medication (Chen et al., 2011; Wang et al., 2011) are
likely to alter global or regional CBF. In support for this notion, the major RBNs
exhibit consistent, systematic differences in baseline CBF levels, regardless whether

correction for global CBF is performed or not.

The DMN and the AUN showed the highest levels of CBF amongst all networks,
which were also higher than the global CBF. This finding is consistent with earlier
work measuring CBF in brain networks and suggests that the DMN may retain a
higher level of metabolic activity during baseline (Li et al, 2012b), which is
suppressed during task performance (Rao et al., 2007; Zhu et al., 2013). The DMN
initially was described as a network that exhibits higher metabolic activity (in FDG-
PET) during rest and shows deactivation during task execution (Raichle et al., 2001).
For the AUN it is argued that it is not completely at rest since there is continuous
sound as a consequence of scanning. CBF is proposed as a close marker for
metabolic activity as it is normally coupled with glucose uptake of neuronal
populations during activity (Fox et al., 1988) and further highly correlates with
baseline GABA concentrations and thus indicates changes in excitatory
(glutamatergic) and inhibitory (GABA-ergic) neurotransmitters fundamental to the
regulation of neuronal firing rates (Donahue et al,, 2010) (for review see (Raichle,
1998)). To sum, these findings suggest that network specific CBF may represent the
metabolic activity of the associated network that is inaccessible by BOLD rs-fcMRI.

Since the repeatability of both BOLD RBNs and network specific ASL CBF were high,



the combination of ASL and BOLD into a joint FC analysis may provide a powerful

tool in future rs-fcMRI studies carried out across time and scanners.

Besides baseline metabolism of brain areas within a network assessed by CBF, the
amplitudes of fluctuations has been argued to present another characteristic of
networks and brain areas. ALFF was introduced as a measure related to the amount
of spontaneous neuronal activity within brain areas (Zang et al.,, 2007). However,
while conventionally computed on relative BOLD signal fluctuations these
amplitudes have no unit, performing the computation on CBF fluctuations however,
it becomes possible to attribute a quantitative physiological unit [ml/100g/min] to
these fluctuations. Our results show that there are systematic differences between

subjects as well as across networks in the amplitudes of their fluctuations. -

Relation between network CBF and network functional connectivity

The correlation analysis between regional CBF and ASL-FC strength (z-scores)
revealed a positive relation between these two physiological _
- specific for the distinct networks. These observations are in line with recent
reports showing evidence for specific coupling between regional CBF and functional

connectivity from separate ASL and BOLD scans in certain nodes of a network (Li et



al., 2012c; Liang et al., 2013). Accordingly, these findings of FC-CBF relationships
indicate that CBF and FC provide complementary yet related information on the
brain’s baseline functional organization. Recent reports suggest that rCBF in specific
network nodes present the cost to maintain proper network integrity (Liang et al.,
2013; Tomasi et al, 2013) and that in disease both markers show alterations
(Kindler et al., 2013). In line with this notion, a study in Alzheimer’s disease
patients showed an association of CBF and FC in nodes of the DMN that were
correlated with cognitive performance. Furthermore, medical treatment enhanced
both measures along with reductions in disease severity (Li et al., 2012a). Hence
including global and regional CBF into FC analysis might contribute to the
understanding of inter-individual variability, specifically in clinical populations
where alterations in both characteristics have been observed and might influence

each other as well as BOLD responses during task performance (Liu et al., 2012).

Study Limitations and further development of ASL rs-fcMRI

Besides considerable overlap between ASL and BOLD RBNs, there are significant
differences in their spatial patterns in specific areas of the RBNs. These differences
primarily arise from the imaging modality rather than effects of different scanners
or sessions. There are several potential causes underlying the overall lower
connectivity strength in ASL and its lower reliability. First, although recordings had
the same duration (i.e. 8 min) ASL had only one fourth of the image volumes of the
BOLD scan. This is due to the requirement of ASL for labeling of the inflowing blood,

a post-labeling delay to account for arterial transit times and the fact that always a



control and a label image have to be acquired in order to quantify CBF. Secondly,
ASL has lower SNR compared to BOLD (Aguirre et al, 2002) which hampers FC
analysis using ICA or cross-correlation. To explore if the lower FC in ASL was due to
reduced temporal resolution or SNR we explored the effects of both possible causes.
We subdivided (chopped) the BOLD timeseries to match the temporal resolution of
ASL by taking every fourth volume of the BOLD run (see Supplemental Material).
Performing ICA and subsequent analyses on the chopped BOLD datasets, we found
only minor reductions in medal ICCs (Table 2) and DSCs (Table S1). These results
confirm earlier studies demonstrating that temporal resolution has minor effects on
FC analysis and that rather the total scan time (which was the same for all datasets
in the present study) is a critical factor affecting FC reliability (Birn et al.,, 2013; Van
Dijk et al., 2010). The analysis of temporal SNR revealed that BOLD rs-fcMRI had
overall higher temporal SNR than CBF (see Supplemental Material). However, the t-
test also revealed medial- and orbitofrontal areas with higher SNR in CBF, the same
area that showed increased CBF functional connectivity (Figure S8. (Liang et al.,
2012)). This increased sensitivity in areas close to tissue-air boundaries are known
to cause susceptibility artifacts in EPI image acquisition which are greatly alleviated
in 3D GRASE readout (Vidorreta et al., 2012). While increased FC in areas of
susceptibility can be explained by the better sensitivity of ASL in these areas, each
RBN showed additional clusters of increased FC in ASL. These clusters are mostly
outside the z-maps of the distinct RBNs and could suggest decreased sensitivity of
ASL to separate RBNs. The reduced tSNR combined with shorter timeseries might

cause fluctuations across voxels to share more mutual information and hence



increased correlation with the group component template fluctuation. As a
consequence, ASL-RBNs might show more widespread and less well segregated
networks than BOLD since the information content of voxel timeseries is less
separable than in BOLD. This limitation might be overcome in future studies by
using longer CBF timeseries or increasing the model-order of the ICA for ASL.

Another issue that is known to influence FC is motion (Power et al., 2012; Van Dijk
et al,, 2012). Especially if systematic motion differences exist between two groups
or, in the case of the present study, modalities this has to be considered. However,
statistical analyses of translational and rotational motion yielded neither significant
differences between modalities nor between sessions or scanners (see
Supplemental Material). Hence, the differences in FC between BOLD and ASL RBNs
might be mainly attributed to SNR. We did not report motor networks due to the
presence of wrap around signals in the top slices of 3D GRASE images. While
possessing great promise for rs-fcMRI studies, the spatial resolution and image
coverage still need to be improved in pCASL with single-shot 3D BS GRASE for

widespread applications in clinical neuroscience.

Conclusion
To conclude, the combination of quantitative information on network metabolism
from ASL and spatial organization of functional networks from BOLD rs-fMRI

provides a powerful tool for characterizing RBNs. While BOLD RBNs showed



excellent test-retest reliability across sessions and scanners in their spatial pattern,
ASL RBNs showed reduced yet still adequate repeatability. The highly reproducible
network-specific ASL CBF measurements may complement BOLD rs-fMRI by
providing quantitative CBF as an index of the metabolic activity of specific networks.
Moreover, we found that FC strength in RBNs is correlated with the baseline CBF in
core areas of the corresponding networks. This suggests that joint FC and network
CBF analyses using BOLD and ASL may fully characterize the spatiotemporal and
quantitative properties of RBNs that are especially desirable for longitudinal rs-
fcMRI studies, pharmacological MRI studies as well as for the comparison of RBNs

across different subject groups.
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FIGURE CAPTIONS

Figurel: Schematic workflow of ICA of BOLD and ASL data. ICA decompositions were performed
separately for BOLD and ASL datasets as well as in a combined joint-ICA to compute Resting Brain
Networks (RBNs). Dice Similarity Coefficients (DSC) were calculated to compare spatial overlap of
resulting RBNs across different ICA runs. Test-retest reliability of RBNs across session and scanner
was estimated by means of Intra-class correlation coefficients (ICC). An ANOVA with post-hoc t-test
was employed to statistically compare RBNs from BOLD and ASL. Finally, baseline activity of RBNs
(RBN¢pr) was calculated and associations between RBNCBF and functional connectivity strength

were tested by Pearson correlation coefficients.

Figure2: Results from separate ICAs for BOLD and ASL. Modality specific group RBNs were
computed as one-sample t-test across the specific single subject maps. Left column displays BOLD
RBN results while right column those for ASL. Five common RBNs were analyzed: Default Mode
Network (DMN), left and right Executive Control Networks (L/R-ECNs), Occipital Visual Network
(OVN) and Auditory Network (AUN). Test-retest reliability between sessions and scanners are
displayed as Intraclass Correlation Coefficient (ICC) maps for BOLD and ASL networks (ICC maps
were masked by ICA group RBN maps thresholded at z>2). Differences between the two modalities
(BOLD vs. ASL) were assessed by means of two-sample two-sided t-tests (significance threshold was
set at p<0.001). The bottom row displays voxel-wise correlation maps for CBF and Functional
Connectivity strength (z-scores) for the five distinct networks (only significant (p<0.05) correlations
above r>0.4 are displayed. Correlation maps have been masked by ICA group RBN maps thresholded
atz>2).

Multi-slice views of all analyses can be found in Supplemental Figures S1-S5.

Figure3: Results from joint-ICAs for BOLD and ASL (Display, organization and color-scaling are
analog to Figure2). Modality specific group RBNs were computed as one-sample t-test across the

specific single subject maps. Left column displays BOLD RBN results while right column those for
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pCASL. Five common RBNs were analyzed: Default Mode Network (DMN), left and right Executive
Control Networks (L/R-ECNs), Occipital Visual Network (OVN) and Auditory Network (AUN). Test-
retest reliability for session and scanner are displayed as Intraclass Correlation Coefficient (ICC)
maps for BOLD and ASL networks (ICC maps were masked by ICA group RBN maps thresholded at
z>2). Differences between the two modalities (BOLD vs. ASL) were assessed by means of two-sample
two-sided t-tests (significance threshold was set at p<0.001). The bottom row displays voxel-wise
correlation maps for CBF and Functional Connectivity strength (z-scores) for the five distinct
networks (only significant (p<0.05) correlations above r>0.4 are displayed. Correlation maps have
been masked by ICA group RBN maps thresholded at z>2).

Multi-slice views of all analyses can be found in Supplemental Figures S1-S5.

Figure4: Mean CBF values for RBNs (bar-plot). Line-plot represents mean values of separate ASL
sessions. Default Mode Network (DMN), left and right Executive Control Networks (L/R-ECNs),

Occipital Visual Network (OVN) and Auditory Network (AUN).
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