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Abstract  

Resting-state functional connectivity (FC) fMRI (rs-fcMRI) offers an appealing 
approach to mapping the brain’s intrinsic functional organization. Blood oxygen 
level dependent (BOLD) and arterial spin labeling (ASL) are the two main rs-fcMRI 
approaches to assess alterations in brain networks associated with individual 
differences, behaviour and psychopathology. While the BOLD signal is stronger with 
a higher temporal resolution, ASL provides quantitative, direct measures of the 
physiology and metabolism of specific networks. This study systematically 
investigated the similarity and reliability of resting brain networks (RBNs) in BOLD 
and ASL. A 2x2x2 factorial design was employed where each subject underwent 
repeated BOLD and ASL rs-fcMRI scans on two occasions on two MRI scanners 
respectively. Both independent and joint FC analyses revealed common RBNs in ASL 
and BOLD rs-fcMRI with a moderate to high level of spatial overlap, verified by Dice 
Similarity Coefficients. Test-retest analyses indicated more reliable spatial network 
patterns in BOLD (average modal Intraclass Correlation Coefficients: 0.905±0.033 
between-sessions; 0.885±0.052 between-scanners) than ASL (0.545±0.048; 
0.575±0.059). Nevertheless, ASL provided highly reproducible (0.955±0.021; 
0.970±0.011) network-specific CBF measurements. Moreover, we observed positive 
correlations between regional CBF and FC in core areas of all RBNs indicating a 
relationship between network connectivity and its baseline metabolism. Taken 
together, the combination of ASL and BOLD rs-fcMRI provides a powerful tool for 
characterizing the spatiotemporal and quantitative properties of RBNs. These 
findings pave the way for future BOLD and ASL rs-fcMRI studies in clinical 
populations that are carried out across time and scanners. 
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INTRODUCTION 

Since the seminal work by Biswal et al. in 1995 (Biswal et al., 1995), the study of 

resting brain networks (RBN) based on functional connectivity (FC) in resting state 

fMRI (rs-fcMRI) has experienced an upsurge from basic to clinical neuroscience. The 

majority of rs-fcMRI studies have used blood oxygen level dependent (BOLD) 

contrast due to its technical simplicity, high sensitivity and temporal resolution. 

Recently, a growing number of rs-fcMRI studies have employed arterial spin labeled 

(ASL) perfusion MRI (Chuang et al., 2008; Dai et al., 2013; Jann et al., 2013; Liang et 

al., 2011; Liang et al., 2012; Zou et al., 2009), which measures cerebral blood flow 

(CBF) using magnetically labeled arterial blood water as an endogenous tracer 

(Detre et al., 1992). Compared to BOLD, perfusion-based FC analysis provides more 

direct and quantitative measures of the physiology and metabolism of specific 

networks (Buxton et al., 2004). The inherently quantitative nature of ASL allows for 

the assignment of biologically meaningful values to the networks, thus may 

complement BOLD by providing a more interpretable biomarker.  

 

To date, however, the application of perfusion-based rs-fcMRI in clinical 

neuroscience has been hampered by the relatively low sensitivity and temporal 

resolution of ASL compared to BOLD. The recent development of pseudo-continuous 

ASL (pCASL) with background suppressed (BS) 3D acquisitions (e.g. GRASE – a 

hybrid of spin and gradient echo and Stack-of-Spirals) has dramatically improved 

the sensitivity and temporal SNR of perfusion imaging series (Alsop DC et al., 2014; 

Fernandez-Seara et al., 2008), allowing the detection of CBF based RBNs while 



minimizing potential BOLD contaminations (Du et al., 2012; Liang et al., 2012). 

Another appealing feature of perfusion based rs-fMRI using pCASL with 3D BS 

GRASE or Stack-of-Spirals is the improved visualization of RBNs involving brain 

regions affected by susceptibility artifacts at the tissue-air interfaces (Fernandez-

Seara et al., 2005). 

 

Given the complementary nature of BOLD and perfusion rs-fcMRI – higher sampling 

rate/temporal resolution in BOLD and absolute CBF quantification in ASL, the 

combination of the two contrasts may offer a powerful tool for rs-fcMRI studies to 

fully characterize the spatiotemporal and quantitative properties of RBNs. The 

primary purpose of this study was to present a framework for independent and 

joint FC analyses of BOLD and perfusion based rs-fcMRI data to identify common 

and modality specific RBNs, using rigorous statistical approaches. For future 

applications of BOLD and perfusion-based functional connectivity analyses in 

clinical studies, it is critical to establish the reliability of RBNs across time (Meindl et 

al., 2010; Shehzad et al., 2009; Zuo et al., 2010), scanner platforms (Van Dijk et al., 

2010) and modalities as well as their dependencies on imaging parameters (Birn et 

al., 2013; Patriat et al., 2013; Van Dijk et al., 2010)). For this purpose, a 2x2x2 

factorial design was employed in the present study using repeated BOLD and ASL 

rs-fcMRI scans on two occasions on two MRI scanners respectively. We 

hypothesized that BOLD and ASL rs-fcMRI should show common RBNs that are 

reproducible across time and scanners. The overall FC in BOLD RBNs is stronger 

than that of ASL RBNs, yet ASL networks show higher FC in specific brain regions 



(e.g. orbitofrontal cortex). Finally, network specific quantitative CBF measured by 

ASL may indicate the baseline metabolic activity and may be associated with (or 

underlie) the strength of functional connectivity of the corresponding network 

(Aslan et al., 2011; Liang et al., 2013; Tomasi et al., 2013). 

 

MATERIALS and METHODS 

Participants and data acquisition 

Ten healthy volunteers (6f / 4m; Age [mean ± std] = 22 ± 3 years) underwent 

repeated MRI scans on two 3T Siemens TIM Trio MR systems using the standard 12-

channel head coils and identical pulse sequences. A 2x2x2 factorial design was 

employed, i.e., 2 repeated scans on 2 scanners using 2 modalities (ASL and BOLD). 

On the first day they participated in two sessions approximately one hour apart on 

one of the two scanners, and on the second day (2.1 ± 1.3 days apart) the protocol 

was repeated on the other scanner (scanner order was counterbalanced across 

participants).  Each session included resting state (rs-) BOLD imaging with 2D EPI 

readout and the following parameters: Volumes=240, Matrix=64 x 64, Slice 

Thickness=4 mm with 1mm gap, 30 slices, Repetition Time/Echo Time (TR/TE)= 

2000/30ms, Flip Angle=77°, Pixel Bandwidth=2298Hz, Field of View=220 mm; 

resting state pseudo-continuous ASL (rs-pCASL) with single-shot 3D background 

suppressed GRASE readout and the following parameters: Volumes=120 (60 

label/control pairs), Matrix=64 x 64, Slice Thickness = 5 mm, 26 slices, Repetition 

Time/Echo Time/Label Time/Post Label Delay (TR/TE/τ/PLD) = 

4000/22/1200/1000ms, Pixel Bandwidth=2003Hz, Field of View = 220 mm, 



labeling offset=9cm, 2 global inversion pulses were applied during the PLD for 

background suppression (the first BS pulse was applied immediately after the 

labeling pulses, the second BS pulse 700ms after the labeling pulses. Overall these 

two BS pulses achieved ~85% suppression for grey and white matter signals. The 

residual image intensity was necessary for motion correction as well as to avoid 

zero crossing signals for subtraction between label and control images) (Kilroy et 

al., 2013; St Lawrence et al., 2012). For CBF quantification an additional volume (M0, 

equilibrium magnetization image) with the same parameters as described for pCASL 

but with a long PLD of 4000ms and without BS was acquired. Finally, a T1 weighted, 

high resolution, anatomical scan was performed (MP-RAGE, 192 sagittal slices with 

1mm isotropic voxels, TR/TE/TI =2170/4.33/1100ms). Resting state was defined as 

lying still with eyes open while fixating a white cross at the center of a dark screen.  

 

Data processing 

Analysis of the MRI data was performed using SPM8 

(http://www.fil.ion.ucl.ac.uk/spm/) and in-house Matlab (The MathWorks, Natick, 

USA) routines.  Statistical analyses were performed using Matlab Statistics Toolbox, 

R Programming Project (http://www.r-project.org/) and IBM SPSS Statistics 

(Version 19). 

 

CBF quantification 

Raw pCASL GRASE images were motion corrected separately for control and label 

images (Wang et al., 2008) before perfusion-weighted time series were created by 



sinc-subtraction of label and control images (∆M). Notably, sinc-subtraction has 

been demonstrated to efficiently minimize spurious BOLD contaminations within 

the ASL signal (Aguirre et al., 2002; Chuang et al., 2008; Liu and Wong, 2005). The 

computation of the quantitative CBF signal was based on a single compartment 

kinetic model (Chen et al., 2011; Wang et al., 2003; Wang et al., 2005). After 

quantification, the CBF images were co-registered to the individuals’ anatomical 

scans, normalized into MNI standard space (thereby resampled into 2x2x2mm voxel 

resolution) and spatially smoothed with an 8 mm full-width at half maximum 

(FWHM) Gaussian Kernel. 

 

BOLD images were first slice-time and motion corrected followed by coregistration, 

normalization and spatial smoothing identical to the CBF images. Anatomical images 

were normalized into standard MNI space and segmented into gray matter, white 

matter and cerebrospinal fluid (GM/WM/CSF) using the algorithms provided by 

SPM8. The individual GM images were averaged and thresholded at 0.3, providing a 

binary mask representing gray matter voxels only (GM mask). 

 

Network decomposition using ICA 

Networks were identified by means of the Group ICA of fMRI Toolbox (GIFT) using a 

concatenated group level ICA approach (Calhoun et al., 2001; Calhoun et al., 2004).  

First, separate group ICAs for BOLD and ASL data were performed. The individual 

time series were zero-meaned and the GM mask was applied for the ICA infomax 

algorithm (Bell and Sejnowski, 1995). The ICA model order was estimated using the 



AIC/MDL criterion, which yielded an optimal number of components for each 

individual dataset with a median of 36 for BOLD and 20 components for ASL 

datasets. Group- and subject- specific maps (as back–reconstructed by the GICA 

procedure) were stored as z-maps. RBNs were identified by means of conjoint 

template correlation (GIFT) and visual inspection of the component maps according 

to the spatial distribution given in the literature (Beckmann et al., 2005; Franco et 

al., 2009).  

 

Since different ICA model orders can lead to unequal decompositions thus splitting 

components into subnetworks or merging of networks (Abou-Elseoud et al., 2010; 

Calhoun et al., 2009), matching and ordering of components across ICA runs is not a 

straightforward procedure from a mathematical point of view. To address this issue 

on drawing inferences about, and comparisons between subject cohorts, group 

approaches and joint ICA approaches have been suggested (Calhoun et al., 2001; 

Calhoun et al., 2009), which perform the unmixing on the temporally concatenated 

dataset. These approaches assure that subject or modality specific components are 

based on the same group component hence enabling comparative statistics for 

BOLD and ASL derived networks without bias of separate decompositions. 

Accordingly we employed a joint-ICA where the BOLD and CBF datasets were 

assigned to 8 (i.e., 2x2x2) sessions per subject and temporally concatenated. The 

same ICA parameters were used for this approach with subsequent back-

reconstruction for sessions and modalities. The MDL criterion for the joint dataset 

yielded a median of 16 components for the aggregated group dataset.  



We computed t-maps to display the separate BOLD and ASL RBNs in joint and 

separate ICA. Specifically in the joint ICA the group component is the same for ASL 

and BOLD as it is computed across all datasets. The back-regressed individual 

subject and session IC-maps were then used to generate modality specific ASL and 

BOLD RBNs using one-sample t-tests against zero (significance set at p<0.001). 

While the t-maps were used for displaying the networks, the z-scores representing 

the ICA group components were used to generate RBN-masks that were used in the 

analyses below. 

 

Statistics 

Spatial similarity and overlap of BOLD and ASL based RBNs were assessed by Dice 

Similarity Coefficients (DSC), while test-retest repeatability of ASL and BOLD based 

RBNs was estimated using Intraclass Correlation Coefficients (ICCs).  Statistical 

analyses were performed on the network as well as on a voxel-wise level. Repeated-

measures ANOVAs and post-hoc t-tests were computed to identify differences 

between modalities, scanners and sessions, as well as possible interaction effects. A 

schematic overview of analyses is given in Figure 1.  

 

Statistical maps were corrected for multiple comparisons (type I errors) using 

AlphaSim (Ward, 2000). This procedure estimates the distribution of random 

cluster sizes given a statistical map and threshold taking into consideration the 

spatial smoothness of the data (Bennett et al., 2009; Forman et al., 1995). 

Accordingly, it provides the minimal cluster size required for clusters to be at a level 



above random clustering at a chosen correction level. We performed 1000 iterations 

and selected the correction level at alpha < 0.05. 

 

o Dice Similarity Coefficients (DSC) of RBNs 

To quantify the degree of similarity and spatial overlap of RBNs, we computed the 

Dice’s Similarity Coefficient (DSC) (Dice, 1945; Zhu et al., 2013) according to the 

formula:  

	  	 |∩|||  (1) 

where, A and B represent sets of voxels within two given RBNs (thresholded at z>2) 

and the parallel brackets denote the number of voxels in the set within the brackets.  

o Network based CBF 

Mean network perfusion was defined as the spatially and temporally averaged CBF 

values across all voxels within the group RBN map where z>2, here dubbed as 

RBNCBF. The resulting four RBNCBF metrics (one for each of the four ASL scans) per 

subject were subjected to a 2x2 repeated measures ANOVA with within-subject 

factors of site (1; 2) and session (1; 2) to test for the consistency of CBF 

quantification for each network respectively.  

o Network Amplitudes of Low Frequency Fluctuations (ALFF) 

In addition to RBN-CBF we also computed the Amplitudes of Low Frequency 

Fluctuations (ALFF) (Zang et al. 2007), which provides a measure of regional 

spontaneous activity fluctuations. Using dynamic CBF to compute ALFFs instead of 

relative BOLD signal fluctuations, the ALFFs have a direct physiological meaning and 



a quantitative unit (i.e. ml/100g/min). Accordingly we computed the CBF-ALFF for 

each session in each subject respectively, and extracted the corresponding mean 

ALFF in each network. ALFF differences across networks and subjects were then 

tested using an ANOVA. Additionally, we normalized the ALFF values with regard to 

subjects’ specific RBN-CBF (adjusted for globalGM-CBF) providing a %ALFF for each 

subject with respect to their baseline RBN-CBF values (Chuang et al. 2008). These 

%ALFF measurements were also subjected to an ANOVA.  

• Intraclass Correlation Coefficient (ICCs) 

o Voxel wise maps for FC and regional CBF 

The ICC estimation was based on a repeated-measures mixed effects ANOVA model 

with absolute agreement of values (A-k) (Landis and Koch, 1977; McGraw and 

Wong, 1996; Shrout and Fleiss, 1979). The ICC measures the proportion of total 

variance that is accounted for by the variation between subjects against the variance 

associated with either between-site or within-site effects. Hence, ICC over 0.5 

indicates that scanner or session variation is lower than between-subjects variance. 

ICC was calculated by 

  
/ (2) 

where MSw and MSb are the within- and between-subject errors respectively, MSe is 

the mean residual error and n is sample size. 

Voxel-wise maps of ICC for either FC or CBF were computed for within-site 

(averaging z-/CBF-maps across sites) and between-site (averaging z-/CBF-maps 

across sessions) variance. Further, to facilitate interpretation, we calculated a single 



ICC value for each network (using only voxels within a given RBN where z>2) by 

taking the mode of the ICC value distribution histogram between 0 and 1 (Zuo et al., 

2010). The mode of a histogram distribution represents the most prevalent value in 

the distribution. Besides the modal-ICC we also computed the percentage of voxels 

with ICC > 0.6 within each RBN as compared the total number of voxels within this 

RBN (threshold z>2). 

 

• ANOVA 

o Voxel-wise maps for FC 

As separate ICAs can result in unequal decompositions of networks as outlined in 

Methods, the statistical comparison of RBNs was performed using single-subject 

maps resulting from the joint ICA. This assured that different model orders, 

component unmixing, network splitting/merging or component matching across 

ICA runs does not bias possible network differences. 

We performed voxel-wise 2x2x2 repeated measures ANOVAs on the single subject 

z-maps with within-subject factors of modality (BOLD; CBF), site (1; 2) and session 

(1; 2) for each RBN. Statistical thresholds for main and interaction effects were set 

at p<0.01 (F (1,9) = 10.56). Maps with significant effects were further subjected to 

two-sample two-sided post-hoc t-tests (significance level p<0.001).   

 

• Correlation between RBNCBF and network z-scores 

To assess the potential relationships between individual network connectivity and 

baseline network perfusion, we computed the voxel-wise Pearson correlation 



between the RBNs z-scores and the respective regional (voxel-level) CBF from the 

same scan session. In addition, we compared the network connectivities between 

the two modalities by correlating the average z-scores of all joint BOLD-RBNs (10 

subjects across 4 sessions) to those of the corresponding ASL-RBNs. Using ICA as 

compared to Seed Based Approaches (SBA) where a direct correlation between any 

two specified brain areas is computed and considered as FC strength, the FC 

strength used here (ICA z-scores) represents the degree to which a given voxel is 

integrated within a given network component, i.e. its relative connectivity strength 

to all other voxels in the specific network. To provide an estimate of how prevalent 

an CBF-FC relation is within each RBN, we also computed the percentage of voxels 

with significant correlations above r>0.4 within each RBN as compared to the total 

number of voxels within this RBN (threshold z>2). 

 

  



 

RESULTS 

Common RBNs in BOLD and ASL rs-fMRI 

The three different ICA decompositions (i.e., ASL-only, BOLD-only and joint 

ASL/BOLD) revealed five common RBNs: the Default Mode Network (DMN, 

correlation of ICA group component to template networks for: BOLD-only ICA 

R=0.37, ASL only ICA R=0.37, joint ICA R=0.28), the two lateralized Executive 

Control Networks (ECNs) (RECN; RBOLD=0.36, RASL=0.22, Rjoint=0.28 / LECN; 

RBOLD=0.33, RASL=0.24, Rjoint=0.24) the Occipital Visual Network (OVN; RBOLD=0.34, 

RASL=0.28, Rjoint=0.35) and the Auditory Network  (AUN; RBOLD=0.32, Rjoint =0.18). 

The spatial pattern of the 5 networks is depicted in Figure2 for separate ICAs and 

Figure3 for joint ICA (multi-slice views of RBNs displayed in Figure S1) respectively. 

The results consistently showed similar RBNs in each modality and assessment of 

spatial similarity using DSC demonstrated a moderate to high level of overlap for all 

RBNs across ICA runs (Table 1, Figure S6).  

 

Between BOLD-only and ASL-only RBNs, the left and right ECN (DSC=0.42/0.56) and 

the DMN (0.35) showed a moderate to high level of overlap, whereas the OVN and 

AUN appeared as a single component in ASL-only ICA and a direct quantitative 

comparison was thus inappropriate (Figure3). Comparing the RBNs detected by 

separate ICA to the joint-ICA networks revealed a high level of agreement between 

BOLD-only and joint RBNs (average DSC across networks [mean ± SD]= 0.58 ± 0.05), 

while for ASL-only ICA the two ECNs reached the same high degree of similarity 



(R/L-ECN=0.65/0.60) but the DMN (0.30) and OVN (0.45) had reduced spatial 

overlap with the corresponding networks in joint ICA. Finally, RBNs from joint-ICA 

for BOLD and ASL showed the highest agreement to the common group component 

(DSC range 0.76-0.94) as well as between each other (DSC range 0.59-0.71). 

Although this high agreement is somewhat expected as the RBNs were derived from 

the same concatenated ICA decomposition, it is required to compare networks 

across modalities while ruling out effects of different ICA model orders and 

decompositions.  

 

Repeatability of RBNs across time and scanner 

Test-retest repeatability of ASL and BOLD based RBNs was estimated using ICCs on 

a voxel-wise basis. The spatial distribution of ICC values overlapped with the 

pattern of z-maps for the respective networks (Figures 2 & 3 and Figures S2 & S3). 

Higher ICCs were found in areas with high FC. Separate ICA for BOLD and ASL 

demonstrated good to excellent ICCs in BOLD (average modal ICCs across RBNs: 

between sessions 0.800±0.094; between scanners 0.735±0.074), while ASL yielded 

lower but still fairly reliable ICC values (0.619±0.080 / 0.506±0.109) (Table 2). For 

joint-ICA based RBNs reliability was higher for BOLD RBNs showing average modal 

ICCs of 0.905±0.033 between sessions and 0.885±0.052 between scanners, and 

modal ICCs for ASL RBNs were similar to ASL-only for reliability between sessions 

(0.545±0.048) and between scanners (0.575±0.059) (Table 2). Voxel-wise display of 

ICC maps showed reliable test-retest repeatability between sessions and scanners 



(ICC>0.6, threshold in Figures 2 & 3) for all networks within their core areas (Table 

3a).  

 

 

Analysis of quantitative CBF within RBNs 

Quantitative CBF values were obtained within masks of the gray matter 

(GMCBF=62.1±13.1 ml/100g/min) and the identified RBNs (RBNCBF) by joint ICA 

respectively (DMN 71.1±3.0 ml/100g/min; LECN 62.2±2.83 ml/100g/min; RECN 

61.7±3.6 ml/100g/min; OVN 61.7±4.4 ml/100g/min; AUN 71.6±5.9 ml/100g/min; 

see Figure 4).  

The 2x2 repeated measures ANOVAs of global mean GMCBF as well as GM-adjusted 

RBNCBF values for the DMN, the L-ECN and the AUN did not show a statistically 

significant effect of scanner or session. The R-ECN showed an interaction effect of 

scanner*session (Fscanner=9.13, p=0.01/ Fsession=2.33, p=0.16/ Fscanner*session=10.88, 

p=0.01) while the OVN showed an effect of session only (Fscanner=2.04, p=0.19/ 

Fsession=5.29, p=0.05/ Fscanner*session=0.18, p=0.68). Furthermore, a main effect of 

network on RBNCBF values was observed (F(4,36)=14.97, p<0.001) indicating that 

mean baseline perfusion varies significantly across brain networks, with the DMN 

and the AUN exhibiting higher CBF than the other 3 RBNs. 

Repeatability of RBNCBF values across time and scanner were further evaluated by 

ICC and showed highly reproducible global mean GMCBF (modal ICC=0.915 between 

sessions and 0.914 between scanners, voxel-wise maps of CBF ICCs can be found in 



Figure S7). Average modal ICC values across RBNCBF were 0.955±0.021 between 

sessions and 0.970±0.011 between scanners (see Table 2 bottom right).  

 

Analysis of CBF based ALFF 

The ALFF analysis (Figure 5A) revealed significant differences across networks 

(ANOVA F-statistic F=5.69, p<0.001) and post-hoc t-tests (Tukey-Kramer) revealed 

that R/L-ECNs were significantly different from OVN and AUN at p<0.05 level, 

whereas DMN did not show differences to any other network. Furthermore, RBN-

ALFF was significantly different across subjects (F=4.37, p<0.0005). Similarly, the 

normalized ALFF (%ALFF signal of respective RBN-CBF; Figure5B) showed also a 

significant effect of RBN (F(4)=8.9 p<0.00003) with significant differences between 

RECN and DMN, OVN and AUN, as well as LECN and AUN, where the two ECNs 

showed higher % fluctuations than other networks. Furthermore, the %ALFF with 

regard to RBN-CBF was different across subjects (F(9)=2.92, p<0.01).  

 

Differences in RBNs between BOLD and ASL 

Analyses of the variations of the FC strength (or z values) of the detected joint-ICA 

based RBNs (between modalities, scanners and sessions, as well as associated 

interaction effects) were performed on a voxel-wise level, using repeated-measures 

ANOVAs and post-hoc t-tests. These analyses indicated a significant main effect of 

modality (BOLD vs. ASL) in all networks. The majority of the differences between 

BOLD and ASL RBNs were observed within the brain areas constituting the 

corresponding networks. In general, BOLD networks showed a stronger overall level 



of FC, with the exception of higher FC in several specific regions of CBF networks 

(Figure 3 & Figure S4): 

• The DMN showed higher FC for BOLD in the posterior areas (Precuneus and 

bilateral angular gyrus) but higher FC in orbital-medial frontal cortex in ASL. 

• The two ECNs displayed higher FC in BOLD within network areas on the 

respective hemisphere (inferior and superior frontal gyri as well as temporal 

gyrus), but increased FC on the contralateral homotopic areas in ASL.  

• The AUN showed a difference in areas of the DMN (Precuneus and medial 

frontal gyrus) where ASL showed higher FC.  

• The OVN showed significantly stronger FC for BOLD in the primary visual 

cortex.  

The coordinates and cluster sizes of detected significant FC differences are reported 

in Table 4. 

 

Relationship between regional CBF and FC (z-scores) 

Correlation between the network average z-scores for BOLD and ASL RBNs revealed 

a significant correlation (r=0.2; p<0.005). The voxel-wise correlations between RBN 

z-scores and the corresponding regional CBF of the same sessions resulted in 

significant correlations within the network specific nodes of each RBN from 

separate as well as joint ICA for both ASL and BOLD modalities (r>0.4; p<0.05) 

(Figures 2, 3 & S5). It is worth noting the correlation between regional CBF and FC 

was more pronounced in ASL than in BOLD RBNs, and specifically the correlation 

was more prevalent within the DMN, OVN and LECN (Table 3b). 



 

DISCUSSION 

ASL perfusion MRI has received considerable attention in clinical neuroscience due 

to its quantitative and non-invasive nature. Absolute CBF values obtained using ASL 

in the whole brain and specific brain regions have been shown to be reproducible 

across time scales of minutes, hours to days (Chen et al., 2011; Jain et al., 2012; Jann 

et al., 2013; Wu et al., 2011). There is a good correlation between ASL CBF and the 

gold standard of 15O-PET in both resting state and activation studies (Feng et al., 

2004; Kilroy et al., 2013; Ye et al., 2000). Besides providing a robust mean CBF 

averaged across a few minute scan, it has been shown to be feasible to perform 

dynamic FC analysis of the ASL perfusion image series (Chuang et al., 2008; Dai et 

al., 2013; Jann et al., 2013; Liang et al., 2012; Zou et al., 2009), similar to BOLD FC 

analysis. To date, however, very few studies have systematically addressed the 

similarity of RBNs detected using BOLD and ASL contrasts, as well as their reliability 

across sessions and scanners. The present study attempted to fill in this gap using 

the state-of-the-art pCASL with single-shot 3D BS GRASE pulse sequence as well as 

rigorous statistical approaches to evaluate the similarity and repeatability of RBNs 

in BOLD and ASL rs-fcMRI. 

 

Spatial similarity and repeatability of RBNs 

The five RBNs analysed in this study represented the DMN, left and right ECNs, OVN 

and AUN. Their spatial pattern was consistent with commonly reported networks in 

literature (Beckmann et al., 2005). Specifically, these five networks were identified 



objectively by spatial correlation of the ICA results to reference networks (Shirer et 

al., 2012). Regarding the spatial similarity between BOLD and ASL RBNs, we found a 

moderate to high level of concordance between ASL and BOLD RBNs using both 

independent and joint ICA. DSC values indicated substantial overlap between RBNs 

of BOLD-only and joint-ICA. For ASL-only ICA, however, while ECNs presented 

similar spatial patterns to the remaining ICA runs, DMN, OVN, and AUN revealed 

differences. Specifically, the DMN showed more widespread involvement of anterior 

areas whereas AUN and OVN did not separate in ASL-only ICA but were represented 

as a single component. This represents a well known problem in ICA where different 

model orders can lead to splitting networks into subnetworks or merging them into 

one component (Abou-Elseoud et al., 2010; Calhoun et al., 2001; Calhoun et al., 

2009; Kiviniemi et al., 2009). These differences in ICA decompositions resulting in 

heterogeneous RBNs pose a problem when matching RBNs from different ICA runs 

and consequentially can bias further statistical analyses. Hence, to avoid such a bias 

for statistical comparison of ASL and BOLD RBNs, single subject maps for both 

modalities have to be computed within the same framework. This can be achieved 

using identical seeds (Viviani et al., 2011) or by integrating both modalities into a 

common ICA. The joint group ICA computed all networks simultaneously across 

modalities, which substantially improved their spatial concordance (i.e. DSCs). Thus, 

while separate and joint analyses demonstrated that ASL-based FC analysis is 

feasible and yields group RBNs consistent with known BOLD-RBNs, only joint-ICA 

provided an unbiased decomposition necessary for performing a proper statistical 

comparison. The voxel-wise ANOVA comparing the RBNs of individual subjects 



computed by the joint-ICA revealed a significant main effect of modality in all 

studied networks that was attributed to generally lower FC (z-scores) in ASL as 

revealed by the post-hoc t-test, while scanner and session effects were negligible. 

Lower FC in ASL has been previously observed in seed-based network analyses 

(Viviani et al., 2011) and thought to be related to lower SNR or fewer volumes, as 

discussed below.  

The test-retest repeatability of BOLD-RBNs was found to be high, both between 

sessions and scanners (short (hours) and long (days) term reliability; Figures 3 & 4 

and Table 1). This finding was consistent with earlier studies showing that RBNs can 

be reliably identified across time (Shehzad et al., 2009) and resting conditions (i.e., 

eyes open, closed or fixating on a cross) (Patriat et al., 2013) using BOLD rs-fcMRI. 

Moreover, BOLD-RBNs showed higher reliability than components related to 

physiological noise and imaging artifacts (Zuo et al., 2010). These findings further 

established/corroborated the reliability of ICA-based FC analyses in BOLD rs-fcMRI 

data. In the present study, RBNs from ASL-only ICA exhibited relatively smaller yet 

still adequate test-retest repeatability across sessions and scanners. Joint-ICA 

showed generally slightly increased modal ICCs for both BOLD and ASL, but 

markedly reduced the standard deviation of ICC values within a network. These 

findings herald the potential of performing rs-fcMRI studies in individual subjects 

using BOLD and ASL contrasts, although to a lesser degree with the latter. 

Furthermore, since ASL showed stronger FC in medial prefrontal regions of the 

DMN compared to BOLD due to reduced sensitivity to susceptibility artefacts 



(Fernandez-Seara et al., 2005; Liang et al., 2012), it may be particularly valuable in 

studying psychiatric disorders involving the orbitofrontal cortex.  

To make a note of caution, functional connectivity analyses present a coarse 

measure of brain organization while the true organization of brain networks is still 

unknown. Moreover, since BOLD and ASL measure different contrasts of 

neurovascular coupling but are physiologically related and reflect hemodynamic 

fluctuations, it is reasonable to assume that they share common RBNs. It is likely 

that both resting state BOLD and ASL data will be acquired in future neuroimaging 

studies. The proposed joint ICA may offer an appealing approach to identify more 

reliable findings in terms of network connectivity, since the findings need to be 

replicated in both BOLD and ASL data, compared to performing ICA on each 

modality separately. 

 

Reliable network-specific CBF quantification 

While the spatial pattern of RBNs appears more reliable using BOLD, ASL provides 

network specific CBF measurements, a physiologically meaningful parameter 

inaccessible by BOLD.  We found that both global and network CBF can be reliably 

assessed between sessions and scanners (modal ICCs above 0.9). This high modal 

ICC might be due to the fact that global CBF differences contribute to a large inter-

individual variance compared to intra-subject variance thus increasing voxel-level 

ICCs. This finding has implications for rs-fcMRI studies in clinical populations. 

Specifically, the capability for reliable CBF quantification becomes crucial in patient 

studies where pathophysiology (Alsop et al., 2010; Detre et al., 2012; Detre et al., 



2009; Grieder et al., 2013) or medication (Chen et al., 2011; Wang et al., 2011) are 

likely to alter global or regional CBF. In support for this notion, the major RBNs 

exhibit consistent, systematic differences in baseline CBF levels, regardless whether 

correction for global CBF is performed or not. 

 

The DMN and the AUN showed the highest levels of CBF amongst all networks, 

which were also higher than the global CBF. This finding is consistent with earlier 

work measuring CBF in brain networks and suggests that the DMN may retain a 

higher level of metabolic activity during baseline (Li et al., 2012b), which is 

suppressed during task performance (Rao et al., 2007; Zhu et al., 2013). The DMN 

initially was described as a network that exhibits higher metabolic activity (in FDG-

PET) during rest and shows deactivation during task execution (Raichle et al., 2001). 

For the AUN it is argued that it is not completely at rest since there is continuous 

sound as a consequence of scanning. CBF is proposed as a close marker for 

metabolic activity as it is normally coupled with glucose uptake of neuronal 

populations during activity (Fox et al., 1988) and further highly correlates with 

baseline GABA concentrations and thus indicates changes in excitatory 

(glutamatergic) and inhibitory (GABA-ergic) neurotransmitters fundamental to the 

regulation of neuronal firing rates (Donahue et al., 2010) (for review see (Raichle, 

1998)). To sum, these findings suggest that network specific CBF may represent the 

metabolic activity of the associated network that is inaccessible by BOLD rs-fcMRI. 

Since the repeatability of both BOLD RBNs and network specific ASL CBF were high, 



the combination of ASL and BOLD into a joint FC analysis may provide a powerful 

tool in future rs-fcMRI studies carried out across time and scanners.  

 

Besides baseline metabolism of brain areas within a network assessed by CBF, the 

amplitudes of fluctuations has been argued to present another characteristic of 

networks and brain areas. ALFF was introduced as a measure related to the amount 

of spontaneous neuronal activity within brain areas (Zang et al., 2007). However, 

while conventionally computed on relative BOLD signal fluctuations these 

amplitudes have no unit, performing the computation on CBF fluctuations however, 

it becomes possible to attribute a quantitative physiological unit [ml/100g/min] to 

these fluctuations. Our results show that there are systematic differences between 

subjects as well as across networks in the amplitudes of their fluctuations. Notably, 

the %ALFF normalized to RBN-CBF (Chuang et al 2008) showed a similar pattern as 

the absolute ALFF, suggesting that ALFFs are independent of baseline CBF and 

might provide an additional physiological marker to characterize temporal 

fluctuations of RBNs in future studies. 

 

Relation between network CBF and network functional connectivity 

The correlation analysis between regional CBF and ASL-FC strength (z-scores) 

revealed a positive relation between these two physiological measures in certain 

areas specific for the distinct networks. These observations are in line with recent 

reports showing evidence for specific coupling between regional CBF and functional 

connectivity from separate ASL and BOLD scans in certain nodes of a network (Li et 



al., 2012c; Liang et al., 2013). Accordingly, these findings of FC-CBF relationships 

indicate that CBF and FC provide complementary yet related information on the 

brain’s baseline functional organization. Recent reports suggest that rCBF in specific 

network nodes present the cost to maintain proper network integrity (Liang et al., 

2013; Tomasi et al., 2013) and that in disease both markers show alterations 

(Kindler et al., 2013).  In line with this notion, a study in Alzheimer’s disease 

patients showed an association of CBF and FC in nodes of the DMN that were 

correlated with cognitive performance. Furthermore, medical treatment enhanced 

both measures along with reductions in disease severity (Li et al., 2012a). Hence 

including global and regional CBF into FC analysis might contribute to the 

understanding of inter-individual variability, specifically in clinical populations 

where alterations in both characteristics have been observed and might influence 

each other as well as BOLD responses during task performance (Liu et al., 2012). 

 

Study Limitations and further development of ASL rs-fcMRI 

Besides considerable overlap between ASL and BOLD RBNs, there are significant 

differences in their spatial patterns in specific areas of the RBNs. These differences 

primarily arise from the imaging modality rather than effects of different scanners 

or sessions. There are several potential causes underlying the overall lower 

connectivity strength in ASL and its lower reliability. First, although recordings had 

the same duration (i.e. 8 min) ASL had only one fourth of the image volumes of the 

BOLD scan. This is due to the requirement of ASL for labeling of the inflowing blood, 

a post-labeling delay to account for arterial transit times and the fact that always a 



control and a label image have to be acquired in order to quantify CBF. Secondly, 

ASL has lower SNR compared to BOLD (Aguirre et al., 2002) which hampers FC 

analysis using ICA or cross-correlation. To explore if the lower FC in ASL was due to 

reduced temporal resolution or SNR we explored the effects of both possible causes. 

We subdivided (chopped) the BOLD timeseries to match the temporal resolution of 

ASL by taking every fourth volume of the BOLD run (see Supplemental Material). 

Performing ICA and subsequent analyses on the chopped BOLD datasets, we found 

only minor reductions in modal ICCs (Table 2) and DSCs (Table S1). These results 

confirm earlier studies demonstrating that temporal resolution has minor effects on 

FC analysis and that rather the total scan time (which was the same for all datasets 

in the present study) is a critical factor affecting FC reliability (Birn et al., 2013; Van 

Dijk et al., 2010). The analysis of temporal SNR revealed that BOLD rs-fcMRI had 

overall higher temporal SNR than CBF (see Supplemental Material). However, the t-

test also revealed medial- and orbitofrontal areas with higher SNR in CBF, the same 

area that showed increased CBF functional connectivity (Figure S8. (Liang et al., 

2012)). This increased sensitivity in areas close to tissue-air boundaries are known 

to cause susceptibility artifacts in EPI image acquisition which are greatly alleviated 

in 3D GRASE readout (Vidorreta et al., 2012). While increased FC in areas of 

susceptibility can be explained by the better sensitivity of ASL in these areas, each 

RBN showed additional clusters of increased FC in ASL. These clusters are mostly 

outside the z-maps of the distinct RBNs and could suggest decreased sensitivity of 

ASL to separate RBNs. The reduced tSNR combined with shorter timeseries might 

cause fluctuations across voxels to share more mutual information and hence 



increased correlation with the group component template fluctuation. As a 

consequence, ASL-RBNs might show more widespread and less well segregated 

networks than BOLD since the information content of voxel timeseries is less 

separable than in BOLD. This limitation might be overcome in future studies by 

using longer CBF timeseries or increasing the model-order of the ICA for ASL. 

Another issue that is known to influence FC is motion (Power et al., 2012; Van Dijk 

et al., 2012). Especially if systematic motion differences exist between two groups 

or, in the case of the present study, modalities this has to be considered. However, 

statistical analyses of translational and rotational motion yielded neither significant 

differences between modalities nor between sessions or scanners (see 

Supplemental Material). Hence, the differences in FC between BOLD and ASL RBNs 

might be mainly attributed to SNR. We did not report motor networks due to the 

presence of wrap around signals in the top slices of 3D GRASE images. While 

possessing great promise for rs-fcMRI studies, the spatial resolution and image 

coverage still need to be improved in pCASL with single-shot 3D BS GRASE for 

widespread applications in clinical neuroscience. 

 

 

 

Conclusion 

To conclude, the combination of quantitative information on network metabolism 

from ASL and spatial organization of functional networks from BOLD rs-fMRI 

provides a powerful tool for characterizing RBNs. While BOLD RBNs showed 



excellent test-retest reliability across sessions and scanners in their spatial pattern, 

ASL RBNs showed reduced yet still adequate repeatability. The highly reproducible 

network-specific ASL CBF measurements may complement BOLD rs-fMRI by 

providing quantitative CBF as an index of the metabolic activity of specific networks.   

Moreover, we found that FC strength in RBNs is correlated with the baseline CBF in 

core areas of the corresponding networks.  This suggests that joint FC and network 

CBF analyses using BOLD and ASL may fully characterize the spatiotemporal and 

quantitative properties of RBNs that are especially desirable for longitudinal rs-

fcMRI studies, pharmacological MRI studies as well as for the comparison of RBNs 

across different subject groups.  
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FIGURE CAPTIONS 

Figure1: Schematic workflow of ICA of BOLD and ASL data. ICA decompositions were performed 

separately for BOLD and ASL datasets as well as in a combined joint-ICA to compute Resting Brain 

Networks (RBNs). Dice Similarity Coefficients (DSC) were calculated to compare spatial overlap of 

resulting RBNs across different ICA runs. Test-retest reliability of RBNs across session and scanner 

was estimated by means of Intra-class correlation coefficients (ICC). An ANOVA with post-hoc t-test 

was employed to statistically compare RBNs from BOLD and ASL. Finally, baseline activity of RBNs 

(RBNCBF) was calculated and associations between RBNCBF and functional connectivity strength 

were tested by Pearson correlation coefficients.  

 

Figure2: Results from separate ICAs for BOLD and ASL.  Modality specific group RBNs were 

computed as one-sample t-test across the specific single subject maps. Left column displays BOLD 

RBN results while right column those for ASL. Five common RBNs were analyzed: Default Mode 

Network (DMN), left and right Executive Control Networks (L/R-ECNs), Occipital Visual Network 

(OVN) and Auditory Network (AUN). Test-retest reliability between sessions and scanners are 

displayed as Intraclass Correlation Coefficient (ICC) maps for BOLD and ASL networks (ICC maps 

were masked by ICA group RBN maps thresholded at z>2). Differences between the two modalities 

(BOLD vs. ASL) were assessed by means of two-sample two-sided t-tests (significance threshold was 

set at p<0.001). The bottom row displays voxel-wise correlation maps for CBF and Functional 

Connectivity strength (z-scores) for the five distinct networks (only significant (p<0.05) correlations 

above r>0.4 are displayed. Correlation maps have been masked by ICA group RBN maps thresholded 

at z>2).  

Multi-slice views of all analyses can be found in Supplemental Figures S1-S5. 

 

Figure3: Results from joint-ICAs for BOLD and ASL (Display, organization and color-scaling are 

analog to Figure2). Modality specific group RBNs were computed as one-sample t-test across the 

specific single subject maps. Left column displays BOLD RBN results while right column those for 
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pCASL. Five common RBNs were analyzed: Default Mode Network (DMN), left and right Executive 

Control Networks (L/R-ECNs), Occipital Visual Network (OVN) and Auditory Network (AUN). Test-

retest reliability for session and scanner are displayed as Intraclass Correlation Coefficient (ICC) 

maps for BOLD and ASL networks (ICC maps were masked by ICA group RBN maps thresholded at 

z>2). Differences between the two modalities (BOLD vs. ASL) were assessed by means of two-sample 

two-sided t-tests (significance threshold was set at p<0.001). The bottom row displays voxel-wise 

correlation maps for CBF and Functional Connectivity strength (z-scores) for the five distinct 

networks (only significant (p<0.05) correlations above r>0.4 are displayed. Correlation maps have 

been masked by ICA group RBN maps thresholded at z>2).  

Multi-slice views of all analyses can be found in Supplemental Figures S1-S5. 

 

Figure4: Mean CBF values for RBNs (bar-plot). Line-plot represents mean values of separate ASL 

sessions. Default Mode Network (DMN), left and right Executive Control Networks (L/R-ECNs), 

Occipital Visual Network (OVN) and Auditory Network (AUN). 

 

Figure5: A) Average CBF-ALFF for each network and subject. B) %ALFFs with respect to RBN-CBF 

(adjusted for globalGM-CBF). Subjects were ordered according to their overall mean ALFF. ANOVA 

revealed significant ALFF differences across RBNs and subjects for both absolute and normalized 

ALFF. 
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