Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Skip to main content
Models of object recognition in cortex have so far been mostly applied to tasks involving the recognition of isolated objects presented on blank backgrounds. However, ultimately models of the visual system have to prove themselves in real... more
Models of object recognition in cortex have so far been mostly applied to tasks involving the recognition of isolated objects presented on blank backgrounds. However, ultimately models of the visual system have to prove themselves in real world object recognition tasks. Here we took a first step in this direction: We investigated the performance of the HMAX model of object recognition in cortex recently presented by Riesenhuber & Poggio [1],[2] on the task of face detection using natural images. We found that the standard version of hmax performs rather poorly on this task, due to the low specificity of the hardwired feature set of C2 units in the model (corresponding to neurons in intermediate visual area V4) that do not show any particular tuning for faces vs. background. We show how visual features of intermediate complexity can be learned in HMAX using a simple learning rule. Using this rule, hmax outperforms a classical machine vision face detection system presented in the literature. This suggests an important role for the set of features in intermediate visual areas in object recognition.
Humans can recognize biological motion from strongly impoverished stimuli, like point-light displays. Although the neural mechanism underlying this robust perceptual process have not yet been clarified, one possible explanation is that... more
Humans can recognize biological motion from strongly impoverished stimuli, like point-light displays. Although the neural mechanism underlying this robust perceptual process have not yet been clarified, one possible explanation is that the visual system extracts specific motion features that are suitable for the robust recognition of both normal and degraded stimuli. We present a neural model for biological motion recognition that learns robust mid-level motion features in an unsupervised way using a neurally plausible memory-trace learning rule. Optimal mid-level features were learnt from image motion sequences containing a walker with, or without background motion clutter. After learning of the motion features, the detection performance of the model substantially increases, in particular in presence of clutter. The learned mid-level motion features are characterized by horizontal opponent motion, where this feature type arises more frequently for the training stimuli without motion clutter. The learned features are consistent with recent psychophysical data that indicates that opponent motion might be critical for the detection of point light walkers.
We present a component-based framework for face detection and identification. The face detection and identification modules share the same hierarchical architecture. They both consist of two layers of classifiers, a layer with a set of... more
We present a component-based framework for face detection and identification. The face detection and identification modules share the same hierarchical architecture. They both consist of two layers of classifiers, a layer with a set of component classifiers and a layer with a single combination classifier. The component classifiers independently detect/identify facial parts in the image. Their outputs are passed the combination classifier which performs the final detection/identification of the face. We describe an algorithm which automatically learns two separate sets of facial components for the detection and identification tasks. In experiments we compare the detection and identification systems to standard global approaches. The experimental results clearly show that our component-based approach is superior to global approaches.